
Fluid Mechanics and Transport Phenomena

Large Eddy Simulations on the Flow Driven
by a Rushton Turbine

Jos Derksen and Harry E. A. Van den Akker
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, 2628 BW Delft, The Netherlands

Large eddy simulations were performed on the flow in a baffled stirred tank, dri®en

by a Rushton turbine at Res 29,000. The simulation procedure consisted of a

lattice] Boltzmann scheme for discretizing the Na®ier ] Stokes equations, and a force-

field technique for representing the action of the impeller on the fluid. The subgrid-scale

model was a con®entional Smagorinsky model with a Smagorinsky constant c s0.12.s

The uniform, cubic computational grid had a size of about 6=10 6 nodes. The com-

puter code was implemented on a parallel, shared-memory computer platform. The

results on the phase-resol®ed a®erage flow, as well as on the turbulence characteristics,

are compared with phase-resol®ed experimental data. The trailing ®ortex structure in the

®icinity of the impeller was well represented by the simulations.

Introduction

The flow structures in a turbulently stirred tank are highly

three-dimensional and complex, and cover a wide range of

spatial and temporal scales. The fluid is circulated through

the tank under the action of a revolving impeller. Baffles along

the perimeter of the tank prevent the liquid from performing

a solid-body rotation and, as a result, enhance mixing. In the

wakes behind the blades of the impeller, three-dimensional
Žvortices are formed Yianneskis et al., 1987; Schafer et al.,¨

.1998 . These vortices, which retain their coherency over a sig-

nificant distance into the bulk of the tank, are associated with

high shear rates and strong turbulent activity. Therefore, they

are essential to the mixing performance of the flow field.

A significant research effort has been invested in the de-

scription and the understanding of the flow phenomena

encountered in a stirred tank. The global flow field can be

characterized by its power requirements, the pumping capac-
Ž .ity of the impeller, and connected to the latter the circula-

tion time through the tank. In modern chemical engineering,

however, there is a demand for local flow information with a

view to optimizing mixing processes. On top of that, in many

applications the rate-limiting phenomena take place at the

small scales. For instance, droplet breakup is controlled by
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the shear rates at the scale of the drop size and the kinetic
Ž .energy contained in this scale Zhou and Kresta, 1998 ; in

crystallizers, the flow around the particles strongly affects ag-
Ž .glomeration Smoluchowski, 1917 ; a major parameter in mi-

cromixing is the rate at which turbulent kinetic energy is dis-
Ž .sipated at the flow’s microscale Bakker, 1996 .

Detailed measurement techniques, such as laser Doppler
Ž . Ž .anemometry LDA , particle image velocimetry PIV , and

Ž .laser-induced fluorescence LIF have great significance in

resolving large-scale as well as small-scale flow structures. The
Žparameters dominating the smallest scales energy dissipation

.rates, spectral information at the microscale, shear rates ,

however, are hardly accessible for these techniques. Essen-

tially, computational modeling of the flow is an alternative

route of describing stirred-tank flow, including its mi-

croscales. As many industrially relevant flows are associated

with high Reynolds numbers, the scales corresponding to the

high-frequency end of the spectrum cannot be resolved ex-

plicitly by numerical simulation. As a consequence, some way

of turbulence modeling is necessary.

One of the options in this field is the technique of large
Ž .eddy simulation LES . In LES, the flow field is explicitly

Ž . Žsolved at the scales larger than twice the grid spacing and
.than the time step for the temporal scales . At the subgrid-

scale level, relatively simple turbulence modeling is applied,

February 1999 Vol. 45, No. 2AIChE Journal 209



as the turbulence at this scale is assumed to behave more or

less universally, that is, independent of the flow geometry. In

the case of flows with unsteady boundary conditions, such as

the flow in a stirred tank, LES can be effectively employed to

explicitly resolve the phenomena directly related to the un-

steady boundaries. This technique contrasts with solving the
Ž .Reynolds-averaged Navier]Stokes RANS equations in com-

bination with a closure model for the Reynolds stresses. In

the latter approach, it is unclear which part of the fluctua-
Žtions in terms of energy content as well as spectral distribu-

.tion is explicitly resolved, and which part is represented by

the Reynolds stresses. The computational effort in LES is,

however, significant. In contrast to RANS, no reduction of

the computational domain as a result of symmetry properties

of the geometry can be applied, that is, the full flow field

needs to be modeled. In the second place, a fine grid is re-

quired to allow simple turbulence modeling at the subgrid-

scale. Finally, meaningful flow statistics can only be extracted

if the flow is calculated over a sufficiently long time span
Ž .covering several integral time scales . For a stirred tank, this

means that the flow field needs to be simulated over several

impeller revolutions.
Ž .Eggels 1996 was the first to report on LES in a stirred-

tank configuration. The results are impressive. The snapshots

of the flow field, presented in his article, give an unprece-

dented view of the turbulent flow structures in the tank. The

agreement with experimental data was good. In the article,

however, only a comparison with phase-averaged velocity

measurements was made. In the vicinity of the impeller, the

most interesting flow details, such as the trailing vortex struc-

tures, can only be revealed through phase-resolved data. In

the work reported in the present article, the simulation pro-
Ž . Žcedure introduced by Eggels 1996 , which consisted next to

