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Abstract. A family of wall models is proposed that exhibits more satisfactory performance than
previous models for the large-eddy simulation (LES) of the turbulent boundary layer over a rough
surface. The time and horizontally averaged statistics such as mean vertical profiles of wind velocity,
Reynolds stress, turbulent intensities, turbulent kinetic energy and also spectra are compared with
wind-tunnel experimental data. The purpose of the present study is to obtain simulated turbulent
flows that are comparable with wind-tunnel measurements for use as the wind environment for the
numerical prediction by LES of source dispersion in the neutral atmospheric boundary layer.
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1. Introduction

Large-eddy simulation (LES), which is well established in the study of small-scale
meteorological and environmental flow phenomena as well as for engineering (Gao
and Voke, 1995; Lesieur and Métais, 1996; Yang and Voke, 2001), is increasingly
applied to atmospheric boundary-layer (ABL) flows (Mason and Thomson, 1992;
Moeng, 1984; Nieuwstadt et al., 1992; Thomas and Williams, 1999; Meeder and
Nieuwstand, 2000; Sullivan et al., 1994). In this paper, we focus attention on the
surface layer or inner layer of a neutral ABL in which the Coriolis force effects are
negligible and which is accordingly comparable with available measurements. We
shall also investigate the turbulence almost at the core of the ABL for validation,
where again we neglect the Coriolis force and consider that the boundary layer is
evolving under free conditions.

One of the greatest challenges in applying large-eddy simulation to high Reyn-
olds number flow over rigid walls is the wall model. Three main reasons have been
cited by Piomelli (1999):
1. The growth of the small scales is inhibited by the presence of the wall.
2. The exchange mechanisms between the resolved and subgrid scale (SGS) are

altered.
3. The length scale of the energy-carrying large structures is Reynolds-number

dependent near the wall.
These physical effects of course interact strongly with the subgrid modelling in the
LES context. Most ABL flows are over rough surfaces whose characteristics differ
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considerably depending on whether they are land, vegetation canopy, or lake or sea
surfaces. The fully rough boundary makes the problem even more complicated,
raising the additional questions:

– How may the roughness drag forces be determined?
– How much is the wake produced by the roughness?
– What similarity relations should we use for the effects of roughness?
– How may the roughness effects be modelled efficiently and simply?

Experimental observations (Krogstad and Antonia, 1994; Krogstad et al., 1992)
show that roughness elements enhance the vertical intensity (normalised by u∗)
significantly over the wall, while the principal Reynolds shear stress displays a
roughness-dependent increase and the longitudinal turbulence intensity distribution
is essentially the same as for the smooth wall. Unfortunately, standard large-eddy
simulation models are not able to predict such enhancements reliably; in particular,
they tend to underestimate the vertical fluctuation. Mason and Thomson (1992)
argued that in the neutral case the departure from the logarithmic mean velocity
profile may arise because the Smagorinsky SGS model has not taken account of
the fluctuation of the SGS stress, as subgrid-scale stresses should have stochastic
fluctuations and these fluctuations lead to a backscatter of energy from subgrid
scale. Their model (Mason and Thomson, 1992) re-injects the turbulent kinetic
energy using stochastic backscatter, in which random forcing leads to an unsteady
velocity field with a partially stochastic component. Xin and Voke (1999) intro-
duced a vertical forcing term in the Navier–Stokes equations in the vicinity of the
rough wall, though some constant parameters had to be determined by tuning their
code and the size of the forcing term was found to be grid-dependent.

Brown et al. (2001) used a plant canopy model combined with the stochastic
backscatter model to generate more satisfactory turbulent flow away from the plant
canopy, rather than investigating the flow detail within the plant canopy, as did
Schumann, Shaw and other researchers (Kanda and Hino, 1994; Patton, 1997;
Shaw and Schumann, 1992; Su et al., 1998). Their aim was to provide a boundary
condition to the flow aloft. They found the plant canopy model was resolution
independent and hence can be considered as a wall-model-like technique. However,
the values of parameters such as the canopy drag coefficient CD, the canopy density
a and the depth of the canopy layer must be related to specific experiments.

Thomas and Williams (1999) developed a synthetic rough wall boundary con-
dition based on the well-known Schumann (1975) wall model. They consider the
instantaneous stress as a linear combination of the mean and fluctuating compon-
ents, where the fluctuating part responds less to the roughness and consequently
contributes less to the local shear stress than in the standard Schumann (1975) wall
model.

Moeng (1984) described a different wall model, originally proposed by J. C.
Wyngaard in a personal communication. Compared with the standard Schumann
(1975) wall model, their condition (specifying the SGS vertical fluxes at the wall
surface) took account of more fluctuation. It was actually applied in convective
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ABL flows, though in this case the roughness has less effect than in the neutral
or stable ABL. Mason and Gallen’s (1986) rough wall model also manages to
take account of more fluctuation. The similarity with the wall model proposed by
Thomas and Williams (1999) is particularly noted.

We can classify the above contributions to modelling in the vicinity of a rough
wall into two groups, those that:
A. Enhance the fluctuating component of the SGS vertical fluxes at the wall

surface.
B. Inject backscatter energy into the resolved velocity field.

