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Over 6 billion pounds per year of the estrogenic monomer
bisphenol A (BPA) are used to manufacture polycarbonate
plastic products, in resins lining metal cans, in dental seal-
ants, and in blends with other types of plastic products. The
ester bond linking BPA molecules in polycarbonate and resins
undergoes hydrolysis, resulting in the release of free BPA into
food, beverages, and the environment, and numerous moni-
toring studies now show almost ubiquitous human exposure
to biologically active levels of this chemical. BPA exerts es-
trogenic effects through the classical nuclear estrogen recep-
tors, and BPA acts as a selective estrogen receptor modulator.
However, BPA also initiates rapid responses via estrogen re-
ceptors presumably associated with the plasma membrane.
Similar to estradiol, BPA causes changes in some cell func-

tions at concentrations between 1 pM and 1 nM, and the mean
and median range of unconjugated BPA measured by multiple
techniques in human pregnant maternal, fetal, and adult
blood and other tissues exceeds these levels. In contrast to
these published findings, BPA manufacturers persist in de-
scribing BPA as a weak estrogen and insist there is little con-
cern with human exposure levels. Our concern with human
exposure to BPA derives from 1) identification of molecular
mechanisms mediating effects in human and animal tissues at
very low doses, 2) in vivo effects in experimental animals
caused by low doses within the range of human exposure, and
3) widespread human exposure to levels of BPA that cause
adverse effects in animals. (Endocrinology 147: S56–S69, 2006)

BISPHENOL A (BPA) is a small (228 Da) estrogenic mono-
mer that is polymerized to produce polycarbonate

plastic and resins used to line metal cans. BPA is also used
as an additive in other types of plastic, such as polyvinyl
chloride (PVC), used in medical tubing, toys and water pipes,
and polyethylene terephthalate (PET), used in soda and min-
eral water bottles. BPA is also used to make some dental
sealants. With total worldwide production capacity exceed-
ing 6 billion pounds in 2003, BPA is one of the highest volume
chemicals in commerce (1). Brominated BPA is one of the major
flame retardants and is also a known endocrine-disrupting
chemical (EDC) (2). It has been known for decades that BPA has
the efficacy of the hormone estradiol in some tissues (3), and
BPA has recently been shown to also antagonize thyroid hor-
mone action (4) and antagonize androgen action (5). However,
BPA acts as an agonist for a mutant form of the androgen
receptor found in some prostate cancer cells (6).

Until recently, BPA had been considered to be a very weak
environmental estrogen, because in some bioassays (for ex-
ample, in the uterus of some rats and mouse strains or for
some responses in human breast cancer cells), BPA can be
10,000- to 100,000-fold less potent than estradiol (7). For
example, a common statement about BPA is that it “elicits

weak estrogenic activity in in vitro and in vivo test systems”
(8). However, studies of molecular mechanisms have re-
vealed a variety of pathways through which BPA can stim-
ulate cellular responses at very low doses in addition to
effects initiated by binding of BPA to the classical �- or more
recent �-form of the estrogen receptor (ER� and ER�). We
discuss below, in Molecular Mechanisms of BPA Action, recent
findings showing that in a variety of tissues, BPA not only
has the efficacy of estradiol but is also equally potent, with
changes in cell function being observed at a dose of 1 pm (0.23
pg/ml culture medium) (9).

We discuss that the high potency of BPA in vivo, partic-
ularly during fetal and neonatal development, is explained
not only by limited binding of BPA to plasma estrogen-
binding proteins that evolved to regulate uptake of endog-
enous estradiol into tissues but also by the limited capacity
for the liver to conjugate (deactivate) BPA in fetuses and
newborns. We review in Sources and Levels of Exposure of
Animals and Humans to BPA evidence that bioaccumulation
of BPA occurs during pregnancy, although this does not
occur in the nonpregnant adult female or in adult males.
There is evidence that endogenous steroids modulate BPA
metabolism, which contributes to higher circulating levels of
BPA in males relative to females (10, 11).

Measurement of parent (unconjugated) BPA in human
blood, tissues, and urine in studies conducted in the United
States, Europe, and Japan are remarkably consistent in show-
ing much higher levels than would be expected based on the
assumption that BPA is very rapidly metabolized and in-
gested only infrequently and that BPA thus does not pose a
threat to the public health (12).
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The higher-than-predicted tissue levels of parent BPA in
human populations in developed countries, including a
study as part of the National Health Survey by the Centers
for Disease Control and Prevention (CDC) that detected BPA
in over 95% of samples (13), suggests that exposure to sig-
nificant amounts of BPA is continuous for these populations.
This is not surprising given the massive amount of BPA used
to produce products each year. Exposure occurs because
when BPA molecules are polymerized, they are linked by
ester bonds that are subject to hydrolysis, which is acceler-
ated as temperature increases and in response to contact with
acidic or basic substances (Fig. 1). The consequence is that as
polycarbonate products are repeatedly washed, or polycar-
bonate plastic or metal cans are exposed to heat and/or acidic
or basic conditions, significant leaching of BPA due to hy-
drolysis of the ester bond occurs (14–18).