.the LES approach to turbulence of a lattice ]Boltzmann dis-

cretization scheme and a force-field algorithm for represent-

ing the revolving impeller, is extended with a more refined

forcing algorithm. In addition, the flow in the vicinity of the

impeller, as resolved by the simulations, is extensively de-

scribed and compared with detailed, phase-resolved LDA ex-
Žperiments carried out in our laboratory see Derksen et al.,

.1998 .

In the next section, the flow geometry is defined. Then, the

simulation procedure is presented. This is basically the same
Ž .procedure as employed by Eggels 1996 , and consists of three

ingredients. First, a lattice ]Boltzmann scheme for discretiz-

ing the incompressible Navier]Stokes equations. This scheme

was chosen because of its computational efficiency, especially

on parallel computer platforms. Second, a large eddy ap-

proach was chosen for the purpose of turbulence modeling.

Third, an adaptive force-field procedure was used for de-

scribing the action of the impeller on the flow. The latter

algorithm allows for imposing velocity boundary conditions in
Ž .any point not necessarily a grid point within the flow do-

main. In the presentation of the results, the emphasis is on

the region close to the impeller.

Flow Geometry

Before we treat the setup of the simulations, the flow ge-

ometry is introduced. A view of both the tank and the im-

Figure 1. Flow geometry.
Ž .The tank left is equipped with four baffles to prevent solid

body rotation of the fluid. At the top level there is a free
Ž .surface. The impeller right is a R ushton turbine. The

thickness of the disk and the impeller blades amounted to

0.017 ? D .

peller, as used in this research, is given in Figure 1. This ge-

ometry more or less represents a research standard, for which

quite a few experimental as well as numerical data are avail-

able. The Reynolds number, which fully characterizes the flow

system, is traditionally defined as ResND2rn , with N the
Ž .impeller’s rotational speed in revrs , D the impeller diame-

ter, and n the kinematic viscosity of the working fluid. Note

that four baffles are placed at the perimeter of the tank, and

that the top level is a free surface. The axial level zs0 cor-

responds with the impeller disk plane.

Simulation Procedure

Lattice – Boltzmann scheme

The lattice ]Boltzmann method provides an efficient

Navier]Stokes solver. The basic idea is that fluid flow, which

is governed by the laws of conservation of mass and momen-

tum, can be simulated by a many-particle system obeying
Ž .the same conservation laws Frisch et al., 1986 . In the lat-

tice ]Boltzmann approach to fluid flow, the particles reside

on a lattice and are allowed to move from one site to the

other during time steps. The collisions at lattice sites have to

conserve mass and momentum.

Formally, the evolution of the many-particle system can be
Žwritten in terms of the lattice ]Boltzmann equation Somers,

.1993

N xq c , tq1 sN x,t qG N , 1Ž . Ž . Ž .Ž .i i i i

with N the mass of a particle traveling with velocity c , andi i

G the collision operator that depends in a nonlinear way oni

all particles involved in the collision. The differential form of

Eq. 1 can be derived from a first-order Taylor expansion of

the term at the lefthand side:

­ N ­ Ni i
qc sG N , 2Ž . Ž .ia i

­ t ­ xa
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( )Figure 2. Velocity directions c 18 of the FCHC latticei

projected on 3-D space.

The vectors in bold face have unit length and a multiplicity

'm s 2; the vectors in light face have a length of 2 and ai

multiplicity m s1.i

with a summation over the repeated Greek index. The veloc-

ity directions c form a discrete set, as the particles are onlyi

allowed to travel to neighboring lattice sites during a single

time step. A lattice that is commonly applied for simulation
Ž .of the Navier]Stokes equations Somers, 1993 is a three-

dimensional projection of a four-dimensional face-centered
Ž . Ž .hypercube FCHC see Figure 2 . The projected lattice has

18 velocity directions. Due to the projection, each direction

is associated with a multiplicity parameter m , as indicatedi

in Figure 2. The symmetry properties of the lattice are sum-

marized in the Appendix. The collision operator has to obey

mass and momentum conservation:

Ý G N s0 3Ž . Ž .i i

Ý c G N s f , 4Ž . Ž .i ia i a

with f an external force, applied to the flow. The mass den-

sity r and the momentum concentration ru are related to Ni

and c according toi

rsÝ N 5Ž .i i

ru sÝ c N . 6Ž .a i ia i

Note that all flow variables presented are dimensionless. The

unit of length is the lattice spacing, the unit of time is the

time needed for the particles to travel a single lattice spacing,
Ž .and the unit of mass is related to the initially uniform mass

per lattice cell.

