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Restrictions on computing power make Direct Numerical Simulation too expensive
for complex flows, and Reynolds Averaged Navier Stokes simulations are easily
computed but inaccurate for large classes of flows. Due to these driving forces there
is a need for accurate Large Eddy Simulation (LES) methods which are industrially
applicable and efficient. This paper reviews recent findings about the leading order
dissipation rate associated with high-resolution methods, and improvements to the
standard schemes for use in highly turbulent flows. Results from Implicit LES are
presented for a broad range of flows and numerical schemes ranging from the second-
order MUSCL to very high-order (up to 9th order) WENO schemes.
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1. Introduction

As current computational power does not allow Direct Numerical Simulation (DNS)
of complex flows, LES has emerged as a viable alternative where the time depen-
dent behaviour of the flow must be resolved. Conventional LES, where an explicit
subgrid model is added to the averaged Navier-Stokes equations, has been employed
successfully in many prototype flows, however it is known to provide excessive dissi-
pation in flows where the growth of an initially small perturbation to fully turbulent
flow must be resolved (Lesieur & Metais (1996); Pope (2000)). It has been recog-
nised that some numerical schemes gain good results in complex flows without the
explicit addition of a subgrid model (Lesieur & Metais (1996)). This occurs when
the subgrid model is implicitly designed into the limiting method of the numerical
scheme, based on the observation that an upwind numerical scheme can be rewrit-
ten as a central scheme plus a dissipative term (see Drikakis (2003); Drikakis &
Rider (2004); Grinstein et al. (2007) and references therein). Such implicit subgrid
models fall into the class of structural models, as there is no assumed form of the
nature of the subgrid flow thus the subgrid model is entirely determined by the
structure of the resolved flow (Sagaut (2001)).

A major challenge facing Implicit LES is the development of a theoretical frame-
work which justifies of the use of the truncation error of the numerical scheme as a
sub-grid model, and guides structured development of numerical methods. The first
important element of such a theoretical justification is to consider the requirements
on the numerical scheme dependent on how well resolved the physical problem is.
By considering numerical resolution there are two clear categories of Implicit LES.
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The first category relates to the behaviour of the numerical solution when the
simulation is well resolved. In this case the grid resolution and numerical methods
are combined in such a way that the large scales present in the problem are fully
resolved by the numerical method with negligible influence of numerical viscosity.
To ensure a reasonable result, the numerical scheme must also resolve accurately
the vortices which interact the strongest with the large scales, i.e. the neighbouring
modes. A final requirement exists in the case of transitional flows, where the nu-
merical method must have adequate resolution to capture the initial perturbations
which become unstable and trigger turbulence in the problem (a requirement for all
LES). An excellent example of an ILES which falls in the category is that of Cohen
et al. (2002), where a fundamental flow instability is simulated using very high grid
resolutions - thus isolating the scales of interest from the dissipative scales.

If these three criteria are satisfied then the level and form of the numerical dissi-
pation should not significantly influence the problem. The basis of this assumption
is an application of Kolmogorov’s hypothesis - where it was shown that the appear-
ance of a sub-inertial range relies only on adequate separation between the start of
the inertial range and the dissipative scales - it does not rely on the form of the dis-
sipation. In an analogous situation as long as there is such a separation between the
scales which influence the energetic scales, and the scales dissipated by the numer-
ical method then an Implicit Large Eddy Simulation should give a correct result.
It should be stated that an initial assumption in the Large-Eddy approximation is
that the flow quantities of interest are controlled by the large scales - this is not
always the case (e.g. reactive flows).

This first category of ILES has a relatively simple framework, so long as the user
is aware of the resolution requirements of their particular numerical scheme - e.g.
how many computational cells are required to capture a single mode/vortex. This
approach suggests the use of very high order schemes which focus the dissipation
into a narrow band at high wavenumbers, thus allowing an independent regime to
evolve. It would also be beneficial it that it would improve the scheme’s ability to
be able to resolve initial perturbations in the flow field which then either trigger or
promote turbulent fluctuations.

The second category of ILES emerges when there is an insufficient separation of
the large and dissipative scales. This occurs frequently in complex industrial flows
where Very Large Eddy Simulation is commonplace. In this case it is desirable that
the numerical method provide a dissipative influence on the large scales mimicking
that produced by the scales which they would normally interact with if the full
spectrum was present. This is the regime where both classical LES and Implicit
LES encounter difficulties as the simulation is now sensitive to the form of the
imposed subgrid model.

