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SUMMARY 
Large-eddy simulation (LES) is used to determine the turbulent structure of the steady-state up-slope 

boundary layer (UBL) which forms at a uniformly heated inclined or vertical plane surface below a stratified 
atmosphere at rest. At proper scales, the problem depends solely on the slope angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and the surface roughness 
height zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo relative to a length scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH which is a function of stratification and surface heating. We cover 
2" s a s 90" and 3 x S z o / c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 3 x 10- b y a series of LESS. Simulations using different grids show that 
the results are only weakly sensitive to truncation errors. The UBL approaches a steady-state mean-profile by 
slowly decaying oscillations; its frequency equals the Brunt-Vaisala frequency times sin a. In the LES, 
convergence towards steady state has been enforced by adjusting the fields according to integral steady-state 
conditions. For a G lo", a well-mixed layer is formed which causes a strong temperature inversion and strong 
down-slope flow at the outer edge of the UBL. Large-scale coherence is weak with some indications of cross- 
slope rolls for small inclination angles and longitudinal rolls for steep slopes. Several mean quantities have 
been tabulated as a function of slope angle and surface roughness and approximating power laws are given. 
The dependence of mean quantities on the slope angle is difficult to explain with simple models, but the 
influence of surface roughness closely follows earlier results. 

1. INTRODUCTION 

We consider the turbulent boundary layer over an unbounded homogeneous rough 
plane, inclined to the horizontal plane by an angle m. The free atmosphere above the 
surface is at rest and uniformly stratified. This study is restricted to nonrotating systems 
and to the day-time case. We assume that the atmosphere is heated solely from the 
surface at a constant and uniform heat flux rate. The resultant buoyancy induces a narrow 
'up-slope boundary layer (UBL)', also called 'buoyancy layer' (Veronis 1967, Turner 
1973, p. 243) or 'anabatic wind' (see Whiteman 1990). After some time, the flow 
approaches steady state with mean values depending solely on the coordinate normal to 
the surface. For laminar flow, this problem has been solved by Prandtl (1942), (see Fig. 
1). Actually, Prandtl considered the case of prescribed temperature difference ATs, but 
the laminar solution applies equally to prescribed surface heat flux. 

Figure 1. The velocity and temperature anomaly profiles for an up-slope boundary layer at a slope with angle 
a in a linearly stratified environment. The curves represent Prandtl's exact solutions for laminar flow. 
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Real atmospheric slope layers are rarely uniform. They are spatially and temporally 
variable and appear often highly intermittent in structure. Such slope flows are subject 
to cross-slope valley winds (Hennemuth and Schmidt 1985) or variations of the slope 
angle, variable atmospheric stratification and local surface inhomogeneities (Vergeiner 
and Dreiseitl 1987). Nevertheless, understanding of the idealized UBL is of importance 
for many applications in mountain meteorology, e.g., the net heating from the slope’s 
surface is partially transferred to the valley’s atmosphere by sinking motion in the core 
of the valley for continuity (Vergeiner 1982). Knowledge of the up-slope mass flux is 
required for analysis of pollution transport (Yamada and Bunker 1988). Since the 
temperature difference at the surface depends strongly on the surface heat flux, one can 
deduce the heat flux from remote measurements of the surface temperature, provided 
all the other important parameters can be estimated to sufficient accuracy (Mannstein 
1989). The relationship between surface fluxes and integrals of the mean profiles are 
required to parametrize the variation of bulk properties of the boundary layer without 
taking account of its internal structure (Manins and Sawford 1979). 

Moreover, it is of interest to explore the structure of turbulent motions in the UBL 
because this information is needed for turbulence modelling. In particular, one needs to 
know the turbulence variances and scales and whether buoyancy or shear causes coherent 
flow patterns like cellular convection or roll vortices. Such patterns are to be expected 
because linear theories for similar flows (Brown 1980) show that velocity profiles with 
an inflection point are inherently unstable and that for convection in the presence of 
shear the longitudinal roll mode is dominant. Gill and Davey (1969) studied the stability 
of the laminar boundary layer regime on a vertical wall with respect to two-dimensional 
disturbances which are invariant in the cross-slope dirxt ion. They showed that buoyancy- 
driven instability (as distinct from inflection point instability) causes the growth of 
disturbances which may have the form of waves travelling faster than the flow. A complete 
three-dimensional stability analysis does not seem to exist for the UBL, but Clever and 
Busse (1977) show for an inclined layer of finite thickness heated from below that 
longitudinal rolls, which form first, exhibit a wavy instability at steep slopes. In the fully 
turbulent state, convective turbulence may destroy shear-induced longitudinal rolls when 
the boundary layer is thick in comparison to the Obukhov length (Deardorff 1972). 

Prandtl’s (1942) theory predicts a linear relationship between up-slope wind speed, 
surface temperature difference and heat flux for steady laminar flow. The depth of the 
laminar boundary layer scales with (sin It will take a very long time before a UBL 
reaches steady state at small angles because of its great thickness. Defant (1949) has 
applied Prandtl’s laminar theory to atmospheric cases by adjusting the constant dif- 
fusivities so that the results match observations. Other models consider turbulent bound- 
ary layers in terms of their mean properties using ‘hydraulic models’ but these models 
have been applied mainly to katabatic winds over cooled surfaces (e.g. see Kondo and 
Sat0 1988). The most difficult parameter yet to be established for the UBL is its depth; 
Prandtl’s prediction applied only to constant diffusivities. One-dimensional models which 
compute the local turbulence transport have been set up by Lykosov and Gutman (1972), 
Rao and Snodgrass (1981) and Brehm (1986). In the two latter papers, the turbulent 
fluxes are determined with a transport equation for the kinetic energy of turbulent 
fluctuations and prescribed mixing lengths (Mellor and Yamada 1982). Brehm (1986) 
considered the UBL while Rao and Snodgrass (1981) discussed down-slope winds. Brehm 
has applied the results of his model for 2” G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 30” to set up parametrizations which 
relate various mean quantities as a function of inclination angle and an equivalent Rossby 
number as suggested by Gill (1966) and Veronis (1967). The UBL at a vertical wall has 
been analysed for laminar flow by Gill (1966). Laminar flows induced at a slope by a 
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spatially finite disturbance have been considered by Egger (1981). Various model concepts 
and their application to valley flows are discussed by Egger (1989). No theory has as yet 
resolved the three-dimensional and time-dependent structure of the turbulence within 
the UBL. 

Day-time measurements of up-slope winds at Alpine slopes and elsewhere have 
been summarized by Defant (1949), Atkinson (1981), Hennemuth and Schmidt (1985), 
Brehm (1986) and Whiteman (1990). The data for slope-angles between 10" and 45" show 
a velocity boundary layer which extends typically over a thickness of 60 to 140m. The 
maximum up-slope velocity amounts to values between 1.2 and 4 m s-'. The temperature 
measured close to the surface exceeds the outside temperature at the same height by up 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 K .  The thermal boundary layer is roughly half as thick as the velocity boundary 
layer. The results agree qualitatively with Prandtl's theory if one adjusts the turbulent 
diffusivities accordingly (Defant 1949); but the velocity maximum is reached closer to 
the surface. The data are, however, insufficient to determine the quantitative relationships 
between the profiles, the surface heat flux, the surface roughness and the stratification. 
Turbulence measurements have been reported for the nocturnal slope flow (Horst and 
Doran 1988, Whiteman 1989) but do not exist for an atmospheric UBL. Mean profile 
and turbulence measurements are available also for a shallow baroclinic convective 
boundary layer over a horizontal surface from Zhou zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1985), where inclination of 
isotherms has an effect similar to that of an inclined surface in the barotropic atmosphere 
which we are considering. Zhou zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1985) estimated the horizontal temperature 
gradient between 0.12 and O.l8Kkm-' but have not measured the vertical gradient of 
potential temperature above the boundary layer. Assuming typical values for such a 
gradient (e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 K km-') implies an inclination angle of the isotherms in this experiment 
of about a few degrees. 

In a laboratory experiment, Deardorff and Willis (1987) investigated convection in 
a tank of water containing a UBL for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y=  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo". They report on turbulence statistics in 
addition to mean profiles and find significant contributions both from buoyancy and shear 
to turbulence production. There was no significant tendency for the shear or inflection 
point of the mean velocity profile to promote any organization in convection cell patterns 
or to cause roll vortices. However, the finite up-slope length of the tank and the depth 
of the water layer caused strong up-slope gradients of the simulated slope layer with 
variable thickness of the mixed layer and baroclinicity above and, hence, the experiment 
only approximates the properties of a uniform UBL. 

This paper presents results from a large-eddy simulation (LES) of the UBL for 
angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa between 2 and 90". LES was applied successfully to determine the turbulent 
structure in convective boundary layers over horizontal planes as demonstrated by 
Deardorff (1972) and Schmidt and Schumann (1989). For the present purpose, the 
method of Schmidt and Schumann (1989) is extended to sloping surfaces. 