A summation over all directions i of Eq. 2 and application
Ž .of the mass conservation constraint on G Eq. 3 yield thei

continuity equation:

­r ­rua
q s0. 7Ž .

­ t ­ xa

If N is written in terms of density, momentum concentra-i

Ž .tion, and stress see Eggels and Somers, 1995 according to:

m r 3i 2N s 1q2c q3c c u u y ui ia ia ib a b a½24 2

­ c u 1 ­ uib b a
y6n c y , 8Ž .ia 5­ x 2 ­ xa a

a substitution into Eq. 2 multiplied by c , followed by aia

summation over all velocity directions i, and a proper use of
Ž .the symmetry relations of the FCHC lattice Appendix , yield

­ru u ­ u­ru ­ p ­ ­ ua b ba a
q sy q nr qž /­ t ­ x ­ x ­ x ­ x ­ xb a b a b

­ u1 ­ b
y nr q f . 9Ž .až /2 ­ x ­ xa b

For the pressure p, the following equation of state applies

1 1
ps r 1y u u . 10Ž .a a

2 2

In the incompressible limit, Eq. 9 corresponds to the

Navier]Stokes equation. The collision operator G can bei

specified by substituting Eq. 8 into Eq. 2:

­ c um r 1 ­ u mib bi a i
G N s c y q c f . 11Ž . Ž .i ia ia a

12 ­ x 2 ­ x 12a a

The evolution of the flow in time is now simulated as fol-

lows. At a specific moment, the flow field is fully defined by
Ž .the discrete field of particle masses N x, t . In the first phase

Ž .of a time step the propagation phase , the particles move to

their neighboring sites, that is,

N I x,t sN xy c ,ty1 . 12Ž . Ž .Ž .i i i

IŽ .Then, by means of the inverse of Eq. 8, the N x,t field isi

Ž .transformed into a field in terms of the common flow vari-

ables such as density, velocity, force, and stress. The collision
Ž .operator Eq. 11 is applied to this transformed field. After

Ž .the collision, the field is transformed back to the N x,t field,i
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and the system is ready for the next time step. By tuning the

impact of the collision operator on the higher-order terms,

the lattice ]Boltzmann discretization scheme can be given
Žthird-order accuracy in space and time Eggels and Somers,

.1995 .

In the propagation phase as well as in the collision phase,

boundary conditions can be established. In the propagation

phase this is done by imposing rules for mass densities leav-
Žing and entering the domain e.g., a no-slip wall is a wall on

.which mass densities bounce back . During collisions, an ex-

ternal force field can be calculated in such a way that the

flow is forced to prescribed velocities at specific positions

within the flow domain. The latter approach was adopted for

modeling the revolving impeller and the cylindrical tank wall
Ž .including the baffles . It will be discussed in more detail in a

later section.

The major reasons for employing a lattice ]Boltzmann dis-

cretization scheme are its almost full locality of operations,
Žits computational efficiency in terms of floating-point opera-

.tions per lattice site and time step , and its ability to simulate

flows in complex geometries. As a consequence of the first

reason, the scaling properties of the scheme are almost ideal:

a grid refinement with a factor of 2 in all three dimensions

leads to a factor of 8 in storage requirements and a factor of
Ž16 in run time the lattice ]Boltzmann scheme is an explicit

scheme; a spatial refinement requires a reduction of the
.physical time step as well . Furthermore, parallelization of

the computer code by means of domain decomposition is rel-

atively simple: only the propagation phase needs communica-

tion between the processors. During this phase, the proces-

sors exchange particles that cross subdomain boundaries.

Large eddy simulation

A direct simulation of stirred-tank flow at industrially rele-
Ž 4.vant Reynolds numbers ReG10 is not feasible, as the res-

olution of all length and time scales in the flow would require

enormous amounts of grid cells and time steps. However, the

small scales in the flow can be assumed to be universal and

isotropic, that is, independent of the specific flow geometry.

As a result, they can be modeled with relative ease. In a large
Ž .eddy simulation LES , the range of resolved scales is re-

duced by filtering out the small scales. The effect the small

scales have on the larger scales is taken into account with a

subgrid-scale model. In this research, a standard Smagorin-
Ž .sky model Smagorinsky, 1963 was used. This is an eddy vis-

Ž .cosity model with a subgrid-scale eddy viscosity n that ist

independent on the local, resolved deformation rate:

2 2'n sl S , 13Ž .t mix

with l the mixing length of subgrid-scale motion and S 2
mix

the resolved deformation rate:

2
­ u1 ­ u 2ba2S s q y d =? u , 14Ž .abž /2 ­ x ­ x 3b a

with d the Kronecker delta. In the standard Smagorinskyab

model, the ratio between the mixing length l and the lat-mix

tice spacing D is constant:

lmix
c s . 15Ž .s

D

A value of 0.12 was adopted for c , which is within the ranges

Žof values commonly used in shear-driven turbulence Piomelli
.et al., 1988 .