At this point there are a plethora of classical LES models which can be applied
to the problem, and an equally large number of ILES numerical methods. The re-
quired form of the dissipation is usually derived using a closure assumption such as
the eddy-viscosity hypothesis - and the coefficients calibrated to give the required
results in classical test cases such as homogeneous decaying turbulence. Interest-
ingly, studies by Meyers et al. (2007) have shown that the optimum coefficients for
LES are often functions of the choice of grid resolution and numerical filter size.
Improvements in specification of the coefficients by using dynamic procedures often
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give improvements only in areas of the flow where the LES model is not strictly
applicable (such as near walls, transitional regions, laminar flow) (Pope (2004)).

A clear uncertainty in this area is the universality of the approach when applied
to many different flows. For example, it is not certain to what extent anisotropy
persists into the beginnings of the inertial range, which is likely to have an influence
on the form of the energy spectrum, the magnitude of second order statistics and
hence the dissipation rate (Casciola et al. (2007)). In these situations a model which
is based on the assumption of homogeneous turbulence at the high wavenumbers
could not be expected to be accurate. This argument is equally applicable to ILES
methods. Given the uncertainties involved, this second category of LES is certainly
by far the most challenging. The vast majority of ILES simulations fall into this
category, principally due to the massive computational requirement for highly re-
solved simulations. This includes open cavity flow (Thornber & Drikakis (2008);
Hahn & Drikakis (2005); Drikakis (2003); Larcheveque et al. (2003)), geophysi-
cal flows (Margolin et al. (1999); Smolarkiewicz & Margolin (1998)), delta wings
(Gordnier & Visbal (2005)) and low resolution (less than 1283) decaying turbulence
(Drikakis et al. (2006); Fureby et al. (1997); Porter et al. (1998); Fureby & Grinstein
(2002); Margolin et al. (2002); Hickel et al. (2006); Thornber et al. (2007)).

The theoretical analysis of incompressible flow simulations using Modified Equa-
tion Analysis (MEA), particularly the influence of Finite Volume schemes has been
investigated by (Drikakis & Rider (2004); Margolin et al. (2006); Margolin & Rider
(2005); Grinstein et al. (2007)). These papers emphasised the importance of the
finite volume approach in that it allows the natural evolution of volume averaged
quantities - i.e. the filtered quantities necessary in LES. Numerical methods for
incompressible flows can be fairly flexible in that they do not require strict mono-
tonic behaviour to give numerical stability. Often favourable numerical methods for
turbulence to do not conserve the positivity of passive scalars - something which
requires additional monotonicity constraints. However, the flexibility allows for a
greater scope of optimisation of the numerical stencil to provide favourable dissi-
pative properties. An excellent example of this is the Approximate Deconvolution
Methods proposed by (Hickel et al. (2006)), where the weightings for the variable
reconstruction are chosen to give as close as possible behaviour to a spectral eddy
viscosity.

In compressible methods there is significantly less room for manoeuvre. The
numerical method must be monotonic in the thermodynamic quantities (density and
pressure) in order to remain stable, i.e. so that the simulation doesn’t crash. This
stability is usually added as explicit diffusion terms such as in the Jameson scheme
(Jameson et al. (1981)), or through upwinding of the fluxes, as employed in the
Godunov method (Godunov (1959)). This is especially important in the simulation
of multi-component flows where overshoots in the mass or volume fraction can lead
to the prediction of negative densities or extremely unphysical equations of state
(e.g. ratio’s of specific heats less than one for a perfect gas equation of state).

It has been highlighted that upwind methods are typically overly-dissipative for
simulations of homogeneous decaying turbulence when using second and third order
methods (Garnier et al. (1999)). Resorting to very higher order methods improves
the situation, however it does not cure the problem completely (Thornber et al.

(2007)). Higher order methods will give reasonable results in terms of growth of the
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length scales and kinetic energy dissipation rate, however the spectra are dissipative
at the high wavenumbers (Thornber et al. (2007)).

Analysis of the source of the dissipation of turbulent kinetic energy in upwind
schemes reveals a remarkably simple relationship. The absolute dissipation of fluc-
tuating kinetic energy is proportional to the temperature multiplied by the change
of entropy (assuming an approximately isothermal flow) (Thornber et al. (2008a)).
This neglects the ’apparent’ dissipation of kinetic energy caused by isentropic trans-
formation of kinetic energy to internal energy in the form of local compressions and
expansions. Using MEA, the evolution of entropy can be derived for a given com-
pressible numerical scheme. This method has been developed in Thornber et al.

