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A turbulent Ekman layer created by a steady wind near the water surface is investi-
gated using the numerical method of large-eddy simulations. The classical case of a
flow unaffected by density stratification and surface waves is revisited to understand
the internal structure of the flow and implications of the traditional assumptions of
constant effective viscosity and the ‘f -plane’ approximation. A series of numerical
experiments reveals that the Ekman solution needs correcting even in this case. The
examination of the effective viscosity hypothesis confirms its validity but shows that
the viscosity varies strongly with depth. It increases in the subsurface layer of thickness
about 1/4 the turbulent length scale and decreases below this level. A Bessel function
solution is proposed that corresponds to the approximate effective viscosity profile
and matches with the LES results. Strong flow dependence on the latitude and wind
direction is detected and explained by the effects of redistribution of turbulent kinetic
energy between the velocity components and modification of the vertical transfer of
turbulent momentum.

1. Introduction
In this paper, we consider the classical problem of a turbulent flow generated near

the ocean surface by a steady wind stress in the presence of Earth’s rotation. Interest
in this flow goes back to Ekman’s landmark work published in 1905. (An interesting
historical review of Fridtjof Nansen’s polar expedition and other events preceding
Ekman’s paper is given by Walker (1991).) Ekman assumed a balance between the
Coriolis force, viscous friction and the pressure gradient, adopted the approximation
of constant vertical eddy viscosity Az, and derived a solution now known as the
‘Ekman spiral’. In the case of a steady wind in the x-direction, the steady-state
Ekman velocity profile in the open ocean is (for the northern hemisphere)
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Here u and v are the components of the mean horizontal velocity, z∗ is the ver-
tical coordinate directed downward, V0 =

√
2πτ0/Dfρ is the amplitude of the surface

velocity, D = π(2Az/f )1/2 is the Ekman depth of exponential decay, τ0 is the surface
shear stress, and f = 2Ω sin λ is the Coriolis parameter, with Ω and λ being, corres-
pondingly, the Earth’s rotation rate and latitude. According to the solution (1.1), the
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Figure 1. (a) Model geometry. (b) Time- and horizontally averaged hodographs of the
horizontal current. ———, calculations at 90◦-latitude; – – –, Ekman profile (1.1); – · · –,
Bessel function solution (3.8) obtained with a piecewise-linear effective viscosity profile (see
§ 3.3 for details).

mean horizontal current spirals clockwise and decays exponentially with depth. At
the surface, the velocity is directed at 45◦ to the right (northern hemisphere) or the
left (southern hemisphere) of the wind direction. An illustration of the Ekman spiral
is given in figure 1(b).

Simple, elegant, and clearly supported by laminar laboratory experiments, the
Ekman model is, however, rather dissimilar to the actual turbulent flow near the
ocean or lake surface. In fact, a persistent well-developed Ekman spiral has, probably,
never been observed in field measurements (see Price & Sundermeyer 1999 for a
review). The reason is, of course, that the over-simplified character of the model
leads to significant inconsistencies between the predicted and actual flows. The most
important ones are discussed below, and some of them are addressed in the later
sections of this paper.

The basic assumptions of Ekman’s model of a steady-state wind and absence of
any geostrophic currents are never completely realized in the open ocean. Particularly
important is the effect of transient winds. Attempts have been made to sort out the
Ekman layer component of measured data (see, e.g., Price, Weller & Schudlich 1987;
Chereskin & Roemmich 1991; Gnanadesikan & Weller 1995; Price & Sundermeyer
1999). Some important results have been found. In particular, the angle between the
surface current and the wind was observed to be, typically, smaller than the 45◦ angle
predicted by the Ekman model. A high degree of uncertainty, however, still remains
associated with field observations of the phenomenon.

The assumption of a constant turbulent viscosity Az is a crude approximation. In
real flows, the intensity of turbulent momentum transport expressed by Az is expected
to vary with depth and time. This problem was recognized soon after Ekman’s paper
of 1905. Rossby & Montgomery (1935) tried to derive a realistic distribution Az(z

∗)
using the mixing-length theory. The mixing length � was assumed to decrease with
depth in the bulk flow but to increase linearly in a thin boundary layer near the
surface. This adjustment resulted in a modification of the Ekman velocity profile. The
angle between the wind and surface current was found to depend on the wind speed
and latitude and, in most cases, to be slightly smaller than 45◦.
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Another attempt in this direction was made by Madsen (1977). His model, with
the turbulent viscosity increasing linearly with depth, produced a rather unrealistic
velocity profile with the surface velocity directed at an angle of about 10◦ to the wind
direction.

Recent field measurements (see, e.g., Price et al. 1987; Schudlich & Price 1998; Price
& Sundermeyer 1999) have revealed the importance of a serious limitation of the
Ekman model, recognized by Ekman himself. The model ignores the profound effects
of density stratification and buoyancy. Stable stratification can cause considerable (2
or 3 times) reduction of the depth of the Ekman layer. The wind-driven transport
becomes trapped in a relatively shallow surface layer. On the other hand, evaporative
cooling during the night time can initiate turbulent thermal convection that leads to
the growth of the surface mixed layer and to release of the constraint imposed by
stratification. A combination of the two effects is known to produce distinguishable
diurnal oscillation of the flow (Price, Weller & Pinkel 1986). A turbulent convective
layer under the surface can also be produced in shore regions during cold air outbreaks
(Zikanov, Slinn & Dhanak 2002).

Another important flow mechanism is associated with surface gravity waves.
The Lagrangian Stokes drift and associated Langmuir instability and turbulence
generation have been a subject of field observations (see, e.g., Langmuir 1938; Thorpe
1984; Weller & Price 1988), theoretical modelling (Craik & Leibovich 1976), and
numerical simulations (see McWilliams, Sullivan & Moeng 1997; Skyllingstad, Smith
& Crawford 2000). It has been found that, under typical wave and wind conditions,
increased turbulence intensity and coherent Langmuir circulation strongly affect the
fundamental flow properties such as the mean velocity profiles and characteristics of
turbulent momentum transport.

The classical Ekman model is based on the ‘f -plane’ approximation and, thus,
neglects the possible influence of the horizontal (tangential to the Earth surface)
component of the Earth’s rotation vector and, thus, possible dependence of the
flow on latitude and wind direction. Evidence that this simplification is not always
justified was found in the systematic linear stability analysis of the Ekman profile
by Leibovich & Lele (1985). Both for the atmospheric and for oceanic Ekman
layer, the properties of unstable modes (growth rates and bands of unstable
wavelengths) were found to be strongly affected by the horizontal component
of the Earth’s rotation vector. Further indications of the possible impact of the
latitude and the wind direction on flow properties were obtained in a DNS study
of the turbulent atmospheric Ekman layer by Coleman, Ferziger & Spalart (1990),
where variations as large as 20% in the surface friction velocity and as large as
70% in the angle between the free-stream velocity and the wall shear stress were
found.

There are other aspects of the flow behaviour that are disregarded by the classical
Ekman model, such as bottom friction in flows in the shelf zone (see Pond & Pickard
1993, p. 117).