The implementation of the subgrid-scale model in the lat-

tice ]Boltzmann scheme is straightforward. In the collision

phase, rather than the molecular viscosity n , now the total

viscosity n qn is used. The subgrid-scale model does nott

break down the locality of the collision operation, as the vis-

cous stresses are contained within the solution vectors of the

lattice ]Boltzmann solver. As a result, we do not need to dis-

cretize the gradients contained in Eq. 14.

Impeller and tank wall treatment

In its basic and most efficient form, the lattice ]Boltzmann

scheme employs a cubic, uniform lattice. In order to model

nonsquare or moving objects in the flow domain, we have

developed, within the lattice ]Boltzmann framework, an
Ž .adaptive force-field technique Derksen et al., 1997 based

Ž .on earlier work by Goldstein et al. 1993 . The algorithm cal-

culates forces acting on the flow in such a way that the flow

field has prescribed velocities at points within the domain. In

this way, the boundary conditions at the revolving impeller
Ž .and at the cylindrical tank wall including the baffles were

imposed.

The impeller and the tank wall are defined as a set of M
Žn . Ž .control points r js1 ??? M on their surface, where thej

Ž .superscript n indicates the moment in time. There is no

restriction on the position of these points in the flow domain;

they do not need to coincide with lattice sites. At the points

on the impeller, we require a velocity equal to wŽn .sV= r Žn .,j j

Ž < < .with V the angular velocity of the impeller V s2p N ,

whereas on the tank wall the required velocity is zero: wŽn .sj

0.

The preceding demands can be achieved effectively through

a control algorithm which, at each time step, determines the
Ž .interpolated mismatch between the actual flow velocity and

the prescribed flow velocity at the control points, and then

adapts the force field in such a way that it suppresses the

mismatch. The deviation between the actual and the pre-
Ž Žn ..scribed velocity d is determined by a second-order inter-j

polation of the flow velocities at the lattice sites:

d Žn .swŽn .yÝ G r Žn . uŽn . , 16Ž .Ž .j j k k j k

where the sum is over the lattice sites in the vicinity of r Žn .,j

and G are the interpolation coefficients. These coefficientsk

also serve to distribute the forces that reduce the deviation

d Žn . over the lattice sitesj

f Žn .s f Žny1.qqÝ G r Žn . d Žn . , 17Ž .Ž .k k j k j j
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with q a relaxation factor. The accuracy of the control algo-

rithm can be improved by iterating Eqs. 16 and 17 a few times

per time step. It should be noted that the force calculation

breaks down the locality of the lattice ]Boltzmann scheme, as

it requires interpolation and distribution. As a result, in a

parallel implementation, the forcing step needs communica-

tion over subdomain boundaries.

The forcing procedure offers great flexibility. A new im-

peller or tank design only needs a new set of surface points

defining the geometry. There is no need for building a new

computational mesh.

Practical aspects of the simulations

A cubic computational grid of 1803 lattice cells was de-

fined. At the walls of this cube, bounce-back boundary condi-

tions were imposed, except for the top wall, where a free-slip

boundary condition was set to mimic the free surface. Inside

this computational domain, the cylindrical tank wall, the baf-

fles, the impeller, and the shaft the impeller was mounted on,

were defined by sets of points. The forcing algorithm de-

scribed earlier takes care of the boundary conditions at these

points. The diameter of the impeller amounted to 60 times
Ž .the lattice spacing 60 ?D , whereas the thickness of the im-

peller disk and blades was D. The other dimensions of the

impeller can be derived from Figure 1. The nearest-neighbor

distance between the forcing points at the impeller surface

was 0.7 ?D. The total number of points defining the impeller

was 16,482. The diameter of the tank was 180 ?D. The baffles

were defined with a thickness of D. The total number of

points on the tank wall was 152,920.

The angular velocity V of the impeller is limited mainly by

the incompressibility condition. It has been explained before
< < 2 Žthat only in the incompressible limit, that is, if u <1 the

speed of sound in the lattice ]Boltzmann framework is of the
.order of one , the lattice ]Boltzmann scheme converges to-

ward the Navier]Stokes equations. In the current work Vs

2pr1,600, that is, the impeller makes a full revolution in 1,600

time steps. As a result, the tip speed, ® sV Dr2, of thetip

Žimpeller was 0.12 in lattice units, i.e., lattice spacings per
.time step . In the simulations, the velocities in the tank did

not exceed 0.22. The Reynolds number can be selected by

the value of the kinematic viscosity. A Reynolds number of
Ž29,000 which was chosen because of the availability of exper-

imental data, that is, Wu and Patterson, 1989; Derksen et al.,
. y5 Ž .1998 requires a viscosity of 7.76=10 in lattice units .

