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Abstract. A large-eddy simulation has been performed of an atmospheric surface layer in which the 
lower third of the domain is occupied by a drag layer and heat sources to represent a forest. Subgrid- 
scale processes are treated using second-order closure techniques. Lateral boundaries are periodic, 
while the upper boundary is a frictionless fixed lid. Mean vertical profiles of wind velocity derived 
from the output are realistic in their shape and response to forest density. Similarly, vertical profiles 
of Reynolds stress, turbulent kinetic energy and velocity skewness match observations, at least in a 
qualitative sense. The limited vertical extent of the domain and the artificial upper boundary, however, 
cause some departures from measured turbulence profiles in real forests. Instantaneous turbulent 
velocity and scalar fields are presented which show some of the features obtained by tower instrumen- 
tation in the field and in wind tunnels, such as the vertical coherence of vertical velocity and the slope 
of structures revealed by temperature patterns. 

1. Introduction 

The air layers within and above a forest, as for any surface composed of relatively 
tall roughness elements, are linked by turbulent motions at scales large relative 
to the forest depth that are strongly intermittent in character (Finnigan, 1979; 
Denmead and Bradley, 1985). This large-scale intermittency imposes difficulties 
in the formulation of mathematical models created to simulate exchanges between 
a forest and the lower atmosphere. The majority of attempts to model turbulent 
exchange between the atmosphere and tall vegetation, involve first- or higher- 
order closure schemes based on ensemble-averaged statistics, which are inadequate 
in representing the intermittent character of the flow. A possible exception to 
such techniques is the “surface renewal” procedure, which attempts to simulate 
downbursts injecting the canopy layer with fresh air from aloft (Li et al., 1985). 
It is the existence of large downbursts, which immerse the full depth of the forest, 
that contradicts local closure and creates the most difficult part of mathematically 
representing the exchange process. 

Further advances in simulation of the interaction of forest and atmosphere must 
be preceded by improved understanding of the physics of turbulence in the vicinity 
of the canopy. Until not much more than a decade ago, information of canopy 
turbulence was limited to spectral and non-spectral statistics with averaging times 
of a few tens of minutes. Conditional statistical analyses such as quadrant analysis 
(Finnigan, 1979; Shaw et al., 1983; Baldocchi and Meyers, 1988) strongly implied 
that the flow was intermittent and, in the canopy layer, dominated by downbursts 
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(sweeps) of relatively short duration but which make large contributions to the 
total vertical transport. 

Based on a series of short-interval average profiles of temperature in a pine 
forest, Denmead and Bradley (1985) depicted the penetration of a gust of relatively 
cool, dry air into the canopy. Gao et al. (1989) took this a step further by 
demonstrating the existence of a sharp, sloping frontal boundary between relatively 
warm, humid air being expelled from the forest and cooler, drier air being swept 
into the canopy from aloft. Scalar traces at single points showed the microfronts 
as a series of ramps; scalar values increased with time but this trend was abruptly 
terminated by a rapid drop before repetition of the pattern. Also revealed was 
the close relationship between the scalar and vector fields. Gao et al. (1989) and 
Bergstrom and Hogstrom (1989) both established the relatively large contribution 
being made by such coherent structures to the average vertical fluxes of heat and 
momentum. 

A link between the scalar and vector signatures observed by tower instrumen- 
tation and large-scale organized motions has yet to be made. Raupach et al. (1989) 
visualize the creation of transverse vortices resulting from the strong wind speed 
gradient centered near the top of the canopy but it is not possible to confirm such 
speculation with existing field data. It is also not known whether such flows relate 
to the hairpin vortices or double-roller eddies postulated by Townsend (1976), or 
other vorticular structures that have been observed in smooth-wall boundary 
layers. Even the most extensive micrometeorological campaigns at forest sites 
using multiple 3-dimensional anemometry have yielded only a restricted view of 
the large-scale turbulence. Future field studies might be designed to confirm or 
reject hypotheses concerning the existence of particular vorticular patterns but it 
is unlikely that traditional micrometeorological experiments, using tower-mounted 
instruments, will be able to formalize the link between single-point scalar and flow 
signatures and the organized motions responsible for them. 

