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Abstract We live in an age in which high-performance computing is transforming the way
we do science. Previously intractable problems are now becoming accessible by means of
increasingly realistic numerical simulations. One of the most enduring and most challenging
of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes
encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still
preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation
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(LES) approach, explicitly computing only a fraction of the active dynamical scales. The
success of such an approach hinges on how well the model can represent the subgrid-scales
(SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical
and astrophysical applications must also face an equally daunting challenge: magnetism.
The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dra-
matically alter the coupling between large and small scales, with potentially profound im-
plications for LES/SGS modeling. In this review article, we summarize the state of the art in
LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the na-
ture of MHD turbulence and the small-scale processes that give rise to energy dissipation,
plasma heating, and magnetic reconnection, we consider how these processes may best be
captured within an LES/SGS framework. We then consider several specific applications in
heliophysics and astrophysics, assessing triumphs, challenges, and future directions.

Keywords Turbulence · Magnetohydrodynamics · Simulation

1 Introduction

On May 20–23, 2013 a workshop was held at the National Center for Atmospheric Research
(NCAR) in Boulder, Colorado, USA entitled “Large-Eddy Simulations (LES) of Magneto-
hydrodynamic (MHD) Turbulence.” The workshop was sponsored by NCAR’s Geophysical
Turbulence Program (GTP) and involved approximately fifty participants from eight coun-
tries.

This review paper is a product of the GTP workshop, though it is not intended as a com-
prehensive account of the proceedings. Rather, it is intended as a summary of the issues
addressed and the insights achieved, as well as an inspiration and a guide to promote fu-
ture work on this subject. Though the subject of interest, namely LES of MHD turbulence,
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Fig. 1 The “Terra Incognita” and the realm of LES (from Wyngaard 2004, presented at the workshop by Pe-
ter Sullivan). Shown is an idealized power spectrum of some turbulent field φ as a function of wavenumber κ

(referred to elsewhere in the paper as k). The peak of the spectrum lies at κ ∼ 1/ℓ where ℓ is a characteristic
length scale of the turbulence. If the grid spacing of the simulation, � is much larger than ℓ, then the turbu-
lence is entirely unresolved, defining the so-called mesoscale limit of atmospheric science (� ≥ �meso). If
the turbulence is partially resolved, capturing the peak in the spectrum but not the viscous dissipation scale
ℓd (ℓd ≤ � ≤ ℓ), then this is the appropriate scenario for LES

is ostensibly rather specific, it encompasses a number of subtle physical processes and di-
verse applications and it draws on the formidable discipline of efficient numerical algorithm
development on high-performance computing architectures.

The fundamental challenge that defines the field of LES is that the range of dynamical
scales active in many turbulent fluid systems far exceeds the range that can be explicitly cap-
tured in a computer simulation. Examples include the convection zones of stars, planetary
atmospheres, astrophysical accretion disks, and industrial applications such as gas turbines.
The central premise of LES is that large scales dominate the turbulent transport and energy
budget so a numerical simulation that captures those scales explicitly will provide a realistic
depiction of the flow for all practical purposes, provided that the small scales that cannot
be resolved are somehow taken into account. Strategies for incorporating the small scales
include explicit subgrid-scale (SGS) models or implicit numerical dissipation schemes.

The range of validity for LES is illustrated schematically in Fig. 1. Consider a numerical
simulation of a turbulent fluid system in which the turbulent energy spectrum peaks at some
characteristic wavenumber ℓ−1. Due to the nature of digital computing, any such simulation
can only capture a finite range in wavenumber, say from L−1 to �−1. Guided by the central

premise stated above, the lower bound of this wavenumber range often corresponds to the
largest scales in the system L > ℓ. Meanwhile, the higher bound in wavenumber is deter-
mined by the resolution limit � which may correspond to a numerical grid spacing or to the
effective width of some explicit low-pass filtering operation that averages over the smaller
scales (Sect. 4).

If the resolution limit � is smaller than the viscous, thermal, and magnetic dissipation
scales, collectively represented here as ℓdiss, then the simulation may be regarded as a direct
numerical simulation (DNS). However, as noted above, DNS are not possible for most turbu-
lent systems in astrophysics and space physics. A much more tractable situation is when the
resolution limit captures the turbulence scale ℓ but not the dissipation scales; ℓdiss ≪ � ≪ ℓ.
This is the realm of LES. Here SGS models can exploit the self-similarity of the turbulent
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cascade in the inertial range and diffusive prescriptions are often sufficient (although even
that may not be true in MHD). Ideally, the grid spacing � should also be much less than
other scales that lead to large-scale anisotropy, such as the Rossby deformation radius, the
Bolgiano scale of convection, and the pressure and density scale heights. When this is not
possible, such sources of anisotropy must be taken into account in any explicit SGS model.

Sometimes the characteristic scale of a turbulent flow component is smaller than the ef-
fective resolution of the simulation or model ℓ < �. One may then model the influence of the
unresolved scales on mean, resolved flows but one might not refer to this as an LES model.
A better terminology might be to call this a Reynolds-Averaged Navier-Stokes (RANS) ap-
proach with some model for the turbulent transport, possibly including non-diffusive as well
as diffusive components. In the following, such calculations are also referred to as mean-
field simulations (MFS).

If properly formulated, the LES approach should converge to the DNS approach as �

goes to zero. This is not necessarily true for RANS. For many systems such as homogeneous
turbulence, there is a smooth transition from RANS to LES as the filter scale is decreased
from � > ℓ to � ≪ ℓ (Schmidt 2015). SGS models may include non-diffusive transport that
resembles the Reynolds stress modeling in a RANS system, blurring the distinction between
the two approaches. Numerical models of such systems may lie anywhere along a continu-
ous spectrum of modeling approaches from RANS to LES to DNS. On the RANS end of the
spectrum, the reliability of the Reynolds stress model is paramount, along with analogous
prescriptions for turbulent heat transport and, in the MHD case, turbulent magnetic induc-
tion. For LES models that lie more toward the DNS end of the spectrum the details of the
SGS model presumably become less important, though the simulation becomes more sen-
sitive to the accuracy of the numerical algorithm. Also, as one moves across the spectrum
from RANS to LES to DNS the computational cost increases greatly, along with the number
of degrees of freedom.

In other systems, the transition from RANS to LES is less straightforward; one must
beware of the “Terra Incognita” that may lie between (Fig. 1). As the LES filter size � ap-
proaches ℓ, SGS models that rely on the self-similar nature of turbulent cascades may break
down. There may be a maximum scale �LES < ℓ above which the filtering procedure be-
comes ill defined and unreliable. On the other hand, RANS models may require a sufficient
scale separation to make statistical averages meaningful, such that � ≫ ℓ. In Fig. 1 this
minimum scale for the validity of RANS is labelled as �meso, in reference to the mesoscale
modeling of the Earth’s atmosphere. In between these two limits, �LES < � < �meso, lies
the Terra Incognita where turbulence modeling and simulation can become much more chal-
lenging (Wyngaard 2004).

Due largely to the industrial and atmospheric applications, LES of hydrodynamic turbu-
lence is widespread and relatively mature (Sagaut 2006). However, most astrophysical and
geophysical flows of interest are electrically conducting plasmas in which the magnetic field
plays an essential dynamical role. For these flows, models must take magnetism into account
either through the kinetic theory of plasmas (generally necessary for the smallest scales) or
through the simplifying equations of MHD (often well justified for large scales). Though
LES of MHD turbulence can build upon the large body of work in hydrodynamic (HD)
turbulence, it poses unique challenges that must be addressed specifically. These include
small-scale anisotropy, nonlocal spectral transfer, and magnetic reconnection.

In Sect. 2 we discuss some of these unique challenges of MHD turbulence and highlight
particular features of MHD turbulence that may promote the development of reliable SGS
models. In Sect. 3 we consider the physics of the smallest scales where ideal MHD no longer
applies, promoting mechanical and magnetic energy dissipation and magnetic reconnection,
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and we ask how these scales may influence the dynamics of the large scales. We then review
current SGS modeling approaches for MHD in Sect. 4 and assess the triumphs and tribula-
tions of current applications in Sect. 5. We summarize the state of the field in Sect. 6 and
anticipate where it may be headed in the future.

Though many of the physical processes and challenges we address have implications
throughout astrophysics, we will focus primarily on solar and space physics in this review.
This is done to allow us to achieve some depth in the material covered while still maintaining
a manageable length. For a more comprehensive overview of LES/SGS in astrophysics the
reader is referred to Schmidt (2015).

2 MHD Turbulence: Challenges and Building Blocks

2.1 Anisotropy in Incompressible Unbounded Turbulence, from HD to MHD

Global anisotropy is an essential feature of MHD flows, particularly in the presence of a
mean magnetic field. The existence of a unique fixed orientation yields breaking isotropy
towards axisymmetry, with or without mirror symmetry. System rotation, buoyancy, and
density stratification further contribute to global anisotropy and inhomogeneity as in HD
turbulence. However, in these HD cases, if one considers scales small enough (e.g. much
smaller than the Rossby radius of deformation for rotation) then the constraints become
negligible. For MHD turbulence the situation is exactly the opposite; the flow never “forgets”
the existence of the large-scale constraint imposed by the magnetic field. Indeed as one goes
to smaller and smaller scales the anisotropy increases (Tobias et al. 2013). This is a severe
constraint that must be respected by sub-grid scale models.

In the absence of a mean magnetic field, Alfvénic MHD turbulence can be investigated
with a more (Iroshnikov 1963) or less (Kraichnan 1965) isotropized model. However, even
in this case, the substructure of Alfvén wave packets at small scales cannot be ignored in the
overall structure and dynamics of the turbulence. If the governing orientation of the small-
scale Alfvén packets is seen as random, a sophisticated stochastic model, mixing anisotropy
and intermittency, is needed (one such model was discussed by W. Matthaeus at the work-
shop). Again, this is a formidable challenge facing SGS in MHD.

The theory for MHD turbulence has been developed over the past few decades, and there
are many recent reviews summarizing various aspects (Kraichnan and Montgomery 1980;
Biskamp 2003; Zhou et al. 2004; Petrosyan et al. 2010; Brandenburg and Nordlund 2011;
Tobias et al. 2013). One familiar phenomenology is that of interacting wavepackets. This
phenomenology arises because nonlinear Alfvén waves are exact solutions of the full in-
compressible MHD equations (see, e.g. Parker 1979). A more precise statement is that
nonlinear interactions only take place when oppositely-signed Elsässer fields Z+ = v + b

and Z− = v − b overlap in space, this statement being valid with or without a mean mag-
netic field B0, and even in two-dimensional geometry with B0 = 0 where there is no global
propagation direction at all. In any case one often encounters the heuristic explanation that
interactions only take place when oppositely propagating wave-packets interact with each
other. When coherent propagation can occur, it anisotropically interferes with nonlinearity,
and gives rise to anisotropic spectra (Shebalin et al. 1983; Oughton et al. 1994). A related ef-
fect, the dynamic alignment of turbulent velocity and magnetic fields, also has strong effects
on MHD turbulence. Global dynamic alignment may occur in some ranges of parameter
space (Dobrowolny et al. 1980; Ting et al. 1986; Stribling and Matthaeus 1991; Stawarz
et al. 2012) as a form of long time turbulent relaxation. However local dynamic alignment
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(Milano et al. 2001; Boldyrev 2006; Matthaeus et al. 2008a) occurs rapidly in turbulence.
Other types of local relaxation that reduce or suppress the strength of nonlinearities imply
formation of local patches of correlation associated with Beltrami velocity fields and force-
free magnetic fields (Servidio et al. 2008). Numerical experiments also seem to indicate that
the degree of alignment of field and velocity is scale-dependent, with the alignment variation
even propagating into the dissipative regime (Boldyrev 2006; Mason et al. 2006).

For MHD turbulence with a strong externally supported DC magnetic field B0, it is pos-
sible to form a large-scale condensate of energy which influences the turbulent cascade at
all smaller scales (Dmitruk and Matthaeus 2009). Condensation, whether of this type, or of
the inverse cascade type, may be associated with generation of low frequency 1/f noise and
long time correlations and sporadic level changes of energy and other quantities over very
long times (Dmitruk and Matthaeus 2007). All of these dynamical effects may influence
computed solutions, and should be respected by appropriate sub-grid scale models. These
factors, which present a formidable challenge for SGS prescriptions, are discussed in more
detail in Sect. 3.

It is possible to describe the second-order correlation tensors with a minimal number of
correlators, as scalar or pseudo-scalar spectra, accounting for the solenoidal properties of
both velocity and vorticity fields. The seminal studies by Robertson (1940), Chandrasekhar
(1950, 1951), Batchelor (1982), and Craya (1958) were completed by Oughton et al. (1997)
in the MHD case. Developed independently by Cambon’s team, a similar formalism im-
proved the decomposition in terms of energy, helicity and especially polarization spectra,
using the orthonormal bases for solenoidal fields, known as a Craya-Herring frame of refer-
ence (Herring 1974), with its variant of helical modes (Cambon and Jacquin 1989; Waleffe
1992). This formalism is discussed at length, with application to turbulence subjected to
rotation, density-stratification and uniform shear in the recent monograph by Sagaut and
Cambon (2008), and extended to the MHD case by Cambon and collaborators (Favier et al.
2012; Cambon et al. 2012). In addition to the definition of the basic set of spectra and co-
spectra, dynamical equations can be written for the correlators, generalizing the Lin equation
in isotropic turbulence.