The computer code for executing the simulations was im-

plemented on an HP-Convex S-Class parallel computer,
Ž .equipped with four processing units and a shared memory

of 1 Gbyte. In order to keep the software portable to com-

puter platforms with a distributed memory architecture, it

was written according to the single-program, multiple-data
Ž .SPMD paradigm, in which the same program simultane-

Žously works on different data sets in our case on different
.parts of the flow domain . Communication between the proc-

essing units was controlled by the PVM message-passing tool
Ž .Geist et al., 1994 , which was embedded in the software. The

memory requirements of the simulations are proportional to
Žthe grid size. On every grid node 21 18 directions and 3 force

.components single-precision, real values need to be stored

Žthe memory requirements associated with the forcing points
.are relatively small . As a result, the program occupies ap-

proximately 1803=21=4f0.5 Gbyte of memory. When the

code is running on all four processors in parallel, calculation
Ž .of a single time step takes about 25 s wall-clock time .

The simulations were started from a zero-velocity field on
Ž 3 .a relatively coarse grid 120 cells . After 20 impeller revolu-

tions a more or less steady state was reached. This was

checked by monitoring the velocity as a function of time in

the upper part of the tank. Then the flow field was trans-

ferred to the 1803 grid by linear interpolation. It again took
Ž .about 15 revolutions for the flow system to become quasi-

steady. In a subsequent session of 25 revolutions, flow data

were collected and statistically processed. As a result, the

parallel computer was kept fully busy for almost a month.

Results

Single realizations of the flow field

Impressions of the flow field are given in Figure 3. The

flow in a horizontal plane just below disk level is depicted in

Figure 3a. Away from the impeller, the flow behaves errati-

cally. Eddylike structures can be observed. Close to the im-

peller, the flow seems to be more coherent. The wakes be-

hind the impeller blades can be clearly identified. Locally,

velocities in the wakes are significantly higher than the im-

peller tip speed. The largest velocity encountered in Figure

3a amounts to almost 2 ? ® . Note the minor flow outside thetip

tank, which is induced by the force field that takes care of

the boundary conditions at the tank wall. A detail of the same

flow field, relative to the impeller, is shown in Figure 3b.

Immediately behind the impeller blade, fluid is strongly forced

into the radial direction. No-slip boundary conditions were

imposed at the impeller blade. The velocity field shown in

Figure 3b demonstrates the ability of the adaptive force field

to satisfy this boundary condition.
Ž .In a vertical plane in the impeller stream Figure 3c , a

strong radial outflow along with trailing vortices are ob-

served. The latter are formed in the wakes of the blades and

then swept into the tank, where they keep their identity over

a significant radial distance. In Figure 3c, the upper and lower

vortices associated with the two most recent blade passages

can be identified.

The temporal behavior of the flow strongly depends on the

position in the tank. The radial velocity as a function of time

at three typical positions is depicted in Figure 4. At the im-
Ž .peller tip Figure 4a , most of the fluctuations are periodic as

the result of the regular blade passage. Further away from
Ž .the impeller Figure 4b , the fluctuations become less coher-

ent. At the same time, the pdf shows a less detailed struc-
Ž .ture. In the bulk of the tank Figure 4c , fluctuations are rela-

tively weak and have low frequencies.

Phase-a©eraged results: Comparison with experiments

The current stirred-tank geometry, operated under turbu-

lent conditions, has been studied experimentally in quite some

detail. In the more recent studies, LDA was used to locally

measure the flow velocity with high spatial and temporal res-
Žolution see, e.g., Wu and Patterson, 1989; Stoots and Cal-
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Figure 4. Traces of the radial velocity component as a
( )function of time left , and the corresponding

( ) ( )probability density functions PDFs right .

The PDFs were determined over 25 impeller revolutions.
Ž .They are in arbitrary units. a At the position 2 zrW s 0.1,

Ž . Ž .2 rrDs1.0. b At 2 zrW s 0.1, 2 rrDs 2.4. c At 2 zrW s14.9,

2 rrDs1.0. Note the different velocity scales.

.abrese, 1995 . A distinction between phase-resolved and

phase-unresolved experiments needs to be made. In phase-

resolved experiments the position of the impeller is recorded

along with every individual velocity measurement. This allows

for a reconstruction of the mean flow field and its fluctua-

tions as a function of the impeller angle. Information on the

angle of the impeller is not contained in phase-unresolved

experiments. In the latter case, only phase-averaged data can

be extracted.