2. PROBLEM FORMULATION AND SOLUTION METHOD 

We consider a plane inclined by the slope-angle a as sketched in Fig. 1. The 
atmosphere above the plane is approximated in the Boussinesq sense, i.e. density p is 
assumed to be constant except for buoyancy effects. The vertical gradient of potential 
temperature do/&, and the volumetric expansion coefficient = -(ap/dO)/p are 
assumed to be constant. With gravity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg we form the Brunt-Vaisala frequency N =  
(gpdf?/dz) ' /2. The plane has a rough surface which is characterized by a roughness height 
to. This is certainly a very crude approach for characterizing real surfaces, which limits 
the validity of the present analysis, but we have no better tool at hand. From the 
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surface, heat enters the atmosphere with a constant prescribed kinematic heat flux Q, 
('temperature flux') per unit surface area. Coriolis forces are not included in the analysis. 
The parameters can be used to define a characteristic velocity scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,,  height scale H ,  
and temperature scale 8,: 

Note that the selected scales differ from the usual convective and surface-layer scales 
(Deardorff 1972) which depend on the boundary layer thickness and the surface momen- 
tum flux; these are internal parameters not known a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori. The length scale H is not the 
boundary-layer thickness which, as we will see, depends on Hand  the slope angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. For 
small molecular diffusivities, the problem is completely characterized by a, the height 
ratio H/z,, and the non-dimensional time tN .  

For atmospheric cases, realistic values of the independent parameters are, e.g., 

d8/dz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.003Km-' /3 = 300-' K-' 

g z 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm sP2 Q, = O.1Km s-' zo = 0.2 m. 

The derived quantities are 

N = 0.01 s-' u ,  = 0-58 m s-' H = 58 m 8, = 0.17 K. 

We use a Cartesian frame of reference x,  = (s, y ,  n)  (see Fig. 1) aligned with the 
slope. The corresponding velocity components are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu; = (u,  u ,  w). In the atmosphere at 
rest, the gradient of hydrostatic pressure balances the mean buoyancy forces. Tem- 
perature and pressure deviations from this basic state are denoted by Tandp, respectively. 
The splitting of temperature into a basic state and turbulent fluctuations is essential for 
this study because it allows us to apply periodic boundary conditions at the lateral 
boundaries for all fluctuating fields. The balance equations, written in Einstein's sum- 
mation notation, are - 

ax1 
% , O  (2) 

au; a(i i i i . )  1 ap a - 
at  axi p a x ;  axj 
-++=----- (u:'u;) + pg;T  

a7 a(E,T) - do a -  
+ u . - =  - - ( U ' T " ) .  -+- I at ax, I dx, ax, 

(3 )  

(4) 

In the inclined frame of reference the gravity components and the mean temperature 
gradient are given by 

( 5 )  
do 

- (sin a, 0, cos a) -. de 
dz 

- - g ;  = (sin a, 0, cos a) g 
dx i 

Bars denote grid-volume averages. Subgrid motions, denoted by double-primes, induce 
fluxes which require modelling. We use a subgrid-scale LSGS) model which integrates a 
closed transport equation for SGS kinetic energy E = uY2/2, including buoyancy fluxes 
in s and n directions: 

The SGS fluxes are determined from the gradients of resolved fields 
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with the Prandtl-Kolmogorov diffusivities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C,[E"'W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy r  = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY [ E " ' l 2  (8) 

and with a length scale t prescribed as a function of distance n from the surface and of 
the mesh spacing A (we use equal spacings in the three directions) by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t = min(A, ten). (9) 
The model coefficients are the same as those deduced in Schmidt and Schumann (1989): 

C ,  = 0.0856 cY = 0.204 ~ 3 ,  = 0.2 c,, = 0.845 C e  = cEm. (10) 

The present model is simplified, however, in that the buoyancy contributions to the 
anisotropic parts of the fluxes described by Schmidt and Schumann (1989) are neglected, 
because the coupling with vertical and horizontal buoyancy fluxes would make the scheme 
unduly complicated. This simplification is reasonable if the resolution is fine enough. It 
will be checked later by comparing results from simulations with different resolutions. 

The numerical integration scheme is described in Schumann et al. (1987). It employs 
an equidistant staggered grid and finite difference approximations. The momentum and 
continuity equations are approximated by second-order central differences in space 
with the Adams-Bashforth scheme for integration in time. The balance equations for 
temperature and for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASGS kinetic energy are approximated by the second-order up-wind 
scheme of Smolarkiewicz (1984). 

At the outer boundary of the computational domain, free-slip boundary conditions 
are used. A radiative condition relates horizontal Fourier transforms of pressure with 
the vertical velocity and an appropriate Brunt-Vaisala frequency Nb as proposed by 
Bougeault (1983) and Klemp and Durran (1983) for hydrostatic horizontal flows, 

p = N,p$ /k  NE = @g(de/dz) cos(min(a, 30")). (11) 

The 'hat' denotes the Fourier modes corresponding to the magnitude k = (k: + k;)l/' of 
the wavenumbers in the outer s-y-plane. This boundary condition has not been designed 
for sloping flows but has been found to give reasonable results in this study: the minimum 
function is introduced based on heuristic reasoning to prevent energy accumulating near 
the outer boundary when the slope-angles are large. At the surface, the temperature flux 
Q, determines the SGS flux, and the normal fluxes of horizontal momentum are evaluated 
from the Monin-Obukhov relationships, as explained in Schmidt and Schumann (1989), 
for given surface roughness length zo. The surface temperature is also deduced from 
these relationships. For simplicity, we assume that the same value of zo applies to both 
momentum and heat transfer. The 'surface temperature' is defined as T(zo). 

Details of the initial conditions do not affect the final solutions but some initial 
disturbances are necessary because otherwise the code would predict a laminar flow. The 
initial values prescribe zero mean values of u, and T with random numbers imposed on 
all velocity components and the temperature having the (normalized) magnitude 0.25 
exp ( - n / d ) .  The effective thickness of the boundary layer is estimated for this purpose 
as d = O.lH/sin a from preliminary tests with the present code. The resultant velocity 
field is adjusted for continuity and the kinematic wall boundary condition by applying a 
pressure correction as described in Schumann et af. (1987). The SGS kinetic energy is 
initialized by E = 0.5 u i  exp ( - 2n/d). 

Further parameters of the numerical scheme are the size X.Y.Z of the computational 
domain, the corresponding number of grid points N,.N,.N,, the maximum simulation 
time tmax, and the time-step At. These parameters are given in Table 1 for the various 
cases discussed in this paper. Cases Bxx are coarse-grid simulations; xx denotes the value 
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TABLE 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPHYSICAL AND NUMERICAL PARAMETERS 

Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,lH X I H  Y I H  ZIH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,,,N N, N ,  N ,  AtN 

B02 
B04 
B01 
B10 
B20 
B30 
B45 
B90 

R02 
R10 
R30 
R45 
R90 

c10 
El0 
F10 

D10 
D90 

2 0.003 64 
4 0.003 42.67 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 0.003 32 

10 0.003 25.6 
20 0.003 16 
30 0.003 12 
45 0.003 8 
90 0.003 4.8 

2 0.0015 64 
10 0.0015 25.6 
30 0.0015 12 
45 0.0015 8 
90 0.0015 4.8 

10 3x10-’ 25.6 
10 3x10-4 25.6 
10 3x10-5 25.6 

10 0.003 25.6 
90 0.003 4.8 

32 24 600 
21.33 16 240 
16 12 240 
12.8 9.6 160 
8 6 100 
6 4.5 60 
4 3 40 
2.4 1.8 20 

32 24 600 
12.8 9.6 160 
6 4.5 60 
4 3 40 
2.4 1.8 20 

12.8 0.6 100 
12.8 0.6 100 
12.8 0.6 100 

12.8 9.6 60 
2.4 1.8 20 

64 32 24 0.05 
64 32 24 0.04 
64 32 24 0.04 
64 32 24 0.04 
64 32 24 0.025 
64 32 24 0.015 
64 32 24 0.01 
64 32 24 0.005 

64 32 24 0.05 
64 32 24 0.04 

64 32 24 0.01 
64 32 24 0.005 

64 32 24 0.04 
64 32 24 0.04 
64 32 24 0.04 

128 64 48 0.015 
128 64 48 0.0025 

64 32 24 0,013 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a = slope angle, z,  = roughness height, X ,  Y ,  Z = size of the computational domain, t,,, = 
maximum integration time, N x ,  N y ,  N ,  = number of mesh points in the three directions, At = 
time step, H = height scale, N = Brunt-Vaisala frequency.) 

of the slope-angle. B10 requires 72 min computing time on a CRAY-XMP. The resolution 
in case D10 is double that in case B10 and requires 7.6 hours computer time. The 
roughness parameter equals zo/H = 0.003 in cases Bxx and 0.0015 in cases Rxx; stronger 
variations are considered in cases C10, El0 and F10. The size of the computational 
domain is selected so that it extends over at least two and at most three boundary- 
layer thicknesses in the normal direction. The length X is taken to be twice the value of 
Y because we expect up-slope oriented rolls. The lateral domain sizes should be big 
enough to permit the development of large-scale coherent structures. The maximum 
integration time is a compromise between computational effort and the desire to reach 
a quasi-steady state. Its value is taken large enough to allow the fluid near the wall to 
travel at least once over the distance X ,  i.e. the upstream extent of the computational 
domain. Moreover, it is large in comparison to the time-period 2n/(Nsin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcu) of gravity 
oscillations (as explained below). The latter criterion is particularly demanding at small 
slope-angles. The time-step is determined from a linear stability analysis. 