The purpose of this paper is to revisit the classical Ekman theory and investigate
the consequences of two phenomena: variability of the turbulent viscosity coefficient
and flow dependence on the latitude and wind direction. We separate these effects
from the other complicating processes listed above. A turbulent shear flow generated
by a constant surface wind stress is considered. Such an investigation is important
for understanding the general properties of a variety of turbulent flows in the upper
ocean. Furthermore, our formulation can be considered as a model of the offshore
flows in fetch-limited wind conditions.
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In § 2, we discuss the formulation of the problem, the large-eddy simulation (LES)
approach, and the numerical method. The results of numerical experiments and an
analytical solution are presented in § 3. Finally, concluding remarks are made in § 4.

2. Problem formulation
2.1. Simplifying assumptions

We simulate a turbulent flow in the upper (10 to 100 m deep) layer of the water
column. The flow is generated by a steady and spatially homogeneous wind stress τ0

applied at the water surface. We assume the following:
(i) The fluid is incompressible and neutrally stratified.
(ii) The flow is statistically homogeneous in the horizontal directions. This means

that the effect of Ekman pumping is ignored.
(iii) The water surface is approximated by an impermeable flat lid. The Stokes drift

and Langmuir turbulence due to the surface gravity waves are neglected.
(iv) Since the typical Reynolds number of the real ocean flow is very high (107 or

higher based on the typical mean velocity and depth), we do not attempt to resolve
the viscous boundary layer near the upper surface. Instead, the boundary condition
is prescribed in the form of a constant shear stress. The molecular viscosity term is
neglected in the equations. Only the momentum transfer produced by the turbulent
stresses is taken into account. This corresponds to the assumption of infinite Reynolds
number.

(v) The flow is assumed to be in the deep ocean, so no rigid bottom is included. The
effect of the underlying water column is modelled by an idealized free-slip boundary
condition discussed below.

A sketch of the model geometry is given in figure 1(a).

2.2. Governing equations and boundary conditions

The non-dimensional governing equations are

∂u

∂t
+ u · ∇u = −∂p

∂x
+

∂τ1k

∂xk

+ v − 2Ωτyw, (2.1)

∂v

∂t
+ u · ∇v = −∂p

∂y
+

∂τ2k

∂xk

− u + 2Ωτxw, (2.2)

∂w

∂t
+ u · ∇w = −∂p

∂z
+

∂τ3k

∂xk

− 2Ωτxv + 2Ωτyu, (2.3)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.4)

where (u, v, w) are the velocity components, p is the pressure, and τik is the subgrid-
scale turbulent stress tensor. We use the Cartesian coordinate system with the origin
at the base of the computational domain. The z-axis is pointed upward normal to
the water surface and the x-axis is aligned with the direction of wind stress. The full
Coriolis force is included so the f -plane approximation is not invoked. The Coriolis
force associated with the tangential component Ωτ of the Earth’s rotation vector has
the x- and y- (normal to the wind) non-dimensional components Ωτx = (1

2
) cot λ cos γ

and Ωτy = (1
2
) cot λ sin γ , where λ is the latitude, and γ is the angle between the wind

direction (x-axis) and the direction of Ωτ (south–north direction) (see figure 1a).
To non-dimensionalize the equations, we used the surface friction velocity

u∗ = (τ0/ρ0)
1/2 as the typical velocity scale. Here, τ0 is a constant wind stress applied
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at the water surface and ρ0 is the constant fluid density. For the time scale, we use
the reciprocal Coriolis parameter 1/f = 1/2Ω sin λ (Ω is the angular velocity of the
Earth’s rotation). The turbulent length L = u∗/f is used as the length scale, and the
surface shear stress τ0 serves as the scale for pressure p and the turbulent stresses τik .

It can be noted that, under the assumptions made in our model, the non-dimensional
solution at a given latitude and wind direction is representative of the solution with
any value of the wind stress τ . Dimensional differences, of course, can be recovered
by rescaling.

The equations (2.1)–(2.4) are solved numerically in a rectangular computational
domain of dimensions Lx × Ly × Lz. Since the flow is assumed statistically homo-
geneous in the horizontal plane, periodic boundary conditions are applied in the x-
and y-directions. At the bottom of the computational domain we impose the free-slip
conditions

w = τ13 = τ23 = 0 at z = 0. (2.5)

The upper surface is approximated by a flat impermeable lid, i.e. with a constant
shear stress in the x-direction

w = 0, τ13 = τ0, τ23 = 0 at z = Lz. (2.6)

Important for the subsequent discussion are the equations for horizontally averaged
momentum. We use angle brackets 〈. . .〉 to denote averaging over a horizontal plane,
while 〈. . .〉v and 〈. . .〉t denote, respectively, volume averaging and a combination of
horizontal and time averaging. The velocity field can be decomposed into the mean
horizontal current

U (z, t) = 〈u〉, V (z, t) = 〈v〉 (2.7)

and the perturbations

u′ = u − U, v′ = v − V, w′ = w. (2.8)

Taking the horizontal average of the momentum equations (2.1)–(2.3) we obtain

∂U

∂t
= − ∂

∂z
[〈u′w〉 − 〈τ13〉] + V,

∂V

∂t
= − ∂

∂z
[〈v′w〉 − 〈τ23〉] − U. (2.9)

Assuming that the flow is steady in a statistical sense, time averaging leads to

〈v〉t =
∂

∂z
[〈u′w〉t − 〈τ13〉t ], −〈u〉t =

∂

∂z
[〈v′w〉t − 〈τ23〉t ], (2.10)

which expresses the balance between the Coriolis force and the vertical (resolved
plus subgrid-scale) transfer of horizontal momentum. Allowing for the existence of a
depth-dependent effective viscosity to parametrize the diffusive effects of the turbulent
fluctuations we can express the total stresses as

〈u′w〉t − 〈τ13〉t = −Az(z)
d〈u〉t

dz
, 〈v′w〉t − 〈τ23〉t = −Az(z)

d〈v〉t

dz
, (2.11)

so the momentum balance becomes

d

dz

[
Az(z)

d〈u〉t

dz

]
+ 〈v〉t = 0,

d

dz

[
Az(z)

d〈v〉t

dz

]
− 〈u〉t = 0. (2.12)

Below, we obtain Az(z) through averaging the calculated three-dimensional turbulent
fields and use it to solve the model problem (2.12).
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2.3. Subgrid-scale closure

In the large-eddy simulation, the turbulent stresses τij are expressed in terms of the re-
solved velocity field. We use the dynamic subgrid-scale (SGS) closure (Germano et al.
1991 and Lilly 1992). At each time step, we calculate the resolved strain rate tensor

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

and approximate the deviatoric part of the turbulent stress tensor as

τij = 2νtSij , (2.13)

where νt (x, y, z, t) is the turbulent eddy viscosity.
The eddy viscosity is computed using the Smagorinski formula

νt = C2
s �

2|S|, (2.14)

where �= (�x�y�z)
1/3 is the filter width based on the local grid spacing in each

direction, and |S| =(2SijSij )
1/2. The dynamically adjusted parameter Cs(z, t) is calcu-

lated according to

C2
s =

〈LijMij 〉
〈MijMij 〉 . (2.15)

The tensors Lij and Mij are determined after the application of the test filter with the

width �̂= (�̂x�̂y�z)
1/3 with �̂x = 2�x and �̂y = 2�y . The test filtering operation is

performed in the horizontal plane using the spectral cut-off procedure. The formulae
for Lij and Mij can be found, for example, in Lilly (1992).