An extensive, phase-averaged data set has been reported
Ž .by Wu and Patterson 1989 . They have presented, among

other things, axial profiles in the impeller outstream of the

mean and RMS values of the three velocity components at

various radial distances from the impeller tip. Their measur-

ing volume was located in a plane midway between two baf-

fles. The Reynolds number was the same as in the current
Ž .study: Res29,000. Furthermore, Derksen et al. 1998 per-

formed detailed three-dimensional, phase-resolved LDA ex-

periments under flow conditions that closely resemble Wu

and Patterson’s.

In Figure 5, phase-averaged results on the mean radial and

tangential velocity obtained by measurement and simulation

are compared. The well-known radial discharge flow is pre-
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Figure 5. Axial profiles of the phase-averaged radial and

tangential velocity components in the im-

peller outstream.
ŽComparison between simulations and experiments WP cor-

responds to Wu and Patterson, 1989; DDV to Derksen et
.al., 1998 .

dicted with a fair level of accuracy by the simulations. The

correspondence between experiment and simulation with re-

spect to the maximum radial velocity as a function of the

radial position is good, whereas the maximum tangential ve-

locities are overestimated by the simulations by some 15%.

The spreading rate of the discharge flow is overestimated as

well. More fluid from the bulk of the tank is entrained into

the discharge flow than in real life, especially above the disk.
Ž .The deviations observed might be caused by still a lack of

spatial resolution. A crude estimate of the wall friction veloc-
Ž .ity see, e.g., Hinze, 1975 at the impeller blades shows that

the lattice spacing corresponds to some 75 wall units, which

is insufficient to fully resolve the boundary layers at the

blades. Another reason might be neglect of the presence of

solid walls in the subgrid-scale model. In, for example, pipe
Ž .flow simulations Eggels, 1994 it is well known that, due to

the suppression of turbulence near the wall, the eddy-viscos-

ity needs to be reduced near the wall to get good agreement

with experiments. Application of wall functions at the im-

peller blades and disk will therefore probably reduce both

the strength, and the width of the radial impeller outflow.

With the introduction of wall functions, however, more em-

piricism is introduced.

Velocity fluctuations in a turbulently stirred tank are partly
Žperiodic directly related to the blade passage frequency; see

. Ž .also Figure 4 , partly random turbulence . As a result, the

kinetic energy contained in the velocity fluctuations can be

divided into a random part and a coherent part. Sometimes

the coherent contribution to the kinetic energy is presented

Figure 6. Axial profiles of the kinetic energy.

Top: 2 rrDs1.07; bottom: 2 rrDs1.3. A distinction between

the total kinetic energy and the random kinetic energy is

made. Comparison between simulations and experiments
ŽWP corresponds to Wu and Patterson, 1989; D D V to D erk-

.sen et al., 1998 .

Ž .as pseudoturbulence Van ’t Riet and Smith, 1975 . The rela-

tive strength of both contributions can easily be identified in

a phase-resolved measurement system. The total kinetic en-

ergy in the velocity fluctuations is

21
2k s u yu , 18Ž .tot i iž /2

with u the ith velocity component. Note the summation con-i

vention over the repeated index i. The averages are over all

velocity samples, irrespective of the angular position of the

impeller. The random part of the kinetic energy can be deter-

mined if angle-resolved average data are available:

1
22² : ² :k s u y u , 19Ž .ž /ran i u i u

2

² :with the average value at the angular position u . In Eq.u

19, the overbar denotes averaging over all angular positions.

The energy in the coherent fluctuations is found by subtract-

ing k from k . The distinction between random and co-ran tot

herent kinetic energy was also made by Wu and Patterson
Ž .1989 . However, they divided the kinetic energy into random

and coherent by means of a fitting procedure on the autocor-

relation function of the velocity signal, as they had no phase-

resolved data at their disposal.

In Figure 6, the axial profiles of k and k , extractedran tot

from the simulations, are compared with the experimental
Ž . Ž .data by Wu and Patterson 1989 and Derksen et al. 1998 .

First, we note that the random kinetic energy at 2 rrDs1.07
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deviates significantly between both experimental data sets.

This is most likely due to the different procedures for divid-

ing random and coherent fluctuations. The simulated maxi-

mum levels of kinetic energy correspond well with the experi-
Ž .mental data. As in the average velocity data Figure 5 , the

width of the axial profiles is overestimated by the simula-

tions, especially at the upper side of the impeller disk. The

spatial distribution of the kinetic energy in the impeller out-

stream is discussed in more detail in the next section.

In LES, only part of the fluctuations is resolved by the grid.

The part that resides on the subgrid scales is modeled in terms
Ž .of an eddy viscosity Eq. 11 . In the profiles presented in Fig-

ure 6, less than 0.1% of the kinetic energy is at a subgrid-scale

level.

Phase-resol©ed flow fields: Comparison with experiments

An important flow phenomenon, which can only be ob-

served in a frame of reference that moves with the impeller,

is the trailing vortex system. It develops in the wake of a tur-

bine blade, and is then advected by the impeller stream into

the bulk of the tank. With the vortex structure, high levels of

turbulent activity and high velocity gradients are associated
Ž .Lee and Yianneskis, 1998 . Therefore, this structure plays

an important role in the mixing capability of the stirred tank.