Unfortunately, very few of these results (for both HD and MHD) have been used in re-
cent pseudo-spectral DNS in triple-periodic boxes, even if they could reproduce anisotropic
homogeneous turbulence, despite the finite-box effects, standard discretization, question-
able ergodicity from a single realization, and other differences with the theoretical context
of homogeneous unbounded turbulence. As a first example, helicity cannot be disentangled
from directional anisotropy (e.g. angle-dependent, or two-component, energy spectrum) and
polarization anisotropy in DNS started with a single realization, e.g. with ABC artificial he-
lical forcing (Salhi et al. 2014). On the other hand, angle-dependent spectra and co-spectra,
which are not provided by these recent DNS, are useful to quantitatively characterize differ-
ent anisotropic properties, as the horizontal layering in stably-stratified turbulence, and the
opposite trend to generate columnar structures in flows dominated by system rotation. Such
structures are often shown only on snapshots in recent DNS, with very indirect linkage to
statistical indicators, such as one-component, in terms of wavevector modulus k or trans-
verse wavevector k⊥, spectra. Might there be some analogy between the layering in stably
stratified turbulence (which is linked to the kinetic energy cascade of the toroidal velocity
component and angle-dependent spectra) and the formation of thin current sheets in MHD,
as seen in high-resolution DNS?

In addition, the distinction between the 2D ‘vortex’ modes and ’rapid’ inertial modes is
dependent on discretization in conventional pseudo-spectral DNS for purely rotating turbu-
lence, and the dynamics is affected by finite-box effects. Only the use of actual confinement,
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as with rigid boundaries, allows one to identify the 2D mode as a dominant one, whereas it
is only a marginal limit of inertial wave modes in a very large box, and treated as an inte-
grable singularity in wave turbulence theory (Bellet et al. 2006). Extension of inertial wave
turbulence theory, with coupling to ‘actual’ 2D modes, was recently achieved in a rotating
‘slab’ by Scott (2014).

An important question, useful for SGS modeling in LES, is the range of penetration of
anisotropy towards smallest scales (see also Sect. 3.2). In the HD case, an external effect
such as mean shear firstly affects the largest scales, generating both energy (production) and
anisotropy. As suggested by Corrsin (1958), isotropy can be recovered at a typical wavenum-
ber, expressed in terms of mean shear rate S and the dissipation rate ε: kS =

√
S3/ε. Similar

threshold wavenumbers were proposed by Ozmidov (1965) for stably-stratified turbulence,
replacing S by the Brunt-Väisälä frequency, N , and by Zeman (1994) in rotating turbulence,
replacing S by system vorticity. Even if these simple dimensional considerations are only
partly supported by DNS or experiments (Lamriben et al. 2011; Delache et al. 2014), they
are not sufficient to close the problem and to say that anisotropy can be generally neglected
at small scale in HD turbulence, in contrast with MHD turbulence. Rotating turbulence and
stably stratified turbulence are much more subtle, because there is no direct production of
kinetic energy by the Coriolis force, and no direct production of total energy, kinetic +
potential, by the buoyancy force with stabilizing mean density gradient (in contrast with
turbulence subjected to mean shear). On the other hand, a scale-by-scale analysis of the
anisotropy in rotating turbulence, without artificial forcing, reveals that the anisotropy first
increases with increasing wave-number, so that it can be maximum at the smallest scales if
the “Zeman wavenumber” kΩ =

√
Ω3/ε is larger than the viscous cutoff. These considera-

tions suggest a refined comparison between inertial wave turbulence theory and weak MHD
Alfvénic turbulence, with the latter reviewed and updated by Boldyrev in the GTP workshop
(see Tobias et al. 2013).

2.2 Is There a Need for Including Advanced Backscatter Modeling?

In HD turbulence, backscatter to larger scales plays energetically a significant role, but it
is usually not systematically correlated with large-scale properties of the flow. On the other
hand, at least in helical MHD, backscatter plays a dramatic role in that it is responsible
for the generation of magnetic energy at the largest scale through what is known as the α

effect. The α effect plays therefore an important role in mean-field simulations (MFS), but
is ignored in LES.

The α-effect is linked to the upscale transfer of magnetic helicity, which occurs in helical
MHD turbulence through local (inverse cascade) or nonlocal (α-effect) spectral interactions
(Pouquet 1996; Seehafer 1996; Brandenburg 2001; Müller et al. 2012). Spectral transfer of
cross helicity 〈u ·B〉 can also couple large and small scales and should be taken into account
in SGS models, as emphasized in the GTP workshop by Yokoi (2013).

Indeed, cross helicity is produced in the presence of gravity g and a parallel magnetic
field B, giving rise to a pseudo-scalar g · B that is odd in the magnetic field, just like the
cross helicity (Rüdiger et al. 2011). In such a case, a large-scale magnetic pattern emerges,
as can be seen from power spectra and images shown in Fig. 2. Whether or not this large-
scale pattern is a result of some inverse cascading of cross helicity, analogous to the α-effect,
remains an open question; see Brandenburg et al. (2014) for details.

Another potential mechanism that may contribute the generation of large-scale structure
in MHD flows such as that shown in Fig. 2 is the suppression of small-scale turbulent pres-
sure by a large-scale magnetic field. This is currently gaining attention within the context of
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Fig. 2 Left: Normalized energy spectra of Bz from an isothermally stratified, randomly forced DNS with
g/c2

s kf = 4 (sound speed cs and forcing wavenumber kf) at turbulent diffusive times ≈ 0.2 (blue line), 0.5,
1, 2, 5, 10, and 20 (red line). Right: Magnetic field configuration at the upper surface near the end of the
simulation. Adapted from Brandenburg et al. (2014)

mean-field modeling of the Reynolds and Maxwell stresses. If this suppression dominates
over the direct contribution of the magnetic pressure, as is the case for fully developed turbu-
lence, then the net effect will be negative (Kleeorin et al. 1989; Rogachevskii and Kleeorin
2007). In a strongly stratified layer, this can lead to an instability, which is now called the
negative effective magnetic pressure instability (NEMPI). It has been suggested that NEMPI
may play a role in causing the magnetic field to form flux concentrations in the upper regions
of the solar convection zone, where the stratification is strongest (Brandenburg et al. 2012;
Käpylä et al. 2012; Kemel et al. 2013). Again, this effect has been successfully captured
in MFS, where its predictive capabilities have been instrumental in furthering our theoret-
ical understanding. We need to ask whether or not LES should be modified to include this
effect, or whether LES are naturally able to capture this type of physics. For example, the
dynamic Smagorinsky model used in simulations of stellar convective dynamos by Nelson
et al. (2011, 2013) promotes the generation of coherent flux structures by nonlinear feed-
backs that are roughly analogous to those responsible for the NEMPI.

2.3 Possible Consequences of Misrepresenting the Small Scales

A practical goal of LES is clearly to keep the code stable. This means that close to the grid
scale the flow must become smooth. In reality, the opposite is the case: turbulent diffusion
of mean flows, mean magnetic fields, mean temperature, and mean passive scalars decreases
with scales. This picture is quite clear in mean-field theory, where turbulent transport coef-
ficients such as magnetic diffusivity, ηt , and α effect are known to become wavenumber-
dependent. We do not yet know whether this plays an important role in LES, but we must
ask whether certain discrepancies between LES and astrophysical reality can be explained
by such shortcomings. Below we discuss one such example.

Realistic global dynamo simulations have revealed that magnetic cycles are possible at
rotation rates somewhat faster than the Sun (Brown et al. 2011). Yet, the Sun is known
to undergo cycles. Could this be a consequence of misrepresenting the small scales in the
simulations?

To approach this question, we need to know what is the governing non-dimensional pa-
rameter that determines the transition from cyclic to non-cyclic dynamos. This is a difficult
question, because the mechanism behind the solar dynamo is not conclusively identified.
Broadly speaking, there are flux transport dynamos where meridional circulation plays an



LES of MHD Turbulence 105

important role determining the cycle time and migration of magnetic activity belts. The other
candidate is just α effect and differential rotation, giving rise to an α–Ω dynamo in which
meridional circulation is unimportant. In mean-field theory, the relative importance of the
Ω effect for both scenarios is determined by the non-dimensional quantity CΩ = �Ω/ηtk

2.
Here ηt is a measure of the turbulent kinetic energy so CΩ may be regarded as equivalent
to a Rossby number based on the differential rotation. The relative importance of the Ω

effect over the α effect depends on the ratio of CΩ and a similar parameter Cα = α/ηtk that
characterizes the strength of the α effect. Both CΩ and the ratio CΩ/Cα would be underesti-
mated in an LES in which ηt (k)k and α(k) are too big, so this suggests that one would need
to compensate for this shortcoming by increasing Ω to recover cyclic dynamo action.

Though this reasoning is generally robust, it is based on kinematic mean-field theory so
its application to MHD LES must be made with care. For example, MHD/LES convection
simulations by Brown et al. (2011) and Nelson et al. (2013) demonstrated a transition from
steady to cycling dynamos with both an increase in Ω and a decrease in the SGS component
of the turbulent magnetic diffusivity, ηt . This appears to be consistent with the mean-field
arguments in the preceding paragraph. However, when the SGS diffusion was decreased
in the latter case (Nelson et al. 2013), the kinetic energy of the convection increased and
the differential rotation weakened due to Lorentz force feedbacks, implying an effective
decrease in CΩ for the cyclic case. Furthermore, though the total magnetic energy was
greater in the cyclic, low-dissipation case, the magnetic topology was more complex, with
less energy in the mean (axisymmetric) fields. This implies a relatively inefficient α-effect.
Further analysis confirmed that despite the relatively weak �Ω in the cyclic simulation, the
primary source of toroidal flux was indeed the Ω-effect, implying CΩ/Cα > 1.

3 Small-Scale Dynamics: Dissipation, Reconnection and Kinetic Effects

LES methods as applied to HD have as a central goal the ability to compute the dynamics
of the resolved scales more accurately under conditions in which the Reynolds numbers are
too high for a fully resolved DNS computation. Additional goals may be to compute the
direct influence of the unresolved scales on the resolved scales (backscatter), or, in the so-
called energy equation approach, to track the transport of unresolved turbulence. Specific
formulations of LES relevant to the MHD case will be discussed in more detail in the fol-
lowing section. The complications that MHD introduces into small scale physics become
even more challenging when MHD models are employed to approximate the dynamics of a
low collisionality (or “kinetic”) plasma. These issues carry over into additional challenges
for LES/SGS modeling.

In MHD the dissipation function (for simple resistivity and viscosity) is known, as in
HD. However the phenomenology of MHD dissipation is more complex given that both
current density structures and vorticity structures are available as sites of enhanced heating.
Simulations have shown that this leads to a dependence of the ratio of kinetic to magnetic
energy dissipation on the magnetic Prandtl number (Brandenburg 2009, 2011, 2014), which
is generally not reproduced by LES.

Not only is there an additional channel for dissipation, but the nonlinear transfer of energy
between velocity and magnetic field is known to be more nonlocal in scale than the transfer
of total energy across scale (Verma 2004; Alexakis et al. 2005). The possibility that these
effects come into play in varying proportions for MHD flows in differing parameter regimes
is not only possible but likely, given for example the well known differences in small-scale
dynamics in the kinematic dynamo regime, the Alfvenic turbulence regime, and the large
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scale reconnection regime. These differences reflect the degree of nonuniversality inherent
in MHD behavior, which has been demonstrated in a number of recent studies (Lee et al.
2010; Wan et al. 2012b)

Variability in the nature of the cascade represents a challenge in developing LES for
MHD since the correct modeling of important sub-grid scale physics may be situation-
dependent. However the challenge is even deeper in the context of low collisionality as-
trophysical plasmas, even if MHD represents an accurate model at the larger scales. At the
smaller scales, comparable to ion gyroscales or inertial scales, one expects MHD to break
down and give way to a more complete dynamical description, which is commonly referred
to as the kinetic plasma regime. Processes occurring at the kinetic scales may resemble anal-
ogous MHD processes, but may also differ significantly in their detail. The LES developer
in such cases may need to understand carefully whether the relevant processes to be incor-
porated into sub grid scale modeling remain MHD-like, or if they are possibly influenced
strongly by kinetic physics.

Two examples of processes that are potentially influenced by kinetic physics are dis-
sipation of fluctuation energy and magnetic reconnection. These processes may lead for
example, to electron/ion heating and nonthermal particle acceleration. In many space and
astrophysical applications of MHD, from the solar wind to black hole accretion disks, these
mechanisms can play a crucial role for the global dynamics of the system, coupling micro-
scopic and macroscopic scales.

One may also ask how the details of small scale processes might have influence on the
large-scale dynamics that is the emphasis of LES. As long as the focus remains in the MHD
range of scales, in the usual way one may anticipate that energy transfer across scales will
be almost independent of scale at high Reynolds number. If an accurate estimation of the
energy flux is available, it enables closure of the SGS problem before the dissipative scales
are even encountered. This is a key step in the de Karman and Howarth (1938) similarity
decay hypothesis, and is a familiar component of most HD LES. Even the MHD models
can become more elaborate, for example when there is a need to include backscatter effects
(as discussed above). Furthermore, for situations that permit inverse cascade1 this additional
complexity in modeling energy transfer becomes mandatory. However when MHD models
are employed for long wavelength description of kinetic plasma behavior, it transpires that
there are additional motivations for study of small scale effects in building LES models.
These potentially include:

(i) the requirement of following magnetic topology and connectivity, which may be in-
fluenced by small-scale processes such as magnetic reconnection, as well as diffusive
effects such as Field Line Random Walk (FLRW);

(ii) the requirement of computing test particle scattering and/or acceleration, in order to
employ the models for study of suprathermal particles, heat conduction or energetic
particles such as cosmic rays and solar energetic particles;

(iii) the requirement of representing dissipation, heating and more complex kinetic re-
sponses (including in some cases radiative cooling), which may be regulated by the
LES fields.