In steady state, the bulk properties of the UBL 

UD = udn W D  = lom w d n  TD = Tdn (12) 

UUD = /oz(u)z dn UTD = /om(u)(T)dn (13) 

satisfy the following integral relationships: 

dUD aUUD d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIL -+- ( u ’ ~ )  dn = (u’w’), + &TD sin cu = 0 

(u’T‘) dn + W D  -cos (Y = Q, - U D  -sin cu = 0. 

d t  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+&I, 
d8 dtl 

at dz  dz  
-+- (15) 
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The brackets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ) denote ensemble means which we will compute by averaging over planes 
parallel to the surface. Single primes denote deviations from these mean values. 
The right-hand side of the equation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU D  states a balance between surface friction 
(u’w’) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-u: and integrated up-slope buoyancy. It shows that the mean temperature 
excess in the boundary layer is controlled by the external parameter Pg sin (Y and the 
surface friction. The second equation represents the balance of surface heating Q, = 
(w‘T’)? and up-slope advection of heat against the mean temperature gradient. It shows 
that the mean up-slope mass flux is totally controlled by external parameters for given 
surface heat flux, and this fact has been verified experimentally by Hennemuth and 
Schmidt (1985). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As we will show later, it requires very long integration times to approach a state 
where these relationships are satisfied. Therefore we employ a ‘control scheme,’ which 
reduces the velocity and temperature field after each time-step if U D  or T D  is larger 
than the corresponding steady-state values. The reduction is performed by multiplying 
the horizontal velocity and the temperature fields with a relaxation factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  which 
depends on the ratio R of the steady-state value of U D  or T D  relative to their actual 
value, as r = 1 + O.l(R - l ) ,  until the steady-state conditions are satisfied within 2%. 
Hence, the effect of this scheme vanishes in the steady state. 

3. RESULTS 

(a )  Approach towards steady state 

Figure 2 depicts the temporal development of a few mean properties versus time. 
The thick curve applies to cese B10* which is run without control of steady-state 
conditions. We observe that the surface temperature difference AT, approaches steady 
state rather quickly. However, the maximum of the horizontally averaged velocity shows 
quite large oscillations which are damped only a little. U D  oscillates between zero and 
about twice the steady-state value, which we know precisely from Eq. (15), and T D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

”* 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAulna, - 

2 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

- 20 

’* 15 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

5 

0 
T D  

1 -  

2 ‘*H 

0 
-2 
-1 

I 
0 40 80 120 0 LO 80 120 160 

0 4  1 I 1 I C -6 

t N  t N  
Figure 2. Transient development towards steady state in case B10* without control of integral balances (thick 
curves) and in case B10 with control (thin curves) in terms of maximum mean up-slope velocity Urn,,, surface 
temperature difference AT,, integral mass flow rate UD = J (u(n))  dn, and integral temperature deviation TD = 

S ( V n ) )  dn. 
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oscillates even more strongly between large negative and positive values. Such oscillations 
were to be expected, as can be seen by combining Eqs. (14) and (15) for unsteady 
homogeneous flows, in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l a s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 0  

at2 * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdz 
+ N2s in2a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATD = u2 -sins, 

d2TD 

d + N2 sin2 a UD = PgQ, sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - - u:. 
a2UD 

atz at  

Thus the values of TD and UD should oscillate with a time-period 

2x/(N sin a) = 36*2/N for a = lo", 

and this is in precise agreement with the numerical results. In fact, Schlieren pictures 
displayed in Fig. 2.7 of Turner (1973) together with proper analysis (Turner 1973, p. 23) 
show that the relationship between inclined oscillations and the given frequency exists 
in a stratified medium even without a surface. Obviously, the damping due to surface 
friction is weak. Also energy loss due to radiating gravity waves cannot damp this type 
of oscillation. For a = 2" the oscillations have a time period of 180/N which amounts 
typically to five hours. Hence, steady state will be reached in nature only for large slope- 
angles. 

The thin curves in Fig. 2 show the results which we obtain using the control scheme 
described in the previous section. This scheme is quite successful in forcing the flow 
towards steady state although some small fluctuations remain. In addition a test case was 
run, in which the control scheme was used until tN = 160, but then the run was continued 
until tN = 240 without this scheme. The results confirmed that the solution stays close 
to steady without significant changes in the mean values but with slight increase in the 
standard deviations. 

In Table 2, we have summarized resultant mean values for all cases. The table 
contains also the standard deviations as computed from the last sixth of the simulation 
period. We see that the standard deviations are very small for quantities which are closely 
related to wall friction while quantities like UUD or UTD, which depend on the form of 
the resultant profiles, show larger but still acceptable deviations. Comparison of the 
results for case B10 (with steady-state control) and case B10* (without control) shows 
that the mean values are not changed significantly by the control scheme. Comparison 
of the cases with fine resolution, D10 and D90, with those from the coarse-grid simula- 
tions, B10 and B90, shows that the coarse-grid results are close to the fine-grid results 
and hence only weakly affected by truncation or SGS-model errors. The remaining 
differences are larger for a = 90" than for a = 10" because of the relatively small 
boundary-layer thickness at the vertical surface. 

(b )  Mean profiles 

Mean profiles are evaluated by averaging the resultant fields over planes parallel to 
the surface. These mean profiles are denoted by angle brackets, e.g. (u), and are functions 
of the normal coordinate n. Figure 3 shows, for example, the mean velocity and mean 
temperature profiles, for various slope-angles a s 30". The error bars represent the 
standard deviations of the profiles from their mean values in the second half of the 
integration period. Differences in the results for coarse and fine grids are insignificant in 
comparison to these standard deviations. The profiles show qualitatively the same form 
as the laminar result depicted in Fig. 1 but with significant quantitative differences, in 
particular for small slope-angles (a s 10"). The mean temperature in the first grid cell is 
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TABLE 2. MEAN VALUE RESULTS FOR STEADY STATE INCLUDING STANDARD DEVIATIONS 

var. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, d, d r  UD TD UTD UUD 
unit v*  v* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, H H H v,H O,H o*B,H v t H  

B02 

B04 

B07 

B10 

BlO* 

B20 

B30 

B45 

B90 

2 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 

t 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ - 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

2 

R02 

R10 

R30 

R45 

R90 

c10 

El0 

F10 

D 10 

D90 

2 

? 

2 

t 

t 

t 

t 

Ifr 

t 

t 

0.503 
0.01 1 
0.43 
0.007 
0.397 
0.007 
0.371 
0.01 
0.375 
0.025 
0.344 
0.005 
0.343 
0.007 
0.396 
0.015 
0.552 
0.016 

0.444 
0-01 
0.334 
0.004 
0.322 
0.007 
0-361 
0.01 
0.484 
0411 

0.568 
0.004 
0.266 
0.007 
0.203 
0.003 

0.379 
0.004 
0.621 
0.024 

4.51 
0.17 
3.422 
0.082 
2.90 
0.11 
2.526 
0.093 
2.55 
0.29 
2.063 
0.047 
1.95 
0.063 
2.26 
0.13 
3.28 
0.11 

4.42 
0.16 
2.62 
0.052 
2.245 
0.085 
2.53 
0.099 
3.667 
0.093 

2.296 
0.025 
2.785 
0.11 
2.938 
0.066 

2.463 
0.031 
3.95 
0.24 

20.43 
0.17 

18.51 
0.15 

17.39 
0.1 

16.75 
0.14 

16.84 
0.35 

16.14 
0.14 

16.11 
0.17 

16.18 
0.2 

17.54 
0.27 

24.19 
0.28 

21.11 
0.15 

20.7 
0.12 

20.82 
0.14 

22.64 
0.32 

7.694 
0.096 

3444 
0.3 

63.03 
0.42 

16.51 
0.095 

16.88 
0.41 

11 
0 
7.333 
0 
5.33 
0.24 
4.16 
0.2 
4.48 
1.2 
2.93 
0.26 
2.16 
0.13 
1.56 
0.27 
0.773 
043x 

11 
0 
4. I7 
0.2 
2.03 
0.2 
1.35 
0.12 
0.74 
0.064 

4.53 
0.19 
4 
0 
3.7 
0.17 

4.177 
0.064 
0.767 
0.061 

9.68 
0.52 
6.5 
0.62 
4.75 
0.72 
3.91 
1.1 
4.03 
0.77 
2.62 
0.49 
1.88 
0.22 
I .25 
0.12 
0.692 
0.055 

Y.61 
0.68 
4.01 
0.83 
1.99 
0.69 
1.178 
0.084 
0.7 11 
0.077 

4.24 
0.49 
3.34 
0.33 
2.95 
0.19 

3.80 
0.29 
0.722 
0.04 

7 
0 
4.03 
0.14 
3.03 
0.13 
2.1 
0.17 
2.47 
0.63 
1.251 
0.054 
0.911 
0.065 
0.54 
0.06 
0.3 
0 

6.83 
0.37 
2.07 
0.15 
0.765 
0.051 
0.537 
0.057 
0.3 
0 

2.61 
0.2 
1.84 
0.19 
1.6 
0 

2.01 
0.043 
0.277 
0.018 

27.7 
0.25 

13.97 
0.062 
7.998 
0.03 
5.635 
0.014 
4.76 
1.7 
2.865 
0.001 
1.964 
0.002 
1.385 
0.001 
0.979 
0.01 1 