Group A is much simpler and easier to implement and does not increase the
computational expense significantly. Group B is more complex, since some para-
meters need to be determined by numerical experiment or otherwise. They are more
computationally expensive and may occasionally give rise to numerical instability.
Based on the Thomas and Williams (1999) wall model, we develop a family of
wall models in which the weight coefficient β can be estimated theoretically rather
than determined by numerical experiments.

Finally, we mention that boundary-layer simulations may be carried out in sev-
eral ways. In the most rigorous approach, a very large computational domain is
used and upstream flow conditions are imposed, so that the boundary layer devel-
ops in space (as well as possibly in time) undergoing transition before becoming
fully turbulent further downstream. The computational cost of this approach is
generally high.

A simpler approach, adopted here, involves using a periodic condition in the
streamwise direction and a mean streamwise pressure gradient – a driving force –
which is added to the momentum equation. This permits a smaller computational
domain and hence very cost-effective computations. Moreover, fast Fourier trans-
formation (FFT) can be used in the computation, making the numerical scheme
accurate and efficient.

2. Governing Equations

We consider incompressible air flow over a rough surface at very high Reynolds
number. As it is quite impossible to do direct numerical simulations of such flows,
and Reynolds-averaged Navier–Stokes equation methods may eliminate most fluc-
tuation information, we resort to large-eddy simulation. An LES resolves only the
large-scale fluid motions and models the subgrid-scale motions through filtering
the Navier–Stokes equations.

We solve the filtered Navier–Stokes equations,

∂ui

∂xi

= 0 , (1a)

∂ui

∂t
+ ∂uiuj

∂xj

= −
(

∂p

∂xi

+ δi1
∂P

∂x1

)
+ ∂

∂xj

(
τij + ν

∂ui

∂xj

)
. (1b)
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The dynamical quantities, ui , p are resolved-scale (filtered) velocity and pres-
sure respectively and τij is the subgrid-scale Reynolds stress; the density is taken
as unity. u1, u2 and u3 are respectively the streamwise, lateral and vertical velocity
components, δi1 is the Kronecher-delta and ν is the kinematic viscosity; ∂P/∂x1 is
the driving force, a constant mean streamwise pressure gradient.

In the x1 and x2 directions the flow is periodic. At the top of the domain, stress
free conditions are imposed on u1 and u2:

∂u1

∂x3
= ∂u2

∂x3
= 0; u3 = 0.

The top boundary condition here is simple but widely used (Shaw and Schumann,
1992; Moeng, 1984). Shaw and Schumann (1974) pointed out the artificial bound-
ary condition may be interpreted as a strong inversion, though it could also be
viewed as a strict symmetry condition imposed at the centreline of a channel flow.
In the region near the top of the domain, the numerically simulated flow is no doubt
somewhat different from the flow in the simulated wind-tunnel boundary layer or
the flow in the outdoor atmospheric boundary layer. In the near wall region or far
from the top of the domain, the turbulence scales are governed by the rough wall
and the differences caused by the treatment of the upper boundary may be assumed
to be smoothed out or ‘forgotten’. Nevertheless the mean velocity and second-order
moments must be carefully verified up to some height of the boundary layer.

At the bottom boundary the condition ui = 0 may be prescribed, but it is
clear we cannot use this condition to calculate the surface stress owing to the high
Reynolds number. Instead, the wall model relates the surface stress to the tangential
velocity components u1 and u2 at the first inner grid point. Most commonly these
are based on,

ū1 = u∗
k

ln
x3

z0
, (2)

where ū1 is the time-averaged streamwise velocity, u∗ is the friction velocity, x3

is the distance from the wall, k the von Karman constant and z0 is the roughness
length. Details of the wall model for determination of the surface stress will be
given in Section 4.

The mean pressure gradient ∂P/∂x1 in (1) must balance the mean surface stress:

D
∂P

∂x1
= ρ(u∗)2 ,

where D is the boundary-layer thickness.
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3. Subgrid-Scale Model

Equation (1) cannot be solved unless the subgrid stress tensor τij is expressed in
terms of the known quantities, which is called subgrid-scale modelling (Ferziger,
1993; Sullivan et al., 1994). The most commonly used SGS models are based on the
Boussinesq hypothesis, which originally related the Reynolds stress occurring in
the time-averaged Navier–Stokes equations for turbulent flows to the mean strain-
rate and an eddy viscosity. The subgrid stress tensor τij is assumed to be the product
of fluid strain obtained from the filtered velocity field and a subgrid eddy viscosity:

τij − δij τkk/3 = νs

(
∂ui

xj

+ ∂uj

xi

)
= 2νsSij .

To quantify the subgrid viscosity νs , we use the mixed-scale model (MSM) of
Sagaut (1995); this model is found to be robust, efficient and less problematic in
the near-wall regions than the Smagorinsky model. The MSM expresses the subgrid
viscosity in terms of the local strain-rate scalar S = √

2SijSij , the subgrid kinetic
energy q and a filter width �, as follows:

νs(α) = cMSαq
1−α

2 �1+α .