The difficulty of obtaining the three-dimensional structure of the flow through 
observations suggests that numerical simulations could yield valuable insight into 
the physics of the problem. Large-eddy simulation (LES) explicitly simulates the 
dominant energetic turbulent scales resolved by the three-dimensional grid array 
of the computational domain. With the advent of powerful computers, LES has 
been applied to a wide variety of flow situations, including the atmospheric boun- 
dary layer (Deardorff, 1972; Moeng, 1984; Schmidt and Schumann, 1989; Nieuw- 
stadt et al., 1992). LES has the potential for providing answers to fundamental 
questions concerning the dynamics of vegetated surfaces, as long as computer 
resources can be provided to resolve the canopy and a substantial atmospheric 
layer. 

Here, we present the results of a pilot study of an LES of the lower atmosphere 
which includes, in the lowest third of its domain, a canopy layer expressed as 
vertical distributions of drag and heat sources. The resolution of individual trees 
is only partially within range because of grid-size limitations; hence, at this initial 
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stage, we have chosen to treat the canopy as a porous body of horizontally uniform 

area density with constant drag coefficient. Further, we have opted to simplify the 
input of heat by specifying a vertical profile of heat source through the depth of 
the forest. Thus, we do not solve an energy balance equation, and heat flux density 
is horizontally uniform. Because of the fine grid spacing needed to resolve the 
forest canopy, it has not been possible to include an overlying atmospheric layer 
of a depth typical of the daytime atmospheric boundary layer. However, it is 
thought that most of the features characteristic of the interaction of the atmo- 
spheric surface layer and a rough surface are retained despite the limitation in the 
vertical extent of the domain. 

2. Method 

2.1. THE EQUATIONS 

The LES that we have employed is a method to integrate the three-dimensional 
grid-volume-average equations describing the balances of mass and momentum 
and the first law of thermodynamics under the Boussinesq approximation. The 
equations include additional terms for drag by the canopy elements and heat input 
to the air in contact with the vegetation. The equations are 

E&o, 
dXj 

(1) 

(3) 

where Ui is velocity in the x,-direction, p is pressure, p is air density, p = l/T is 
the volumetric expansion coefficient of the air, g is the gravitational acceleration, 
T is temperature, 6 is the Kronecker delta, Fi is the drag force acting in the Xi- 
direction, and S is the rate at which heat is imparted to the air from the vegetation. 
The overbar signifies an average over a computational grid cell, while the double 
prime indicates a departure from this average. 

The molecular diffusivities v and p are neglected, other than their implicit 
inclusion in energy dissipation (see below) and in direct exchanges of heat and 
momentum at the surface of elements of the canopy. The Coriolis force has been 
excluded as it has little direct bearing on the scales of motion with which we are 
concerned. 

The momentum and thermodynamic equations include terms for subgrid-scale 
(SGS) fluxes, which are determined from the resolved fields and the SGS kinetic 
energy. We have followed the procedure of Schmidt and Schumann (1989), the 
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essential parts of which are reproduced here. The subgrid-scale model integrates - 
a closed equation for SGS kinetic energy F = ur*/2 of the form 

DF 
-= - 

Dt 
(4) 

where r is a time scale for the drag, to be defined in Equation (10). The term in 
which this time scale appears represents an additional dissipation process due to 
canopy drag, as discussed below. 

The subgrid-scale momentum and heat fluxes and the temperature variance are 
obtained from a set of algebraically approximated second-order equations. The 
following derive from the full set of second-order transport equations by assuming 
local equilibrium, small departures from isotropy, and common closure assump- 
tions: 

0 = - (1 - CCMy3F 

(2 ) 
+z +(1 -CBm) 

I 

-x1/2 
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0 = - (1 - Cm-) %F E + (1 - CBT) pgT”2 &, - CRTI u9T”, (6) 
I 

- 
-7112 E T” 

1 ) 
(7) 

where the momentum fluxes and the anisotropic components of the normal stresses 
are expressed in the form 

+p+$6ijp, i=l,2,3, j=l,2,3. (8) 