2.4. Numerical method

A combination of pseudo-spectral and finite-difference numerical methods is applied
for spatial discretization of the equations. In the two horizontal directions, the
periodic boundary conditions allow use of the highly efficient Fourier pseudo-spectral
technique based on the fast Fourier transform. Spatial derivatives are evaluated using
the Fourier representation, while the multiplications required for nonlinear and SGS
terms are performed in physical space. The aliasing errors generated in the transforms
between the physical and spectral spaces are removed using the 2/3-rule technique.

In the vertical direction, the method of finite differences on a variable grid is used.
The computational nodes are clustered near the upper surface. The z-coordinate is
transformed according to

ζ = exp

(
z − Lz

Z

)
, (2.16)

where Z � Lz is a constant stretching parameter. In the transformed coordinate, the
equations are discretized using the second-order central differences on a staggered
grid. Integer nodes ζi = i�ζ , i = 0, . . . , Nz are used to calculate w, τ13, and τ23 and
to satisfy the vertical component of the momentum equation. The limits ζ0 and ζNz

correspond to the lower and upper boundaries of the domain, respectively. All the
other variables and equations are treated at the half-integer points ζi+1/2 = (i + 1/2)�ζ ,
i = 0, . . . , Nz − 1. More details on the clustered grid technique used in this work can
be found in Slinn & Riley (1998).

There is a certain controversy concerning LES simulations on anisotropic computa-
tional grids. For the dynamic Smagorinski model, the issue was addressed by Scotti,
Meneveau & Fatica (1997). They found that the dynamic model automatically adjusts
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to the grid anisotropy of the same kind as occurring in our case if the degree of
anisotropy is not too high. In our calculations, �x = �y and the ratio �z/�x varies
between, approximately, 0.4 next to the surface and 1.9 at the bottom. Therefore, no
anisotropy corrections were included in the dynamic procedure.

The time-marching scheme is the fully explicit time-splitting method based on
the third-order Adams–Bashforth algorithm with variable time step. The size of the
time increment is adjusted after each time step so that it tends to be the maximum
increment allowed by the current stability conditions. Further details can be found in
Slinn & Riley (1998). The only new feature added in the present work is that a single
time step increase is restricted to 1% of the current time step.

To verify the numerical code we performed calculations of the laminar flow at low
Reynolds number. The basic flow and its first instability were in agreement with the
Ekman model and the linear stability analysis of Leibovich & Lele (1985).

3. Numerical experiments
3.1. Procedure and parameters

We performed a series of numerical experiments. Each experiment involved a simula-
tion of the prolonged flow evolution for a particular set of physical and numerical
parameters. The simulation started with a previously found turbulent flow field or with
artificial initial conditions composed of the classical Ekman spiral and superimposed
random weak velocity perturbations. Depending on the nature of the initial conditions,
the initial flow adjustment occurred as a transformation of a turbulent flow or a rapid
sequence of the laminar flow instability and transition to turbulence. In both cases,
the adjustment was dominated by strong turbulent damping and typically required a
time range shorter than 1/3 of the non-dimensional inertial time period TI = 2π. The
situation was clearly different from our test calculations of a laminar Ekman layer
below the first stability limit, in which case very slowly decaying coherent inertial
oscillations of the horizontal current were detected.

After completing the period of initial evolution, a developed turbulent flow was
simulated and the turbulent flow statistics were collected for a time range of few TI .

We carefully analysed the impact of the artificial boundary conditions at the lateral
walls and at the bottom as well as the possible effects of the chosen numerical
resolution. A detailed discussion is given in the Appendix. Here we mention that
the domain dimensions Lx × Ly × Lz = 1 × 1 × 1.5 (measured in the turbulent length
scale L = u∗/f ) proved sufficient to minimize boundary effects. Computations with 64
collocation points in the horizontal directions and 120 vertical grid points provided
results virtually indistinguishable from results obtained at higher resolution. Therefore,
the above-mentioned parameters were adopted for the main body of the simulations.
The grid stretching parameter was Z = 1.

The simulations were performed on a 600 MHz DEC ALPHA workstation and a
CRAY T3E parallel computer equipped with 300 MHz SGI processors. For the latter,
the numerical code was hand-parallelized. One time step required nearly 3 s and 0.7 s
of CPU time of, respectively, the workstation and 24 parallel CRAY processors.
Typical simulations were for 5 × 105 steps.

3.2. Flow in the f -plane

In this section, we give a detailed description of the results of the numerical experiment
performed in the f -plane, i.e. at 90◦-latitude. As a first illustration, figure 1(b) shows
the hodograph of a time- and horizontally averaged horizontal current (the averaging
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Figure 2. Volume-averaged kinetic energy as a function of time at the latitude 90◦. (a) Total
kinetic energy of each velocity component, 〈u2〉v , 〈v2〉v , and 〈w2〉v . (b) Kinetic energy of the
mean horizontal current (E) and turbulent fluctuations (e).

procedure is discussed below) compared to the classical Ekman spiral (1.1). The
surface velocity V0 and the exponential decay depth D in (1.1) are chosen to match
the surface velocity and the depth of exponential decay of the computed profile.

The current distribution differs significantly between the Ekman model and the
computations. At the surface, the computed angle between the current and the wind
stress is about 28.5◦. We will see below that the angle changes with the latitude and
wind direction. But, in agreement with the field observations, it remains smaller than
the 45◦ predicted by the classical Ekman model.

3.2.1. Flow evolution

The evolution of global quantities of the developed turbulent flow is illustrated in
figure 2. Figure 2(a) shows the volume-averaged kinetic energy of each velocity com-
ponent 〈u2〉v , 〈v2〉v and 〈w2〉v . The kinetic energy of the mean horizontal current
E = 〈U 2 + V 2〉v/2 and of the turbulent fluctuations e = 〈u′2 + v′2 + w′2〉v/2 are pre-
sented in figure 2(b). One can see that, during the entire experiment, the mean current
contains about 80% of the flow kinetic energy.

The strong slow oscillations of volume-averaged quantities in figure 2 can be
of purely stochastic nature, but, perhaps, can also include an inertial component
correlating with the Earth’s rotation. Even though inertial oscillations associated with
the initial flow spin-up die off rather quickly (within TI/3) due to strong turbulent
damping, the possibility of an inertial component in the developed flow affected by
the Coriolis force cannot be discarded outright. The issue has to be investigated
carefully in a long run lasting, as in our experiment, many inertial time periods TI .
The question of inertial oscillations in a turbulent flow driven by steady forcing and
influenced by the Earth’s rotation has been raised a few times in the literature. For
example, in DNS of the atmospheric Ekman layer, Coleman et al. (1990) did not
find any predominance of the inertial frequency over other low frequencies. However,
even in the presence of turbulent damping, we cannot exclude the possibility of such
a predominance in the oceanic case, where there is no bottom friction.