27.67 
0.21 
5.634 
0.008 
1.973 
0.004 
1.401 
0.002 
0.968 
0.012 

5.62 
0.02 
5.641 
0.004 
5.644 
0 

5.64 
0.003 
0.967 
0.022 

7.88 
0.38 
2.93 
0.22 
1.574 
0.085 
0.858 
0.079 
1.17 
2.3 
0.363 
0.01 1 
0.24 
0.01 
0.229 
0.017 
0.315 
0.022 

6.67 
0.65 
0.736 
0.051 
0.212 
0.009 
0.185 
0.01 
0.238 
0.025 

1.987 
0.081 
0.453 
0.034 
0.262 
0.014 

0.907 
0.053 
0.375 
0.026 

71 
2.6 

20.53 
0.94 
9.4 
0.5 
4.37 
0.6 
5.63 
2.2 
1.88 
0.15 
1.32 
0.12 
1.23 
0.23 
1.66 
0.2 

4.8 
4.82 
0.4 1 
1.51 
0.15 
1.32 
0.14 
1.65 
0.22 

5.84 
0.26 
3.87 
0.5 
3.41 
0.22 

4.55 
0.36 
2 
0-24 

66 

124.1 

43.2 
2.6 

20 
1.8 

12.36 
0.95 

124  
3.5 
4.71 
0.27 
2.95 
0.13 
2.34 
0.21 
2.51 
0.14 

7.2 

119.9 
7.6 

11.91 
0.55 
3.3 
0.15 
2.62 
0.18 
2.7 
0.18 

10.62 
0.48 

12.3 
0.82 

12.98 
0.38 

11.94 
0.31 
2.48 
0.21 

~~ ~ 

Case B10* is the same as B10 but without control of steady state. For each case, the first line 
contains the mean values and the second line the corresponding standard deviations. 

already much smaller than the value AT, at the wall itself (see Table 2). This indicates 
much larger diffusivities inside the boundary layer than close to the wall. For the same 
reason, the velocity maximum is reached very close to the wall. The height dT of the first 
zero of the temperature profile is larger than half the height d ,  of the first zero of the 
velocity profile. In absolute terms, the maximum velocity, the temperature deviation 
near the surface and the depth of the UBL closely agree with observations as mentioned 
in the introduction, if we use the estimates of the scales u,, 8, and H as explained after 
Eq. (1). Both the velocity and the temperature profiles show negative values at the outer 
edge of the boundary layer. As for the laminar flow, negative temperature deviations 
are caused by up-slope advection of cold fluid. The up-slope motion is driven counter to 
the buoyancy forces by upward momentum transport from the region with maximum 
velocity. The cold fluid in turn retards the motion and causes negative velocity further 
outside where the momentum transfer no longer overcomes the retarding force of 
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Figure 3 .  Mean velocity and mean temperature versus normal coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn for moderately large slope-angles 
ashown in degrees on the curves. The error bars at some curves signify the standard deviations. The thin line 

in the right panel corresponds to the well-mixed situation. 

buoyancy. Thus the general trend is as expected from the laminar solution depicted in 
Fig. 1 but the different form of the profiles requires further explanation. 

As indicated in Fig. 3, the temperature profile gradient is close to cos a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdO/dz for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Y s 10" over a substantial fraction of the boundary layer up to II = d,. Such a gradient 
is to be expected for the temperature deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT when the UBL contains a layer which 
is convectively well mixed. Such a well-mixed layer can be seen for a < 10" but not for 
larger angles. The rather flat velocity profile for a = 2" in the range 1 S n/H C 6 appears 
to be a further consequence of the mixing. Also the observations of Deardorff and Willis 
(1987) and Zhou et al. (1985) exhibit a mixed layer. The mixed layer is topped by an 
inversion. At such inversions turbulent fluxes get small, relative to the turbulent transports 
inside the mixed layer. The effective diffusivity might even get negative, as we will see 
to be the case for small angles. This enables the flow to form strong local minima in the 
velocity and temperature profiles at the outer edge of the mixed layer. Also Deardorff 
and Willis (1987) and Zhou et al. (1985) observe strong return flows, but it is not clear 
how far these are affected by baroclinicity above the mixed layer. A mixed layer does 
not form and related inversion effects are weaker at larger angles. This explains that 
there are differences in the form of the profiles for various angles. 

The effective boundary-layer thickness as measured by d,  gets strongly reduced for 
steeper slopes and this is in qualitative agreement with Prandtl's laminar solution. 
Therefore, plots of the profiles for large angles require a different scaling as in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 
(The curves do not cross exactly in one point because the mean of d,, which is used for 
normalization, differs slightly from the height of the zero of the mean velocity profile.) 
We observe from this plot that the profiles for a > 10" are quite similar in these scales 
except for a steepening of profiles near the wall for very large slope-angles. The return 
flow gets small while the range with negative temperature deviations gets rather large 
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Figure 4. Mean velocity and mean temperature versus normal coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn normalized with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,, the mean 

position of the first zero value of the mean velocity, for small and large slope-angles LY. 

for a > 10”. For such large angles the profile shape is closer to the laminar solution than 
for small angles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( c )  Turbulence statistics 

The turbulence covariances reach their final magnitude rather quickly. The time- 
scale of the approach to equilibrium corresponds to the turn-over time d,/(E)”’, where 
E = is the turbulence energy. However, the shape of the mean profiles oscillates 
for much longer times owing to weakly damped gravity waves outside the boundary 
layer. Figure 5 depicts various turbulence statistics versus the normal coordinate for a = 
lo” as obtained from the fine grid, case D10. The error bars signify reasonably small 
uncertainty due to remaining variations around steady state. Most profiles include both 
the contributions from the resolved motion scales and the SGS motions. Only the 
pressure diffusion terms are without SGS contributions. The dashed curves show that the 
contributions from the SGS model are small, except near the surface where SGS 
motions dominate. The results can best be understood from Fig. 6, which shows various 
contributions to the balance of turbulent kinetic energy. Some of the terms in this balance 
are obtained by finite differences of mean profiles and, therefore, are reliable only up to 
errors of about k0.1 H / u : .  

As can be seen from Reynolds stress transport equations (e.g. Launder 1975), the 
variances of up-slope velocity fluctuations are excited mainly by the shear production S, 
while the normal velocity fluctuations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w ’*) are directly produced solely by the buoyancy 
flux pg(w’T’) cos a. The third velocity component v ’  obtains its energy by means of 
pressure-strain correlations. The momentum flux (u’w’) is negative at the surface, i.e. 
turbulence transports momentum from the interior to the wall. However, the flux drops 
quickly to zero, and reaches an even larger but positive value at the negative slope of 
the velocity profile. Note that the divergence of the stress balances the buoyancy force 
in the up-slope direction, see Eq. (3). Hence the flux (u’w’) reaches its maximum value 
at n = d,, i.e. at the height of zero temperature deviation. The correlation coefficient 
(u’w’)/((u’~)(~’~))’/~ reaches the rather large value of 0.36 which is indicative of large 
shear contributions to turbulence as also noted by Deardorff and Willis (1987). The 
product of flux and negative shear provides the shear generation of turbulence as plotted 
in Fig. 6. It is large near the wall and near n/H 2.5 but drops to zero at n = 0.4H and 
n = 7 H. The shear production directly excites horizontal velocity variance (u r2)  which, 
therefore, exhibits maximum values near the wall and near n = 2.5 H. The rather large 
values of ( u r 2 )  near the surface indicate an efficient transfer of energy by pressure-strain 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Turbulence statistics versus normal coordinate for case D10, i.e. 1y = lo". The full curves represent 
the sum of resolved and SGS (subgrid-scale) contributions at steady state. The error bars indicate the standard 
deviation due to remaining fluctuations relative to steady state. The dashed curves depict SGS contributions. 
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Figure 6. Contributions to the turbulent kinetic energy budget versus normal coordinate for case &lo. 
B: Bg((w’7‘‘) cos (Y + (u’T‘)sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa),  buoyancy production; S :  - (u‘w’)d(u)/dn,  shear production; E :  - ( C ~ ~ E ‘ ’ ’ ’ ~ /  

e),  dissipation rate; D: -d(w’E’) /dn,  turbulent diffusion; P: - p-‘d(w’p’ ) /dn,  wavy transport. 

correlations. This effect is presumably enhanced by buoyancy effects, because eddies 
with large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu’ tend to be rather cool (see the correlation (u’T‘)) and thus are 
more easily deflected in the y-direction than in the normal direction. 

The momentum flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u’w’} apparently follows the gradient of the mean velocity 
profile near the surface, but does not drop to zero at the height n zz 4-5H of the velocity 
minimum (see Fig. 3). Thus we observe strong departure from gradient transports and 
the negative ratio of the momentum flux relative to the velocity shear would imply 
negative eddy viscosity in this region. It appears as if the momentum transport is driven 
by the mean velocity difference between the mixed layer and the outer domain and not 
so much by local gradients. Hence, the effective viscosity does not smooth out, but 
enhances the strong backward flow at the outer edge of the boundary layer. The normal 
heat flux takes its prescribed value (unity in normalized terms) at the surface and then 
decays about linearly to zero. The approximately linear decrease reflects a uniform 
heating rate across this layer which is balanced by a close to uniform up-slope advection 
of cold fluid. The heat flux then gets negative and reaches a minimum value of about 
-O.lQs at a height di = 3-8 H. This height corresponds to the usual height definition of 
a horizontal convective boundary layer and the negative heat flux is caused by entrainment 
as explained, e.g., in Schmidt and Schumann (1989). This entrainment heat flux reduces 
vertical velocity fluctuations near this height but this negative contribution to the energy 
balance is outweighed by other terms, (see Fig. 6). The structure of the up-slope heat 
flux is most complicated. It can hardly be explained in terms of gradient models which 
would predict a small negative value for this flux. Therefore, we refer to the transport 
equation for this term, 

d(U‘T‘) -- - P + @  
at 

in which P denotes the production terms 

(19) 
d(T+  8) 44 do . 

dn dn dz 
P = - (u ’w’ )  - (w’T ’ )  ~ - (u ” }  -sin (Y + p g ( T 2 )  sin a 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, comprises diffusion terms plus pressure-temperature and molecular destruction 
terms. For small diffusion, models usually predict Q, = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u’T’)/r where z is a suitable 
time scale of turbulence. Thus, in steady state and for small diffusion terms, such models 
predict that the up-slope heat flux is proportional to P. 