In a consideration of scales of motion inside a canopy, Shaw and Seginer (1985) 
showed that an energy transfer takes place from both the time mean flow and the 
large-scale turbulence to the wake scale, as small eddies are shed behind canopy 
elements. It is believed that this mechanism accelerates the dissipation process 
because small-scale wake motions dissipate rather quickly and contribute little to 
the turbulent kinetic energy. In an ensemble average canopy model, it is probably 
important that the transfer between large and small scales be included, as in 
Wilson (1988). In a large-eddy simulation, the grid-volume-average momentum 
equation (Equation (2)) explicitly includes the action of canopy drag on the 
resolved turbulent velocities. The net effect on subgrid-scale turbulence is less 
obvious. Here, we have chosen to include a term in Equation (4) to represent the 
removal of SGS kinetic energy by the action of drag, on the assumption that wake 
motions are of even smaller scale than those making up the bulk of SGS kinetic 



SIMULATlON OF TURBULENT FLOW 51 

energy, Formally, the term 2??/r arises from the scalar product uy(u;/r) if r is 

weakly correlated with u!:. Thus, in this simulation, wake-scale motions are as- 
sumed to dissipate rapidly and make no contribution to turbulent kinetic energy. 

The length scale I is prescribed as a function of height z above the ground 
surface and of the mesh size A (we chose an equidistant, isotropic grid array), 
such that 

I = min(A, QZ) . (9) 

In the ensemble-average model of Wilson and Shaw (1977), it was advantageous 
to restrict the length scale according to the distance from the surface and the 
density of the vegetation but, because our grid size is relatively small compared 
with treetop height, the LES subgrid-scale parameterizations are chosen to be 
independent of the characteristics of the forest. 

All coefficients of the SGS model are selected to match those of Schmidt 
and Schumann (1989), such that c3, = 0.20, c,~ = 0.845, CG,,, = 0.55, c&, = 0.55, 
c ~~ = 3.50, CGT = 0.50, CBT = 0.50, CRT = 1.63, C,T = 2.02, and Cl = C,. Most of 
these coefficients are derived from spectral estimates in the inertial-convective 
subrange of locally isotropic turbulence, and have proven to be suitable in the 
large-eddy simulation of a convective atmospheric boundary layer. Comparisons 
to other LES models (Nieuwstadt et al., 1992) have shown, however, that simpler 
SGS models with diffusivities computed from lE1” give about the same accuracy; 
see also Schumann (1991). 

The drag force is time dependent and is equal to the product of the local foliage 
density a (a function only of height), a constant drag coefficient cd, and the square 
of the local velocity, such that the force Fi in the xi-direction is given by 

Fi = - CdaViii = - iii/~ (10) 

where V is scalar speed. The drag coefficient is isotropic and the force directly 
opposes the local, instantaneous wind vector. In the study described, the drag 
coefficient is set to 0.15 on the basis of an analysis of micrometeorological data 
from a deciduous forest (Shaw et al., 1988). 

Unlike the momentum sink, the heat source is treated such that it is constant 
in time and is horizontally homogeneous; thus, we have made no attempt to follow 
the details of a time-dependent energy budget within the canopy. It is assumed 
that solar radiation penetrates the canopy and warms the foliage which, in turn, 
warms the air in contact with it. The heat source is distributed vertically to yield 
a prescribed average heat flux at t = h, the top of the vegetation, and a mean 
heat flux profile through the canopy, described by a declining exponential function 
of the downward cumulative leaf area index, in a manner similar to the distribution 
of net radiation suggested by Brown and Covey (1966). The strength of the heat 
source, S, included in Equation (3) is then the vertical derivative of the upward 
kinematic vertical heat flux given by 
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Fig. 1. The computational domain. The mean wind is parallel to the major axis. 

Q(z) = Q(h)exp(-crF), F= !‘a& 
I 

where F is the downward cumulative leaf area index (non-dimensional), and (Y is 
an extinction coefficient, which is taken to be 0.6. 

2.2. NUMERICAL METHOD AND BOUNDARYCONDITIONS 

The integration uses the numerical method MESOSCOP (Schmidt and Schumann, 
1989) and is based on an equidistant staggered grid and on finite difference 
approximations. The momentum and continuity equations are approximated by 
second-order central differences in space. Time integration is performed using the 
Adams-Bashforth scheme. The equations for temperature and for SGS kinetic 
energy are approximated by the second-order upwind-scheme of Smolarkiewicz 
(1984). In the computations, all variables are expressed in non-dimensional form 
by appropriate scaling using the quantities U (the average longitudinal velocity 
across a y, z cross-section), h (the total depth of the forest canopy), and T* (a 

temperature scale defined as -Q(h)lU). Note that U is invariant in the n-direction 
because of continuity. 