In each of the above problems the large scale MHD fields and the cascade that they pro-
duce establish conditions at the kinetic microscales, and the physically significant process—
reconnection, heating, particle acceleration, etc., follows as a response. It seems clear that

1Here we distinguish backscatter from inverse cascade, the latter being back transfer, or upscale transfer,
driven by an additional ideal conservation law.
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an LES model that would include these effects must be more elaborate than one that focuses
mainly on energy flux.

Pursuing a better understanding of the small-scale dynamics in MHD turbulence in the
inertial range, and even smaller scale kinetic plasma dynamics in a turbulent medium, has
become a very active area of research in recent years. This effort has been boosted by avail-
ability of high resolution 3D MHD codes and kinetic plasma codes (fully kinetic, hybrid,
and gyrokinetics), as well as a wealth of new observational data regarding solar wind fluctu-
ations down to the electron gyroradius scale (Alexandrova et al. 2009; Sahraoui et al. 2009).
These studies have improved our theoretical understanding of the nature of the turbulence
cascade and its effects as it progresses from magnetofluid scales, to proton and electron ki-
netic scales. The continuation of these advances is expected in the next few years to provide
a much improved basis for development of SGS models that will enable a new generation of
MHD and plasma LES models. In the following, we shall attempt to provide a brief overview
of the current state-of-the-art as well as a discussion of key open questions regarding small
scale dynamics.

3.1 Do the Small Scales Matter?

Before taking a detailed look at the small-scale dynamics that must be present in any turbu-
lent MHD flow, we must first address a pressing question; do any of these details matter?
Recall the central premise of LES introduced in Sect. 1; Since the large scales generally
dominate the turbulent transport and energy budget, these are the scales we are most inter-
ested in; why should we care about the small scales at all?

There are two answers to this question. First, the small scale dynamics may influence the
large-scale dynamics, often in ways we do not yet understand. A notable example is global
MHD simulations of magnetic cycles in convective dynamos. Though remarkable progress
has been made in recent years, such simulations are still quite sensitive to the nature of the
SGS dissipation and the spatial resolution Charbonneau (2015). This is perhaps not a sur-
prise, since the large-scale fields are intimately linked to the small-scale fields by, among
other things, the topological constraints associated with magnetic helicity. Large-scale dy-
namos rely on these linkages to generate magnetic energy and may thus be particularly
sensitive to SGS processes.

More generally, the magnetic connectivity has the distinction of depending on micro-
scopic properties such as reconnection activity, while clearly also having an influence on the
large scale features of the problem at hand. We now turn to the solar wind as another exam-
ple that demonstrates this. During solar minimum conditions the fast solar wind is believed
to emanate from polar coronal holes while slow wind emerges from nearby regions outside
the coronal holes, and perhaps from reconnection activity in coronal streamers. Stated this
way it is possible that the boundary between fast and slow wind would be sharp, but this
is not observed; instead the transition is more gradual (Rappazzo et al. 2012). It has been
suggested that this boundary is thickened by random component interchange reconnection
(Lazarian et al. 2012b; Rappazzo et al. 2012) that causes there to be a band of field lines
near the boundary that have a finite probability of connecting across this boundary due to
dynamical activity. While high resolution codes can simulate small regions near the bound-
ary to demonstrate this phenomenon, in an LES scenario it is doubtful that resolved scales
would contain sufficient information to characterize this process. The resolved field lines
would be nominal field lines, and if laminar, might maintain a sharp boundary at the coronal
hole edges. It would be a challenge for a refined LES/SGS model to incorporate sufficient
information about the space-time structure of the unresolved fluctuations so that a model
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could be developed to represent both spatial randomization, due to field line random walk,
and temporal randomization, due to potentially numerous unresolved reconnection sites.

It is not difficult to find other astrophysical plasma problems that depend on small scale,
or even kinetic scale processes, while also having a significant impact on large-scale fea-
tures. Examples include small and large-scale dynamos (Sect. 5.3) as well as the relative
level of electron, proton and minor ion heating in the solar wind or in black hole accretion
disks. Here, the small-scale physics plays a critical role in determining the overall magnetic
topology, radiative signatures, and thermodynamics of the system, with significant large-
scale observable consequences.

The second answer to the question of “why should we care about the small sales at
all?” is that the small-scale dynamics can potentially have observable consequences that are
regulated by the large-scale flows and fields. A notable example is particle acceleration in
solar flares and interplanetary shocks. Sharp gradients in large-scale fields promote small-
scale reconnection that often produces a non-thermal spectrum of high-energy particles.
These solar energetic particles (SEPs) are an important component of space weather, with
potential socio-economic consequences. The small-scale reconnection that produces SEPs
also dissipates energy (and other global quantities) and reshapes the magnetic topology.
Thus, it may be necessary in some situations to take particle acceleration into account when
devising high-fidelity SGS models. In such cases an energy equation formalism would be
desirable in order to compute particle diffusion coefficients.

Yet, there are many HD and MHD applications when a simple dissipative SGS model will
suffice. Here the large-scale dynamics is insensitive to the small-scale dynamics, provided
that the Reynolds and magnetic Reynolds numbers are high enough to resolve coherent
structures and capture self-similar cascades. A notable example here is solar granulation
(see Sect. 5.1). In this case, one would be satisfied with relatively simple LES models, such
as ILES (see Sect. 4).

In order to assess whether or not a sophisticated SGS model is needed, and in order to
devise such a model when necessary, one must have a comprehensive understanding of the
fundamental physical processes that operate at small scales, and how they influence large-
scale dynamics. This is where we now turn.

3.2 Physics of the Small-Scale Cascade

Laboratory plasmas provided the first quantitative indication that MHD turbulence is
anisotropic relative to the large scale magnetic field direction (Robinson and Rusbridge
1971; Zweben et al. 1979), generating spectral or correlation anisotropy with stronger gra-
dients transverse to the magnetic field and weaker parallel gradients. Simulations in both 2D
and 3D demonstrated the dynamical basis for this effect: propagation of fluctuations along
the magnetic field interferes with parallel spectral transfer, while perpendicular transfer re-
mains unaffected (Shebalin et al. 1983; Oughton et al. 1994). Correlation anisotropy of the
same type was found to operate relative to the local magnetic field (Cho and Vishniac 2000;
Milano et al. 2001).

Spectral anisotropy generates a distribution of excitation in wave vector such that average
perpendicular wavenumbers are greater than average parallel wavevectors, i.e., k̄⊥ > k̄‖,
relative to the global field. The degree of anisotropy becomes greater at smaller scales, so,
for example the anisotropy of ∇ × B exceeds that of B (Shebalin et al. 1983). Moreover,
local correlation anisotropy measured by conditional structure functions (Cho and Vishniac
2000; Milano et al. 2001) is greater than global anisotropy.

Another familiar type of anisotropy that emerges in plasma turbulence at MHD scales
is polarization (or variance) anisotropy. In this case one finds that mean square value of
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each component of the fluctuations perpendicular to the mean magnetic field is larger than
the mean square parallel component. This condition emerges naturally in Reduced MHD
treatments of tokamak plasma devices, in which the aspect ratio of the device plays a key
role (Kadomtsev and Pogutse 1974; Strauss 1976) and the resulting nonlinear dynamics
is both transverse and incompressible, and also requires spectral anisotropy with k⊥ ≫ k‖
as discussed above. Later it was shown that Reduced MHD (RMHD) and its transverse
fluctuations may be derived by elimination of fast magnetosonic and Alfvenic timescales
in solutions of the full 3D compressible MHD equations with a strong mean magnetic field
(Montgomery 1982; Zank and Matthaeus 1992).

It is noteworthy that the properties of low frequency, high-k⊥, incompressible fluctua-
tions with transverse polarization, equates in wave vocabulary to dominance of the oblique
Alfvén mode, and suppression of the magnetoacoustic modes. This characterization of fully
developed incompressible inertial range MHD turbulence—consisting primarily of a highly
oblique spectrum of transverse fluctuations has provided a basis for models of plasma turbu-
lence by a number of authors (Montgomery and Turner 1981; Higdon 1984; Goldreich and
Sridhar 1995).

While there are a number of differences in these formulations, they have in common that
MHD turbulence gets more and more anisotropic at smaller scales. One approach (Goldre-
ich and Sridhar 1995) introduced the term “critical balance,” to describe the fate of weakly
interacting Alfvén waves that produce perpendicular spectral transfer until nonlinear (per-
pendicular) eddy and linear (parallel) Alfvénic timescales become equal. This establishes
a relationship between perpendicular and parallel wave numbers that is characterized by
k‖ ∝ k

2/3
⊥ . As a consequence, one finds k‖ ≪ k⊥ at small scales. The same relationship is

found in the earlier turbulence theory (Higdon 1984) based on quasi-two dimensional or
RMHD spectral transfer (Montgomery 1982; Shebalin et al. 1983) except that the RMHD
turbulence energy is mainly confined to the region of wave vector space in which the nonlin-
ear time scale is less than the linear wave timescales. The relationship k‖ ∝ k

2/3
⊥ , is common

to both, if the wavenumbers are regarded as averages of the energy spectrum in the inertial
range. In any case the preference for perpendicular spectral transfer (Shebalin et al. 1983)
appears to be a robust result in MHD turbulence and should be considered in SGS modeling
when there is a uniform magnetic field or a very large scale magnetic field present.

In addition to the energy spectrum, the inertial range in MHD turbulence is character-
ized by additional correlations. The velocity and magnetic fields are typically correlated
in direction with the sense of correlation coherent within patch-like regions of real space
(Milano et al. 2001; Matthaeus et al. 2008a). A complementary idea is that the alignment
increases systematically with decreasing scale (Boldyrev 2006; Mason et al. 2006). It is also
documented that turbulence produces patchy, localized correlation of other kinds in MHD
(Servidio et al. 2008), and at least some of these appear to be related to the tendency for
turbulent relaxation (Ting et al. 1986; Stribling and Matthaeus 1991) to proceed locally in
cellular regions, such as flux tubes, as a faster, intermediate step towards global decay and
relaxation. The types of correlations produced locally and rapidly in this way include (but
are not limited to), not only the Alfvénic correlation (velocity and magnetic field), but also
the Beltrami correlation (velocity and vorticity) and the force free correlation (magnetic field
and electric current density). All lead to depression of nonlinearity in the inertial range of
scales, as seen in the emergence of Beltrami correlation in HD (Pelz et al. 1985).

It is not entirely clear how or whether these additional correlations should be included
in LES/SGS modeling of the smaller scale MHD cascade. On the one hand, the diversity
in possible long-term relaxed states suggests dominance of different relaxation processes
for different parameter regimes. For example, to achieve global dynamic alignment, any
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excess mechanical or magnetic energy would need to be dissipated. Similarly, in order to
achieve global selective decay of energy with constant helicity (Montgomery et al. 1978;
Matthaeus and Montgomery 1980), also known as Taylor relaxation (Taylor 1974), would
require that mechanical energy be entirely dissipated while magnetic energy remains. Pre-
sumably these alternative decay prescriptions place different requirements on the nature of
dissipation models. Dynamo action with injected mechanical helicity at intermediate scales
also places requirements on transfer and dissipation rates of energy, magnetic helicity and
kinetic helicity (e.g. Brandenburg 2001; Brandenburg and Nordlund 2011; Brandenburg and
Subramanian 2005). On the other hand if the processes being modeled are principally depen-
dent on the decay rate of energy, it may be possible to define energy fluxes with relatively
simpler prescriptions, such as by partitioning transfer between direct and inverse cascade
rates. How these issues will influence improved and accurate LES/SGS models for MHD
in the future is a current research-level problem that is intimately tied in with prospects for
universality in MHD turbulence, or perhaps universality within classes of MHD behavior.

While it will likely be necessary to learn more about MHD and kinetic scale cascades
to build more complete models, it is noteworthy that considerable theoretical progress has
been made, including computations, by assembling turbulence models that may lie some-
what outside of a strictly-defined LES concept. These models typically have concentrated
on selected effects that are thought to be dominant for the chosen problem. Examples of
such models are mean field electrodynamics (Moffatt 1978; Krause and Rädler 1980) of-
ten used in dynamo theory, Reynolds averaged MHD models such as those used for solar
wind modeling (Usmanov et al. 2014) and hybrid models based on multiple scale analysis
and Reynolds averaging (Yokoi et al. 2008). In any of these models, we should note that a
turbulent resistivity would have essentially the same effect as an “anomalous” resistivity, by
which we mean a contribution to resistivity due to small scale (and also unresolved) kinetic
plasma effects. This is also an area that has been well studied (e.g. Biskamp 2000).

As an example of a non-traditional LES approach, Yokoi et al. (2013) describe a novel
self-consistent mean-field theoretical model of turbulent MHD reconnection, highlighting
cross-helicity dynamo effects. In this, essentially sub-grid, model the effects of small-scale
turbulence are represented by two additional terms in the Ohm’s law: one proportional to
the turbulent energy density and describing standard effective turbulent resistivity, and the
other, new term, proportional to turbulent cross-helicity W = 〈u′ · b′〉 and the large-scale
vorticity Ω = ∇ × U. Though this model appears to capture the influence of small-scale
turbulence on large-scale reconnection (Yokoi et al. 2013), Grete et al. (2015) found that
it does not perform well for supersonic MHD turbulence, where it fails to reproduce the
turbulent electromotive force (EMF) obtained from high-resolution ILES (standard eddy
diffusion models also fail in a similar way). More work is needed to determine its viability
in different circumstances. Indeed, this applies to all SGS models; to the extent that it is
feasible, their validity and scope should be evaluated by comparing them to high-resolution
DNS/ILES (e.g. Grete et al. 2015; Meheut et al. 2015) and/or to kinetic plasma simulations.