In P, the last term due to buoyancy always causes positive trends, while the third 
term is always negative but both have large magnitude only for steep slopes. Near the 
surface, the first two production terms have different signs and it appears that the first 
term is responsible for the negative up-slope heat flux in that region. The two first 
production terms change sign at a certain distance from the wall. At the outer edge of 
the boundary layer, the first two production terms both become positive and this explains 
qualitatively the trends which we observe for this flux in Fig. 5.  The up-slope turbulent 
heat flux contributes to buoyancy production of kinetic energy as &sin cu(u’T‘). This 
term is rather small because of the small angle but notable in that it causes the normalized 
buoyancy term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB to be smaller than unity at the wall, (see Fig. 6). Most authors have 
neglected this effect, which can be large for large angles, both in turbulence models 
(Rao and Snodgrass 1981; Brehm 1986) and evaluations of laboratory measurements 
(Deardorff and Willis 1987). 

Figure 5 also shows large turbulent transports of kinetic energy of the diffusive type, 
(w’E). The pressure transport ( w ’ p ’ l p )  of kinetic energy is small inside the boundary 
layer and of opposite sign but becomes important at the outer edge of the boundary 
layer. It is carried by gravity waves which radiate energy far away from the UBL and it 
is this effect which requires proper boundary conditions in the simulations at the outer 
boundary to avoid reflections. Obviously, the boundary condition used in this simulation 
provides a good approximation in this sense. 

Deardorff and Willis (1987) assumed that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w’p’ lp} = -0.4(w‘E}. A factor of 0-2 
instead of 0.4 would be better supported by our results. The estimate of the dissipation 
rate given by these authors considerably exceeds our LES results shown in Figs. 5 and 
6, in particular near the outer edge of the UBL. Deardorff and Willis (1987) also find a 
much stronger shear production rate in the outer part of the boundary layer than we 
compute (Fig. 6) and show that about 10% of this shear production is due to non-zero 
values of the mean normal velocity in the experiment. Also, the measured velocity 
variances are larger than our computed results by about a factor of two. Deardorff and 
Willis (1987) mention ‘very important’ advection terms but do not quantify the possibly 
large advective contributions in the laboratory case which will arise because of the 
decreasing height of the boundary layer in the up-slope direction in the experiment. 
These advection effects, shear production due to sinking motion, and the overestimate 
of the pressure-diffusion energy-transport explain the differences between the exper- 
imental and numerical results. 

Zhou et al. (1985) also show a plot of the turbulence kinetic energy budget which is 
similar to our Fig. 6. For example, both the LES and the observations show that 
dissipation has a rather flat profile and that diffusional loss of energy exceeds dissipation 
in the lower third of the layer. The LES results are closer to these measurements than 
to those of Deardorff and Willis. 

Figure 7 depicts the same turbulence quantities as obtained from the coarse-grid 
simulations Bxx for a sequence of angles. To make the results comparable in spite of the 
strong variation of the boundary-layer thickness, we have normalized the normal coor- 
dinate by the thickness d ,  of the velocity layer. For clarity, this figure contains the SGS 
contributions only in one panel. Further SGS results are plotted separately in Fig. 8. The 
relative fraction of the SGS contributions are larger for the coarse grid than in Fig. 5.  
On average over the whole layer, the SGS energy amounts to about 21% of the total 
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Figure 7. Turbulence statistics versus normalized normal coordinate for cases B02, B10, B30 and B90 with 
varying slope-angles (Y. For (u'*), the SGS contributions are given. 
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Figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASGS contributions to selected turbulence covariances versus normal coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn for cases B02, 
B10 and B90. 

turbulence energy in all coarse-grid cases Bxx but it is 14% for case D10 and 18% for 
case D90. A variation according to A2I3 was to be expected. Even for the coarse grids, 
the SGS contributions do not dominate the results, except for the momentum transport 
at the surface. For CY = lo", the results of the coarse grid shown in Fig. 7 are close to 
those obtained from the fine grid (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  which further supports the validity of the 
results. From Fig. 7 we find strong qualitative variations in the turbulence profiles with 
angle. The up-slope variance first decreases and then increases with increasing angle. 
For a = 2", strong secondary maxima are found above and below the velocity minimum. 
These secondary maxima are absent at large slope-angles. The normal velocity variance 
decreases more or less monotonically with the angle. The momentum flux profiles show 
smaller changes. The up-slope heat flux near the surface changes sign with increasing 
angle. This means that the product of heat flux times the velocity shear represents the 
dominating generation term for small angles, while the buoyancy term generates most 
of this flux for steep slopes. At small angles the up-slope heat flux diminishes the 
turbulence production whereas at large slope-angles it becomes the dominant contribution 
to positive buoyancy generation of turbulence. Note that (u'T') for LY = 90" gets even 
larger than Q,, and that this heat flux enhances the production of (u"). The normal heat 
flux profile is close to linear near the wall at small angles corresponding to flat velocity 
profiles whereas the heat flux deviates more strongly from a linear decrease at large 
angles where the velocity profile gets steeper. The turbulent transport of kinetic energy 
is large for small angles but less important for large angles, i.e. the turbulence is more 
in local equilibrium at large angles than at small angles. The local dissipation rate 
increases with increasing angle and thus counterbalances stronger production of energy 
(by shear and up-slope heat flux) at large angles. 

The integral contribution from shear to the energy balance amounts to about 40% 
of the whole forcing for all angles from 2" to 20", and then gradually increases to reach 
about 70% for a = 90". Thus, shear is important at all angles while buoyancy forcing 
dominates up to about 20" but is still important for 90". 

In Fig. 9, extreme values of the turbulence covariances are plotted, as normalized 
by the convective velocity scale w* = (/lgQsdi)1/3. In this normalization the variances 
should stay constant if only buoyancy generates energy. It should also stay constant if 
shear contributes a fixed fraction to turbulence production, which is the case for moderate 
slope-angles. The results show that the normalized variance extrema are fairly constant 
with angle for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 20" but then the variances, in particular (u'*), increase strongly owing 
to the growing contribution of shear to turbulence at large angles. For a d  20", the 
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Figure 9. Maximum values of the profiles of turbulence covariances normalized by the convective velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PgQ,d,)’/’ versus the logarithm of sin (Y. Full curve with f :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u’*); dash-dotted curve with X :  ( u ‘ ’ ) ;  dashed 
curve with 0: (w”); dotted curve with 0 :  (u’w’). The full curve with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA shows the negative momentum flux at 
the surface, i.e. u’, . The three isolated symbols for N = 10” depict the measurements of Deardorff and Willis 
(1987) from experiments with variable layer thickness. The maximum value of (u’’)/w$ for (Y = 90” (not shown) 

amounts to 1.85. 

variance maxima agree closely with results known from horizontal convective boundary 
layers, (see Schmidt and Schumann 1989). However, the profiles are different and the 
mean value of horizontal variances is smaller in the shearless horizontal case than in the 
UBL. For LY = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo”, the corresponding results of Deardorff and Willis (1987) are included 
in this figure. The results of the laboratory experiment are much larger than our computed 
results. In particular, the measurements show larger normal fluctuations than horizontal 
ones whereas the simulations predict the opposite. Again, this is presumably a conse- 
quence of up-slope advection and baroclinicity in the laboratory boundary layer. It is 
noteworthy, that the internal positive momentum flux (u’w’) is larger than the negative 
wall flux -M: which indicates that this type of flow will be only weakly sensitive to 
surface properties such as the surface roughness parameter zo The surface friction was 
not measured by Deardorff and Willis (1987). Both the experiment and the present 
simulations exhibit (u ’? )  to be nearly of the same magnitude as ( u ’ ~ ) .  Zhou et al. (1985) 
have measured the vertical velocity variance in the baroclinic convective boundary layer 
and find a maximum value (w”)/w’, = 0.5. This result and also the shape of the variance 
profile agree well with the LES results for small inclination angles. 

(d)  Turbulent flow structure 

Figures 10 to 12 depict instantaneous flow fields for various field components, cross- 
sections, angles and resolution. All results are taken from the final time of the simulations. 
The temperature plots in Fig. 10 depict the sum T + 8 to simplify interpretation. All 
plots for comparable cross-sections use the same contour intervals. We have convinced 
ourselves that the results from case E l0  are close to those from case B10*, which was 
run without steady-state control, so that the resultant structures are not affected by the 
control scheme. 