For this pilot study, the non-dimensional time step At U/h was chosen to be 
0.0125 according to the Courant criterion. The drag force does not limit the time 
step since At < r in this study. The computations proceeded for 4800 time steps. 
For a 20 m tall forest, and a mean velocity U of 2 m/s, this translates to a simulation 
of 10 min duration. 

The number of grid cells is 96 X 48 X 30 in the x, y and z directions (Figure 1). 
The forest occupies the lowest 10 grid cells in the vertical and thus the size of the 
computational domain is 9.6 x 4.8 x 3.0 forest heights. For a 20 m tall forest, this 
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Fig. 2. Vertical profiles of leaf area density (a) for two values of LAI. Leaf area density is normalized 
by multiplication by the canopy height. 

would be 192 x 96 x 60 m. The mean flow is aligned with the x-direction and a 
constant mass flow over the cross-section is maintained by adjustment at each time 
step of a height-independent longitudinal pressure gradient. 

The lateral boundaries of the domain are periodic. The upper boundary is 
treated as a frictionless, rigid lid with zero mass, momentum, heat and SGS kinetic 
energy flux. This artificial boundary condition may be interpreted as a strong 
inversion. No-slip conditions are maintained at the lower boundary and stress at 
the ground is computed from wind velocity at the first grid point above the surface, 
using the Monin-Obukhov similarity relationships with a prescribed roughness 
length, z,,lh = 0.001. 

The forest canopy was specified as a horizontally uniform leaf area density (area 
per unit volume of space) with a vertical profile to represent that of a deciduous 
forest with a relatively open trunk space. The same generic area density profile 
shape was preserved, while the leaf area index (LAI) was set to values of 5 and 
2 during separate computational runs. Plots of the leaf area density profiles are 
shown in Figure 2. 

Three different values of the heat flux were examined, representing convective, 
more weakly convective, and neutral stability conditions. The three values for the 
heat flux [Q(h) = 0.05, 0.005, and 0 in arbitrary units] result, in order, in w,Iu, 
= 1.6, 1.1, and 0, where u* is the friction velocity at the top of the forest layer, 

and w* is the convective velocity scale [w, = @gQ(h) 2h)1’3]. Alternatively, the 
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level of instability can be expressed as the ratio of the forest height to the Monin- 
Obukhov length. For the three cases, in order, h/L = -0.80, -0.26, and 0. For 
the neutral case, the heat flux was held at the same value as for the convective 
run but the volumetric expansion coefficient of the air was set to zero in order to 
retain temperature as a passive scalar contaminant. 

Calculations were performed on a Cray Y-MP. The initial fields were taken as 
uniform but with small random perturbations added to initiate three-dimensional 
motions. Previous large-eddy simulations have demonstrated independence of the 
results, in terms of statistics and typical structures, from such initial conditions. 
At each time step, the spatially averaged Reynolds stress at the top of the forest 
was monitored to document convergence to an asymptotic solution. In this state, 
any remaining trend is much smaller than the turbulent fluctuations. At prescribed 
intervals, vertical profiles of selected fields were produced by averaging over each 
horizontal plane. In addition, at the final time step, the turbulent fields of velocity 
and temperature were obtained as contour and vector plots over various horizontal 
and vertical slices through the computational array. 

3. Results 

3.1. PROFILES OF SPATIALLY AVERAGED FIELDS 

Each simulation took about 7000 s of computer time. This translates to a ratio of 
about 12 to 1, computational time to real time (taking h = 20 m and U = 2 m/s). 
An asymptotic state was generally achieved after about 1500 time steps; roughly 
one third of the total simulation period. 