Having introduced some prominent features of the physics of MHD turbulence at small
scales, we will now focus on some recent findings from respective studies that are relevant
to the fate of the MHD cascade at smaller scales. A central issue for many applications
in space and astrophysics is how the cascaded energy is actually dissipated, and in some
astrophysical systems, eventually radiated away. For the present purposes the notion of dis-
sipation may be described as the irreversible conversion of large scale or fluid scale energy
into microscopic kinetic degrees of freedom. Important questions that have been recently
addressed in this area include the response of test particles to MHD electromagnetic fields,
kinetic effects including dissipation of cascaded MHD fluctuations and the response in the
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form of heating, and the role of magnetic reconnection, current sheets and tearing, and the
associated macroscopic effects of changes in magnetic topology and connectivity.

3.3 Energization and Transport of Test Particles

The most primitive model of kinetic response to MHD-scale fields is given by the test-
particle approximation in which the trajectory of individual plasma particles is assumed to be
determined by the Newton-Lorentz force law, neglecting all feedback of the particle motion
on the rest of the plasma or on the electromagnetic fields. The basic physics of acceleration,
scattering and transport, especially of suprathermal and energetic particle populations, is
often discussed in a first approximation using a test particle approach (e.g. Bell 1978; Jokipii
1966). Not only are test particle studies useful in understanding energy dissipation, but in
some cases, e.g., cosmic rays and solar energetic particles, it is the response of the test
particles to the large scale fields, and the subgrid scale fields, that is the essential output of
the research.

A self-consistent model extending beyond test particles is needed for accurate repre-
sentation of the effects on dissipation of slower populations of plasma particles, say, those
moving at a few Alfvén speeds or less. Nevertheless, in spite of its shortcomings, the test
particle approach, implemented in concert with MHD computations, has been valuable for
investigation of potential mechanisms of energization and dissipation prior to emergence of
computational capacities that enable equivalent self-consistent kinetic modeling.

A good example of this is the use of test particles in the elucidation of the role of recon-
nection and turbulence in energization of suprathermal particles. Spectral methods, having
favorable resolution properties for turbulence, were able to describe the interplay of test par-
ticle energization and nonlinear reconnection at a relatively early stage (Ambrosiano et al.
1988). In the presence of strong fluctuations, reconnection does not settle in to smooth so-
lutions anticipated from tearing mode theory, and instead remains unsteady and bursty, and
when the Reynolds number at the scale of the dominant current sheets exceeds a few hun-
dred, the fluctuations lead to multiple small magnetic flux structures, or secondary islands
(Matthaeus and Lamkin 1985, 1986; Biskamp 1986). This subject is revisited in more detail
below in Sect. 3.5.

Here we note simply that such structures can entrain or temporarily trap test particles,
and are strongly associated with the most efficiently energized particles. This entrainment
and energization was found to occur between magnetic X-points and O-points, as was later
found in much greater detail and realism using high resolution kinetic plasma codes (e.g.
Drake et al. 2006).

It is clear that even a simple model employing MHD simulation fields and test parti-
cles can begin to identify kinetic effects beyond simple energization. Studies showed that
small gyroradius particles (e.g., electrons) tend to be accelerated in the direction along the
electric current sheets, that is, parallel acceleration, while heavier particles (protons, etc)
are energized in their perpendicular velocities (Dmitruk et al. 2004). Self-consistent kinetic
simulations also were able to find this effect, and in fact it is now understood through plasma
simulation that the regions in and near current sheets are sites of enhanced kinetic effects
such as suprathermal particles, temperature anisotropies, large heat flux, and in general non-
Gaussian features of the proton distribution function (e.g. Servidio et al. 2012; Karimabadi
et al. 2013).

More recent test particle studies that employ weakly 3D RMHD simulations (Dalena
et al. 2014) suggest that energization of a single species of test particle progresses through
at least two stages in the presence of a strong guide field with nearly two dimensional low
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frequency fluctuations: First, at lower energies the particles are energized in their parallel
velocities, and mainly while entrained near reconnection sites inside of current sheets and
in essentially in accord with the classical neutral point acceleration mechanism. This is also
sometimes called “direct acceleration.” As suprathermal energy grows and the gyroradii
become larger than the typical thickness of the current sheets, the energization of test parti-
cles continue, but with enhancement of perpendicular velocities. This has been described as
a “betatron” process associated with an inhomogeneous perpendicular electric field found
near to, but outside of strong reconnection sites (Dalena et al. 2014) . This test particle result
provides more detail on earlier results on acceleration in turbulence (Dmitruk et al. 2004;
Chandran 2010).

The marriage of test particle studies with high resolution MHD simulation has led to a
number of insights and questions that are of relevance to ongoing efforts to develop SGS
models for MHD and plasmas. For example:

• When are the processes of cascade, reconnection, test particle energization, and dissipa-
tion, related? While it is fairly clear that a broad-band cascade requires reconnection to
occur at various scales along the way, the fact that test particles respond to the associated
inhomogeneities suggests that dissipative processes may be intertwined in this process.

• The topology of the magnetic field becomes fuzzy when there are numerous small sec-
ondary islands, so trapping, reconnection, coalescence and particle energization will in
general not be explicitly resolved in an SGS/LES scheme for a large system. Most likely
these features will need to be understood well enough to develop a statistical or phe-
nomenological model.

• If tracking test particle populations at a statistical transport level remains a scientific pri-
ority in an LES context, then a requirement will be to follow parameters needed for SGS
transport models, such as SGS energy, characteristic length scales, and possibly spectral
features such as anisotropies, e.g., to capture possible resonances.

3.4 Kinetic Effects, Dissipation Processes and Heating

Once cascading fluctuations reach scales at which kinetic effects become important, MHD
is no longer applicable. In practical terms, this means that for an ion-electron plasma, when
the cascade arrives at scales as small as either the ion gyroradius scale, ρi , or the ion inertial
scale di = VA/Ωcp , kinetic effects become important and even dominant. For wavenumber k

the corresponding kinetic range is indicated by kρi ≥ 1 or kdi ≥ 1. To retain effects like finite
Larmor radii and Landau damping in this regime, one has to employ a kinetic description.2

Since in space physics and astrophysics we are often dealing with low density plasmas for
which the collisionality is very weak, it is important to keep in mind that some type of
effective “collisions” will inevitably cause departures from an idealized model such as the
Vlasov-Maxwell equations. Fundamental effects such as an increase of system entropy and
relaxation towards thermal equilibrium, will rely on the presence of these formally small
contributions to the kinetic equations (Klimontovich 1997; Schekochihin et al. 2009). In
any case, given the enormous computational cost of nonlinear kinetic simulations in six
phase-space dimensions, such studies often fall into the category of “extreme computing.”
Results on turbulence energy dissipation and relaxation in turbulent plasmas, employing
particle-in-cell (PIC) Vlasov code and Eulerian Vlasov codes, are just starting to appear

2By kinetic description we mean a dynamical description of the plasma that involves only the one-particle
distribution function which depends on velocity, position, and time.
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.

Fig. 3 (Left) Volume rendering of magnitude of current density J in the same small region of a high reso-
lution 3D MHD simulation at four different times, showing complex spatial structure and evolution in time
(adapted from Mininni et al. 2008). (Right) Volume rendering of J from a 20483 PIC simulation of plasma
turbulence, in a periodic box of side 83.8 thermal proton gyroradii. Again, fine scale structure is evident, now
at kinetic scales (Courtesy of V. Roytershteyn, to be published.)

in the literature (e.g. Daughton et al. 2011a; Servidio et al. 2012; Karimabadi et al. 2013;
Haynes et al. 2014).

In light of the impressive continued growth of supercomputing power as we head towards
the exascale era, it may be expected that kinetic simulations will be at the forefront of re-
search into the fate of cascaded energy at kinetic scales in the years to come. Meanwhile,
various reduced models are being used to complement fully kinetic studies. These include
hybrid (fluid electrons and kinetic ions), gyrokinetic and gyrofluid models, and an array of
fluid models that contain some kinetic effects (Hall MHD, multifluid, Finite Larmor radius
MHD, etc.)

Fully kinetic 3D PIC simulations of turbulence and reconnection have recently revealed
interesting details about kinetic response to cascading MHD scale fluctuations. In 3D, ion-
scale current sheets spontaneously develop turbulence through various instabilities, produc-
ing a chaotic 3D magnetic field structure (Daughton et al. 2011a). Examples of fine scale
current structures in high-resolution MHD and kinetic simulations are shown in Fig. 3. In-
terestingly, however, both the reconnection rate and the mechanism for breaking the frozen-
flux law seem to be unaffected, being close to those obtained in 2D simulations. Numerical
experiments with different types of initialization, such as velocity-shear-driven kinetic tur-
bulence (Karimabadi et al. 2013) show that current sheets and intermittency can form in both
2.5D PIC simulations as well as 3D PIC simulations. Furthermore, kinetic activity of various
types, including heating, appears to be concentrated near sheet-like current structures (see
also Servidio et al. 2012; Wan et al. 2012a), which lends credence to the emerging idea that
a large fraction of kinetic heating may occur in or near current sheets and related structures.
(For the MHD analogue of intermittency associated with current sheets, see Sect. 3.4.) Some
wave activity is also identifiable in the above examples, although in terms of the partitioning
of energy, this seems to be the exception rather the rule when broad-band turbulence devel-
ops at kinetic scales (Parashar et al. 2010; Verscharen et al. 2012; Karimabadi et al. 2013).
Kinetic scale complexity and intermittency is also observed using recent high resolution
observations in the solar wind (Perri et al. 2012; Wu et al. 2013a).

Even with recognition of this complexity at kinetic scales, efforts continue to analyze
the type of wave mode, or perhaps several types, that might be viewed in some sense as the
elementary excitations from which the turbulence is constructed. There are actually several
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approaches that may be described as a wave turbulence approach. On the one hand there is
the formal weak turbulence theory (e.g. Galtier et al. 2000) that considers the cases in which
the leading order dynamics is that of propagating waves that obey, to a first approximation, a
dispersion relation that assigns a frequency to each wavevector. Another view is that the dis-
tinguishing characteristics of wave modes are the polarizations and wave vector directions,
which suffice to establish an identification.

Substantial research has been devoted to models that are built upon the premise of wave
modes that couple to produce wave turbulence in the nonlinear regime. One class of such
models, defined in the MHD regime, is the Goldreich-Sridhar theory (Goldreich and Srid-
har 1995), (also called “critical balance” after one particular assumption that is made in the
theory; see Sect. 3.2). This theory assumes that all possible excitations are Alfvén modes,
having polarizations strictly perpendicular to the applied mean magnetic field. The usual
argument is that other wave modes evolve semi-independently so that the evolution of the
Alfvén waves and their mode-mode couplings can be computed independently of the magne-
tosonic wave turbulence. This idea is also routinely carried over to kinetic regimes, in which
it is assumed that distinct wave modes, such as kinetic Alfvén waves (KAW), or whistlers,
will evolve independently. Numerical evidence is usually invoked to support this assump-
tion, but the idea remains somewhat controversial. For example, 2.5D kinetic simulations
that are initiated with Alfvén modes, i.e., zero parallel variance, appear to generate parallel
variance fairly rapidly, although at a lower level. Thus, in wave terminology, magnetosonic
mode turbulence is generated by Alfvén mode turbulence within the time span of the cur-
rent generation of simulations which are relative short due to finite computational resources,
typically less than, say, 1000 proton cyclotron periods. Furthermore it is well known that the
parallel variance component of solar wind turbulence is small but nonzero, as in the famous
“5:4:1” observations by Belcher and Davis (1971) using Mariner data.

Goldreich-Sridhar turbulence, which is purely Alfvén mode, evolves from a wave state
through standard weak turbulence couplings towards the critical balance state, provided
that the zero frequency modes (purely 2D nonpropagating fluctuations) are absent or very
nearly absent. This results in a wave turbulence that is highly oblique, with mainly near-
perpendicular wave vectors involved in the dynamics. At small scales approaching the ki-
netic range, the oblique Alfvén modes in Goldreich-Sridhar theory naturally go over to Ki-
netic Alfvén waves (Hollweg 1999), which have received substantial attention recently in
solar wind observations (Bale et al. 2005; Sahraoui et al. 2010)

Another wave mode discussed in connection with wave turbulence and a possible role in
the kinetic range of solar wind dynamics is the whistler mode (Hughes et al. 2014), which
generally is at higher frequencies than the KAWs and probably has lower amplitude in the
solar wind, but may still play a role in the operative dissipation mechanisms.

Much of the debate concerning relative roles of wave modes has taken place in the con-
text of recent high resolution measurements of fluctuations in the dissipation range of solar
wind turbulence (Bale et al. 2005; Alexandrova et al. 2009; Sahraoui et al. 2009, 2010).
First, it was observed that the electric and magnetic field fluctuations as well as the den-
sity fluctuations in the scale range of ρ−1

i ≪ k⊥ ≪ ρ−1
e display power law (not exponential)

spectra. While the knee at k⊥ρi ∼ 1 was originally attributed to some form of damping,
e.g., proton cyclotron damping or Landau damping of kinetic Alfvén waves (KAWs), it was
later suggested that the observed power law exponents can be explained solely on the basis
of dispersion effects at these scales (Stawicki et al. 2001). Consequently, this scale range
is now sometimes also called a “dispersion range”. Neglecting cyclotron absorption at the
proton resonance, it may be that significant ion/electron dissipation sets in, respectively, at
sub-ion scales, k⊥ρi ≫ 1, and electron scales, k⊥ρe ∼ 1. Beyond the electron scales one
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might expect the occurrence of exponential spectra (Alexandrova et al. 2009) although there
are also observations consistent with yet another power law (Sahraoui et al. 2009). Clearly,
the physics of this entire sub-ion scale range is of interest to understanding the heating of
turbulent space and astrophysical plasmas. The relative importance of ion and proton kinetic
mechanisms that might give rise to dissipation is likely determined by turbulence amplitude
(Wu et al. 2013b) in addition to kinetic plasma parameters such as the ion-to-electron tem-
perature ratio τ and the plasma beta β .