In Fig. 10, the temperature cross-sections clearly indicate the steepening of isotherms 
with increasing angle. The isotherms outside the turbulent layer are far from straight 
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owing to wavy motions. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = 2" and to lesser extent for (Y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo", a wide layer of well- 
mixed temperature can be seen, The temperature increases strongly near the surface and 
the temperature variance is also largest in that layer. At the outer edge of the boundary 
layer the isotherms are narrowing, indicating the formation of a strong inversion, in 
particular for small angles. This structure is similar to what we know about the horizontal 
convective boundary layer. The normal velocity shows rather narrow up-draughts or 
ejections with large areas of slow motion towards the wall. This type of velocity skewness, 
which contributes to outward diffusion of kinetic energy, diminishes at larger angles. 
The up-slope velocity contours again reflect a well-mixed layer for small angles with a 
sharp reduction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu at the inversion. With increasing angle, the up-slope motion and 
also the temperature contours indicate overturning waves as they are observed typically 
for strong Kelvin-Helmholtz instabilities. For (Y = 90", the horizontal wavelength 
approaches the size of the computational domain. Otherwise, the computational domain 
is large enough to cover all important scales of motion. 

Figure 11 shows similar results for two angles from the fine-grid simulations D10 
and D90. The structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis basically the same as shown by the coarse-grid simulations 
which is obviously important for the validity of the coarse-grid simulations. However, 
many more details can be identified. In particular, for ( Y =  lo", we find that the up- 
draughts are not just uniform plumes but contain smaller scale bubbles of rising motion. 
This corresponds to results which have been identified by conditional sampling in Schmidt 
and Schumann (1989) over horizontal surfaces. For (Y = 9o", Fig. 11 illustrates the very 
narrow shear layer at the surface which explains why this case is more sensitive to 
truncation errors than others. The Kelvin-Helmholtz waves, if present, appear to have 
a smaller wavelength in this simulation. The normal velocity shows motions which take 
their maximum further outside for (Y = 90" than for (Y = lo". 

Figure 12 shows horizontal cross-sections of cases D10 and D90 at a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n/d ,  = 0.3. In both cases this 'height' is below d T .  At this distance, the flow contains 
motions that are still rather small-scale, whereas larger-scale motions dominate further 
outside. The computational domain appears to be large enough to capture the most 
energetic small-scale motions. However. some large-scale coherence is notable. In 
particular, for (Y = lo", the large-scale components exhibit large spatial correlation in the 
cross-stream direction y .  The up-slope distance between cross-slope rolls for (Y = 10" can 
be estimated from Fig. 12 to be about 10H or 2.5di. It is thus interesting to note that 
Zhou et al. (1985) report a normalized peak wavelength for the vertical velocity of about 
34. A polygonal spoke pattern as found,in the horizontal boundary layer by Mason 
(1989) and Schmidt and Schumann (1989) does not appear to be important for the present 
cases. For (Y = lo", the temperature fluctuations are obviously strongly correlated with 
normal velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw whereas for (Y = 9o", the correlation with u is much stronger. This 
difference is reflected in the magnitude of the normal or up-slope heat flux values, plotted 
in Fig. 7. At (Y = 9o", large-scale coherence seems to be stronger in the up-slope direction. 
But roll vortices, if present, do not dominate the flow structure. Occasionally, a lambda- 
type structure can be observed with the corner pointing up-slope. However, such 
examples are not very frequent. Identification of travelling waves, as found by Gill and 
Davey (1969) and Clever and Busse (1977) from linear analysis, would require space- 
time correlations which we have not evaluated. 

Figures 13 and 14 contain autocorrelation functions 

&h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 ,x3 )  = (f(Xl,X,,X3)f(X, + r1>x2 + r*,x,)>/<J2(X!,X2,X3)) (20) 
where the arguments off are evaluated modulo the domain size. The plots are constructed 
so that F = (rl, r2) = 0 corresponds to the centre of the panel, and show results for positive 
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and negative components of? The correlations are computed just from the results for one 
instant of time, and therefore contain considerable but unknown statistical uncertainty at 
large separations Z 

The results support what we have learned from the instantaneous contour plots in 
quantitative sense, but also show strong variations with height. In any case, we observe 
that the correlations show a strong decrease over small distances which correspond to 
the integral length-scales of turbulence. The correlations at large separations signify 
large-scale coherent structures. Obviously. the present motion fields are a mixture of 
small-scale turbulence and large-scale coherent motions. The integral length-scales are 
very small near the surface; they are smallest for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, larger for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and largest for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu.  The 
integral scales grow and the scales for the various fields become comparable in magnitude 
with increasing distance from the wall. The large-scale coherence indicates that the size 
of the computational domain is not totally sufficient to capture all relevant scales. It is 
difficult to quantify the effect of this limitation without further (expensive) simulations 
but there is no indication that these effects are large. 

For a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10" (Fig. 13) the large-scale structure appears to be formed mainly by rolls 
with axes in the cross-stream direction y .  However, the picture is not very clear, because 
near the surface, the coherence in the w component is small. At larger heights, both w 
and T show a pattern characteristic for such rolls but the u component appears to be 
affected by rolls with an axis either in an up-slope or in a cross-slope direction. In 
contrast, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 90", Fig. 14 indicates large-scale rolls with axes parallel to the up-slope 
direction. Such rolls are typical for the inflection-point instability. At the outer edge of 
the boundary layer, the cross-stream correlation increases, in particular for w and T and 
this coherence is more typical for the Kelvin-Helmholtz instability. 

Figure 15 depicts the same flow field as in Figs. 11 and 12 but in a plane normal to 
the up-slope direction. The w and v components are small and show little indications of 
roll structures if at all. For a = lo", the height of the mixed layer is rather uniform in 
the cross-stream direction y ,  and the temperature is more strongly correlated with w than 
with u. For a = 90", the opposite is true. In any case, coherent structures are not 
dominant in this Bow relative to the random turbulent motions. 

For mixed convective/shear-driven turbulent boundary layers it is known that 
longitudinal rolls in the main stream direction form when -d ,  L;' < 5 (Deardorff 1972), 
where L,  is the Obukhov length. In the present units, the ratio equals -d,L;' = 
K W ~  u i 3  = ~ ( d , / H ) / ( u * / u * ) ~ ;  K = 0.4 is the von Karman constant. From the results of 
Table 2 we compute -d,L,' = 30.4, 32.7, 30.4, 30.6, 25.7, 18.6, 8.05, 1-65 for a = 2, 
4. 7, 10, 20, 30, 45, 90", respectively. The values of the length-scale ratio suggest that 
longitudinal rolls should exist only for very steep slopes, which is consistent with the LES 
results. 

(e )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABulk properties versus slope-angle and roughness height 

Figure 16 depicts the variation of various characteristic values (as given in Table 2) versus 
sin a. The figure contains both the results from the coarse-grid cases Bxx and the high- 
resolution cases Dxx. Generally, we find very small differences between the results from 
these cases. The largest differences occur for a = 90", as noted above. The full and 
dashed curves in Fig. 16 discriminate between two sets in which the roughness height zo  
differs by a factor of two. For a = 10". some results are also plotted, versus a wider range 
of roughness heights, in Fig. 17. 

We observe rather weak dependence on the angle a for AT,, U,,, and u,. However, 
one should note the logarithmic scales and that these quantities vary typically by a factor 
of two versus angle. Stronger variations are found for the boundary-layer thickness-scales 
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D10 and D90. 

and for various integral quantities. Except for U D ,  which strictly follows sin-' a according 
to Eq. (15), the results do not generally follow a power law (sina)" with constant 
exponent x .  Moreover, the results should not be extrapolated linearly to smaller angles 
because this would imply unrealistic behaviour like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdT > d,, and Umax/w*-+ x ,  where 
W ,  - d:13. 

The dependence on the roughness height zo,  Fig. 17, is generally weak and approxi- 
mately linear in double-logarithmic scales. Figure 17 contains the exponents of proper 
power laws as determined from this graph. Of course, we cannot exclude different 
exponent values from arising at other slope-angles. Variables most sensitive to roughness 
are the friction velocity u,, which grows when the surface gets rougher, and the 
temperature difference AT,, which gets reduced for better heat transfer on a rougher 
surface. The exponents of the corresponding power laws (0.146, -0.307) are close to 
(0.166, -0.333) found in Schumann (1988) for corresponding results on a horizontal 
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Figure 16. Mean values versus sin (Y in double-logarithmic scales. +: results from cases B02 to B90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z , / H  = 
0.003); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: D10, D90; x :  R02 to R90 (z,/H = 0.0015). In the middle panel, the thin straight lines indicate 
power laws, AT, = temperature difference, U,,, = maximum mean velocity, u* = friction velocity, Z = 'height' 
of the computational domain, d,, d,. dT = boundary-layer thickness in terms of zero-velocity, minimum normal 
heat flux, zero-temperature, respectively. Integral values are UUD = J (u) 'dn,  UTD = .f ( u ) ( T )  dn,  U D  = 

J ( u )  dn, and TD = J ( T )  dn. All quantities are normalized in terms of H ,  u*, or O*.  
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Figure 17. Mean values versus roughness height z,), +: results from the series B10, R10, C10, El0 and F10, 
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power-law approximations to interpolating straight lines. 
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surface. The small magnitude of the exponents for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,,, and other internal parameters 
shows that turbulence inside the UBL is only slightly affected by surface friction. 