To verify the possibility of predominantly inertial oscillations in our flow, the
kinetic energy curves shown in figure 2(a, b) were interpolated into an equidistant
grid and Fourier decomposed. The time interval 2TI < t < 11TI was investigated. No
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Figure 3. Two-point velocity correlations (C11 + C22 + C33)/3 (see (3.1)) in the developed
turbulent flow at 90◦-latitude. The correlations are calculated at (a) z = Lz − 0.04 and
(b) z =Lz − 0.22 and averaged over the time period of 5TI . Contour step is 0.1. The contour
levels range between 0.05 and 0.95 in (a) and between −0.05 (shown by dashed lines) and 0.95
in (b). Arrows show the direction of the time-averaged mean shear d(〈u〉t , 〈v〉t )/dz.

dominance of the inertial frequency was detected. Therefore, we can conclude that
the inertial oscillations, even if present, are absorbed by the stochastic background.

The precaution of time averaging over intervals consisting of an integer number of
inertial periods thus becomes unnecessary. However, the averaging interval has to be
taken large enough to eliminate the possible impact of the slow fluctuations shown in
figure 2. In the Appendix, we show that averaging over 5TI is accurate in presenting
the first three statistical moments of the turbulent fluctuations. Intervals of this length
were used in the bulk of the numerical experiments discussed in this paper.

3.2.2. Velocity correlations

The two-point velocity correlations

Cij =
〈u′

i(x)u′
j (x + r)〉t〈

u′2
i (x)

〉1/2

t

〈
u′2

j (x)
〉1/2

t

(3.1)

were calculated on the horizontal planes at z = Lz − 0.04 and z =Lz − 0.22. In (3.1),
x and r are two-dimensional horizontal vectors and u′

i are defined by (2.8). Figure 3
shows the summed correlation coefficients (C11 + C22 + C33)/3 calculated for the
developed turbulent flow fields and time-averaged over 5TI . The point r = 0 is trans-
lated into the centre of the domain.

Visual investigation of snapshots of the velocity and vorticity fields and of instant-
aneous spatial correlations (not shown here) did not reveal any organized large-scale
structures in the developed turbulent flow. The correlation contours in figure 3 support
this observation. Both at z = Lz − 0.04 and z = Lz − 0.22, the direction of maximum
coherence is very close to the direction of time-averaged vertical gradient of mean
velocity d(〈u〉t , 〈v〉t )/dz (shown by the arrows). This indicates that vortex stretching
by the mean shear is the reason for the elongation of the correlation contours.

Comparing the plots in figures 3(a) and 3(b) we find that, at larger depth, the flow
becomes more isotropic and correlated over larger distances. This can be explained,
respectively, by the decrease of the mean shear and the growth of the typical size
of turbulent eddies with depth. Another important conclusion, which can be drawn
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from the plots in figure 3, is that the horizontal dimensions of the computational
domain are large enough to avoid any serious impact of the periodic boundaries on
the turbulent fluctuations.

3.2.3. Vertical profiles

In this section we present the horizontally and time-averaged vertical profiles of
the flow properties. The time-averaging is over 2TI < t < 7TI (cf. figure 2).

The mean horizontal velocity is shown in figure 4(a) in component form and in
figure 1(b) as a hodograph. It must be stressed that, in our model, the shape of the
mean current profile is dictated solely by the Ekman mechanism, i.e. by the balance
between the vertical momentum transfer and the Coriolis force. We ignore potentially
important factors such as density stratification, convection, and Langmuir turbulence.
It has been shown (see, e.g., Price & Sundermeyer 1999) that stratification leads to the
‘flattening’ of the Ekman profile, while Langmuir turbulence (see McWilliams et al.
1997) and convection enhance the vertical mixing and, thus, lead to a more vertically
uniform current.

To quantify the difference between the computed and theoretical profiles we calcu-
lated the depth distributions of the angle α(z) between the mean current (〈u〉t , 〈v〉t )
and the wind direction (x-axis), and of the speed of the current S = (〈u〉2

t + 〈v〉2
t )

1/2 (see
figure 1a). In figure 4(b), they are compared with the corresponding Ekman solutions
αE = 1

4
π + (π/D)(Lz − z) and SE(z) = V0 exp[−(π/D)(Lz − z)]. Only the upper part

z > 0.5 of the computational domain is shown since the weakness of the current at
z < 0.5 renders the reliable evaluation of the characteristics of the computed current
impossible. The surface velocity V0 and the Ekman depth D used for the theoretical
solution are chosen to match the surface velocity and the depth of exponential decay
of the computed current (i.e. the depth where the current speed is equal to Vsurfacee

−π).
One can see in figure 4(b) that, for the angle α, the computed and theoretical curves

are fairly close. The current obtained in the simulations rotates in accordance with
Ekman’s predictions. The only really meaningful deviation is in the thin (about 0.05
turbulent lengths) surface layer. The difference in the current speed is more dramatic.
For approximately 1.4 <z < 1.5, the amplitude of the computed current decays much
faster than the amplitude of the Ekman solution. As a result, the Ekman model
over-estimates the current speed in the upper part of the flow.

Further comparison is made in figure 4(c). The coefficient (Price & Sundermeyer
1999)

Fl =
dS

dz

(
S

dα

dz

)−1

(3.2)

is shown as a function of depth. For the Ekman spiral (1.1), the coefficient is
Fl ≡ 1. Overall values between 2 and 3 were observed in oceanic flows with stable
density stratification (Price & Sundermeyer 1999). One can see in figure 4(c) that the
calculated Fl is close to the Ekman value. An exception is the thin subsurface layer,
where markedly increased Fl can be attributed to the growth of dS/dz.

The profiles of root-mean-square turbulent velocity fluctuations are shown in
figure 4(d). The larger part of the turbulent kinetic energy is contained in the area
of strong shear in the upper third of the computational domain. The turbulent eddies,
however, seem to penetrate deeper into the water column and, according to figures 4(d)
and 4(a), have significant intensity in the region where the mean shear is small.
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Figure 4. Horizontally and time-averaged profiles calculated in the developed turbulent flow
at 90◦-latitude. (a) Components of the mean horizontal current 〈u〉t and 〈v〉t ; (b) angle α
between (〈u〉t , 〈v〉t ) and the wind direction and the speed of current S; (c) coefficient Fl (3.2);
(d) root-mean-square velocity fluctuations; (e) mean turbulent eddy viscosity νt (2.14) and the
rate of subgrid-scale kinetic energy dissipation εt (3.3) (note different vertical and horizontal
scales used to plot νt and εt ); (f ) skewness coefficients (3.4) of the velocity components.

Figure 4(e) shows the vertical profile of the rate of kinetic energy dissipation
determined from

〈ε〉t = −〈τijSij 〉t . (3.3)

The dissipation is concentrated near the surface, the degree of concentration being
much higher than for the turbulent kinetic energy or the mean shear. This feature
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can be explained in many different ways. In particular, we conclude that the typical
size of turbulent eddies grows with depth (cf. velocity correlations on figure 3). This
leads to the decrease of the amplitude of the strain rate components Sij and to the
decrease of the turbulent eddy viscosity coefficient νt . As an illustration, the time- and
horizontally averaged profile of νt is presented in figure 4(e). Note that νt represents
turbulent diffusivity at the subgrid scales and, thus, is completely different from
the effective viscosity Az(z) discussed below that represents bulk diffusivity at both
resolved and subgrid scales.