(2008a) and demonstrates that the overly dissipative behaviour observed in simu-
lations of homogeneous decaying turbulence can be ascribed to numerical dissipa-
tion which is proportional to the speed of sound. This excess dissipation delays the
appearance of a sub-inertial range until much higher grid resolutions.

Taking this into account, the reconstruction method can be modified to ensure
that the dissipation rate becomes constant at low Mach (Thornber et al. (2008b)).
The key element to removing the adverse effects of low Mach number dissipation is
to progressively central difference the velocity components as Mach number tends
towards zero - which removes the speed of sound dependence of numerical dissipa-
tion as shown theoretically and numerically in (Thornber et al. (2008b)).

What remains is a dissipation rate proportional to the velocity increment cubed
divided by the cell length in a similar functional form to the required dissipation
rate for a turbulent subgrid model (∝ u3/l) - which is constant in Mach. The
modified numerical method is still monotone hence maintains the positivity of scalar
quantities and has no noticeable difference in stability. The following sections will
examine the influence of the order of accuracy and implementation of the improved
version of the numerical method for three test cases ranging from the canonical case
of homogeneous decaying turbulence, to applied Computational Aero-acoustics, flow
over a swept wing, and shock induced turbulent mixing. It will also highlight the
benefits from moving to higher order of accuracy numerical methods as compared
to the classical second order upwind methods.

2. Homogeneous Decaying Turbulence

Turbulence remains the greatest challenge in fluid modelling. Most practical appli-
cations will involve low mach number turbulence and so it is important to test the
ILES method in this respect. Much work has been done both experimentally and
with Direct Numerical Simulation on simulating the decay of a homogeneous cube
of turbulence Orzag & Patterson (1972), against the various theories that have been
developed regarding turbulence - notably the well-established work of Kolmogorov
Kolmogorov (1941, 1962). Results have been mixed, with no real consensus on many
key parameters. It is instructive therefore to see where ILES falls within the range
for a number of these measures of flow, and how the improved numerical method
affects these results.

The problem has been simulated in line with previous work (Thornber et al.

(2007)). In this section the turbulent kinetic energy spectra are presented as this
is usually a weakness in ILES using shock capturing methods. It should be noted
in addition to the results presented here that analysis of the growth of the integral
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Figure 1. Kinetic Energy spectra for different reconstruction methods at a given point in
time with and without Low Mach (LM) correction

length scales, and dissipation of turbulent kinetic energy shows that they are within
the bounds expected from experiment and theory.

Figure 1 shows the three-dimensional kinetic energy spectra for the different
methods. Here we can now distinguish between the general dissipation related to
the limiting method and the much more radical physical change in the structure of
the flow gained by correcting for the low mach number dissipation. Kolmogorov’s
theory suggests the iniertial range of the cascade ought go with k−

5

3 , as repre-
sented in the results by the heavy dashed line. On this relatively coarse grid the
flow is conventionally under-resolved with the more dissipative methods however
the improved method allows for small scales to be captured giving a much better
correlation with theory over the entire flow.

3. Deep, Open Cavity Flow

Forestier et al. (2003) investigated the flow over an open cavity with a Length:Depth
ratio of 1 : 2.4 at a Reynolds number based on cavity length of 860, 000 and Mach
0.8. They measured mean and fluctuating velocity components, and in addition the
sound pressure level spectrum at a single point located at z/L = −0.7. This case is
ideal for the validation of compressible LES methods as it includes a strong shear
layer, low Mach number perturbations within the cavity, and strong acoustic waves.
In addition, the fundamental frequencies are not described well by Rossiter’s theory
without modifying the co-efficients away from the recommended values.

The results presented in this section were generated using a finite volume Go-
dunov method employing the improved fifth-order in space reconstruction method
(Thornber et al. (2008b)) with a HLLC approximate Riemann solver. Time step-
ping is achieved using a third order accurate Runge-Kutta method (Spiteri & Ruuth
(2002)). Three grids were employed of 0.8, 1.4 and 3 million grid points respectively,
as employed in Thornber & Drikakis (2008). An additional simulation was con-
ducted at the coarse grid resolution using the standard fifth order MUSCL scheme.
It should be stated that while the modified reconstruction method improves the
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Figure 2. (a) Close up of the cavity, showing visualisation of isosurfaces of Q = 0.5× 106.
Contour flood shows pseudo-schlieren field (|∇ρ|). (b)Pressure power spectrum highlight-
ing the dominant acoustic modes

resolution of fine scale features within the cavity and shear layer, the large coherent
structures themselves are driven by a relatively high Mach number flow. Hence,
the standard fifth order method also gains good results in terms of mean and fluc-
tuating velocity components, as it still captures the large eddies with reasonable
accuracy on these grids. Figure 2 shows flow visualisations consisting of isosurfaces
of ‘Q’ criteria (Jeong & Hussain (1995)),