Figure 3 shows vertical profiles of instantaneous, horizontally averaged longi- 
tudinal velocity for the two values of the LAI. For the velocity profiles, it proved 
necessary to apply two-point averaging in the vertical to smooth out noise in the 
profiles induced by the rapid change in the drag force at the canopy top. Smoothing 
was applied only on the final output and was not part of the computational 
procedure at each time step. The profiles are of similar shape to observed winds, 
such as those displayed by Raupach et al. (1991), in showing near-logarithmic 
shape above and near-exponential decay in the upper half of the forest. The 
expected response to canopy density is observed. The depletion of the wind inside 
the forest relative to that above is close to values published by Cionco (1979), 
who defined a coupling parameter R, equal to the ratio of wind speed at 0.25 h 
to that at 1.4 h. For the profiles of Figure 3, the coupling ratios are approximately 
0.16 for LA1 = 5 and 0.26 for LA1 = 2. As comparison, Cionco lists coupling 
ratios for deciduous and coniferous forests ranging from 0.12 to 0.19. Dense 
tropical forests had lower coupling ratios, while a deciduous forest in winter is 
quoted as having a coupling ratio of 0.28, not very different from that of our 
depleted forest of LA1 = 2. 

Both profiles in Figure 3 show a reversal of the velocity gradient in the lower 
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Fig. 3. Spatial mean longitudinal velocity profiles for two values of LA1 under weakly unstable 
conditions. Velocity is normalized by the vertically averaged longitudinal velocity. 

half of the canopy but the feature is more pronounced in the case of the denser 
forest. Such profiles can be indicative of counter-gradient momentum flux, and 
are a consequence of the frequent flushing of the full depth of the canopy by large 
eddies penetrating from above, and the relatively small leaf density in the lower 
part of the forest. 

The Reynolds stress decays rapidly inside the forest as demanded by the strong 
drag forces, but also decays above the canopy in near-linear fashion, as required 
for steady state, to zero at the top of the domain, as shown in Figure 4, for a case 
with weak convection and a LA1 of 5. The decrease above the forest is forced by 
the existence of the frictionless upper boundary and is a departure from a real 
atmosphere, with a deep mixed layer, in which the first few tens of meters above 
the forest appear as a near-constant stress layer. 

Also shown in Figure 4 is the SGS contribution to the Reynolds stress, indicating 
that it is generally a very small component of the total momentum flux. Under 
the more strongly convective situation, the Reynolds stress profile shows slightly 
deeper penetration of momentum into the forest, while under neutral conditions, 
there is slightly weaker penetration. For all three cases with LA1 = 5, the Reynolds 
stress changes sign in the lower half of the canopy to become small and positive 
(negative in Figure 4 since the Reynolds stress is normalized by its value at treetop 
height), representative of an upward flux of momentum. Examination of the 
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Fig. 4. Vertical profile of the spatial mean Reynolds stress for a LA1 of 5 and weakly unstable 
conditions, and normalized to its value at the top of the canopy. The solid line is the sum of resolved 

and subgrid-scale components of the Reynolds stress. The dots are the SGS component. 

momentum equation reveals that this reversal can only be a consequence of the 
streamwise pressure gradient. 

Figure 5 compares normalized Reynolds stresses for two LAIs, 5 and 2, using 
the same runs as for the wind profiles in Figure 3. A more extensive penetration 
into the thinner canopy is expected and is reproduced in the computed flows. Note 
that for LA1 = 2 the Reynolds stress does not change sign, indicating continued 
downward flux of momentum, while the velocity gradient reverses sign to a small 
degree, a definite indication of counter-gradient flux. 

The correlation between longitudinal and vertical velocities (not shown) is 
strongly negative in the upper portion of the forest, achieving values of about 
-0.6, and closely matching observations made in a deciduous forest (Shaw et al., 
1988). 

Other statistical fields examined include vertical profiles of turbulent kinetic 
energy as shown in Figure 6 for LA1 = 5 and weak instability. Maximum turbulent 
energy occurs near treetop height and decays rapidly inside the forest. It also 
decreases to about one third its maximum value at the top of the domain. This 
decrease above the forest is counter to observations from the field, in which 
turbulent kinetic energy tends to remain fairly constant or even increase somewhat 
above the canopy (for example, see Shaw et al., 1988). The decrease shown by 
the simulated wind field occurs because the fixed upper lid imposes decreases on 
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Fig. 5. Vertical profiles of Reynolds stress for LAIs of 2 (open circles) and 5 (crosses), for weakly 
unstable conditions in both cases. 

the momentum and heat fluxes, both of which are components of production terms 
in the turbulent kinetic energy equation. 