For a subrange of angles and roughness parameter values, power laws may give 
reasonable approximations and are of practical interest. We have, therefore, set up 
power laws based on the numerical results given in Table 2, in the range 2" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 30". 
The coefficients a,  b, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc in the approximation f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a(zo/Zf)b(sin a)" for any quantity f 
are determined so that the maximum deviation magnitude for all data is minimized. The 
numerical results are given in Table 3 together with the resultant standard and maximum 
deviations. The results for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU D  and TD in this table have been calculated according to 
Eqs. (14) and (15). The exponents b differ slightly from those given in Fig. 17, because 
the latter are determined from the plots. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TABLE 3. COEFFICIENT s OF POWER-LAW APPKOXIMATIONS 

var. u* U,,, AT, d ,  4 dT U D  T D  UTD UUD 
unit v* u* 8, H H H u*H 0,H u,B,H v ~ H  

a 0.780 1.299 2.684 1.708 1.729 0.903 1 0.608 0.662 0.976 
b 0.159 -0.034 -0.293 0.027 0,046 0.079 0 0.317 0.074 -0.017 
c -0.134 -0.308 -0.078 -0.606 -0,604 -0.754 -1 -1.268 -1.507 -1.407 
u 0.013 0.167 1.02 0.086 0.152 0.131 0.42 0.48 1.65 1.55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E 0.018 0.257 2.18 0,137 0.361 0.241 0.98 1.22 3.37 3.12 

For each variable f ,  the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = a(z,,/H)"(sin a)', where a,  b, and c are given above, approxi- 
mates the results of Table 2 for 2" 5 (Y 5 30", 3 X  10 ' s  z,/H 5 3 X  lo-', in terms of its reference units 
with standard deviation u and maximum deviation E .  

For practical applications in remote sensing that relate surface temperature dif- 
ference and heat flux, an interpolation has been set up which covers all angles so that 

(21) 

approximates the LES-results for 2" d N S 90", 3 X C zo/H d 3 x lo-', up to a 
standard deviation of 0.65 and maximum deviation 1.21. In terms of the independent 
external parameters this implies 

AT, /8 ,  = C ( H / Z , , ) " ~ ~ ~  C = 3.21 + 0.122~ + 0 . 0 8 9 ~ ~  x = In sin N 

(22) 
AT, = CQ,".643'(pg) -0.3572i~i).286N0.071 

It is interesting to note the very weak dependence on the Brunt-Vaisala frequency N so 
that this parameter needs to be known only roughly. In fact, the dependence on the 
external parameters is only little different from that for the heat transfer in the convective 
boundary layer over a horizontal surface at zero mean wind-speed for which Schumann 
(1988) found AT, = 10" '~ef '3(~g)-2/ '2~' /3.  This relationship might be used for a < 2". 
If one wants to know the heat transfer as a function of the temperature difference, one 
can invert Eq. (22) to obtain 

Q = (AT,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/q 1 -SjS N-0-1 10(pg)0.55520.445 
(23) 0 .  

4. COMPARISON WITH OTHER THEORIES 

(a) Estimates of the boundury-layer thickness 
Prandtl's (1942) analytical solution predicts 
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i.e., 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,,, - AT, - (sin a)-'/' for specified heat flux and constant diffusivities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p of momentum and heat, respectively. Obviously, the turbulent results differ strongly 
from these predictions. However, from the laminar solutions we may try to estimate the 
functional dependence of various bulk quantities on N by using proper approximations 
for the effective diffusivities. 

For example, if we assume that both diffusivities are essentially due to shear and a 
mixing length of order 6 ,  i.e. v - p - U 6 ,  then Prandtl's solution results in 

6 - H(sin a)-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUrnax - u* AT5 - 8,. (26) 

This dependence of 6 on sin N is approximately observable in the LES results for large 
angles where shear contributes strongly to turbulence energy production. However, 
buoyancy forcing is still important at large angles. Hence, this estimate does not describe 
the increase of U,,, and AT, with N at large angles, and therefore gives, at best, first- 
order approximations for large slope-angles. 

If we assume, on the other hand, that the diffusivities are induced mainly by 
convective motions, then we may apply the convective velocity scale to estimate 
v - p - (&$Is 6)' i36. This results in 

6 - H(sina)-'f2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,,, - u*(sina)'/* AT, - 8,(sincu)1/2. (27) 

This prediction differs essentially from the LES-results, even for small angles, and cannot 
therefore provide an acceptable parametrization. The disagreement is a consequence of 
large-shear contributions to turbulence diffusivities even at small slope-angles. 

As an alternative approach, we try to estimate the functional dependence on N not 
by using Prandtl's solution as a basis, but rather by referring to our observation of the 
well-mixed layer for angles N < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2o", and by referring to the integral balances for steady 
state given in (14) and (15). Thus, we postulate that the temperature profile is well 
mixed, i.e. dT/dz = - d8/dz, over a layer of thickness D - 6, so that TD = G'de/dz. 
Then, from Eq. (14), we estimate u i  = N26* s' in a. If we assume in addition that U - u,, 
then Eq. (15) implies 

6 - H(sina)-3i4 Urn;,, - u,(sina)-'/' AT, - O , ( ~ i n a ) - ~ / ~ .  (28) 

This model comes rather close to the LES-results for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ,  and U,,, but overestimates the 
trend of AT, on N (presumably because it refers to T above the surface in the mixed 
layer and not to the temperature at the surface itself). It implies that u*.w, and Umax/wy 
are constant for small angles because w, - 6"'. It is also reasonable that 6 - dT varies 
more strongly with (Y than d ,  or d; ,  because the height of the mixed layer vanishes rather 
early for a = 10". Hence, this model approximates the convective conditions at N < lo" 
and presumably provides the correct tendencies for N S 2". 

(b )  Comparison with Brehm 

The most relevant study of comparable one-dimensional models has been presented 
by Brehm (1986). He has solved the one-dimensional ensemble-averaged equations of 
motion, for the same type of UBL as discussed in this paper, using a closure model which 
includes a transport equation for the turbulent kinetic energy and a prescribed length- 
scale. He has determined steady-state solutions for a given temperature difference AT, 
and for several parameter values including slope-angles between 2" and 30". The mean 
profiles differ qualitatively from those shown in Fig. 3, in that Brehm's results do not 
show the strong return flow for small slope-angles. 

The most uncertain part of such a model is the prescribed length-scale. For example, 
Brehm (1986) follows Mellor and Yamada (1982), and computes the dissipation from 
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( E )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E)”I2/L, where L = 4?,/0.2’/’ is a dissipation length-scale which uses a mixing length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t,. The latter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis determined as a function of normal distance, a local Richardson number 
and the profile of kinetic energy. The result for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 10” has been taken from Fig. 4.8 of 
Brehm (1986) and is shown together with the LES results in Fig. 18. The statistical 
uncertainty of the LES results amounts to about k0.1. The results agree with those for 
the convective boundary layer over horizontal planes as reported by Krettenauer and 
Schumann (1989) and Bougeault and Lacarrere (1989). We find that the model over- 
estimates L inside the UBL with the consequence that it also over-estimates the kinetic 
energy for given energy production and dissipation. As pointed out to me by one of the 
reviewers, outside the boundary layer the reason for the large discrepancy between the 
LES dissipation scale and Brehm’s is probably the presence of gravity waves in the LES. 
The waves contain fluctuation energy but do not produce dissipation, and consequently 
give a large effective dissipation scale. The one-dimensional model does not contain 
waves, and only considers the random turbulent motions which cascade energy to smaller 
scales. As shown by Fig. 5, the waves contribute to momentum transfer but the divergence 
of the flux is small and, hence, they affect the momentum balance only little. Moreover, 
Brehm’s model assumes down-gradient momentum transport whereas the LES-results 
imply deviations from down-gradient transport near the outer edge of the boundary layer 
at small angles, Hence, it is not surprising that Brehm’s model results in different mean 
velocity profiles. 

1.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d, 1.2 

1.0 

0.8 

0.6 

0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

0.2 

0 

- 

0 0.4 0.8 1.2 1.6 2.0 
Lld,  

Figure 18. Dissipation length-scale L = (E)’ ’ / ( E )  normalized by the velocity-boundary-layer thickness d, 
versus normal distance n. The thick curve is taken from Brehrn (1986) for (Y = 10”. The other curves depict the 

LES-results for 01 = 2, 10, 30 and 90”, line-coding as in Fig. 4. 

Brehm expressed the bulk properties of his simulations non-dimensionally in terms 
of friction coefficients cg for momentum and CH for heat transfer, which he defined as 

Brehm uses K = 0.36 as the value of the von Karman constant. He shows that cg and cH 
depend solely on the angle a and an ‘analogous Rossby number’ 

K A T , H  

sina 8 ,  zo’  
_ _ ~ -  - K A T ,  

zo(dB/dz) sin a 
Ro = - 

The results c,(Ro, a) and q(Ro, a) = cH/cg are given in Fig. 5.3 of Brehm (1986). They 
have been converted into a table with proper interpolating subroutines by H. Mannstein 
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(1989, personal communication). Based on these subroutines, we evaluate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AT,/O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=  KC^{ - q(Ro, ( Y ) } ' / ~ ] ~ ' .  