Depending on the value of α, different models are recovered. The Smagorinsky
model corresponds to α = 1 and the subgrid energy model to α = 0; the standard
MSM of Sagaut (1995) has α = 1/2 and the corresponding constant cM is equal to
0.064. The filter width is evaluated in a standard manner as � = (�x1�x2�x3)

1/3.
The subgrid kinetic energy q is estimated using a test filter as commonly employed
in dynamic SGS procedures (Germano et al., 1991):

q = 1

2
(ui − ũi)

2 , (3)

where the test filter (represented by the tilde) is twice the scale of the grid; ũi is
the test-filtered resolved velocity. Numerically, a normalized weighting function is
applied to ui and the velocities at its neighbouring grids. More weight is given to
the closer grids to ui . Since the test filter is chosen twice of the size of the grid,
the neighbouring grids are chosen to be the grids next to the point of ui and ũi is
calculated by integrating all of the weighted resolved velocities. The availability of
q is also very useful for estimating the SGS contribution to the diagonal stresses.

4. Wall Model

To simplify the expressions in this section, u, v and w denote the streamwise, lat-
eral and vertical velocities u1, u2 and u3 respectively. Also, u′, v′ and w′ denote the
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instantaneous fluctuations of these velocities around their respective mean values
ū, v̄ and w̄ (time- or ensemble-averaged).

As discussed in the introduction, it is too expensive (and impossible for rough
walls) to resolve the near wall region, since in this region the eddies are too fine.
Modelling the flow in the vicinity of the wall (Ferziger, 1993) is therefore of great
importance in the simulation of high Reynolds number flow. The wall model is
in fact one of the keys to calculating the turbulent flow over a rough wall by
LES. Simulations suggest that wall-region turbulence and turbulence far from the
wall are relatively loosely coupled (Ferziger, 1993). Thomas and Williams (1999)
developed a new wall model, similar to that proposed by Schumann (1975). These
models assume that the instantaneous velocity at the grid point nearest a wall is
exactly correlated with the shear stress the wall point directly below it (Ferziger,
1993). The wall model of Thomas and Williams (1999) is written as follows,

τxz

u2∗
= 1

Ua

[〈u〉 + β(u − 〈u〉)] , 0 < β ≤ 1.0 , (4)

where 〈 〉 represents averaging over the horizontal plane in the flow field, assumed
to be approximately equivalent to ensemble averaging. Ua is the mean streamwise
velocity ū1 at the first grid location from the wall as derived from Equation (2),
and τxz is the instantaneous principal shear stress (τ13) at the same location; β is a
damping factor ranging from 0 to 1.

The idea behind the Thomas and Williams model is that the fluctuation (u−〈u〉)
does not contribute the same but in fact less (β〈1) to the local shear stress τxz than
the mean part 〈u〉; physically, the fluctuation velocity reacts to the wall roughness
less than the mean velocity. The local shear stress of a rough wall is mainly the
impact force of the fluid’s movement on the roughness elements, so the mean flow
will always react to the existence of every roughness element. However since there
are gaps between the roughness elements, fine eddies may last for a short time in
these gaps and decay before they reach the roughness element. Fluctuations from
these eddies will not interact with the roughness elements and hence contribute less
to the local wall shear stress, which is why the contribution of fluctuations to local
wall shear stress is damped in Equation (4).

Averaging Equation (4) over the horizontal plane, we find this wall model obeys
the constraint:

〈τxz〉
u2∗

= 〈u〉
Ua

. (5)

To our knowledge, most wall models (Thomas and Williams, 1999; Moeng, 1984;
Xin and Voke, 1999; Schumann, 1975) obey this constraint, though some wall
models may not (Mason and Gallen, 1986).

In Thomas and Williams (1999) the damping factor β is chosen to be 0.3;
they found the results were satisfactory to suit their application. Nevertheless, the
magnitude of β remains an open problem. Here, we try to evaluate it approximately.
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From Equations (4) and (5) we obtain

(τxz − 〈τxz〉)2 =
(

u4∗
U 2

a

)
β2(u − 〈u〉)2 . (6)

Using the approximation that the spatial average 〈 〉 in the above equation is equal
to the time average, represented by an overbar, the above relation can be rewritten

(u′w′ − u′w′)2 =
(

u4∗
U 2

a

)
β2u′2 . (7)

Averaging over time, we obtain

(u′w′ − u′w′)2 =
(

u4∗
U 2

a

)
β2u′2 . (8)

An empirical result due to Uberoi (1953),

u′w′u′w′ ≈ 2u′w′ u′w′ + u′2 w′2 , (9)

may be used to show that the left-hand side of Equation (7) is approximately

u′w′u′w′ − u′w′ u′w′ ≈ u′w′ u′w′ + u′2 w′2 . (10)

Then Equation (7) can be rewritten as:

u′w′ u′w′ + u′2 w′2 = u4∗
U 2

a

β2u′2 .