Further information about the resolved turbulent fluctuations is provided by the
time- and horizontally averaged skewness coefficients

Su =
〈(u′)3〉t

〈(u′)2〉3/2
t

, Sv =
〈(v′)3〉t

〈(v′)2〉3/2
t

, Sw =
〈(w)3〉t

〈(w)2〉3/2
t

(3.4)

presented in figure 4(f ). Positive or negative skewness means more frequent large
excursions of the field variable in, respectively, positive or negative directions. One
can see in figure 4(f ) that the sign of Su and Sv approximately follows the sign of,
respectively, 〈u〉t and 〈v〉t . This indicates that the strong turbulent bursts are more
often in the direction of the mean flow than opposite to it. The negative sign of
Sw shows that the localized descending motions are somewhat predominant over the
ascending ones.

3.2.4. Vertical stress and effective viscosity

Figure 5(a, b) shows profiles of horizontally and time-averaged vertical stresses. One
can see that the mean Reynolds stresses 〈u′w〉t and 〈v′w〉t are considerably stronger
than the corresponding subgrid-scale stresses 〈τ13〉t and 〈τ23〉t . Most of the vertical
momentum transport in our model is carried by the turbulent motions at resolved
length scales.

One of the principal goals of our simulations is to revisit the effective viscosity
concept applied to the Ekman layer problem throughout its almost century-long
history. In general, the existence of a single coefficient or even a single function of
depth that systematically relates the mean total stress to the mean shear is ques-
tionable. The momentum transport is affected by the turbulent motions in the entire
range of length and time scales of the flow. We can only hope that in a particular
case, such as the Ekman flow, the mean flow profile can provide sufficient information
for a meaningful effective viscosity model.

We start by verifying whether the mean total stress vector (−〈τ13 + u′w〉t ,
〈−τ23 + v′w〉t ) is aligned with the mean shear (d〈u〉t /dz, d〈v〉t /dz). Figure 5(c) demon-
strates the angles β1 and β2 between, respectively, each of these vectors and the
wind direction. The alignment is nearly perfect. We can justifiably apply the effective
viscosity model to describe the mean flow. For comparison, figure 5(c) includes
the angle βE =(π/D)(Lz − z) that describes the rotation of the mean shear vector in
the Ekman profile (1.1). There is a fairly good agreement between our computations
and the Ekman model.

As a second step, we assume that the effective viscosity is a function of depth and
evaluate it using the computed mean shear and total stress profiles as

Az(z) =

[
〈−τ13 + u′w〉2

t + 〈−τ23 + v′w〉2
t

]1/2

[(d〈u〉t /dz)2 + (d〈v〉t /dz)2]1/2
. (3.5)
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Figure 5. Horizontally and time-averaged profiles calculated in the developed turbulent
flow at 90◦-latitude. (a) x, z components of subgrid-scale and Reynolds stresses. (b) y, z
components of subgrid-scale and Reynolds stresses. (c) angles between the wind direction and,
correspondingly, the direction of the total stress vector (β1), mean shear vector (β2), and the
shear vector in the Ekman solution (βE). (d) ——, Effective viscosity coefficient (3.5) evaluated
using the computed stress and shear profiles; – · · – · · –, linear dependence Az = κ(Lz − z) used
by Madsen (1977); · · · · ·, constant-viscosity coefficient AzE =0.0144 of the Ekman model;
– – –, piecewise-linear approximation of the viscosity profile used for an approximate solution
(3.8). (e) Amplitude of the mean current vs. logarithm of depth. (f ) Mixing length (3.6).

The result is shown in figure 5(d). The viscosity grows rapidly with depth and reaches
its maximum at z = Lz − 0.222. Below this level, Az decreases monotonically. No
reliable evaluation could be performed below z =0.5 because of the small amplitude
of mean current and stress. For comparison, we plot the non-dimensional constant
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effective viscosity AzE =0.0144 that has to be used in the Ekman model to achieve
equal depth D for exponential decay of the speed of the current.

The effective viscosity profile in figure 5(d) is dissimilar to the depth-dependent
distributions of Az proposed earlier for the classical Ekman problem. For example, the
entire profile cannot be approximated by a linear function (in our non-dimensional
units) Az = κ(Lz − z), with von Kármán constant κ = 0.41 proposed by Madsen
(1977). It is interesting to note, however, that in the thin subsurface layer the
slope of calculated Az is close to the von Kármán slope (see figure 5d). Madsen
showed that an effective viscosity increasing with depth can produce a log-layer
in the mean velocity profile. To verify this possibility we plot, in figure 5(e), the
defect of the mean current amplitude as a function of ln(Lz − z). For comparison,
a logarithmic line κ−1 ln(Lz − z) is shown. The log-layer behaviour is apparent in
the subsurface region to the depth of, approximately, 0.2 of the turbulent length
scale.

The closeness of the computed and logarithmic velocity profiles seems to indicate an
agreement between our LES results and the classical similarity theory (e.g. Csanady
1967). We would like, however, to warn against drawing any far-reaching conclusions.
The similarity theory is based on the existence of two independent length scales of
the flow: the inner scale z0, which can be the typical roughness of a rigid surface;
or the viscous scale ν/u∗. The logarithmic profile is assumed in the region of overlap
of inner (viscous) and outer layers. Our computations are performed in the limit of
infinite Reynolds number, i.e. at z0 → 0. In this sense, we simulate only the ‘outer
layer’ flow.

Csanady (1967) used the data of field measurements of the atmospheric Ekman
layer in order to evaluate the theoretical constants. In particular, it was found that
the shear angle α and the drag coefficient cd are related as sin α ≈ 10.7(cd)

1/2. For our
case, we take the angle between the surface current and shear stress α ≈ 28.5◦ and
the drag coefficient cd ≈ u2

∗/S
2
surface ≈ 0.00626, which results in sin α ≈ 6.03(cd)

1/2. The
agreement with Csanady’s prediction is rather poor.

To compare our results with the model proposed by Rossby & Montgomery (1935)
and other models based on the mixing-length assumption we evaluated the mixing
length lmix(z) assuming that Az = l2mix[(d〈u〉t /dz)2 + (d〈v〉t /dz)2]1/2, which gives

lmix =
[(−τ13 + 〈u′w〉t )

2 + (−τ23 + 〈v′w〉t )
2]1/4

[(dU/dz)2 + (dV/dz)2]1/2
. (3.6)

The profile of lmix is shown in figure 5(f ). Here, the mixing length grows with depth
but much slower than κ(Lz − z) with κ = 0.41 predicted by Prandtl’s theory. This
result disagrees with the model of Rossby & Montgomery (1935) who assumed that
the mixing length grows with depth in a thin boundary layer but monotonically
decreases in the bulk flow.

3.3. Solution for a piecewise-linear effective viscosity profile

As we saw above, the mean horizontal current can be thought of as a solution
of equations (2.12) for the averaged momentum with the depth-dependent effective
viscosity Az(z) such as shown by the solid line in figure 5(d). One is tempted to
try to find an analytical solution for 〈u〉t , 〈v〉t using a plausible approximation of
Az(z). A simple approximation is, of course, the piecewise-linear profile shown in
figure 5(d). Three points of the Az(z) profile are used to plot the lines: the point
next to the upper surface z = Lz − 3.3 × 10−3, where we took Az = 0.4 × 10−3, point
of the maximum Az = Amax

z = 0.256 × 10−1 at z = zmax = Lz − 0.222, and the point at
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z = Lz − 0.492, where we used Az = 0.17 × 10−1. The approximation provides positive
Az to the depth of one turbulent length, i.e. at z >Lz − 1. Therefore, the solution
below is valid in this area.