Trailing vortices have been reported in many experimental

studies, but, to the best of the authors’ knowledge, they are

never treated comprehensively in a numerical study on

stirred-tank flow.

Phase-resolved, mean flow fields in the vicinity of the im-

peller are shown in Figure 7 at various angles with respect to

an impeller blade. For comparison, the experimental data by
Ž .Derksen et al. 1998 are given as well. Qualitatively as well

as quantitatively, the agreement between the simulated and

measured flow field is good. The radial impeller outflow is

directed slightly upward, and, as a result, exhibits an asym-

metry with respect to the plane of the impeller disk. The lower

trailing vortex can be easily identified, whereas the upper

vortex is visible, albeit in a less pronounced way. The vortex
Žcore below the disk is closer to the impeller disk plane ap-

.proximately at 2 zrW sy0.35 in the simulated field , com-
Ž .pared to the upper vortex 2 zrW f1.0 . In addition the ra-

dial positions of the upper and lower vortex differ.
Ž .Yianneskis et al. 1987 proposed characterizing the curve

along which the trailing vortex is swept into the tank, by con-

necting the points in a horizontal plane where the mean axial

velocity component equals zero. In their study, they focused

on the upper vortex, which was seen to move almost horizon-
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Figure 8. Projections of the position of the vortex core 
on a horizontal plane as found in various 
studies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ I ]  This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwork in the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 / W =  -0.35. [2]  From Stoots 
and Calabrese (1995). measured underncath the disk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[B] 
From Derkscn c t  al. (1998), measurcd underneath the disk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[4] From Yianneskis et al. (1987). measured ahove the disk. 
[S] This work in the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2z/W = 1.0. 

tally in the 2z/W = 1.0 plane. Stoots and Calabrese (1995) 

mainly studied the lower vortex and observed its core to move 

slightly downwards, starting close behind the blade at 2z/W 

= -0.5, whereas at 0 = 60" it was at 2z/W = - 1.2. Finally, 

the experimental results in Figure 7 (Derksen et al., 1998) 
show a vortex core moving approximately horizontally in the 

2z/W = -0.5 plane. In Figure 8, the vortex core paths de- 
rived from the three experimental studies mentioned earlier 

are compared to the simulated paths. The results of the simu- 

lations on the lower vortex agree very well with the experi- 
mentally determined lower vortex path. The same applies for 
the upper vortex. 

The trailing vortex core is associated with high levels of 

turbulent kinetic energy, as can be seen in Figure 9. The vor- 
tex paths almost coincide with (lower vortex), or are near to 

(upper vortex) the regions of highest turbulent kinetic energy. 
In Figure 10, the same radial-axial planes as in Figure 7 were 

chosen to plot the turbulent kinetic energy, that is, 1/2((uf), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-<u,>',>. It can be concluded that the simulations resolve 
very well the structure of the turbulent kinetic energy field as 

well as the levels of kinetic energy. 

Eneqy dissipation 

The energy dissipation rate (€1 is of relevance for many 
mixing applications, as it controls the flow at the microscale. 

At the same time, it is hardly possible to directly measure the 

dissipation rate (a very sophisticated attempt, based on 3-D 
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Figure 9. Contours of the turbulent kinetic energy in the 
planes the trailing vortex cores move in; the 
curves represent the paths of the vortex cores. 

laser-induced fluorescence, was undertaken by Dahm et al. 

1991). Indirect ways of measuring E include measuring turbu- 
lence intensities and length scales (through, e.g., LDA). The 

assumptions about the nature of the turbulence (among oth- 

ers, isotropy) needed to derive the dissipation rates from the 
measured quantities are, however, not very appropriate in 
stirred-tank flow. Since the kinetic energy field is estimated 

accurately by the simulations, at least in the impeller outflow 
region, we are confident that the simulations can predict the 

energy dissipation rate with acceptable accuracy. 
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Figure 10. Measured vs. simulated turbulent kinetic energy fields in various vertical planes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The plane is located midway between two baffles. The position with rcspect to an impellcr blade zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis indicated at the bottom of the figure. 
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The dissipation rate distribution throughout the tank is very 

inhomogeneous (see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 ) .  Energy dissipation is concen- 

trated in the impeller swept region and in the impeller out- 
flow. Dissipation rates encountered in the tank cover a range 

of more than three decades. The total consumed power in 

the tank is determined by the torque and the angular speed 
of the impeller. The torque can be deduced from the adap- 

tive force field, which represents the action of the impeller 

on the fluid. This way, a power number, defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T f l  

pN3D5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ 
Po = - 

(with T = torque) equal to 5.7 is found. Experiments (Rush- 
ton et a]., 1950; Distelhoff et al., 1995) show values in the 
range Po=4.6, ..., 5.9 at Re=3O,OOO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a consequence, 