We can now determine the factor β as follows:

β2 =
(

U 2
a

u2∗

) (
w′2

u2∗

)[
1 + u′w′2/(u′2 w′2)

]
. (11)

We see from this that β is a function of w′2/u2∗ and U 2
a /u2∗. Typically in a neutral

ABL, u′w′2/(u′2 w′2) is approximately 0.1, which can be considered a negligible
factor. Since 0 < β ≤ 1.0, Ua must be limited. The limitation of Ua is realized
by carefully choosing the normalized vertical coordinate of the first grid point z+

a ;
thus z+

a must be located in the logarithmic layer, for instance between 20 and 200,
which is the conclusion of many other researchers. We note the limitation of Ua

is fairly strict in Equation (4). If there are available experimental measurements
of w′2/u2∗, we can use this information here directly; if not, we have to use some
similarity relations (Stull, 1993) for neutral ABL flow.
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Although the wall model described above has successfully improved predic-
tions of the enhancement of vertical mixing in the near wall region, the turbulent
intensities in the three directions are not equally satisfactory when compared with
wind-tunnel experimental data, especially for the lateral fluctuations. Thomas and
Williams (1999) only compared the intensity of the streamwise fluctuations with
experimental measurements. Furthermore, it is of importance to consider the dif-
ferent effect on the roughness elements of smaller and larger eddies in the near
wall region. Smaller eddies in the gaps between roughness elements will have
less impact on them and hence contribute less to the local wall shear stress than
larger eddies. In other words, the impact on roughness should not be linear in the
amplitude of fluctuation, as implied by the linear combination of the mean and
fluctuating components in the Thomas and Williams model.

In order to obtain more reliable statistics in the study of scalar dispersion, com-
parable with experiment, it is desirable to generate an even more realistic wind
environment by LES. This can be achieved by choosing the damping factor in
Equation (4) as a function f (u − 〈u〉) rather than a constant; f (u − 〈u〉) should be
an increasing and positive function. A simple function such as

β

[
(u − 〈u〉)2

]n/2

un∗
, n ≥ 0 ,

is one choice, but might not be the best one. Hence, a general family of wall models
is proposed, written as follows:

τxz

u2∗
= 1

Ua

[
〈u〉 + β

(
(u − 〈u〉)2

)n/2

un∗
(u − 〈u〉)

]
, n ≥ 0 . (12)

Introducing the approximation (9) we obtain,

u′2 w′2 + (u′w′)2 =
〈
β2 (u′2)2n

(u2∗)2n
u′2

〉
. (13)

As
〈u′2〉2n

(u2∗)2n
and u′2 are both non-negative, we assume that

〈
(u′2)2n

(u2∗)2n
u′2

〉
≈ 〈u′2〉2n

(u2∗)2n
〈u′2〉 .

The factor β is then obtained as

β2 =
(

U 2
a

u4∗

)
(u2∗)2n

u′22n
w′2

[
1 + u′w′2/(u′2 w′2)

]
. (14)
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Setting n = 0 recovers the model (11) of Thomas and Williams (1999). Models in
the family with n < 2 have been tried and are found to improve the distribution
of energy among the components compared with n = 0, though not enough to
be fully satisfactory. The model with n = 2 appears to be close to optimal, while
models with n > 2 give rise to excessively sharp peaks of the intensities near the
wall. Setting n to 2, we obtain a value of β as follows:

β2 = U 2
a u4∗w′2

u′24

[
1 + u′w′2/(u′2 w′2)

]
. (15)

Since β should be restricted not to exceed 1.0 in Equation (15), Ua must be limited
by choosing z+

a between 20 and 200. Compared with Equation (11), there is an
additional small factor u2∗/u′2 ≈ 1/6 in Equation (15), which is a similarity relation

in neutral conditions. Recalling that u′w′2/(u′2w′2) ≈ 0.1, we see that there is more
freedom in Equation (15) to chose z+

a to satisfy 0〈β ≤ 1.0 than in Equation (11).
Note that in all these models, the roughness length z0 influences the stress only via
Equation (2) and the resulting value of Ua.

It seems reasonable to separate the fluctuating velocity into two parts, small
components and large components, the former responding to the wall roughness
much less than the latter and consequently contributing much less than the large
components to the shear stress. Obviously, the expression (15) reduces the contri-
bution of the small fluctuating components to the Reynolds shear stress to a greater
extent than (11).

A more general parameterization of the wall model could be a power series
expansion in the term β(u − 〈u〉). In order to obey the constraint Equation (5), it
would be better to write this in the following form:

τxz

u2∗
= 1

Ua

[
〈u〉 + (u − 〈u〉)

(
β0 + β1

|u − 〈u〉|
u∗

+ · · · + βn

|u − 〈u〉|n
un∗

)]
(16)

for n ≥ 0, where the term with β0 represents the contribution of the first order of
longitudinal fluctuation, the term with β1 represents the contribution of the second
order, and so on. Setting all the other damping factors except βn to zero recovers
Equation (12). Since it is very complicated to evaluate the damping factors β0, β1,
β2, etc. to take account all of these terms, we use only one term of the above power
series expansion for simplicity, as if the other terms make very little contribution
to the local wall shear stress.