The focus of this review will be on mechanisms mediating
responses that occur as a result of exposure to very low doses
of BPA. As of November 2005, there were over 125 studies
showing significant effects in experimental animals of ad-
ministering doses of BPA that were once thought to be below
the no-observed-effect level based on experiments in which
only very high doses (50–1200 mg/kg�d) were administered
to rats and mice (19). In contrast to the traditional approach
used by toxicologists to predict the possibility of health ef-
fects at human exposure levels based on only testing doses
thousands or even millions of times higher than doses that
are environmentally relevant (based on human exposure
studies), a new paradigm has emerged in the study of EDC
research in which much lower, environmentally relevant
doses are used to assess directly the hazards posed by EDCs.
For example, in the United States, a daily exposure dose of
50 �g/kg�d is stated by the U.S. Food and Drug Adminis-
tration (FDA) and the U.S. Environmental Protection Agency
(EPA) to be safe for humans, but this is based on toxicological
studies conducted in the 1980s in which the lowest dose
tested was 1000-fold higher than this predicted safe dose (20).
In 1997, we published the first study that directly tested whether
this prediction of the safe dose of BPA was valid (21).

During the 1990s, endocrinologists began to challenge the
assumptions used to design the high-dose toxicological stud-
ies used by regulatory agencies to assess the risk to humans
posed by chemicals. Previously, no experiment had ever
been conducted by toxicologists to determine experimentally

whether the predicted safe dose of 50 �g/kg�d BPA actually
was, in fact, safe (7). This prediction was simply accepted by
toxicologists and government regulatory agencies as valid in
the absence of any data. We will discuss in Prediction of
Biological Activity of BPA that the application of basic ap-
proaches used by endocrinologists for decades to determine
physiologically relevant doses for hormones has led to a
paradigm inversion in toxicology with regard to dose selec-
tion in experiments with chemicals that cause effects by
interacting with endogenous endocrine signaling systems.
We will use BPA as our model hormone-mimicking chem-
ical, because there are now over 40 published studies re-
porting significant effects in rats and mice at doses below the
predicted safe dose of 50 �g/kg�d (22, 23). However, the
approach we describe applies to other EDCs as well.

Prediction of Biological Activity of BPA by
Reference to the Levels of Estradiol and

Diethylstilbestrol (DES) that Act on
Fetal Development

Low doses of BPA selected based on estrogenic activity
not toxicity

To characterize the high-dose acute toxicity of a chemical
with unknown activities, the effects must be determined first,
and then the doses of the chemical are characterized that
bring about those effects, which will be specific to each chem-
ical. But for the low-dose endocrine-disruptor effects of an
estrogenic chemical, it is a different matter (24). Many of the
targets and effects that are subject to disruption by an es-
trogen are already known. The targets will be the estrogen-
responsive tissues and cells of the organism, although the
effects that may augment, inhibit, or modify the endogenous
response, depending on the activity of the chemical, will
potentially include all effects known to be under the direct
regulation of endogenous estrogen.

The first unknown to be determined in the evaluation of
an estrogenic EDC is therefore not the effects but rather the
dose range to the animal that will lead to internal concen-
trations that are physiologically relevant to endogenous es-
trogen concentrations, and at which a battery of well de-
scribed estrogen-related endocrine effects will be disrupted
by the estrogenic EDC. This disruption in the target tissues
is predictable from, and in fact requires, a concentration of
the EDC at the target cell (dose at target) that can occupy ERs.
However, for a change in response to occur, there must be a
change in occupancy of ERs, so the dose range used must be
substantially below the range that saturates receptors. This
information can be obtained by comparison with the con-
centration range of estradiol that brings about normal hor-
monal signaling, because response varies as a function of
receptor occupancy. However, the exact spectrum of conse-
quences of exposure to a given EDC at the concentrations
that occupy estrogen receptors may not be known without
experimental determination, because a pattern of tissue-
specific responses to some manmade estrogenic chemicals,
different from the pattern observed for endogenous estrogen,
has been demonstrated (25, 26). Some of the best-studied
examples are the drugs tamoxifen and raloxifene, which act
as selective ER modulators (SERMs) (27, 28).