The SGS component of the turbulent kinetic energy is larger in a relative sense 
than it is for Reynolds stress (Figure 4) but is still only about 10% of the total. 
From the relatively small contributions by subgrid processes to the Reynolds stress 
and the turbulent kinetic energy, we conclude that the turbulent flow approaches 
a locally isotropic state at small scales and that our grid dimensions, with sides 
equal to one tenth of the forest height, are appropriate for this problem. 

The longitudinal and vertical velocities are skewed (Figure 7) in much the same 
way as found in the field. Inside the forest, vertical velocity is negatively skewed, 
while longitudinal velocity skewness is positive. Above the forest, these skewnesses 
are reversed. The sign of the third-order moment of vertical velocity fluctuation 
indicates turbulent energy transport away from the top of the canopy, where shear 
production of energy is a maximum, into the lower part of the forest and into the 
upper part of the mixed layer where dissipation exceeds production of turbulent 
kinetic energy. The longitudinal velocity skewness reveals strong downstream 
bursts inside the forest layer and strongly retarded events in the mixed layer 
above. 

Raupach et al. (1991) show velocity skewness profiles from several real and 
wind tunnel artificial canopies. Our simulations are in qualitative agreement but 
observations tend to reveal skewnesses of somewhat larger magnitude inside the 
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Fig. 6. Vertical profile of turbulent kinetic energy for a LA1 of 5 and weakly unstable conditions. 
Kinetic energy is normalized by the square of the vertically averaged longitudinal velocity. The solid 
line is the sum of resolved and subgrid-scale components of the turbulent kinetic energy. The dots are 

the SGS component. 

canopy than shown by the simulations. The reversal of both u and w skewnesses 
above the simulated forest is also seen in field data but, in the field, the change 
is not so rapid. It is probable that the limited vertical depth of the simulation and 
the presence of the rigid upper boundary cause the more rapid transition in the 
sign of the triple moments near the top of the forest. 

Overall, statistical properties of the flow fields generated by the LES are reason- 
able approximations to micrometeorological observations from forest sites, retain- 
ing the essential features of turbulence statistics under field conditions. 

3.2. INSTANTANEOUS FIELDS 

An example of an instantaneous field is presented in Figures 8 and 9 of the 
resolved-scale velocities created by the LES for LA1 = 5 and neutral stability. The 
figures show contours of longitudinal and vertical velocity for a selected slice 
through the domain in the X, z plane for the final time step during one of the 
simulations. Positive and negative values are shown by solid and dashed lines, 
respectively. Figure 10 shows the same data in vector form. To improve clarity, 
the vertical dimension in each diagram is enlarged by a factor of 1.6 relative to 
the horizontal dimension. 

The vertical shear of the streamwise velocity (Figure 8) varies down the length 
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Fig. 7. Vertical profiles of longitudinal and vertical velocity skewness for a forest with LA1 of 5 and 
weakly unstable conditions. 
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Fig. 8. Instantaneous longitudinal velocity field over an n, z slice midway through the array (y/h = 
2.4), for a LA1 of 5 and neutral stability. Contour interval is 0.3 in units of velocity normalized by 
the vertically averaged longitudinal velocity. Spatial scales are normalized by the height of the canopy 

h, which is indicated by the horizontal line. 
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Fig. 9. Same as Figure 8 but for vertical velocity. Contour interval is 0.2. Solid lines indicate positive 
values; broken lines indicate negative values. 
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Fig. 10. Streamwise and vertical velocities as in Figures 8 and 9 plotted in vector form. Maximum 

vector 2.1 in units of the vertically averaged longitudinal velocity. 