Schumann’s wall model and the Thomas and Williams wall model are both first-
order models. However, there are some wall models containing more than one term
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of Equation (16). Corresponding to Wyngaard and Moeng’s (1984) wall model, the
above expression can be rewritten as follows:

τxz = 〈τxz〉
〈u〉

[ 〈u〉
〈S〉S + (u − 〈u〉)

]
, (17)

where S = (u2 + v2)1/2. If we consider only u′ = u − 〈u〉 in Equation (17) as a
variable, assumed much smaller than 〈u〉, we can rewrite Equation (17) by applying
power series expansion to (u2 + v2)1/2 to first order,

τxz = 〈τxz〉
〈u〉

[ 〈u〉
〈S〉

(
(〈u〉2 + 〈v〉2)1/2 + 〈u〉u′ + u′2

(〈u〉2 + 〈v〉2)1/2

)
+ u′

]
.

Hence, Wyngaard and Moeng’s wall model is a combination of first and second
orders; however it should be noted that the factor (β0) of the first-order term is not
a small parameter in the above equation.

Mason and Gallen’s (1986) rough wall model can be rewritten as,

τxz =
(

k2

ln2(1 + za/z0)

)
(u2 + v2)1/2 ∗ u . (18)

Again, we rewrite Equation (18) by using a power series expansion to first order,

τxz =
(

k2

ln2(1 + za/z0)

) [
(〈u〉2 + 〈v〉2)1/2 + 〈u〉u′ + u′2

(〈u〉2 + 〈v〉2)1/2

]
(〈u〉 + u′) .

Hence, Mason and Gallen’s rough wall model could be considered as a combina-
tion of first, second and third order; the factor (β0) of the first order is also not a
small parameter.

In the current paper, we mainly use a simplified wall model that only keeps
the third-order term with β2 (written as β in other places for simplicity), which
is a third-order wall model. In the following sections, if we do not specify a wall
model, we imply this new model. Compared with the Thomas and Williams wall
model, this third-order model can inject the energy of mixing farther from the wall.

5. Numerical Scheme

We solve the resolved-scale motions using the time-dependent incompressible
Navier–Stokes equations and the mixed-scale SGS model. The equations of motion
(1) for the resolved velocity are discretized in time using the Adams–Bashforth
scheme, with time splitting:

∂uk+1
i

xi

= 0 , (19a)
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uk+1
i − uk

i

�t
= − 1

ρ

(
∂pk+1/2

xi

+ δi1
∂P

x1

)
+ 3

2
Hk − 1

2
Hk−1 , (19b)

where

H = −∂uiuj

xj

+ ∂

∂xj

[
(ν + νs)

(
∂ui

∂xj

+ ∂uj

∂xi

)
.

Note that k indicates the time step and this scheme is second-order in time.
Equations (19) are discretized in space using a second-order central differencing

finite-volume method. We use a staggered grid that is uniform in both x1 and x2

directions and slightly stretched in the x3 direction. All quantities are advanced in
time through time splitting with two steps, giving a second-order explicit scheme.In
step 1,

ûk+1
i − uk

i

�t
= − 1

ρ
δi1

∂P

x1
+ 3

2
Hk − 1

2
Hk−1 ,

and in step 2,

∂uk+1
i

xi

= 0, (20a)

uk+1
i − ûk+1

i

�t
= − 1

ρ

∂pk+1/2

∂xi

, (20b)

where the pressure is obtained from

1

ρ

∂2pk+1/2

∂x2
i

= 1

�t

∂ûk+1
i

∂xi

= Rk+1/2 .

This approach is commonly termed a projection method, since the pressure is used
to project the velocity at the new time into the zero-divergence subspace of velo-
city function space. As the flow is assumed to be periodic in the streamwise and
lateral directions, a discrete fast Fourier transform can be used to solve the discrete
Poisson equation for pressure very efficiently. The above equation is Fourier trans-
formed in x1 and x2, separating it into decoupled discrete Helmholtz equations
in the remaining variable x3 (with modified wavenumbers). These equations are
simple tridiagonal matrix problems, solved rapidly on vector or shared-memory
machines. The inverse discrete Fourier transform then yields the physical pressure
field needed for the zero-divergence projection of the velocity field via Equation
(20).
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6. Wind-Tunnel Experiments

The experimental measurements were obtained in the Fluids Research Centre ‘A’
tunnel at the University of Surrey. The test section of this wind tunnel is 0.9 m
(width) ×0.6 m (height) × 5 m (length), with free-stream turbulence intensity
less than 0.1% and the maximum free stream velocity 30 m s−1. A fan is used
to maintain free-stream air flow. An array of expanded metal roughness with a
height of 5 mm is laid at the bottom of the wind tunnel to provide a rough surface,
while a metal shark-tooth fence is mounted at the inlet. A 1.6-m length down-
stream is chosen as the working section, where the roughness Reynolds number
was approximately 20. We consider the surface in this working section to be fully
aerodynamically rough. The boundary layer in the wind tunnel is a simulated at-
mospheric boundary layer, generated by the shark-tooth fence at the inlet and the
array of expanded metal roughness at the bottom. The ABL simulation was very
carefully checked, with the boundary layer over the fetch of the experiment being
fully investigated. At several typical streamwise and lateral positions, Reynolds
shear stress, turbulent intensities and the depth of the boundary layer were checked
and compared. Afterwards, an optimal condition was set. The depth (D) of the
boundary layer is approximately 67% of the wind-tunnel depth. There is a very
slow growth of boundary-layer depth with distance, less than 2.5% of the fetch
of experiment. Figure 1 shows the comparison between our measured data and
Fackrell and Robins’s (1982) data. The latter was also obtained in a simulated
wind-tunnel boundary-layer flow; the agreement is quite good except at the top of
the boundary layer.