FIG. 1. Schematic diagram depicting hydrolysis of the ester bond
linking BPA molecules to form polycarbonate plastic. BPA is a sym-
metrical aromatic molecule that reacts on both phenolic ends in po-
lymerization reactions. For polycarbonate, BPA typically reacts with
phosgene forming an ester linkage, which is subject to an increase in
hydrolysis as temperature increases and in response to acidic or basic
conditions.
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We approached our studies with BPA by asking whether
the range of activity of this estrogenic EDC could be under-
stood by reference to the experimental levels of estradiol that
acted on the development of the fetus. We decided to focus
on effects in the fetus, because the fetus is highly sensitive to
hormonal changes, and developmental changes are typically
permanent and thus, by definition, adverse. Before conduct-
ing experiments with BPA, we determined the level of the
natural estrogen, estradiol, required in the circulation of the
fetus to produce biological effects. We reasoned that a level
of any xenoestrogen, including BPA, equivalent in estrogenic
activity to this level of estradiol, would also result in bio-
logical effects on development (24).

We first described effects of naturally occurring differences
in circulating estradiol on the development of the male repro-
ductive tract (30, 31). In subsequent studies, we determined the
levels of free circulating estradiol (unconjugated and unbound
to plasma proteins) that were active during normal develop-
ment (32). Finally, we determined experimental increases of free
circulating estradiol that disrupted development of the male
reproductive system (33). This dose-response information for
estradiol was used to predict the doses of both DES and BPA
that would cause the same type of developmental effects in this
system (24). Specifically, we first observed that the average free
(unbound, bioactive) estradiol concentration during develop-
ment of the male murine reproductive tract was 0.21 pg/ml in
fetal serum and that an increase in this level of only 0.1 pg/ml
free estradiol, to 0.31 pg/ml [via maternal administration of
estradiol in a SILASTIC brand silicon capsule (Dow Corning,
Midland, MI)], resulted in developmental changes (urethral
constriction and an increase in number and hyperplasia of
prostate gland ducts) detected in the fetus as well as permanent
enlargement of the prostate and up-regulation of prostatic an-
drogen receptors in the resulting adult many months after the
exposure (33). Therefore, we predicted that an estrogenic EDC
would be biologically active in the fetus if supplemental estro-
genic activity of the free (unbound, bioavailable) chemical in
blood was equivalent to an increase in free estradiol of only 0.1
pg/ml.

We modeled bioactivity of several environmental estro-
gens by addressing key factors that influence EDC activity (7,
21, 24, 34): 1) the intrinsic estrogenic activity of the molecule
in interaction with ERs in the nucleus of the cell, 2) how the
compound is carried in blood and what fraction is delivered
free (unbound) to cells, 3) how the compound partitions
between the circulation and body lipid, and 4) the absorption
and metabolism relative to the route of exposure.

DES as an orally active positive control for orally
administered BPA

We chose as our positive control estrogenic EDC the well
characterized, orally active estrogenic drug DES, which is
widely used in endocrine-disruptor research (35). A National
Toxicology Program Peer Review Panel that considered the
scientific evidence in 2000 stated that DES was an appropri-
ate positive control estrogenic drug (due to the extensive
published literature on DES effects in experimental animals
and in humans) to use in studies of estrogenic chemicals
such as BPA (found on page iii of Ref. 36; http://ntp.

niehs.nih.gov/index.cfm?objectid�06F5CE98-E82F-8182-
7FA81C02D3690D47). (Requests for hard copies of the NTP
report and inquiries about the Endocrine Disruptors Low-
Dose Peer Review can be made to the NTP Liaison and
Scientific Review Office at NIEHS, P.O. Box 12233, Research
Triangle Park, NC 27709; E-mail: liaison@starbase.niehs.nih.
gov.) Importantly, all of the key factors above could be
evaluated based on studies with pregnant mice. Factor 1,
binding of DES to ERs, and factor 2, free concentration of
DES in serum, were evaluated with an in vitro assay system
that included effects of plasma binding proteins on uptake
of estrogenic chemicals into cells, referred to as the relative
binding affinity-serum modified access (RBA-SMA) assay
(21, 34). Factors 3 and 4, concerning absorption, metabolism,
and distribution to the fetus after maternal dosing, were
evaluated from findings with tritiated DES (37); in this
report, the authors concluded that approximately 3% of a
maternal dose was retained for an extended period of time
in fetal serum as unconjugated DES. The calculations in-
volved in the evaluation of estrogenic endocrine-disrupting
activity of DES by the RBA-SMA assay, and incorporation of
the fetal distribution information on metabolism and fetal
distribution, are detailed elsewhere (24).