We introduce the complex velocity W = 〈u〉t + i〈v〉t and the vertical coordinate z∗

directed downward, and rewrite (2.12) as

d

dz∗

(
Az

dW

dz∗

)
= iW. (3.7)

For Az given by a linear function az∗ + b, the general solution of (3.7) can be obtained
in terms of Bessel functions

W = AJ0(χ) + BY0(χ), (3.8)

where A and B are arbitrary complex constants and

χ = (−1 + i)ζ, ζ =

(
2z∗

a
+

2b

a2

)1/2

.

Alternatively, (3.8) can be expressed in terms of Kelvin’s functions of real argument
η =21/2ζ as

W = C[ber(η) + i bei(η)] + D[ker(η) + i kei(η)]

with new arbitrary constants C =A+ iB and D = −2B/π (see Magnus, Oberhettinger
& Soni 1966, p. 148).

To find A and B (or C and D) we apply the matching conditions at z = zmax, the
boundary conditions

dW

dz∗ =
1

Az(0)
at z∗ = 0

and W = 0 at some point deep in the column but still in the area where ζ is real.
We performed the procedure using the piecewise-linear viscosity profile described

above and found the following approximate Bessel function solution for the Ekman
layer on the f -plane:

W = (−28.0 + i36.8)J0(χ1) + (−36.7 − i28.0)Y0(χ1) if z > Lz − 0.222, (3.9)

W = (−0.047 − i0.066)J0(χ2) + (0.060 − i0.036)Y0(χ2) if z < Lz − 0.222, (3.10)

where

χ1 = (−1 − i)(20.3(Lz − z) + 7.6)1/2, χ2 = (−1 − i)(−63.9(Lz − z) + 66.3)1/2.

To obtain a dimensional solution, the right-hand sides of (3.9) and (3.10) have to be
multiplied by the velocity scale u∗ and the coordinates χ1 and χ2 replaced by their
dimensional counterparts

χ∗
1 = (−1 − i)(20.3z∗/L + 7.6)1/2, χ2 = (−1 − i)(−63.9z∗/L + 66.3)1/2.

Here, z∗ is the depth, the solution is defined at Z∗ < L, with L = u∗/f being the
turbulent length scale.

The Bessel function solution (3.9) and (3.10) is illustrated in figures 1(b) and 6(a, b).
The solution is considerably closer to the computed profile than the Ekman model
solution. It is clear that one can achieve even better agreement by optimizing the
coefficients a and b of the linear viscosity profiles.
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Figure 6. Comparison between the computed mean velocity profile (——), Ekman model
(– · · – – · · –), and the Bessel function solution (3.8) for the piecewise-linear effective viscosity
(– – –). Horizontal components of the mean current are shown for the developed turbulent
flow at 90◦-latitude.

3.4. Effects of latitude and wind direction

In this section we deal with the possible effect of the tangential component Ωτ

of the Earth’s rotation vector on the flow. Our discussion is based on a series of
numerical experiments performed at different values of the latitude λ and the angle γ

between the wind and the south–north direction (see figure 1a). In each experiment,
we calculate the initial flow development for at least 2TI and then collect the statistics
for the time interval of 5TI .

The hodographs of mean currents obtained at λ=45◦, λ=15◦, and λ= 90◦ are
presented in figure 7(a–c). The shape of the current profile becomes increasingly
dependent on the wind direction as the latitude decreases. In particular, the south-
east (in the northern hemisphere) winds with 0<γ < 90◦ correspond to the profiles
with the velocity vectors turned more to the right in comparison with the f -plane
case (larger angle between the wind direction and surface current), while the opposite
winds with 180◦ < γ < 270◦ lead to the turn of the current more to the left. To quantify
the transformation, figure 7(d–f ) shows how the wind direction and latitude affect
the angle α(Lz) between the surface current and the direction of the wind (figure 7d),
the speed of the mean current at the surface S(Lz) (figure 7e), and the depth of
exponential decay of the current D, at which the speed is S = S(Lz) e−π (figure 7f ).
It is interesting to see that the depth D differs significantly between the cases with
south-east and north-west winds. The current amplitude decays much slower for
180◦ <γ < 270◦ than for the opposite wind directions. We will show below that this
behaviour is caused by, respectively, increased or decreased vertical turbulent transfer
of momentum.

At first glance, such a dramatic transformation of solutions with the latitude and
wind angle is difficult to explain. Neither the equations (2.9) for the mean current nor
the evolution equation for the turbulent kinetic energy contain any terms explicitly
depending on λ or γ . The key idea that helps to understand the role of Ωτ is
recognition of the ability of the associated Coriolis force to affect the turbulent
momentum transfer and to redistribute the turbulent kinetic energy between the
velocity components. A general explanation of the underlying physical mechanism
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function of γ at different λ; (e) speed of the surface current S(Lz); (f ) depth of exponential
decay of the current D.

can be found, for example, in Tritton (1978). It is based on the observation that the
Coriolis force results in additional correlations between the vertical and horizontal
turbulent velocity fluctuations.

To see the impact of tangential rotation we write the equations for the components
of turbulent kinetic energy 〈u′2〉/2, 〈v′2〉/2, 〈w2〉/2 and for the components 〈u′w〉,
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〈v′w〉 of vertical turbulent transport of the horizontal momentum:

1

2

∂

∂t
〈u′2〉 = −∂U

∂z
〈u′w〉 − 2Ωτy〈u′w〉 + OT, (3.11)

1

2

∂

∂t
〈v′2〉 = −∂V

∂z
〈v′w〉 + 2Ωτx〈v′w〉 + OT, (3.12)

1

2

∂

∂t
〈w2〉 = 2Ωτy〈u′w〉 − 2Ωτx〈v′w〉 + OT, (3.13)

− ∂

∂t
〈u′w〉 = −2Ωτy[〈u′2〉 − 〈w2〉] + OT, (3.14)

∂

∂t
〈v′w〉 = −2Ωτx[〈v′2〉 − 〈w2〉] + OT. (3.15)

Here we retained the non-negligible terms explicitly depending on Ωτx and Ωτy and
the terms expressing the turbulence production by the mean shear. All the other
terms, which are algebraically identical to the case with Ωτ =0 are collected under
the abbreviation OT (other terms). The − and + signs on the left-hand sides of
(3.14) and (3.15) are chosen so that they correspond to time-derivatives of positive
momentum transfer in the upper part of the flow domain.

Now we can see that the Coriolis force associated with the tangential rotation
vector has a dual impact on the turbulent fluctuations. First, as seen in (3.14)–(3.15),
it affects the vertical turbulent momentum transfers 〈u′w〉, 〈v′w〉 which, in turn,
influence both the mean currents U , V (see (2.9)) and the turbulence production by
the mean shear. Second, the Coriolis force redistributes the turbulent kinetic energy
between the horizontal and vertical velocity components (see (3.11)–(3.13)).