Standard approaches to studying the physics of the kinetic range of turbulence are La-
grangian PIC and Eulerian solutions of the Vlasov equation. as well as the hybrid (fluid
electron) variants of each of these. However, there have been special reduced models that
have emerged that include interesting subsets of the relevant physics. Nonlinear gyrokinetic
theory (see Schekochihin et al. 2009, and references therein) has been developed in the con-
text of magnetic confinement fusion research since the early 1980s, and today it serves as the
workhorse for computations in tokamak research. An adaptation of gyrokinetics, as embod-
ied e.g. in the GENE (Jenko et al. 2000) and AstroGK (Howes et al. 2008) codes, includes
a subset of possible gyrokinetic effects, and has been proposed as a model for turbulence
investigations in weakly collisional, strongly magnetized space and astrophysical plasmas
from the inertial range through the ion and electron kinetic ranges. The main limitation of
standard gyrokinetic theory is that it is based on a low-frequency (compared to the particles’
cyclotron motion) ordering, assuming a decoupling the fast gyrophase dependence from the
slow gyrocenter dynamics. Notably, this version of gyrokinetics lacks cyclotron resonance
and therefore maintains particle magnetic moments, thus placing it at odds with some theo-
ries of solar wind and coronal heating. We note in passing that this constraint can be removed
if necessary, leading to extended versions of gyrokinetics (Qin et al. 2000). In any case, the
formulation does include the physics of kinetic Alfvén waves, and goes over to Reduced
MHD in appropriate limits. As such gyrokinetics is well suited to describe the Goldreich-
Sridhar cascade. Gyrokinetics provides a computationally efficient method to study certain
problems, and it has been argued that it does capture the physics needed to describe the
observed turbulence (Howes et al. 2008) and heating (TenBarge et al. 2013); this however
remains a topic of lively discussion. It is also worth noting that gyrokinetics itself has been
treated using an LES approach (Morel et al. 2011, 2012).

Gyrofluid theory is an attempt to reduce gyrokinetics to a multi-fluid approach via cal-
culating moments and closing the resulting hierarchy of equations by providing suitable
closure schemes (Hammett and Perkins 1990; Passot et al. 2012). Kinetic effects like finite
Larmor radii and linear Landau damping can be retained with reasonable accuracy, provided
that the closures are carefully constructed. Also pioneered in the context of magnetic con-
finement fusion research in the 1990s, gyrofluid models have more recently been tailored
and applied to various space and astrophysical problems. The development and refinement
of this approach is a subject of on-going research.

It is at present unclear which model or models will provide what is needed for devel-
opment of effective LES for low collisonality plasmas. If we knew which processes were
important, then selection of the appropriate reduced description models such as 2.5D ki-
netic codes, hybrid codes with fluid electrons, gyrokinetic codes or gyrofluid codes, may
provide the efficiency needed to arrive at the needed answers more quickly. However if
those processes need to be identified, then more demanding 3D fully kinetic Vlasov or PIC
representations may be required.

We close the section with a few remarks concerning the prediction of turbulence spectra
in the kinetic range and the associated ambiguities of identifying dissipation mechanisms.
Within a wave turbulence framework, one may establish a contrast between expectations of



116 M. Miesch et al.

Fig. 4 (a) Magnetic and electric field spectra in the solar wind obtained from in situ measurements by the
Cluster spacecraft, from Bale et al. (2005). Corresponding spectra from (b) gyrokinetic simulations (Howes
et al. 2008), and from (c) electromagnetic PIC simulations (Karimabadi et al. 2013) are also shown for
comparison. In frames (a) and (b), wavenumbers are normalized by the thermal ion gyroradius ρi ; in frame (c)
the wavenumbers are normalized by the electron inertial scale de = c/ωpe = VA/Ωce

KAW-mode turbulence and whistler-mode turbulence. Solar wind observations indicate a
dispersive effect near the ion inertial scale that has been associated with KAWs (Bale et al.
2005) and with gyrokinetics (Howes et al. 2008); see Fig. 4. However this can qualitatively
be explained by any dispersive processes that include a Hall effect (Matthaeus et al. 2008b),
so this is not a conclusive observation. On the other hand, the KAW and whistler dispersion
relations, examined in detail in the observations, seem to favor KAWs more than whistlers
in kinetic wave number ranges above kρi ∼ 1 (Sahraoui et al. 2009). However a strong con-
clusion cannot be derived from this concerning dissipation processes because, first, we do
not know that the dissipation occurs at these wavenumbers—if it were to occur at much
higher electron wavenumbers, there may be whistlers or other higher frequency waves that
actually do the dissipating; and second, we do not know for certain that a wave turbulence
treatment is even appropriate. Figure 4 compares solar wind observations with both gyroki-
netic and kinetic simulations. In all cases the magnetic spectra break to something steeper
than the inertial (−5/3) range at or near ion kinetic scales. The latter may be the thermal ion
gyroradius ρi or, especially at low plasma beta, the ion inertial scale di = c/ωpi = VA/Ωci .
(Note that, when the plasma β is unity, ρi = di .) The PIC result shows a similar spectrum
(possibly closer in slope to −8/3 than to −7/3) with wavenumber normalized by elec-
tron inertial scale de = c/ωpe . Note that de/di = √

me/mi . Evidently the spectra themselves
do not strongly differentiate between models. Additional examples from computations are
shown in Matthaeus et al. (2008a), Sahraoui et al. (2009), and Alexandrova et al. (2009).
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If stochastic acceleration and scattering of orbits (Dmitruk et al. 2004; Chandran 2010;
Dalena et al. 2014) in or near current sheets absorbs substantial fluctuation energy, then
one may have to look beyond linear damping of wave modes for an effective dissipation
mechanism. Other heating processes are also evidently available near turbulent reconnection
sites and other coherent structures that are seen in very high resolution kinetic simulations
(Karimabadi et al. 2013; Wan et al. 2012b). Furthermore, other kinetic instabilities (such
as firehose and mirror instabilities) and the fluctuations they produce may be particularly
active near coherent structures (Servidio et al. 2014) and sharp gradients (Markovskii et al.
2006), and these may contribute to dissipation. More work will have to be done to investi-
gate, confirm and refine any of these emerging scenarios, in particular with respect to the
role of non-Maxwellian velocity space features seen in fully kinetic nonlinear simulations
(Hellinger and Trávníček 2013; Servidio et al. 2012, 2014).

3.5 Magnetic Reconnection, Current Sheets and Intermittency

Magnetic reconnection is an important element of the dynamics of plasmas, and has been
widely studied for more than half a century both theoretically and in applications. The basic
theory has been well reviewed in terms of MHD theory (Biskamp 2000; Forbes and Priest
2000; Zweibel and Yamada 2009), the complications that emerge in three dimensions (Priest
and Schrijver 1999), the transition from MHD to kinetic behavior (Birn and Priest 2007),
and in situ spacecraft observations (Birn and Priest 2007), and plasma experiments where
kinetic effects begin to become important (Yamada et al. 2010). We will not attempt to repro-
duce such reviews here. Many of the computational models in which reconnection has been
studied (see references above) have been formulated to include kinetic effects, but in small
domains with simple boundary conditions and smooth initial data, often based upon an equi-
librium current configuration. In such cases the reconnection that is studied may be viewed
as spontaneous reconnection, which itself is a rich and well-studied approach. However it
has become increasingly clear that the traditional way of studying magnetic reconnection
via standard equilibrium current-sheet setups needs to be complemented by investigations
of reconnection in more complex environments, and in particular in self-consistent turbulent
environments. As of now, we are still in the early stages of understanding this more complex
situation, in particular with respect to kinetic treatments of quasi-collisionless systems. One
key question in this context is the degree to which phenomena associated with reconnec-
tion, such as particle acceleration, can act as an alternative route to dissipation. Here we can
provide only a brief overview of this active research topic, which has been examined from a
variety of similar approaches.

The first description of turbulent reconnection (Matthaeus and Lamkin 1986), an initial
value problem consisting of a sheet pinch evolving in the presence of a specified broad-band
spectrum of fluctuations, might properly be called “reconnection in the presence of turbu-
lence.” In this case one finds bursty, nonsteady reconnection, in which one observes sporad-
ically forming intense current sheets and vortex quadrupoles, as well as transient multiple
X-points. This approach was found to lead to elevated rates of reconnection, for resistive
MHD, the increase for large systems being comparable to or greater than the increase due
to Hall effect (Smith et al. 2004). An important dynamical feature of this problem is the
amplification of the turbulence due to nonlinear instability of the initial configuration and
subsequent feedback (Lapenta 2008).

Another approach, which has usually been applied in three dimensions, also begins with a
sheet pinch initial condition, but instead of supplying turbulence through an initial spectrum
of fluctuations, a random source of fluctuations acts continuously through a forcing function
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applied to the region surrounding and including the current sheet (see Kowal et al. 2009;
Loureiro et al. 2009; Lazarian et al. 2012a, and references therein). This too gives rise to
strong turbulence effects, and as might be expected, the reconnection rate generally is tied
closely to the imposed turbulence amplitude.

Still another approach in understanding the relationship between turbulence and recon-
nection is to initialize a system with a large number of magnetic flux tubes, as well as random
velocity fields, such that the initial state triggers a complex cascade. The turbulent dynamics
leads to interactions between various pairs of adjoining magnetic flux tubes (or magnetic
islands), leading to reconnection with widely distributed reconnection rates, studied in 2D
MHD (Servidio et al. 2009, 2010) and more recently in Reduced MHD (see below and Wan
et al. 2014). This type of “reconnection in turbulence” might be viewed as similar to both
problems described above, but with the random perturbations caused by the cascade itself,
rather than being imposed by an initial spectrum or by a prescribed forcing function. Some
have argued that for systems having many flux tubes, this might be viewed as a more natural
way to drive reconnection with turbulence, but it has the disadvantage of requiring a large
system, both to establish a high Reynolds number cascade, and to adequately resolve the
smaller scale current sheets.

A further complication in understanding reconnection is that its geometry can become
quite complex in three dimensions (Priest and Schrijver 1999), departing strongly from the
familiar two dimensional forms. Nevertheless it seems rather certain that in 3D models,
as in 2D models, coherent electric current structures, including sometimes complex sheet-
like structures (Mininni et al. 2008), continue to play an important role. For example, cur-
rent sheets in RMHD models occupy a central role in models of coronal heating that have
been studied (Einaudi and Velli 1999; Dmitruk et al. 1998; Rappazzo et al. 2010) in the
so-called nanoflare scenario. This model is typically viewed as an implementation of the
Parker problem (Parker 1972) in which coronal field lines are stirred from below by photo-
spheric motions, which causes a braiding or tangling of flux tubes, the formation of current
sheets between pairs of them, and subsequent bursty reconnection and heating. Recently
there has been further progress in understanding the local statistics of current sheet dynam-
ics in the weakly three dimensional Reduced MHD model discussed above, thus advancing
out understanding of the role of these current sheets in reconnection, heating and intermit-
tent dissipation in 3D. Other, simpler, models can be constructed that take into account the
phenomenology of MHD by stipulating that dissipative structures are current and vortic-
ity sheets and that the typical time of energy transfer to small scales is modified in MHD
when taking into account the role of Alfvén waves (see, e.g. Grauer et al. 1994; Politano and
Pouquet 1995).

Zhdankin et al. (2013) carried out a quantitative statistical analysis of current sheets that
emerge in RMHD turbulence, and reported on the distribution functions of current sheets
with respect to their dimensions, peak current densities, energy dissipation rates and other
characteristics. Wan et al. (2014) reported a similar study using an RMHD coronal heat-
ing model, confirming many of the results in Zhdankin et al. (2013), while also computing
the distribution of reconnection rates and demonstrating the statistical connection between
current sheet dimensions and characteristic turbulence length scales. An interesting result
obtained in both the above studies is that the locus of maximum dissipation rate, always
the peak of current density for scalar resistivity, is not always, or even usually, located at
the component X-points. This is a property also found in laminar asymmetric reconnection
(Cassak and Shay 2007), having different magnetic field strength on the two flow sides of
the reconnection zone. Perhaps not surprisingly, larger reconnection rates are well correlated
with the proximity of the current maximum to the X-type critical point. These purely spatial
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analyses were extended into the temporal domain by Zhdankin et al. (2015) who tracked the
evolution of dissipative structures over time and measured the statistics of their lifetimes and
total energy dissipation. The results obtained so far for reconnection in RMHD are clearly
valuable in providing some information about the 3D case, and are specifically applicable
to low plasma beta, highly anisotropic systems driven at low frequencies, such as the coro-
nal flux tube problem. However the general 3D case will undoubtedly contain significantly
greater complexity (see e.g. Mininni et al. 2008), much of which remains to be explored.

The dynamics of the formation of current sheets and other small scale coherent struc-
tures is of great importance in understanding the intermittent cascade and its fate. Further-
more, current sheet formation may be quite different in a large turbulent system than it is
in a laboratory device in which the magnetic field to leading order is large scale, laminar,
and controlled by external coils. For example, it is well known that ideal-MHD flows that
develop in turbulence give rise to intense thin current-sheet structures (Frisch et al. 1983;
Wan et al. 2013). The ideal process of current sheet generation, observed at short times in
high resolution MHD simulations (Wan et al. 2013), apparently gives essentially identical
higher order magnetic increment statistics as are seen in comparable high Reynolds number
simulations—so we can understand that intermittency and the drivers of the conditions that
lead to reconnection are ideal processes. In retrospect, this could have been anticipated in
Parker’s original discussion of coronal flux tube interactions (Parker 1972). Reconnection
may subsequently be triggered at these sites, resulting in dissipation of turbulent magnetic
field.