The coordinate system origin is located at the mid-point of the upstream lower
edge of the working section, with x pointing downstream and z upwards. Ver-
tical profiles of three instantaneous velocities were measured at (x, y, z) = (148,
0, 6:500), (992, 0, 6:500), (992, 150, 6:500), (992, −150, 6:500) and (1400, 0,
6:500) mm using an x-wire system.

Three free-stream velocities of 4, 6, 10 m s−1 were used for validation. When
measuring the mean velocity, Reynolds stress, turbulence intensities and other
point statistics, the sampling frequency and sampling period were 200 Hz and
greater than one minute respectively. The velocity autocorrelation and spectra were
measured using a maximum sampling frequency of 2000 Hz. Comparisons of vari-
ances and stresses measured at 200 and 2000 Hz suggest errors of 2% or less at
the measuring point nearest the wall, though the measurements must of course be
missing even higher frequency components.

7. Results and Discussion

The aim of the numerical simulation is to generate a reliable wind environment
for the study of dispersion from a point source. The numerical results are judged
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Figure 1. Turbulence fluctuations and TKE. urms =
√

〈u′2〉, vrms =
√

〈v′2〉, wrms =
√

〈w′2〉,
TKE = 0.5(〈u′2〉 + 〈v′2〉 + 〈w′2〉). Symbols: Measured data at several typical positions in wind
tunnel at Surrey; lines: Fackrell and Robins (1982) experimental data.

by comparison with the wind-tunnel measurements. We choose the boundary-layer
depth D and friction velocity u∗ as reference length and reference velocity. The
computational domain size is 4D × 1.47D × D. The roughness element height zh

is 0.0125D and the roughness length z0 is 0.00114D. We discretised the computa-
tional domain on a fine mesh of 256×128×128; a medium mesh of 128×64×64
was also used for some comparisons. In the wall model, the power factor n ≥ 0 was
taken as 2. The damping factor β is calculated from Equation (15) and is equal to
0.083 in the fine mesh cases and 0.25 in the medium mesh cases. For comparison,
the Thomas and Williams wall model was applied in one medium mesh case with
the same damping factor β = 0.25. However, if the damping factor is evaluated for
Equation (11), it is much larger by using the same grids.

The simulation flow field was initialized with a logarithmic profile of stream-
wise velocity, null vertical velocity and random lateral velocity whose magnitude
was 3.5% of the maximum streamwise velocity. The LES was integrated over about
9D/u∗ before the statistics were calculated, with a maximum Courant number
u�t/�x of about 0.16. The mean velocities, turbulence intensities, shear stresses
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Figure 2. Streamwise mean velocity profiles. Lines, LES: Solid, new wall model; dashed, Thomas
and Williams wall model; dotted, Schumann’s wall model; symbols, wind-tunnel measurements at
several streamwise and lateral positions. (Right): Whole boundary layer. (Left): Surface layer.

and turbulence kinetic energy (TKE) were obtained by both spatially averaging in
the horizontal plane and time averaging over a time period of 4D/u∗.

Figure 2 (left) shows the computed profile of mean streamwise velocity com-
pared with the wind-tunnel measurements in the whole boundary layer; Figure 2
(right) shows the surface layer, which is of principal concern for environmental
predictions. The profile of black triangle symbols was obtained when measuring
u and v by using the same x-wire system that was intensively used to measure
u and w. While it is normalized by u∗, which was obtained when measuring u

and w, this might be one reason why there is some discrepancy between this
profile and other measured data in the very near wall region in Figure 2 (right).
To show the effects of the new wall model for roughness, we also plot a profile
obtained using the Schumann (1976) wall model and a profile obtained using the
Thomas and Williams wall model. Without the model for the effects of roughness
on the boundary layer, there is poor agreement with experiment. There is very
little difference between the results from the new wall model and those from the
Thomas and Williams wall model in the surface layer. Near the top of the domain,
the results from the Thomas and Williams wall model seem better than those from
the new wall model, compared with measurements. However, this is unlikely to be
genuine; because the damping factor β is chosen to be 0.25 for comparison (much
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Figure 3. As Figure 2; logarithmic scale.

smaller than it should be in our simulation, see Equation (11)) much fluctuation
has been taken account of in the wall model, making the profile steeper. The effect
can also be found in Figure 5, where there is a dramatic sharp peak near the wall
in the results using the Thomas and Williams wall model.

We do notice a discrepancy between the data from the new wall model and
the measurements in Figure 2 (left) near the top of the domain, which may be
mainly due to the simple upper boundary condition employed. Note that the mean
velocity is normalized by u∗, since only the near wall region (or at least far from
the upper boundary) is intensively investigated. The advantage of this is that the
mean velocity in the near wall region can be checked and compared very carefully;
the disadvantage is that a very small change of u∗ will generate a large discrepancy
of normalized mean velocity. In addition, the method for generating the simulated
boundary layer generates a much deeper boundary layer in a limited downstream
distance than a naturally developed boundary layer (Counihan, 1969). It is very
difficult to numerically simulate the whole depth of this boundary layer accurately.
For instance, at the top of boundary layer in the wind tunnel, the flow is in fact not
free stream, but with fairly large turbulent intensities. We focus our interest on the
near wall area or at least far from the upper boundary.