The terms −2Ωτy[〈u′2〉 − 〈w2〉] and −2Ωτx[〈v′2〉 − 〈w2〉] in (3.14) and (3.15) can
be considered as source/sink terms in the dynamic equations for the momentum
transfers. All our computations confirmed that the horizontal velocity fluctuations
are stronger than the vertical, i.e. 〈u′2〉 > 〈w2〉 and 〈v′2〉 > 〈w2〉 (see figure 4d). Thus, we
have sources for both −〈u′w〉 and 〈v′w〉 if Ωτx < 0 and Ωτy < 0, i.e. if 180◦ <γ < 270◦

and sinks if Ωτx > 0 and Ωτy > 0, i.e. 0◦ <γ < 90◦.
Our computations confirmed that, in agreement with the source/sink mechanism,

the Coriolis force associated with Ωτ significantly affects the vertical transfer of
momentum. The transfer intensifies for 180◦ <γ < 270◦ and subsides for 0◦ <γ < 90◦,
the effect increasing at lower latitude. An illustration is presented in figure 8(a, b).

The effect on the mean flow of increasing (decreasing) vertical momentum transfer
can be expressed in terms of the increasing (decreasing) effective viscosity (3.5). We
calculated Az(z) for each of the cases presented in figure 7 and found behaviour
in agreement with this assumption. An example is in figure 8(c), which shows the
Az(z)-profiles for γ = 45◦ and γ = 225◦.

The redistribution of turbulent kinetic energy between the velocity components
is another important aspect of the flow transformation caused by Ωτ . The energy
is transferred from the horizontal to vertical velocity fluctuations if Ωτx and Ωτy

are negative and in the opposite direction if they are positive. To illustrate this
phenomenon figure 8(d) shows the ratio 2〈w2〉v/〈u′2 + v′2〉v between the turbulent
kinetic energy of vertical and horizontal velocity fluctuations as a function of γ at
different λ.

The energy transfer from horizontal to vertical fluctuations at negative Ωτx and
Ωτy does not mean that the energy of the horizontal fluctuations decreases. In fact, we
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found that it increases due to the growth of the turbulent momentum transfer 〈u′w〉,
〈v′w〉 that causes net growth of turbulence production by the mean shear. Also we
found that the total non-dimensional turbulent kinetic energy e =(1

2
)〈u′2 + v′2 + w2〉v

does not remain constant. One can see in figure 9(a) that it exceeds the f -plane level
for 180◦ <γ < 270◦ and drops below this level for 0 <γ < 90◦.

Clearly, the increased (decreased) energy input into the turbulent fluctuations
means corrections to the energy E = (1

2
)〈U 2 +V 2〉v of the mean flow. Figure 9(b)

demonstrates that E increases with decreasing latitude if 0<γ < 90◦ and decreases if
180◦ < γ < 270◦.

In order to finalize the discussion concerning the proposed mechanism through
which Ωτ influences the flow we will show that the modification of the turbulent
momentum transfer can be responsible for the transformation of the shape of the
mean current illustrated in figure 7. We will assume that the effect of enhanced
(reduced) momentum transfer is expressed by increased (decreased) effective viscosity
and use the Bessel function solution for a piecewise linear distribution of Az.

An inspection of viscosity profiles in figure 8(c) reveals that the distinction
potentially affecting the mean flow most is in the upper part of the profile where
Az increases with depth. The slope of Az(z) is defined by the value of the maximum
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Figure 10. Velocity hodographs obtained as the Bessel function solutions (3.8) for
zmax = Lz − 0.222 and varying Amax

z .

effective viscosity Amax
z and the level zmax where this value is achieved. The lower part

of the profile is believed to be less important since the mean flow and the fluctuations
are much weaker in this area.

We calculated the Bessel function solutions for several piecewise-linear viscosity
profiles. Each of them was defined using three points as follows. The upper point in
all profiles was taken as in the f -plane case, i.e. Az = 0.4 × 10−3 at z =Lz − 3.3 × 10−3.
The difference between viscosity distributions was achieved through varying Amax

z (see
the computed effective viscosity in figure 8c for comparison). The depth of maximum
viscosity zmax was kept constant at zmax = Lz − 0.222. To define the lower linear part
of each profile we use the point z =1 and prescribed Az(1) = Amax

z − 0.008 for all cases
except for the case with Amax

z = 0.005 where we took Az(1) = 0.001.
The results presented in figure 10 clearly indicate validity of the proposed

mechanism. Increasing Amax
z (i.e. enhancing effective viscosity) leads to the shift of the

mean current to the left so that the angle between the current velocity and the wind
becomes smaller at any depth. Another effect seen in figure 10 is the decrease of the
current amplitude with increasing Amax

z . Both these effects are in agreement with the
current modification observed in our experiments (see figures 7 and 9b).
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Figure 11. Effect of small latitude λ on the flow at the wind angle γ = 225◦: (a) total energy
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momentum transfer; (c) y-component 〈v′w〉 of the turbulent momentum transfer; (d) velocity
hodographs of the mean current.

3.5. Flows near the equator

Separate consideration should be given to flows in the equatorial zone, i.e. at λ→ 0.
Some elementary consequences are the growth of the typical dimensional depth of the
layer L = u∗/f = 2u∗Ω sin λ and increase of the relative strength of the tangential
rotation Ωτ . In addition to that, examination of equations (3.11)–(3.15) reveals
modification of the mechanism by which the tangential rotation affects the flow. For
the south–east winds with 0< γ < 90◦, the effect of Ωτ remains the same as at higher
latitude. The associated Coriolis force suppresses the turbulent momentum transfer
and redistributes the turbulent kinetic energy from vertical to horizontal fluctuations.

For north-west winds with 180◦ <γ < 270◦, however, the action of Ωτ reverses as
λ decreases below a certain level. At large negative Ωτx and Ωτy , the energy transfer
from horizontal to vertical fluctuations can lead to the situation where 〈u′2〉 < 〈w2〉 and
〈v′2〉 < 〈w2〉, thus converting the first terms on the right-hand side of (3.14) and (3.15)
into sinks of the turbulent momentum transfer. One may expect that the Coriolis
force associated with large negative Ωτx and Ωτy will suppress the turbulent flow.

To verify this hypothesis we performed simulations at γ = 225◦ and λ=1◦, 3◦, and
8◦. The results presented in figure 11 support the scenario outlined above. At λ= 8◦, the
flow is qualitatively similar to the flow at γ = 15◦. However, as the latitude decreases
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further, the average turbulent kinetic energy of the vertical fluctuations becomes
approximately equal to the energy of the x- and y-fluctuations (at λ=3◦) and exceeds
them at smaller latitude (see figure 11a). This clearly causes the suppression of the
turbulent momentum transfer (figure 11b, c) and the shift of the velocity hodograph
to the right (figure 11d).

4. Conclusion
In this paper we have investigated the turbulent Ekman layer generated by a steady

wind stress applied at the water surface. The traditional formulation of the problem
that ignores the effects of stratification, surface convection, and gravity waves was
considered. In an extensive series of LES numerical experiments, we showed that
even in this case the classical Ekman model does not adequately describe the mean
current. The main causes for this are the inadequacies of the assumptions in Ekman’s
model of a constant effective viscosity coefficient Az and of a flow that is not affected
by the tangential component of the Earth’s rotation vector (‘f -plane’ approximation).
Our simulations confirm that neither of these assumptions is justified.