The process of current sheet formation in the presence of weak dissipation can also in-
volve multiple magnetic X-points and secondary islands or flux tubes. This was originally
observed in reconnection with finite background turbulence, and in that context it was sug-
gested that secondary islands might elevate the reconnection rate (Matthaeus and Lamkin
1985, 1986; Loureiro et al. 2009). Biskamp (1986) suggested that secondary islands might
emerge due to a linear instability of thin current sheets above magnetic Reynolds numbers
of about 104. More recently this instability was revisited based on the recognition that the
tearing instability can become much faster if it originates in a current sheet already thinned
to the Sweet-Parker thickness (Loureiro et al. 2007; Bhattacharjee et al. 2009). The occur-
rence of this “plasmoid instability” has been supported by simulation studies using MHD
and PIC codes (Samtaney et al. 2009; Daughton et al. 2011b; Loureiro et al. 2012). Loureiro
et al. (2007) found that the growth rate of the secondary tearing instability of a Sweet-Parker
reconnection layer is higher than the inverse global Alfven transit time along the layer. M.
Velli and collaborators (e.g. Pucci and Velli 2014) have argued that this result means that, in
reality, such a layer cannot be formed in the first place. In fact when the linear growth rate of
tearing instability equals the inverse of τA = L/Va the current sheet necessarily is disrupted.
This occurs at a/L ∼ S−1/3, where S is the global Lundquist number, S = LVA/η. In the
asymptotic limit S → ∞, this value is much greater than for the SP layer, which suggests
that as a current layer is being formed, it is disrupted by secondary tearing well before it
reaches the SP stage. A similar conclusion was presented by (Uzdensky and Loureiro eprint
2014).

As mentioned above, one also finds the occurrence of numerous secondary islands in a
turbulence context, and this will also be the fate of any multiple island scenario at finite
amplitude. High resolution 2D MHD turbulence simulations display a proliferation of mag-
netic X-points at sufficiently high magnetic Reynolds number Rm (Wan et al. 2012b), with
the number of X-points and flux tubes observed in the simulations, scaling as R

3/2
m . A cau-

tionary word is that secondary islands (or plasmoids) also form due to numerical error, and
there is a requirement for careful resolution studies (Wan et al. 2010) to ensure that complex
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multiple plasmoid reconnection is physical and not numerical. It is unclear at present what
precise relationship exists between plasmoid instability and generation of secondary islands
turbulence. It is noteworthy that simulations, even laminar cases, usually trigger reconnec-
tion with a finite amplitude perturbation, and by the time multiple islands are observed there
are many finite amplitude modes participating. Whether the origin is instability or cascade, it
seems certain that at high magnetic Reynolds numbers, reconnection zones will be complex,
even in 2D, so that the details of the many individual reconnection processes will almost cer-
tainly not be resolved in LES, but rather their aggregate effect will need to be built into a
SGS model.

To close this section we note first the implications of the evolving perspectives on recon-
nection for an application, say, solar coronal heating. In such a complex driven system that
is far from equilibrium, one should properly view current sheet formation, dissipation, mag-
netic reconnection, and nanoflares, not as independent processes, but rather as outcomes of
a nonlinear MHD-turbulent cascade in a self-organized solar corona. Building such effects
into an LES/SGS model will be challenging.

Finally for completeness we list some of the outstanding questions that emerge from this
discussion:

1. Do singular (ideal) structures matter for the dissipative case?
2. Does the 2D case matter to understand the 3D case?
3. Are rotational discontinuities a central piece of 3D reconnection?
4. Does current sheet roll-up play a role?
5. What role do invariants (magnetic and cross helicity) have in reconnection?
6. Is the rate of dissipation independent of Reynolds number?
7. What are the dissipative and/or reconnecting structures, and how to identify them in a

real (natural) system?
8. What is the role of the magnetic Prandtl number?
9. Do small-scale kinetic effects that emerge in reconnection alter large-scale dynamics?

How?
10. Can Adaptive Mesh Refinement help in a general approach?

4 LES in MHD

The discussion in the previous section (Sect. 3) highlights some of the challenges in devising
reliable SGS models for LES of MHD turbulence. In this section we describe in more detail
the practical implementation of LES/SGS modeling, focusing on explicit approaches that
employ formal filtering operations designed to decompose the flow into large and small-
scale components. The large-scale motion is computed by solving the filtered non-stationary
equations of MHD while the SGS terms are parameterized and expressed in terms of the
filtered quantities. Though real plasma flows are likely much more subtle (Sect. 3), current
MHD-LES models often assume that the subgrid scales (SGS), also referred to as subfilter-
scales (SFS), are relatively isotropic, homogeneous, and universal.

LES is a method for simulation of flows with large Reynolds numbers. It is generally not
valid for low Reynolds number flows since it assumes that there is a substantial (order unity)
nonlinear transfer to small scales. Furthermore, as discussed in Sect. 3, the usual assumption
of isotropy at small scales may not be realized. This may occur in rotating and/or stratified
flows if the cut-off wavenumber where the filter is applied is in the anisotropic range. And,
it may occur more generally in turbulent MHD flows where anisotropy may progressively
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increase toward smaller scales unless this is mitigated by turbulent reconnection processes
which may help recover isotropy.

Initially the Large Eddy Simulation technique was developed for the simulation of HD
turbulence of neutral fluids, particularly in the context of atmospheric and engineering ap-
plications (Meneveau and Katz 2000; Sagaut 2006; Glazunov and Lykossov 2003). This
has been extended to MHD turbulence by several authors who adapted known HD closures
to the MHD case and developed new SGS models. (Agullo et al. 2001; Müller and Carati
2002a,b; Yoshizawa 1987; Zhou and Vahala 1991; Knaepen and Moin 2003). Our discussion
of the general approach follows that given in Chernyshov et al. (2006a). Our intention is to
illustrate how the MHD equations can be cast into a traditional LES framework. We make no
attempt at a comprehensive survey of existing LES/SGS models. For alternative approaches
see Miki and Menon (2008), Grete et al. (2015), and Schmidt (2015). Of particular note is
the model presented by Grete et al. (2015) in which the SGS stress tensor involves nonlinear
correlations between the resolved (filtered) velocity and magnetic field gradients, along with
Smagorinsky-like expressions for the SGS kinetic and magnetic energy proportional to the
corresponding rate of strain tensors. This is based on a Taylor expansion of the velocity and
magnetic field within a filter box as originally proposed for HD by Woodward et al. (2006a).

As stated above, a LES applies a filtration operation to the primitive equations as sug-
gested by Leonard (1974).3 For the incompressible MHD equations, the filter G satisfies the
following normalization property:

∫ b

a

G(xj − x́j , △̄j )dx́j = 1. (1)

Here G(xj − x́j , △̄j ) is the filter itself, of width �j . Then, the filtered velocity is ex-
pressed as follows:

ūj =
∫ b

a

u(x́j )G(xj − x́j , △̄j )dx́j , (2)

where a = xj − 1
2 △̄j and b = xj + 1

2 △̄j , △̄j = (△̄x, △̄y, △̄z). xj = (x, y, z) are axes of
Cartesian coordinate system. The other physical fields are filtered similarly.

Let us present all the variables of the problem as the sum of a filtered (large scale) and
unfiltered (small scale) component: u = ū + u′, B = B̄ + B ′, p = p̄ + p′ etc., with uj , Bj

the velocity and magnetic induction components, and p the pressure.
To simplify the modeled equations describing compressible MHD flows, it is convenient

to use mass-weighted filtering (also known as Favre filtering) so as to avoid the appearance
of additional SGS terms. It is determined as follows:

f̃ = ρf

ρ̄
, (3)

with ρ the density. The overline in Eq. (3), denotes ordinary filtering while the tilde denotes
mass-weighted filtering. Mass-weighted filtering is used for all physical variables other than
the pressure, density, and magnetic fields.

The Favre filtered velocity takes the following form

ũj = ρuj

ρ̄
=

∫ b

a
ρujG(xj − x́j , △̄j )dx́j∫ b

a
ρ(x́j )G(xj − x́j , △̄j )dx́j

. (4)

3For an innovative filtering approach based on wavelet transforms and adaptive mesh refinement see De
Stefano and Vasilyev (2013)
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The Favre filtered quantities can be presented in the form of a sum, for instance for the
velocity: u = ũ + u′′, where the double prime designates the small-scale component.

The Favre-filtered MHD equations take the following form (Chernyshov et al. 2006a):

– filtered continuity equation

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj

= 0; (5)

– filtered momentum conservation equation

∂ρ̄ũi

∂t
+ ∂

∂xj

(
ρ̄ũi ũj + p̄δij − 1

Re
σ̃ij + B̄2

2M2
a

δij − 1

2M2
a

B̄j B̄i

)
= −

∂τ u
ji

∂xj

; (6)

– filtered induction equation

∂B̄i

∂t
+ ∂

∂xj

(ũj B̄i − ũiB̄j ) − 1

Rm

∂2B̄

∂x2
j

= −
∂τ b

ji

∂xj

, (7)

as

ηBj − η̄B̄j = 0,

σ̄ij − σ̃ij = 0,

– where

σ̃ij = 2μ̃S̃ij − 2

3
μ̃S̃kkδij + ζ̃ S̃kkδij ,

σ̄ij = 2μSij − 2

3
μSkkδij + ζSkkδij ,

– and ρ—density; p—pressure; uj —velocity in direction xj ;
σij = 2μSij − 2

3μSkkδij + ζSkkδij —viscous stress tensor;
Sij = 1/2(∂ui/∂xj + ∂uj/∂xi)—strain rate tensor;
μ—dynamic viscosity; ζ—bulk viscosity;
δij —the Kronecker delta; εijk—the Levi-Civita symbol;
η = c2/4πσ—magnetic diffusion; σ—specific electric conductivity;
Fl = εijkjjBk/c—Lorentz force; B—magnetic field; j—current density.

Re = ρ0u0L0/μ0 is the Reynolds number, Rm = u0L0/η0—the magnetic Reynolds number.
Ms = u0/cs the Mach number, Ma = u0/ua—the magnetic Mach number, and cs is sound
speed determined by the relation: cs = √

γp0/ρ0; ua is the Alfvén speed, ua = B0/
√

4πρ0.
The bulk coefficient of viscosity ζ is neglected.

The terms on the right-hand-side of Eqs. (6)–(7) designate the influence of the SGS terms
on the filtered component:

τ u
ij = ρ̄(ũiuj − ũi ũj ) − 1

M2
a

(BiBj − B̄iB̄j ); (8)

τ b
ij = (uiBj − ũiB̄j ) − (Biuj − B̄i ũj ). (9)

Note that compressibility alters the form of the SGS stress tensor τ u
ij but the magnetic

SGS tensor τ b
ij is the same as for incompressible MHD. The SGS-scale hydrodynamic pres-

sure in typically neglected in the filtered equations for compressible, neutral flows with low
Mach numbers (Piomelli 1999; Zang et al. 1992). By extension, the SGS magnetic pres-
sure is also neglected in Eq. (8). However, attempts are being made at more general models.
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For example, Grete et al. (2015) incorporate the full SGS strain rate tensors, including the
symmetric components that account for SGS kinetic and magnetic pressure.

Let us consider the filtered equations (5)–(7) in more detail. As far as the small-scale
velocity (and the other flow variables) u′′ = u − ũ is unknown; it has to be estimated with
the use of the large-scale velocity obtained by means of filtration. Theoretically, there is no
functional dependence between the small-scale velocity u′′ and the large-scale one ũ, so any
estimation of u′′ will contain error. DNS can sometimes be used to estimate this error but this
can only be carried out for relatively low Reynolds numbers due to limited computational
resources.

Thus, the filtered system of MHD equations contains the unknown turbulent tensors τ u
ij

and τ b
ij . The task of the SGS model is to express these unknown tensors in terms of the

filtered flow components ũi and B̄i using some sort of turbulent closure (parameterizations).
Ideally, the closure model should capture such effects as the Richardson turbulent cascade.

Let us consider closures for τ u
ij and τ b

ij . To guarantee the non-negativity of subgrid energy,
these tensors must satisfy some conditions, called realizability conditions. A necessary and
sufficient condition of non-negativity is provided by the positiveness of the semidefinite
form for the turbulent tensors τij such that:

τii ≥ 0 for i ∈ {1,2,3},
|τij | ≤

√
τiiτjj for i, j ∈ {1,2,3},

det(τij ) ≥ 0.

(10)

Let us assume that the form of the turbulent tensor τ u
ij is analogous to the viscous stress

tensor (eddy viscosity model), while τ b
ij is analogous to ohmic dissipation. This yields:

τ u
ij − 1

3
τ u
kkδij = −2νt

(
S̃ij − 1

3
S̃kkδij

)
, (11)

τ b
ij − 1

3
τ b
kkδij = −2ηt J̄ij , (12)

where

S̃ij = 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)

is the large-scale strain rate tensor;

J̄ij = 1

2

(
∂B̄i

∂xj

− ∂B̄j

∂xi

)

is a large-scale magnetic rotation tensor. Here νt and ηt are scalar turbulent diffusion coeffi-
cients that may in general depend on the spatial coordinates and time.