These profiles are also plotted in Figure 3 using a logarithmic scale, demonstrat-
ing fair agreement between experimental and numerical results. It is also evident
that the agreement between the profiles from Schumann’s wall model and meas-
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Figure 4. Reynolds shear stress profiles. Lines, LES: Dash-dotted, fine mesh resolved;
dash-dot-dotted, fine mesh sub-grid; solid, fine mesh total; dashed, Thomas and Williams wall model;
dotted, medium mesh resolved; symbols, wind-tunnel measurements at several streamwise and lateral
positions. (Right): Whole boundary layer. (Left): Surface layer.

urements is poor. The difference between the data using the new wall model and
those using the Thomas and Williams wall model is quite small in the near wall
region.

Figure 4 (left) shows the vertical profile of normalized Reynolds shear stress and
the wind-tunnel measured data in the whole ABL, while Figure 4 (right) shows
the surface layer, where the SGS and resolved contributions to the total are also
separated. Above the height z/D = 0.025, the SGS contributions are less than 10%
of the total, indicating that LES has resolved most scales except in the very near
wall region. We find the difference between the predictions on the fine mesh and
those on the medium mesh is quite small. The data using the new wall model are an
evident improvement compared with those by using the Thomas and Williams wall
model. The agreement between the numerical results and the measurements is quite
encouraging. Owing to the constant driving force ∂P/∂x (uniform in the vertical
direction) in combination with the stress-free condition on the upper boundary,
there is a nearly linear variation of stress with height and a peak of Reynolds shear
stress to offset the driving force in the near wall region, whereas the wind-tunnel
boundary layer is generated by a method in which the pressure gradient is very
small. The variation of shear stress with height in the experiment is not necessarily
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Figure 5. Turbulence fluctuation of streamwise velocity urms =
√

〈u′2〉. Lines, LES: Dash-dotted,
fine mesh resolved; solid, fine mesh total; dashed, Thomas and Williams wall model; dotted, medium
mesh resolved; symbols, wind-tunnel measurements at several streamwise and lateral positions.
(Right): Whole boundary layer. (Left): Surface layer.

linear, particularly in the near wall region where the measured profile is a little
flatter. However it is still nearly linear above Z/D = 0.2. As is well known, in the
surface layer of the ABL, the shear stress is nearly constant with height. In Figure 4,
the experimental stress profile tends to zero near z/D = 0.8, while in Figures 5,
6, and 7, the turbulent intensities at z/D = 0.8 are not small. We consider the
flow below z/D = 0.8 of the simulated boundary layer to be more reliable for
comparison. The fall in measured values near the wall is likely to be affected by
high-frequency loss, which cannot be corrected even by measurements at 2000 Hz.
The discrepancy mentioned can also be seen in Figure 4 (left) in the region far from
the surface.

The vertical profile of normalized turbulence r.m.s. fluctuation in the streamwise
direction, compared with experimental data, is presented in Figure 5. The numer-
ical results are quite reasonable, though in the near-wall region the large-eddy
simulations slightly overestimate urms, even when we allow for high-frequency
loss in the measurements. The peak value on the medium mesh at approximately
z/D = 0.01 is higher than the measurements and the fine mesh prediction. In
Figures 6 and 7, the fine mesh also improves the predictions compared with the
medium mesh. The peak of the data using the Thomas and Williams wall model is



434 ZHENGTONG XIE ET AL.

Figure 6. Turbulence fluctuation of vertical velocity wrms =
√

〈w′2〉. As Figure 5.

sharper while there is an evident underestimate at approximately z/D = 0.1. We
notice that decreasing the damping factor β increases the peak of the profile. We
have also noticed that increasing the power factor n ≥ 0 in Equation (14) increases
the peak of urms; we ascribe the overestimation of urms to the peak of the Reynolds
shear stress which we have discussed for Figure 4. Nevertheless, compared with
the results obtained without modelling the effects of roughness, these predictions
are more than acceptable. Note that there is an almost constant value over much of
the surface layer in Figure 5 (right).

The numerical results compared with experimental data for the normalized
turbulence r.m.s. fluctuation in the vertical direction are plotted in Figure 6. The
current LES, which implements our new wall model, hardly underestimates wrms

compared with the measurements, and has greatly improved the modelling of the
effects of roughness. We note that the result on the fine mesh is slightly better than
that on the medium mesh, while the subgrid contribution, q/3 from Equation (3),
is important for obtaining this quality of agreement. Compared with the data using
the Thomas and Williams wall model, an improvement is seen in the medium-
mesh case. As far as vrms is concerned, see Figure 7, the numerical predictions are
less good, giving smaller values for the whole surface layer. Again it is important to
account for the subgrid contribution. The fact that the new wall model achieves less
in the lateral direction than in the vertical direction may be due to the shape of the
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Figure 7. Turbulence fluctuation of lateral velocity vrms =
√

〈v′2〉. As Figure 5.

expanded metal roughness elements used in the wind tunnel; our wall model does
not considered this anisotropy of the roughness. Compared with the medium mesh,
the fine mesh shows little improvement for the lateral intensity. The implication is
that our wall model is still not perfect, although the focus of interest is on urms and
wrms. Compared with the Thomas and Williams wall model, the new wall model
has demonstrated an important improvement in the surface layer.