Q = −
1

2

∂ui

∂xj

∂uj

∂xi

, (3.1)

where ui are the Cartesian fluid velocities and xi the Cartesian coordinates, which
highlight the turbulent nature of the flow. Figure 2(b) shows the predicted and
experimental sound pressure levels. Both sets of results demonstrate that the nu-
merical approach employed here adequately represents the turbulent flow physics
for both the mean flow velocities and Reynolds stresses.

Figure 3 shows typical results for the mean and fluctuating velocites over the
shear layer for the three grid levels using the improved reconstruction method at
x/L = 0.6 (where x = 0 is at the leading edge of the cavity). Comparisons with
experiment at x/L = 0.05, 0.2, 0.4, 0.8 and 0.95 give a similar level of agreement.

Indeed, the discrepancies present are due to the initial specification of the bound-
ary layer at the inlet, which is slightly too large. This leads to a thicker boundary
layer at the leading edge of the cavity, thus increasing the height of the centre of the
shear layer as can be seen from the points of maximum Reynolds stress in Figure 3.
The sound pressure levels are predicted to within 6dB for all grid resolutions and
within 2% of the experimentally measured frequency.
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Figure 3. Comparison of ILES results compared to experimental results of Forestier et al.
Forestier et al. (2003) for x/L = 0.6

4. Swept Wing Flow

Swept and delta wings are of strong practical interest to aeronautical engineers
as they can be found in all modern aircrafts travelling at transonic or supersonic
speeds. At present, there are no theoretical models capable of predicting the char-
acteristic leading edge separation with any degree of certainty, nor can the nature
of the leading edge vortex breakdown observed in swept wing flow be convincingly
explained. The complexity of the flow field makes it also extremely challenging to
predict with any numerical method.

Within the framework of the MSTTAR Defence Aerospace Research Partnership
(DARP) the flow around a swept wing at an angle of attack of 9◦ has been simu-
lated with the present ILES approach using high-resolution methods for a Reynolds
number of 210, 000 and a near incompressible Mach number of 0.3 (Hahn (2008)).
The computational grid employed comprises 12.7M points, which is approximately
half of what has been used in a conventional hybrid RANS/LES of the identical
case (Li & Leschziner (2007)). Furthermore, third-order accuracy in space has been
achieved by a MUSCL reconstruction method (Zoltak & Drikakis (1998)) and the
integration in time has been realised by a third-order Runge-Kutta scheme with
extended stability region (Drikakis & Rider (2004)).

The general physics of this problem has been captured in the ILES simulation
as can be demonstrated by the instantaneous flow visualisation shown in Figure
4. The flow topology reveals separation along the leading edge of the swept wing,
subsequent formation of the characteristic vortex roll-up and vortex breakdown near
the wing tips. Moreover, the time-averaged velocity and turbulent kinetic energy
profiles in the fully separated, turbulent region near the wing tip (90% half-span and
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Figure 4. Instantaneous streamlines, slices of iso-vorticity contours and pressure
coefficient distribution on the suction side of the wing
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Figure 5. Comparison of averaged streamwise velocity and turbulent energy profiles at
90% half-span and 50% local chord

50% local chord), presented in Figure 5, provide insight into the quality of the ILES
simulation. Here, data from the LES using the third-order high-resolution method
(ILES) (Hahn (2008)) and from a hybrid RANS/LES simulation (Li & Leschziner
(2007)) are compared against experiment (S. Zhang 2006, personal communication).
Despite using more than 24M grid points, the hybrid RANS/LES fails to predict the
flow separation. Consequently, the results for the turbulent kinetic energy disagree
strongly with the experimental data. The velocity obtained by ILES, on the other
hand, is nearly identical to the experiment. Although the magnitude of the turbulent
kinetic energy is slightly lower, the high-resolution method is able to predict the
correct shape of the profile.