In the right-hand side of Eqs. (11) and (12) the symmetric terms of the magnetic rate-of-
strain tensor:

S̄b
ij = (∂B̄i/∂xj + ∂B̄j/∂xi)/2,

and vorticity tensor:

J̃ u
ij = (∂ũi/∂xj − ∂ũj/∂xi)/2

are omitted, because their contribution is negligible in many circumstances (Müller and
Carati 2002a). However, Grete et al. (2015) have incorporated these symmetric terms and
find that they may be important in particular for supersonic flow regimes, as encountered, for
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example, in the interstellar medium. We note again that the main purpose of SGS modeling
is not to fully reconstruct the information lost due to filtration but rather to accurately capture
the influence of the SGS flow on the large-scale energy distribution and transport.

Often the term 1
3τ u

kkδij is combined with the thermodynamic pressure, ∇(p + 2
3 kδij ),

where k = (τ11 + τ22 + τ33)/2 is the SGS turbulent kinetic energy (Erlebacher et al. 1992).
In the present paper we consider the isotropic component explicitly, though the isotropic
component of the magnetic tensor (12) vanishes because of vanishing Jii ). The isotropic
component of τ u can be found from the realizability conditions (10), which give

τ 2
12 + τ 2

13 + τ 2
23 ≤ τ11τ22 + τ11τ33 + τ22τ33 (13)

By using (11), we obtain the following expression for the isotropic component of τ u

k ≥ 1

2

√
3
(
νt |Su|

)
, (14)

where |S̃u| = (2S̃u
ij S̃

u
ij )

1/2. The anisotropic and isotropic components of τ u can then be ob-
tained from Eqs. (11) and (14).

Different closures for the compressible MHD equations were developed by Chernyshov
et al. (2006b) and further analyzed by Chernyshov et al. (2007). LES of MHD turbulence
were compared with DNS and it was shown that the five closure models considered provide
sufficient dissipation of kinetic and magnetic energy at comparatively low computational
expense.

The effects of heat conduction were considered by Chernyshov et al. (2006c, 2008a) who
developed models for the SGS terms in the energy equation as well as for the magnetic terms
in the momentum and induction equations. LES of decaying MHD turbulence were per-
formed and their greater efficiency compared to DNS was demonstrated. SGS models were
similarly validated for studies of self-similar regimes in forced turbulence by Chernyshov
et al. (2010, 2012). Further work on the LES of compressible MHD turbulence focused on
the local interstellar medium (Chernyshov et al. 2008b) and the kurtosis and flatness of the
turbulent flow (Chernyshov et al. 2009). For a comprehensive review of SGS modeling see
Chernyshov et al. (2014).

Other models can be developed, using for example expressions deriving from the integro-
differential equations for energy spectral density in the framework of two-point closures of
turbulence like the Eddy Damped Quasi Normal Markovian closure (Chollet and Lesieur
1981). Newer versions have seen several developments implemented, such as (see Baeren-
zung et al. 2011 and references therein): (i) including both eddy diffusivities (viscosity and
resistivity) as well as eddy noise; indeed, the effect of the small scales on the large scales
is potentially a dissipation of energy (although eddy diffusivities can be negative) as well
as a stochastic forcing; (ii) adapting to spectra that differ from the classical (Kolmogorov
1941) law, a feature that can be useful in the presence of magnetic fields, rotation or strat-
ification, i.e. when the resulting energy spectra may be in a weak turbulence regime due to
wave-eddy interactions; and (iii) including in these two types of coefficients the effect of he-
licity (velocity-vorticity correlations) as encountered in tropical cyclones or in the Planetary
Boundary Layer. Helicity can be created by a combination of rotation and stratification and
can play a role in the generation of large-scale magnetic fields.

In fact, in MHD, there are two other helical fields that can be defined, namely the cross-
correlation between the velocity and the magnetic induction, and the magnetic helicity (cor-
relation between vector potential and magnetic induction in three space dimensions); their
effect on the large-scale dynamics of MHD flows has been considered in Yokoi (2013) where
the role of cross-correlation on turbulent reconnection is particularly stressed (see also Yokoi
and Yoshizawa 1993).
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There are other types of LES that have been developed. Of particular note are implicit
LES (ILES) methods that do not include any explicit SGS model but do include intrinsic
dissipation and dispersion due to the nature of the numerical algorithm. These methods re-
ceived much attention at the workshop and make up a growing fraction of astrophysical
and geophysical turbulence simulation. Their primary attraction is maximal resolution; dis-
sipation operates only at the grid scale, leaving larger scales essentially free of artificial
diffusion. However, it can be difficult to assess the influence of the dissipation scheme on
the properties of the resolved flow, particularly in the case of MHD where nonlinear spectral
interactions are intrinsically nonlocal. For further details on ILES see Grinstein et al. (2011)
and Schmidt (2015).

Another possibility that has been tested in two dimensions in MHD in a pseudo-spectral
code is to decimate Fourier modes after a given cut-off scale (Meneguzzi et al. 1996); the ra-
tionale behind such a decimation, whereby for example half the modes are taken for Fourier
shells beyond the chosen cut-off (and the method can be iterated), is that there are 4πk2

modes of characteristic wavenumber k, i.e. a large number at small scales; it is to be ex-
pected that their role is statistical (and with a stochastic component) and that therefore these
modes do not have to be all treated explicitly. For example, in a computation with 30723

grid points and with a de-aliasing using a 2/3 rule, the ratio of maximum to minimum wave
numbers is 1024. Of the 27+ × 109 modes in such a computation, half of them (or roughly
13 billions) are for wave numbers k ≥ 710, with ≈ 12 × 106 in the very last Fourier shell (of
unit width) alone (Marino et al. 2013).

In conclusion, it has been suggested that a possible future methodology to tackle complex
turbulent flows as found in astrophysics and space physics might be to combine multiple
approaches, including ILES, explicit SGS modeling, and also adaptive mesh refinement
(Woodward et al. 2006a; De Stefano and Vasilyev 2013; Schmidt 2015)

5 Applications

In this section we briefly consider several applications of LES in MHD of relevance to
astrophysics and space physics in order to highlight both the successes and the challenges
of the field.

5.1 Realistic LES of Solar Granulation

A prime example demonstrating the success of LES is solar granulation. This includes in
particular the uppermost visible surface of the solar convection zone where radiation trans-
port and time-dependent ionization are important. Following the early work (Spiegel 1971,
1972; Gough et al. 1976; Toomre et al. 1976) on compressible stellar convection in the
1970s, Nordlund (1982, 1985) pioneered the field of realistic convection simulations of the
solar surface, which has since advanced considerably (Stein and Nordlund 1989, 1998; Stef-
fen et al. 1989; Wedemeyer et al. 2004; Vögler et al. 2005; Rempel 2014). These simula-
tions employ a tabulated equation of state together with fully nonlocal radiation transfer
and realistic opacities. They used different combinations of subgrid scale modeling includ-
ing Smagorinsky viscosity, shock-capturing viscosities, hyperviscosities, Riemann solvers,
monotonicity schemes, etc., which can be classified as implicit LES (ILES).

Simulations of solar surface convection reproduce solar observations remarkably well,
both qualitatively and quantitatively. An example is shown in Fig. 5. The intensity contrast
in the simulated granules is about 16 %, which agrees with the observed contrast of about
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Fig. 5 Comparison between a granulation pattern from a simulation with 12 km grid size (left), an observed
granulation pattern from the Swedish 1-meter Solar Telescope at disk center (middle), and the simulated one
after convolving with the theoretical point spread function of a 1 meter telescope. The simulation images are
for wavelength integrated light intensity while the observed image is for a wavelength band in the near UV.
The image was taken on 23 May 2010 at 12:42 GMT with image restoration by use of the multi-frame
blind de-convolution technique with multiple objects and phase diversity (van Noort et al. 2005). Courtesy of
V.M.J. Henriques and G.B. Scharmer and adapted from Brandenburg and Nordlund (2011)

10 % after taking atmospheric seeing and the telescope point spread function into account
(Stein and Nordlund 1998). Other quantitative successes include power spectra, spectral line
formation, acoustic mode excitation, and local dynamo action (Nordlund et al. 2009; Rempel
2014).

An important question is to what extent the success of these simulations is due to the
ILES technique employed, or to aspects of the physics that make this application particularly
amenable to LES modeling. For example, the strong density stratification makes convection
highly anisotropic, with a dilution of vorticity tending to “laminarize” upflows while the
dynamics of the downflows are controlled mainly by buoyancy and entrainment. So, details
such as the forward transfer of kinetic energy into the dissipation scale are not specifically
tested. Furthermore, near the visible surface, the radiative diffusivity is large enough that
no SGS model is needed for the internal energy equation. Thus, a key component of the
dynamics is effectively captured through DNS. This may also account for the success of
geodynamo models, which are able to run with a realistic value for the magnetic diffusivity,
relegating SGS to the velocity field alone (Glatzmaier 2002; Jones 2011).

5.2 The Bottleneck Effect in HD Turbulence

Incompressible forced turbulence simulations have been carried out at resolutions up to
40963 meshpoints (Kaneda et al. 2003). A surprising result from this work is a strong bot-
tleneck effect (Falkovich 1994) near the dissipative subrange, and possibly a strong inertial
range correction of about k−0.1 to the usual k−5/3 inertial range spectrum, Interestingly, sim-
ilarly strong inertial range corrections have also been seen in simulations using a Smagorin-
sky subgrid scale model (Haugen and Brandenburg 2006) using 5123 meshpoints; see the
dashed line in Fig. 6. Here we also show the results of simulations with hyperviscosity, i.e.
the ν∇2 diffusion operator has been replaced by a ν3∇6 operator (Haugen and Brandenburg
2004), also with 5123 meshpoints (dash-dotted line). Hyperviscosity greatly exaggerates the
bottleneck effect, but it does not seem to affect the inertial range significantly; see Fig. 6.
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Fig. 6 Comparison of energy spectra of the 40963 meshpoints run (Kaneda et al. 2003), solid line, and 5123

meshpoints runs with hyperviscosity (dash-dotted line) and Smagorinsky viscosity (dashed line). (In the
hyperviscous simulation we use ν3 = 5 × 10−13 .) The Taylor microscale Reynolds number of the Kaneda
simulation is 1201, while the hyperviscous simulation of Haugen and Brandenburg (2004) has an approximate
Taylor microscale Reynolds number of 340 < Reλ < 730. For the Smagorinsky simulation the value of Reλ

is slightly smaller. Courtesy of Nils E. Haugen (Haugen and Brandenburg 2006)

Woodward et al. (2006a,b) found a similar bottleneck effect in ILES of homogeneous, de-
caying, sonic turbulence (Mach number 1). Furthermore, they implemented a nonlinear SGS
model (mentioned previously in Sect. 4) designed to supplement the numerical dissipation
and they found that the combined ILES+SGS model could both alleviate the bottleneck
effect and reproduce the spectrum of higher-resolution ILES across much of the resolved
dynamical range.

If the details of the inertial range spectrum are sensitive to the dissipation even in this
most fundamental of applications then what should we expect for more complex flows?
Does this call into question the central premise discussed in Sect. 1, that the dynamics of the
large scales can be reliably captured despite the challenges of modeling the SGS physics?

5.3 Problems in Dynamo Theory

5.3.1 Small-Scale Dynamos

Unlike many industrial applications where LES have been tested against experiments, this
is currently impossible for hydromagnetic flows exhibiting dynamo action. Except for as-
trophysical dynamos, there are not even a hand-full of laboratory experiments to date that
produce self-excited hydromagnetic dynamo action. Therefore, an important benchmark is
provided by DNS.

Dynamos come in two flavors: small-scale and large-scale dynamos (see Brandenburg
and Subramanian 2005; Brandenburg et al. 2012, for recent reviews). In the kinematic phase,
during which the magnetic field grows exponentially from a weak seed magnetic field, the
magnetic field exhibits a k3/2 (Kazantsev 1968) spectrum. Evidently, this spectrum diverges
toward small length scales, so one cannot expect to obtain the correct growth rate with LES.
This has consequences for understanding the excitation conditions of small-scale dynamos.
DNS have demonstrated that the onset of small-scale dynamo action depends on the value
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of the magnetic Prandtl number (see Iskakov et al. 2007 and Brandenburg 2011 for the clas-
sical incompressible case and Federrath et al. 2014 for the case of supersonic turbulence).
Meanwhile, the magnetic Prandtl number does not enter into traditional LES, so this ques-
tion cannot be addressed. This is also the case for the magneto-rotational instability (MRI),
which has been shown to be sensitive to the value of the magnetic Prandtl number.

As the small-scale dynamo saturates, the peak of magnetic energy moves gradually to-
ward larger scales, so there is a chance that this can be modeled with LES. However, sim-
ulations using a Smagorinsky-like magnetic diffusivity prescription have yielded saturation
field strengths that are significantly below those obtained with DNS (Haugen and Branden-
burg 2006). This shortcoming might be related to not yet being in the asymptotic regime in
which both magnetic and kinetic Reynolds numbers are large enough. A similar situation
might apply to the ratio of kinetic to magnetic energy dissipation, which is known to scale
with magnetic Prandtl number to a power that is around 0.6. Again, LES are not currently
able to shed any light on this, because the magnetic Prandtl number does not enter in stan-
dard subgrid scale models. Addressing this deficiency is a difficult but perhaps auspicious
challenge in need of further research.