We note that in Figures 4 (right), 5 (right), 7 (right) and 6 (right) there are
plateaux in the surface layer, essentially broad peaks extending from z/D = 0.02
up to 0.1. These have been found by many researchers (Stull, 1993) and are asso-
ciated with similarity relations. Table I is a summary of the similarity parameters;
the data from Stull (1993) were compiled from other sources, most of which were
field observations.

In Figure 8, the vertical profile of turbulent kinetic energy is compared with
the measurements; the SGS part q from Equation (3), the resolved part and the
total of the calculated TKE are shown separately. We note that the SGS part is less
than 10% of the total TKE except in the region z/D ≤ 0.05: most of the TKE
has been resolved by the LES. The agreement between the numerical results and
measurements is quite good. However, we note LES underestimates the TKE in
the near region up to z/D = 0.1. We ascribe this mainly to the underestimation of
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TABLE I

Comparison of similarity parameters in the surface layer.

urms/u∗ vrms/u∗ wrms/u∗

LES (fine mesh, total) 2.7 1.38 1.14

LES (medium mesh, resolved) 2.69 1.27 1.02

Experiment at FRC 2.4 1.6 1.2

Robins’ experiment (1982) 2.3 1.6 1.2

Stull (1993) 2.47, 2.49, 2.55 1.70, 1.73, 2.07, 2.47 1.0, 1.3, 1.58

Figure 8. Turbulent kinetic energy profiles. Lines, LES: Dash-dotted, fine mesh resolved;
dash-dot-dotted, fine mesh sub-grid; solid, fine mesh total; symbols, wind-tunnel measurements at
several streamwise and lateral positions. (Right): Whole boundary layer. (Left): Surface layer.

vrms in Figure 7; this underestimation does not affect the prediction of turbulence
behaviour in the vertical and streamwise directions.

The probability density functions (PDFs) for streamwise, lateral and vertical
velocity at z = 0.4425D obtained by the LES are compared with Gaussian fitted
curves in Figure 9. All the PDFs are comparable with a Gaussian distribution,
though both the lateral velocity v and the vertical velocity w have a very slight
drift.
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Figure 9. Probability density functions at height z = 0.4425D. Triangles, LES; solid lines,
Gaussian-fit profiles. (Left): u. (Middle): v. (Right): w.

The normalized turbulence spectra for streamwise, lateral and vertical velocity
from the LES, calculated from the time autocorrelations by FFT, are presented in
Figure 10 compared with our experimental data. A slope of −5/3 is quite distinct,
indicating a Kolmogorov inertial range for both LES and experimental data. The
mesh resolution limit of f × D/u∗ for the medium mesh cases, estimated from
the Taylor hypothesis, is approximately 280, but a rapid drop of the spectrum is
evident before 100f × D/u∗. This is observed in other finite-volume LES results
(Thomas and Williams, 1999) and is associated with the finite width of the top-hat
filter in spectral space. On the fine mesh the Kolmogorov inertial range is extended
by half a decade compared with the spectrum from the medium mesh.

8. Concluding Remarks

The purpose of the present numerical study is to obtain turbulent flows that are
comparable with wind-tunnel measurements and can be used as a wind environ-
ment for studies of scalar dispersion in the model ABL. Our interest is focused
on the microscales rather than mesoscales in the ABL. Such a study can only be
satisfactory if we model the effects of roughness elements properly.

Based on the physical observation that roughness elements enforce vertical flow
mixing, we have proposed a family of wall models to take into account the effects
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Figure 10. Normalised spectra. Lines, LES: Solid, fine mesh; dashed, medium mesh; triangles,
wind-tunnel measurements. (Top): u. (Middle): v. (Bottom): w.
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of roughness, in which the coefficient β can be estimated using similarity rela-
tions or from wind-tunnel measurements. It is clear that more information on the
roughness should be taken into account to model the effects of roughness properly.

Large-eddy simulations of the neutral ABL have been realised using the pro-
posed model and the numerical results have been compared with experimental
measurements with some success. The LES underestimates the lateral turbulent
intensity and we conclude that it may be necessary to consider the anisotropy of the
physical roughness to model its effects accurately. The choice of the power factor
n in Equation (14) (i.e., which member of the proposed family of wall models is
most suitable for some particular case) also remains an issue.

From the detailed comparisons we conclude that the overall agreement between
the numerical and experimental results is reasonably good and the model proposed
for the effects of roughness elements is justified. The large-eddy simulations de-
scribed have been used to study dispersion of a passive scalar in the neutral rough
surface boundary layer, with extrapolation of the threshold levels of extreme values
using Extreme Value Theory. The results will be reported in a subsequent paper.
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