5. Turbulent Mixing Experiment: Double Bump

The ILES approach has also been applied to complex multi-component turbulent
mixing problems. The test case presented in this section corresponds to AWE’s
shock-tube experiment featuring a Richtmyer-Meshkov instability (RMI) arising
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from an initial large-scale 2D double-bump perturbation at the interface between
two gases (Holder et al. (2003)).

Various reconstruction methods ranging from second to ninth order have been
investigated in conjunction with the HLLC approximate Riemann solver (Toro
(1997)) and a third-order accurate TVD Runge-Kutta time-marching algorithm
(Drikakis & Rider (2004)). Spatial high-resolution is achieved by using one of the
following standard schemes: second order MUSCL van Albada (VA) (Toro (1997)),
third order extended MUSCL van Albada (M3) (Zoltak & Drikakis (1998)), fifth or-
der MUSCL (M5) (Kim & Kim (2005)), ninth order WENO (W9) (Balsara & Shu
(2000)), or their improved counterparts VALM, M3LM, M5LM, W9LM incorpo-
rating the low Mach modification (Thornber et al. (2008b)). The linear shock-tube
problem is discretised on a Cartesian grid comprising 160 × 80 × 40 cells which
corresponds to a uniform grid spacing of ∆ = 1/4 cm. A successive grid refinement
study up to ∆ = 1/16 cm has also been performed, but will not be discussed in
detail.

The initial condition, shown as 2D slice in Figure 6, is given by a SF6 region
(dark) encased in air (light) with the large-scale perturbation on the right-hand
interface. As the incident shock wave of Mach 1.26 passes from left to right, the
membranes separating the two fluids rupture and the gases begin to mix. The
shock wave reflected from the end wall decelerates the SF6 layer and a high degree
of turbulent mixing can be observed, see 3D structures in Figure 6 representing
constant values of volume fraction.

Figure 6. 3D contours of volume fraction and 2D slice of the initial condition

Results from the present simulations can be compared qualitatively with the
experiment (Holder et al. (2003)), see Figure 7. Here, the experimental data is rep-
resented by the black lines overlaid on top of the 2D-averaged volume fraction and
SF6 density contours obtained with the improved fifth order method (M5LM) at
identical times. As shown in Figure 7, the air/SF6 interface and the shock position
are in very good agreement with the experiment. Plots from other reconstruction
methods have been omitted because they all yield similar results with minor dif-
ferences regarding the location and the shape of the spike. However, the results
obtained with different methods seem to converge as grid resolution improves.

The large-scale flow development in the simulations can also be validated quan-
titatively against experiment. For this purpose, the location of the bubble and the
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(a) Contours of volume fraction at
T=1.26ms

(b) Contours of SF6 density at T=1.90ms

Figure 7. Comparison of 2D-averaged contour levels as predicted by M5LM with the
interface and shock position revealed by experiment (black lines)
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Figure 8. Development of bubble/spike position and turbulent kinetic energy

spike is presented in Figure 8(a) as the distance between the end plate of the shock-
tube and the characteristic interface position. The interface position is given by the
left edge and the right edge of the large bubbles and the tip of the spike, respec-
tively. In accordance with the previous statement, all methods yield locations in
good agreement with the large-scale features observed in experiment. Moreover,
regardless of the reconstruction employed, the low Mach modification leads to im-
proved results for the late-time spike position, i.e. T>2.5ms. The grid refinement
study revealed that the locations predicted by all methods seem to converge to the
experimental values.

The development of integral turbulent kinetic energy (TKE), provided in Figure
8(b), gives further evidence for the improvement at later times due to the low
Mach modification. Its effect is reflected clearly by the increase in turbulent energy
observed for all methods when compared against their standard counterparts. With
respect to grid refinement, TKE seems to converge to a level slightly above the
W9LM data in Figure 8(b) at late times.

6. Conclusions

This paper has discussed the theoretical framework justifying the use of the Implicit
Large Eddy Simulation method for complex turbulent flows. It has first highlighted
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the importance of choice of appropriate numerical methods which can both capture
shocks, track multiple materials and have minimal dissipation of high wavenumber
features in turbulent flows. It has been demonstrated that the ILES methodology
can capture canonical flows such as homogeneous decaying turbulence with the
appropriate kinetic energy spectrum and kinetic energy decay rates. Simulations
of more complex geometries show that the methods can be applied to aeroacous-
tics problems, swept wing configurations and shock induced turbulent mixing with
excellent comparisons to experiment - especially considering the high Reynolds
numbers and complex flow physics.
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