of the domain and is greatest midway between the upwind and downwind edges 
in the upper reaches of the forest, where the 1.4 nondimensional velocity contour 
dips to treetop height. In this same region, shear in the lowest two thirds of the 
canopy and above the forest is weak. Upstream and downstream of this region, 
streamwise velocity shear is more diffuse. Coincident with the zone of high shear, 
the contour plot of vertical velocity (Figure 9) reveals an area of downdraft that 
is vertically coherent through most of the depth of the domain, and which has a 
size in the streamwise direction of about 1.3~. Although not shown here, the 
cross-stream dimension of this downdraft has been found to be of similar magni- 
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Fig. 11. Same as Figure 8 but for temperature fluctuation (temperature treated as a passive scalar). 
Contour interval is 0.4 in units of the kinematic heat flux at treetop height divided by the vertically 
averaged longitudinal velocity. Solid lines indicate positive values; broken lines indicate negative 

values, relative to the initial volume-mean temperature. 

tude. Clearly, the downdraft and the sharp streamwise velocity gradient in the 
upper canopy are linked. Areas of the diagram occupied predominantly by updrafts 
relate well to regions of low velocity near the top of the forest and to weak shear. 
A smaller scale downdraft located about 2 forest heights from the upwind edge is 
also accompanied by increased shear near the top of the canopy, although not to 
the extent of the case already described. 

The passive scalar field of temperature (the buoyancy parameter is set to zero 
for this neutral case) corresponding to the turbulent flow field of the previous 
diagrams is shown in Figure 11. There is a clear relationship between the scalar 
and the vector fields with cooler air penetrating the forest from above in the 
central downdraft, and warmer air leaving the upper canopy in areas of updraft 
at the left and right sides of the diagram. A feature apparent in the field of 
temperature perturbations is the inclination in the downstream direction of masses 
of air cooler or warmer than average. This is most distinctly demonstrated in the 
below-normal temperatures in the center of the diagram, and in the warmer air 
leaving the forest upwind of the center. The inclination in the scalar patterns is 
characteristic of convective plumes in shear flow but, in this case, is not driven by 
convection. Simulations performed with convective conditions demonstrate a simi- 
lar tilt to the turbulence structures. 

Unlike the case for temperature, visual inspection of Figure 9 fails to reveal any 
tilt in the pattern of vertical velocity. This difference between the scalar and vector 
fields is in qualitative agreement with lagged cross-correlations of observations in 
rough-wall boundary layers (Raupach et al., 1991), that is, temperature exhibits 
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Fig. 12. Horizontal slice through the temperature pattern at treetop height for a LA1 of 5 and weakly 
unstable conditions. Contour interval is 0.02 in units of the kinematic heat flux at treetop height 

divided by the vertically averaged longitudinal velocity. 

increasing lag with decreasing height, while vertical velocity is more or less in 
phase at all observation levels. 

The final diagram presents an example of a horizontal slice through the tempera- 
ture pattern at treetop height, for LA1 = 5 and weak convection (Figure 12). Note 
the large range of scales comprising the turbulence field. Also note that the largest 
scales, and what are probably the dominant eddies, are large in comparison to the 
canopy depth. The temperature patterns are strongly correlated with the vertical 
velocity field (not shown). A positive correlation is required to provide positive 
mean heat flux at this level. 

4. Summary and Conclusions 

The MESOSCOP numerical method has been modified to perform a large-eddy 
simulation of the atmospheric surface layer, resolving the air flow through a 
forest in the lowest one third of the vertical dimension. Sub-grid scale fluxes are 
approximated in terms of the resolved fields using second-order closure principles. 
Vertical profiles of mean flow statistics contain the main characteristics of experi- 
mental data specific to tall canopies. Examples of the instantaneous fields are 
presented. Features of the computed turbulence patterns match those found in 
the atmosphere at forest sites. 

While the simulations represent a pilot study, they illustrate the potential for 
future investigations of canopy turbulence using a new computational tool. Such 
studies may reveal the structure of the turbulent flow and can be used to deduce 
simpler turbulence models. However, fine resolution inside the canopy can be 
gained only if one limits the study to a rather small section of the atmospheric 
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boundary layer. Each of the simulations took about 7000s on a Cray Y-MP. 

Perhaps a doubling of the size of the domain of the LES is feasible, or fewer than 
10 grid points might be sufficient to resolve the canopy in the vertical, leaving 
more grid points to resolve a larger part of the atmospheric boundary layer. A 
future possibility is to examine properties of spatially inhomogeneous canopies. 
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