the region labeled red in Figure 11, that is, the region with 

e/D2N3 > 4.6 has a dissipation rate some seventeen times the 
average dissipation rate. If the tank is divided into three do- 

mains [i.e., the impeller swept volume (2r/D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand l2z/Wl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s 1); the impeller outflow region (2r/D > 1 and l2z/Wl-< 2); 
and the rest of the tank], the dissipated power in the respec- 

tive domains amounts to 18, 60, and 22% of the total dissi- 

pated power. 
The way energy dissipation evolves in the impeller swept 

region is depicted in Figure 12. Very high dissipation rates 

(locally exceeding 100 times the tank-average value) are en- 
countered at the blade edges and in the near wake of the 

blades. With increasing angle with respect to the blades, the 

dissipation rapidly drops. 

Conclusions 

In this article, we have investigated the potential of large 

eddy simulations for the highly complex flow in a stirred tank, 
driven by a Rushton turbine at Re = 29,000. Obviously, this 
type of simulation requires a large computational effort, in 

terms of computer time as well as memory access. The only 

way to keep the computational cost within a more or less 
acceptable level was to exploit an efficient numerical scheme. 

The lattice-Boltzmann procedure, as introduced by Eggels 
(1996) for this purpose, has proven its efficiency. It can be 

implemented easily on parallel computer platforms and, be- 
cause of the locality of its operations, almost no computa- 

tional overhead arises. Furthermore, the adaptivc force-field 
technique for imposing the impeller and tank-wall boundary 

conditions does not reduce the scheme’s efficiency. At the 

same time, the adaptive force-field technique makes the sim- 
ulation procedure suitable for geometry optimization studies. 

By simply changing the sets of points defining the impeller 
and tank wall, geometrical adaptations can be made, and their 

effect on the flow, including the turbulence characteristics, 
can be studied. 

In the flow system at hand, the LES approach to turbu- 

lence has advantages over application of closure models for 
the Reynolds stresses in the Reynolds-averaged Navier- 

Stokes equations. In the first place, the Smagorinsky 

subgrid-scale model contains a single, semiempirical parame- 

ter (c, in Eq. 151, whereas typically five to ten parameters 
(which have to be empirically tuned in relatively simple flow 
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Figure 11. Phase-averaged energy dissipation rate in a 
vertical plane, located midway between two 
baffles. 

systems) are required for closure models. More importantly, 

however, is the clear (spectral) distinction between resolved 
and unresolved scales in LES by the grid spacing. We feel 

that the latter contributed to the good resolutions of the 
trailing-vortex system. 

Good agreement with experimental data is, of course, vital 

to any simulation procedure. Phase-resolved velocity fields as 

well as turbulent kinetic-energy levels were well predicted by 
the simulations. Particularly the vortex core paths, both above 

and below the impeller disk, were predicted correctly. The 
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Figure 12. Phase-resolved, averaged dissipation rate in the impeller-swept volume at various angles with respect to 
an impeller blade. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

strongest deviations observed are in the development of the 
impeller outflow. They are probably caused by not taking into 

account the presence of solid walls in the subgrid-scale model, 
and by a lack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof spatial resolution. 

Since the turbulent kinetic energy in the tank was well pre- 

dicted, it is also worthwhile to study the energy dissipation 
rate, as predicted by the simulations. It appeared that the 

dissipation is very inhomogeneously distributed throughout 

the tank, with high levels in the impeller outflow region and 
low levels in the bulk. Furthermore, a detailed look at the 
dissipation rate in the impeller swept volume was presented. 

At the blade edges, and in the wake of the blades, high dissi- 

pation rates were encountered. 
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Appendix: Symmetry Relations for the FCHC
Lattice

Ž .The derivation of the dynamic equation i.e., Eq. 9 from
Žthe differential form of the lattice ]Boltzmann equation i.e.,

.Eq. 2 requires the application of some symmetry properties

of the three-dimensional projection of the FCHC lattice.

These properties are given in this Appendix, where c is theia

Ž .component of the ith velocity vector c see Figure 2 in thei

Ž .Cartesian coordinate direction a ; m is the multiplicity ofi

Ž .the ith vector see also Figure 2 ; and d is the Kroneckerab

delta-function:

Ý m s24 A1Ž .i i

Ý m c s0 A2Ž .i i ia

Ý m c c s12d A3Ž .i i ia ib a b

Ý m c c c s0 A4Ž .i i ia ib ig

Ý m c c c c s4d d q4d d q4d d . A5Ž .i i ia ib ig id a b gd ag bd ad bg

Manuscript recei®ed Aug. 24, 1998, and re®ision recei®ed No®. 23, 1998.

February 1999 Vol. 45, No. 2AIChE Journal 221