We found that the effective viscosity concept by itself is relevant for the mean
flow but the viscosity Az varies strongly across the layer. It grows with depth in
a subsurface layer of thickness about 1/4 the turbulent length scale u∗/f , reaches
the maximum value of about 0.025u∗

2/f , and subsequently decreases with depth.
The simulations revealed that the effective viscosity variability results in a mean flow
profile that deviates significantly from the Ekman spiral. For example, on the f -plane,
the angle between the surface current and the wind was found to be 28.5◦, which is in
clear disagreement with Ekman’s 45◦ prediction. A particularly strong difference was
detected in the rate of decay of the computed current amplitude in the subsurface
region that was much higher than predicted by the Ekman model.

In an attempt to reconcile the model and simulations, we approximated the depth
distribution of the effective viscosity by a piecewise-linear function. This led to a simple
Bessel function solution that demonstrated better agreement with the numerical results
than the original Ekman model.

Numerical experiments performed with different latitude λ and wind angle γ

revealed that the flow is strongly affected by the Coriolis force associated with the
tangential component of the Earth’s rotation vector. Both the mean current and
turbulent fluctuations were found to depend on λ and γ . Perhaps, the most interesting
aspect for oceanographic applications is that, except for the latitude of 90◦, the
maximum (minimum) vertical turbulent momentum transfer occurs for north-west
(south-east) winds.

Our analysis confirmed the validity of the underlying physical mechanism proposed
earlier by other authors, in particular by Tritton (1978). The two main constituents
of the mechanism are the redistribution of the turbulent kinetic energy between the
vertical and horizontal velocity fluctuations and the modification of vertical turbulent
momentum transfer.

This work was initiated with support by the Office of Naval Research (grant
# N00014-00-1-0218).

Appendix. Accuracy of numerical presentation
In this section we present results of test computations performed to verify the

accuracy of our numerical model. An indication that the model accuracy is sufficient
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is the fact that the computed components of the Ekman transport

UE =

∫ Lz

0

〈u〉t dz and VE =

∫ Lz

0

〈v〉t dz

are within 4% of the theoretical values 0 and 1. Further, more detailed, discussion
of the effects of the vertical and horizontal dimensions of the domain, numerical
resolutions, and the length of the interval used for time-averaging is presented below.
Of course, it must be recognized that even after minimizing the impact of all these
factors, the accuracy of our simulations remains affected by the uncertainty introduced
through the use of a subgrid-scale closure model.

In our simulation, as in any idealized simulation, where the computational domain
presents only a part of the real flow domain, the right choice of the size of
computational domain becomes important. The vertical and horizontal dimensions
have to be taken large enough to minimize the impact of the artificial boundary
conditions on the flow behaviour.

The effect of the periodic boundary conditions in the horizontal directions can be
evaluated from the two-point velocity correlations coefficients presented in figure 3.
The correlations across the distances of Lx/2 and Ly/2 consistently fall below the
0.05 value. This indicates that the periodic boundaries do not impose any significant
limitations on the evolution of developed turbulent flow. Furthermore, we performed
low-resolution computations with double Lx and Ly . No significant change in the flow
behaviour was detected. It must be noted, however, that some effect of the periodic
boundaries was observed at the stage of initial spin-up of the flow. The effect was
associated with short-term excitation of primary instability modes that had a typical
length scale comparable with Lx and Ly . This phenomenon was disregarded since the
study of the initial spin-up was not the purpose of our investigation.

The validity of the free-slip bottom boundary condition (2.5) is based on the assump-
tion that both the mean current and the turbulent fluctuations decay almost com-
pletely in the lower part of the computational domain so that the bottom boundary
condition is of no importance. The profiles in figure 4 show that the assumption
of flow decay is correct. For further verification we performed test simulations in
domains of different depth. Turbulent statistics for a developed turbulent flow in the
f -plane were analysed on the interval of 2TI . The horizontal domain dimensions
and numerical resolutions were as in the main computations discussed above. In
the vertical direction, we used Lz = 1, 1.5, and 2.0 with the resolution, respectively,
Nz = 100, 120, and 135. The same grid stretching parameter Z = 1 was used in all three
experiments. Typical results are presented in figure 12(a, b). One can see that Lz = 1 is
insufficient, while the statistical moments for Lz = 1.5 are virtually indistinguishable
from those for Lz =2. We can conclude that the effect of the bottom boundary
condition on our results obtained with Lz = 1.5 is negligible.

We would like to stress that the ‘safe’ limits on the domain size defined above are
valid only in the particular case of classical Ekman flow considered in this paper. They
should be reconsidered when other flow effects are taken into account. In particular,
density stratification will, probably, require replacing the free-slip boundary condition
by, for example, a Rayleigh damping sponge layer (Durran et al. 1993) to absorb the
internal waves. This can lead to the necessity of increased Lz. If Langmuir turbulence
or surface-cooling-driven convection are to be included, one would have to expect
development of large-scale coherent structures in the flow and, thus, be ready also to
increase the horizontal size of the domain.
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Figure 12. Verification of the accuracy of the numerical model. Horizontally and time-
averaged profiles calculated in the developed turbulent flow at 90◦-latitude: (a, b) mean velocity
and r.m.s. perturbations calculated in the domains with different vertical size; (c, d) mean
velocity and r.m.s. perturbations calculated with different numerical resolution; (e, f ) profiles
of mean velocity and skewness coefficient obtained by averaging over different time intervals.

For the LES model to be accurate in presenting the flow dynamics it should use a
computational grid that is able to resolve the dominating turbulent vortical structures
of the flow. In general, higher numerical resolution implies physically more relevant
results even if the smallest scales of the flow are not resolved. To verify the sufficiency
of our numerical resolution Nx × Ny × Nz =64 × 64 × 120 we performed additional
simulations with resolutions 48 × 48 × 90 and 96 × 96 × 175. The domain size was
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Lx × Ly × Lz = 1 × 1 × 1.5. The flow on the f -plane was considered and the statistics
were collected during 2TI of the developed flow evolution. The results are illustrated
in figure 12(c, d). Here, the first and second statistical moments are somewhat poorly
represented in the simulation with the lowest resolution, while the difference between
the profiles obtained with the two higher resolutions is small. A similar situation
was observed for the third moments (not shown). We conclude that the accuracy
of our 64 × 64 × 120 simulations cannot be significantly improved by increasing the
numerical resolution.

Finally, we discuss the effect of the time-averaging interval on the time- and
horizontally averaged flow profiles. As discussed in § 3.2.1, the flow is subject to
strong slow oscillations of a stochastic nature. The averaging interval should be taken
large enough to minimize their effect on the collected statistics. We analysed this
effect using the results of the f -plane numerical experiment described in § 3.2. The
profiles of developed turbulent flow were obtained using different averaging intervals.
The comparisons are illustrated in figure 12(e, f ). The accuracy within 2% (in terms
of relative error) in presenting the first and second statistical moments was achieved
on averaging intervals as low as TI or 2TI . For the skewness coefficients, longer
averaging times were needed, especially to achieve convergence in the lower part
of the domain. The period of 5TI proved to be sufficient to provide a 2% level of
accuracy at 1 < z < 1.5 and 5% at 0.5 <z < 1.
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