This requires iterations because Ro itself depends on ATs  see Eq. (29). Thereafter, we 
obtain 

and 

The latter result is then used to evaluate U T D  from Fig. 5.7 of Brehm (1986) (for (Y = 

2, 10, 20 and 30"). The results for some selected cases are compared in Table 4 with the 
results from the LES. 

The differences in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, range from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3% to 50% of the LES results. The differences for 
the temperature difference A T ,  are generally smaller and typically about 10%. The 
results for UTD show very large differences (up to 90%). This is not surprising in view 
of the difficulty of modelling the thickness of the boundary layer and the profiles of mean 
temperature and velocity. In conclusion, both methods give results of the same order of 
magnitude but with essential differences in detail. 

TABLE 4. COMPARISON Of; SELECTED MEAN VALUES WITH 

THE RESULTS OFBREHM (1986). FOR EACH CASE. FIRST LINE- 

PRESENT LES-RESULI,. SECOND LINt-BREHM'S RESULT 

var. 4 A T, UTD 
unit u* @* U * @ d  

B02 

B04 

B07 

B10 

B20 

B30 

C10 

E l0  

0.503 
0.5 IS 
0.43 
0.502 
0.397 
0.473 
0.371 
0.472 
0.344 
0.497 
0.343 
0.521 
0.568 
0.649 
0.266 
0.371 

20.43 
22.23 
18.51 
20.15 
17.39 
19.64 
16.75 
19.86 
16.14 
17.72 
16.11 
18.24 
7.694 
10.27 
34,44 
32.38 

71 
58 

4.37 
7.3 
1.88 
3.6 
1.32 
2.4 
5.84 
7.1 
3.87 
7.3 

( c )  Relationship between bulk quantities 
For closure of the bulk equations, given in Eqs. (14) and (15), for non-steady 

boundary layers, one requires relationships between the unknown quantities UUD,  U T D ,  
W D ,  u: ,  and those quantities which can be predicted from these equations, i.e. U D  and 
TD.  In the present simulations, W D  = 0 because of the boundary conditions selected, 
and therefore, we cannot comment on the various proposals for its dependence on other 
field quantities, as discussed by Egger (1990). To some extent the negative heat flux at 
the outer edge of the boundary layer is a measure for entrainment, and Fig. 7 shows that 
this type of entrainment is large only for (Y G 10". However, the other terms have been 
evaluated so that we can check existing closure assumptions. For example, Brehm (1986), 
as also discussed by Egger (1990), has proposed relating U D  to UTD2I3, This proposal 
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is not very appealing because it requires further factors for dimensional reasons. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
parametrization of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

UTD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c((Y, z,,/H)UD ' TD/d, 

where the coefficient c and the thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, are to be prescribed as functions of the 
external parameters, appears to be more consistent in this sense. However, as shown in 
Fig. 19, Brehm's (1986) proposal fits the tendency of the LES-results rather well, at least 
for (Y < 30". It is an easy task to determine the quantitative relationship between UTD 
and UD or other bulk quantities using the power laws given in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  

We can also check the parametrization 

UHax = C&TD sin (Y (30) 

proposed by Vergeiner (1982) (It is not quite clear, however, whether the symbol V in 
Vergeiner's paper refers to  U,,, or a suitable mean velocity like UD/d,). Vergeiner 
assumes that C corresponds to a friction coefficient of about unity. From the power laws 
given in Table 3 ,  we find 

C = 2.77(z,,/H) p')'38(sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0'35 . 

For a = lo", z,/H = 0.003, it amounts to C = 46.5. Thus, the coefficient is quite different 
from unity and varies rather strongly with cx, even in the range of validity of these power 
laws, i.e. for 2" d (Y 30". Using UD/d, instead of U,,, gives a similar result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 0  
30 

1 I ' I " " I  ' " ' 2  

U D  2 0  

10 

- 
v, " 

5 

3 
2 

0.5 l: 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 5 10 2030 50 100 

U T D / (  vsOwH 1 
Figure 19. Integrated mass flux versus integrated up-slope heat flux. The symbols have the meaning as in Fig. 
16. The numbers denote the size of the angle. The thin line corresponds to a power law with exponent 2/3. 

5. SUMMARY AND CONCLUSIONS 

By LES we have determined the structure of the quasi-steady boundary layer which 
forms at the interface between a stratified atmosphere at rest and a uniformly rough and 
heated inclined or vertical plane surface. The steady-state solutions depend solely on the 
angle a and the length-scale ratio zo/H. The dependence on surface heat flux, stratification 
and buoyancy coefficients is described by the scaling parameters given in Eq. (1). We 
have shown that the results are only slightly sensitive to grid variations of the LES so 
that the results may be treated like experimental measurements. In fact, none of the 
existing measurements give such a complete picture as the LES. Some uncertainty arises 
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from application of the Monin-Obukhov boundary conditions which we cannot quantify. 
In particular, the concept of surface roughness is an artifact which limits any comparison 
with real conditions. However, the effect of friction on the internal structure of the 
turbulent boundary layer is rather weak so that the results do not depend strongly on 
the boundary condition. 

It takes several oscillation periods 2n/(Nsina) to reach a steady state, so that a 
stationary UBL can be expected to exist at mountain slopes only for large angles. This 
time scale is independent of diffusivity and the layer's thickness but applies only to one- 
dimensional motions which are invariant relative to the up-slope coordinate. As shown 
by Egger (1981), small scale circulations and the flow near the surface have smaller time- 
scales of the order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN-'  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. This explains observations of instantaneous local start-up of up- 
slope motion at sunrise as mentioned by Vergeiner and Dreiseitl (1987). Note that the 
steady-state solution for infinitesimally small angles is basically different from the solution 
for the growing convective boundary layer for zero slope-angle. The subject of non- 
steady growing UBL at small angles deserves further investigation in the future. 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa d  lo", a well-mixed layer is formed which causes a strong temperature 
inversion and strong down-slope flow at the outer edge of the UBL. Deviations from 
down-gradient momentum transport (negative effective viscosity) seem to be connected 
with the strong return flow at small angles. For all angles, turbulence is generated by 
both shear and buoyancy. At small angles, buoyancy effects contribute about 60%. This 
contribution decreases for angles larger than 20" and shear contributes most (70%) to 
turbulence energy for (Y = 90". The comparison with the data of Deardorff and Willis 
(1987) for (Y = lo", suffers from advection effects in the non-uniform laboratory slope 
layer but these authors also note the large contributions from shear to turbulence 
generation. The LES results for the UBL at small angles agree closely with measurements 
on variances, turbulence energy budget and length-scales reported by Zhou zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1985) 
for a baroclinic convective boundary layer. 

Some effort has been made to identify coherent structures in the turbulent boundary 
layers. In agreement with the observations of Deardorff and Willis (1987), the instan- 
taneous flow fields and the correlation functions exhibit contributions from all scales in 
a random manner with only small contributions from coherent large-scale motions. At 
small angles, we find some indication of cross-slope rolls or Kelvin-Helmholtz waves. 
Such rolls are rather unexpected from linear theories and not yet fully explained. The 
normal velocity fluctuations have a skewed distribution and transport kinetic energy 
towards the outer edge of the UBL. Pressure diffusion continues to transport energy 
away from the UBL into the stratified atmosphere. The polygonal spoke pattern, which 
was observed for convection over horizontal surfaces (Schmidt and Schumann 1989), 
appears to be destroyed by the shear on inclined surfaces. At steep slopes, hot fluid 
parcels have largest up-slope velocity. Near the wall, longitudinal rolls parallel to the 
mean flow can be identified while Kelvin-Helmholtz-type waves are prevailing at the 
outer edge of the UBL. The present results are consistent with the requirement of large 
Obukhov length for longitudinal rolls in mixed convective/shear-driven boundary layers. 

We have quantitatively determined the dependence of several mean properties on 
slope angle and surface roughness. The results are difficult to explain with simple models. 
A model based on shear-induced diffusivities explains the tendencies best at large angles, 
while a model which assumes the existence of a well-mixed layer gives reasonable 
results at small angles, presumably including values (Y < 2". The dependence of surface 
temperature difference on surface roughness is not much different from that found for 
convection over a horizontal surface by Schumann (1988). For 2" (Y G 30", we have 
deduced power-law approximations for all mean quantities, and these approximations 
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will be of some practical value. For the relationship between surface temperature 
difference and heat flux, a parametrization has been proposed which covers all angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2”. Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT, refers to the surface temperature at n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zo; this value is not well 
defined in reality and, hence, might be much different from a temperature difference 
measurable by remote sensing. Our temperature-difference results differ quantitatively 
by about 10% from those of Brehm (1986) who employed a one-dimensional turbulence 
model. 

The present study assumes prescribed heat flux. This case is equivalent to that of 
prescribed surface temperature difference only in the steady laminar case. In turbulent 
flows, the different boundary conditions may cause different solutions because the heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
flux varies as a function of the local motion field for prescribed temperature difference 
and this may cause a more intermittent flow structure. However, for the horizontal 
convective boundary layer, Krettenauer and Schumann (1989) have compared the results 
of LES for the different kinds of boundary conditions and found no significant difference. 
It might be that the difference is largest for down-slope motions on cooled surfaces 
because of the self-isolating effect of stable stratification. But for the day-time flow over 
dry surfaces, a prescription of heat flux seems to be more appropriate to nature because 
most of the solar energy will be converted into a flux of sensible heat, at least if the 
thermal inertia of the surface is small. 
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