5.3.2 Large-Scale Dynamos

Large-scale dynamos produce magnetic fields whose scale exceed that of the turbulent ed-
dies. They are believed to be relevant for understanding the global 22-year cycle of the Sun’s
magnetic field, and similar large-scale magnetic fields in other astrophysical bodies. A lead-
ing theory for understanding large-scale dynamos is mean-field theory which explains the
occurrence of correlation in the mean electromotive force that has a component parallel to
the mean magnetic field. This is generally referred to as the α effect, is typically related
to the presence of helicity in the system. However, DNS have shown that its magnitude is
reduced with increasing values of the microphysical magnetic Reynolds number (Cattaneo
and Hughes 1996). This is now generally referred to as catastrophic quenching and has to
do with a magnetic contribution to the α effect, which is proportional to the current helicity
of the fluctuating field, j ·b. Here, j = ∇ × b/μ0 is the current density of the fluctuating
magnetic field, b. It is in turn related to the magnetic helicity of the small-scale field, a · b,
where a is the magnetic vector potential of b = ∇ × a. It obeys the evolution equation

∂

∂t
a · b = −u × b · B − 2ημ0j · b − ∇ · (e × a), (15)

Here, u × b is the mean electromotive force, η is the microphysical magnetic diffusivity,
and e × a is the magnetic helicity flux, where e is the fluctuating electric field. We shall
now discuss two aspects of this equation that are relevant to LES.

First, if the system is homogeneous, i.e., there are no boundaries and no large-scale vari-
ations of turbulent intensity and helicity across the system, the divergence of the magnetic
helicity flux vanishes. In that case, there must be a balance between the first two terms on the
right-hand side of Eq. (15). Although the assumption of homogeneity is only of academic
interest, it does provide a test case that must be obeyed equally by DNS and LES. In partic-
ular, replacing the microphysical diffusion by hyperdiffusion changes the scale dependence
of the j · b term and has been shown to exaggerate the amplitude of the large-scale field
relative to that of the small-scale field (Brandenburg and Sarson 2002). This phenomenon
is well understood, but it would still be of interest to experiment with other representations
of small-scale magnetic dissipation to see how the large-scale magnetic field is being artifi-
cially modified by the numerical representation of the small-scale physics.
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Secondly, in the inhomogeneous case, magnetic helicity fluxes are possible. In principle,
these fluxes are gauge-dependent, and would thus be unphysical. If, in the statistically steady
state, the time derivative of a · b on the left-hand side of Eq. (15) vanishes, we have

0 = −2u × b · B − 2ημ0j · b − ∇ · (e × a), (16)

which implies that ∇ · (e × a) is now balanced by terms that are manifestly gauge-
independent. This is a remarkable property that allows us to measure the magnetic helicity
flux divergence. This has been done in several recent papers (Mitra et al. 2010; Hubbard
and Brandenburg 2010; Del Sordo et al. 2013). Interestingly, it turns out that the ∇ · (e × a)

remains subdominant for all simulations performed so far, and that only at the largest res-
olution available so far, it becomes approximately equal to the 2ημ0j · b term. Here, the
magnetic Reynolds number based on the wavenumber of the energy-carrying eddies is about
1000, which is still barely achievable in DNS.

It is at present unclear whether LES are able to lead to meaningful insight into the regime
of larger magnetic Reynolds numbers. One practical difficulty in determining e × a is the
computation of the magnetic vector potential, which is not always readily available.

5.4 Astrophysical Turbulence and MRI

Most astrophysical plasmas are highly compressible. Thus, capturing the influence of shocks
is essential. Since the viscous scale in shocks is far too small to be resolved, DNS is not
possible so modelers must turn to LES. All shock-capturing astrophysical codes include
some sort of subgrid-scale model, whether it be an explicit artificial viscosity (e.g. Stone
and Norman 1992) or an implicit numerical dissipation that arises through a Riemann solver
as in Godunov-type methods (e.g. Roe 1986; LeVeque 2002). These methods have been
used for over 50 years, and there is no question this approach works extremely well.

Developing more sophisticated SGS models for turbulence in highly compressible astro-
physical plasmas will be a formidable challenge. A complete understanding of how shocks
and contact discontinuities interact with the turbulent cascade and affect small scales is still
lacking and is a major research problem in its own right.

One very important example of astrophysical turbulence in which compressibility does
not play an essential role is the magnetorotational instability, or MRI (Balbus and Hawley
1991). MRI-induced turbulence is thought to dominate the energy and angular momentum
transport in magnetized accretion disks (Balbus and Hawley 1998).

The MRI is a particularly important case study for LES of MHD turbulence because the
role of artificial dissipation has been closely scrutinized in recent years. This scrutiny began
with an influential paper by Fromang and Papaloizou (2007) that demonstrated a decrease
in the amplitude of the MRI-induced turbulent stresses with increasing spatial resolution for
the specific case of a local shearing box with no net flux through the layer. The potential
implications were profound; If this trend were to continue to the dynamic ranges active in
actual accretion disks, then the turbulent transport would be drastically less efficient than
previously thought and insufficient to account for the outward angular momentum transport
necessary to sustain the accretion process (Balbus and Hawley 1998). They attributed this
behavior to the form of the numerical diffusion and its interaction with the source terms
that sustain the instability. Other LES simulations soon confirmed this result for similar
model configurations and demonstrated that the decrease in turbulent stresses with increas-
ing resolution does not occur when explicit diffusion is included (see Bodo et al. 2011, and
references therein).
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However, after nearly eight years of active research, it appears that this “convergence
problem” is not as serious as initially thought; the problem appears to be a symptom of this
particular model setup and goes away when other model configurations are considered. For
example, if the vertical extent of the computational domain is increased so that it is twice
as large as the horizontal extent, the convergence problem goes away, the turbulent stresses
increase by an order of magnitude, and the Fourier power spectrum is altered substantially.
Furthermore, the convergence problem does not arise for shearing boxes with a background
density stratification and/or a net magnetic flux through the layer (e.g. Fromang 2013; Turner
et al. 2014).

In the no-net-flux case, the MRI must sustain a shear dynamo and it may be that the
properties of this dynamo (which is a macroscopic flow related to the outer scale of the tur-
bulence) is not properly captured in small boxes and this introduces an artificial dependence
on SGS diffusion. Further insight into why the MRI behaves so differently in small, non-
stratified, shearing boxes with no net flux requires a deeper understanding of the MRI-driven
dynamo, possibly based on reduced models. This deeper understanding is also needed to ac-
count for the magnetic cycles found in the larger boxes (see Fromang 2013; Turner et al.
2014).

Furthermore, direct measurement of turbulent resistivity in the MRI by three different
groups all find the same result, using very different codes and Reynolds numbers (Guan and
Gammie 2009; Lesur and Longaretti 2009; Fromang and Stone 2009). The turbulent mag-
netic Prandtl number is close to one, which implies the resistivity is very large (of order uℓ,
where u and ℓ are characteristic turbulent velocity and length scales; this implies that the
turbulent magnetic Reynolds number is much smaller than that given by the Ohmic resistiv-
ity). This argues that macroscopic (turbulent) effects are more important than microscopic
diffusivities, which in turn argues that the MRI is not sensitive to SGS physics.

Further confidence in the ILES approach to modeling MRI turbulence comes from the re-
cent study by Meheut et al. (2015). They compared lower-resolution ILES to high-resolution
DNS and found good agreement, at least for the special case of a non-zero mean field and a
low magnetic Prandtl number, meaning that the magnetic diffusion was captured explicitly
while the kinetic energy dissipation was relegated to the numerical diffusion. In particular,
the kinetic and magnetic power spectra at low to intermediate wavenumbers in a DNS with
resolution (800, 1600, 832) were well reproduced by ILES runs with resolutions of order
1283 and 2563 at a fraction of the computational expense.

If, on the other hand, one wishes to construct explicit SGS models for LES of MRI, it
may prove beneficial to exploit the potential magnetic induction introduced by Salhi et al.
(2012), B ·∇Θ , where Θ is the potential temperature. This is an analogue of the potential
vorticity which, unlike the potential vorticity, is a Lagrangian invariant for a magnetized,
Boussinesq fluid.

5.5 Hybrid Kinetic-MHD Models

In Sect. 3.4 we emphasized that the small-scale dynamics of a plasma flow are often not
well represented by MHD. This is particularly the case for low-density plasmas such as the
solar wind or Earth’s magnetosphere. Departures from MHD must be treated by solving the
kinetic equations in some form, often with simplifying assumptions designed to mitigate
the computational requirements. See Sect. 3.4 for further details and for a survey of some
applications from solar and space physics.

Many other astrophysical flows require a kinetic-MHD description to capture the es-
sential physics. Here there is no question that SGS physics is important. For example,
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anisotropic conduction and viscosity on small scales can influence the large-scale dynam-
ics through the magneto-thermal and magneto-viscous instabilities (Balbus 2000, 2001;
Quataert et al. 2002). There is some hope that hybrid PIC simulations of small scales will be
able to provide a reasonable SGS model (including coefficients of conduction and viscosity)
that can be used in kinetic MHD models of various astrophysical problems including the
MRI (see Sect. 5.4), hot gas in galaxy clusters, and turbulence in the interstellar medium.

During the GTP workshop, W. Schmidt described a promising hierarchical approach for
including small-scale kinetic reconnection effects as an SGS model in MHD simulations.
The approach is similar to self-consistent mean-field dynamo theory but encompasses three
stages:

1. kinetic simulations of reconnection and dissipation providing effective transport coeffi-
cients (e.g., the turbulent EMF α and β coefficients) to account for kinetic plasma pro-
cesses;

2. In turn, these coefficients are to be used in non-ideal MHD simulations of turbulent dy-
namos and reconnection, providing a sub-grid model for stage 3;

3. quasi-ideal simulations of MHD turbulence.

6 Summary and Outlook

The diverse applications surveyed in Sect. 5 all have at least two things in common. First,
these systems are well described on large scales by the equations of MHD and second, they
are characterized by turbulent parameter regimes that are inaccessible to DNS. Computers
simply are not capable of modeling all relevant scales from the macroscopic scales to the
Larmor radius. Thus, in order to model such systems it is absolutely essential that we adopt
an LES approach.

For many systems it may be sufficient to simply minimize the artificial dissipation
through the use of numerical methods that include their own intrinsic dissipation. Such
methods, often referred to generally as implicit LES (though see Grinstein et al. 2011, for a
more precise definition of ILES), maximize a simulation’s dynamic range for a given spatial
resolution by confining the artificial dissipation to scales comparable to the grid spacing.

Other applications may be more subtle. For these, it may be necessary to model the
subgrid-scale physics more reliably in order to accurately capture the dynamics of the larger
scales. This can be achieved by applying a formal filtering procedure to the governing equa-
tions (Sect. 4) and then introducing parameterized or tabulated SGS models based on theo-
retical and phenomenological arguments or on local simulations that capture the small-scale
plasma physics.

When devising SGS models for MHD, some guidance can be provided by the much
more mature field of LES/SGS modeling in turbulent HD (non-magnetic) flows, which has
received much attention particularly in the context of atmospheric and engineering applica-
tions (Sagaut 2006), with a growing body of literature also on highly compressible astro-
physical flows (Schmidt 2015). Still, as discussed in Sects. 2–3, MHD possesses its own
unique challenges.

Some of the challenges in representing SGS physics arise from the nature of the MHD
equations themselves. The presence of magnetism in a turbulent, electrically conducting
fluid introduces an intrinsic anisotropy to the flow that becomes more pronounced with de-
creasing scale (Sect. 3). The small-scale flow is also intrinsically inhomogeneous, marked
by intermittent patches of enhanced dissipation and magnetic reconnection in current sheets.
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This small-scale dissipation and reconnection can heat the plasma and reshape the large-
scale magnetic topology. Other factors that can influence the coupling between large and
small scales include magnetic helicity, cross helicity, dynamic alignment, and the suppres-
sion of small-scale turbulence by large-scale magnetic flux (Sect. 2.2). Most of these effects
are neglected by current SGS models, which often assume some degree of isotropy and
homogeneity to make paramphenomenaeterizations more tractable. Further investigation of
these issues and associated SGS model development is sorely needed. Help in dealing with
inhomogeneity and intermittency may also come from adaptive mesh refinement (AMR),
which was auspiciously addressed at the GTP Workshop by O. Vasilyev (De Stefano and
Vasilyev 2013).

Yet, the challenges in modeling SGS physics do not stop there. In most plasma flows
(particularly those with low density), the MHD equations cease to be valid on the small-
est scales, giving rise to kinetic effects that lie outside the scope of ideal or even resistive
MHD. Such effects may regulate the dissipation of energy and magnetic helicity, the as-
sociated plasma heating, and the restructuring of the magnetic topology through magnetic
reconnection. Kinetic effects also introduce new phenomena that may influence large-scale
dynamics, including non-thermal particle acceleration and anisotropic heat conduction and
viscosity. A promising path forward is to couple MHD models to kinetic or hybrid codes
that capture some of the relevant kinetic effects (Sect. 3.4, 5.5). But this will not be easy; it
is a formidable theoretical and computational challenge.

As mentioned several times in this review, a promising way to validate LES models
in MHD and to guide their development is to compare them with higher-resolution DNS
or ILES. Preliminary results from astrophysical application have generally been promising
(Grete et al. 2015; Meheut et al. 2015) but more work is needed. Kinetic and hybrid simu-
lations can also be used to motivate and assess SGS models, particularly for models that are
not purely dissipative. We expect to see much progress on these fronts in the next 5–10 years.

There is no oracle or omen to tell you whether your application requires sophisticated
SGS modeling or if ILES is sufficient. This judgment must be made on a case-by-case basis
grounded on a thorough understanding of the underlying physics and indeed, it is still being
assessed even for the relatively well-established problems surveyed in Sect. 5. Though there
are robust features of MHD turbulence that can be exploited in SGS models, many aspects
of the SGS physics are likely not universal. Yet, if prudence is followed when designing
numerical models and interpreting the results, current applications do give us confidence
in the central premise of LES (Sect. 1), namely that real heliophysical and astrophysical
systems can be meaningfully modeled when only a fraction of the dynamically active scales
are explicitly resolved. LES of MHD turbulence is a still a nascent field, brimming with
challenges...and opportunities.
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