These calculations yielded an oral dose of DES of 0.077 �g
DES/kg maternal body weight per day that was predicted to
be active in the fetal prostate endocrine disruption model,
equivalent to an approximately 50% increase in average free
estradiol during development as shown in our study de-
scribed above. The lowest dose of DES that was active in
stimulating ad increase in prostate size during development
due to feeding DES to pregnant mice was 0.02 �g/kg�d, and
the maximum stimulating effect occurred at a maternal dose
of 0.2 �g/kg�d; these doses were directly within the low-dose
range predicted by our approach (24, 33). The lowest dose of
DES tested in that study, 0.002 �g/kg�d, was not active in
endocrine disruption of prostate development and was well
below the predicted active dose of 0.077 �g/kg�d for that end
point. Therefore, accurate prediction of active dose was pos-
sible by modeling the key factors listed above. These initial
findings have been confirmed (38–41).

Of great importance, before conducting studies with a
chemical of unknown estrogenic activity in various target
tissues, we had established through extensive studies with
positive control estrogens (initially estradiol and DES and
subsequently also ethinyl estradiol) (41, 42) that the devel-
oping reproductive system in fetuses was responsive to very
small changes in estrogenic activity. We describe in detail
elsewhere that for toxicological studies conducted without
appropriate positive controls and that report only negative
findings for a test chemical, interpretation of the negative
results is not possible and violates basic rules governing
experimental research design and analysis, specifically the
need for a valid positive control when test results for a drug
or chemical with a known mode of action are uniformly
negative (35).

Potency of BPA relative to DES

At the time that we conducted our initial study with BPA,
we could evaluate only the first two key factors influencing
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dose at target receptor: binding affinity for ERs and free
concentration in plasma. For BPA and a second EDC, octyl-
phenol, we applied the RBA-SMA analysis to predict relative
estrogenic activities (21, 34) and estimated actual active doses
with less information than was available for DES (as de-
scribed below in Sources and Levels of Exposure of Animals and
Humans to BPA, all of this information is now available for
BPA). We found that unconjugated BPA in blood showed
very limited binding to SHBG and a free fraction in serum of
around 8% (34); most BPA would thus only be bound weakly
to albumin in blood and therefore delivered to cells with a
physiological advantage compared with estradiol. The free
fraction of octylphenol in serum was 0.3%, substantially
lower than for BPA (34).

The effects of delivery of these EDCs to target cells by
serum and its binding proteins changed the relative estro-
genic activities of these two compounds and predicted that
BPA would be more than 500-fold more active than octyl-
phenol in endocrine disruption of the fetal mouse (21). This
contrasted sharply with previously published results from in
vitro experiments in which serum binding was not taken into
account that octylphenol was approximately 10-fold more
estrogenically active than BPA (21, 24). Specifically, the re-
sults of the analysis predicted not only 1) that BPA would be
far more active than octylphenol but also 2) that BPA could
be active in endocrine disruption at a dose of approximately
20 �g/kg�d, a dose lower than the presumed safe daily hu-
man exposure level of 50 �g/kg�d, which is assumed to be
at least 100-fold lower than the no-observed-effect level (20).

When BPA and octylphenol were fed to pregnant mice at
both 2 and 20 �g/kg body weight per day from gestation day
11–17, the prediction was confirmed that the 20 �g/kg dose
of BPA was bioactive, whereas octylphenol was not bioactive
in terms of an effect on prostate development. Importantly,
even without full information on absorption, metabolism,
and fetal distribution of these two compounds, our approach
to estimating a low-dose active exposure range from the
RBA-SMA assay yielded information that permitted a pre-
diction of the low-dose exposure range for BPA that was
orders of magnitude more accurate than had been predicted
from previous studies that used only high doses (�50 mg/
kg�d) to examine acute toxicity (21, 43).

In animal experiments, BPA proved even more biologi-
cally active than the 20 �g/kg�d dose that we had initially
predicted based on our in vitro RBS-SMA assay (21), which
has been confirmed in a large number of independently
conducted studies reviewed elsewhere (22, 35). Therefore,
we hypothesized that there were additional factors in 1)
metabolism and delivery of BPA from the mother to the fetus
and 2) the mechanism of BPA action that would act to further
increase the biological activity of BPA in the fetus relative to
its apparent weak estrogenic activity in the adult, and these
issues will be discussed in detail below in Molecular Mech-
anisms of BPA Action.

There is evidence that 1) changes in the metabolism of BPA
during pregnancy can lead to higher levels of BPA in the
mother, 2) in animal studies, the fetus is rapidly exposed
when the mother is fed BPA, 3) the fetus and newborn have
very limited capacity to metabolize BPA and other related
compounds such as DES, and 4) current exposure of human

adults and fetuses to BPA is within a biologically active
range. This last issue has great significance with regard to the
potential for adverse effects of BPA on human fetal devel-
opment because, as discussed in below in Sources and Levels
of Exposure of Animals and Humans to BPA, unconjugated BPA
levels in human fetal blood are greater than blood levels of
BPA that cause adverse effects in animals and that have been
shown to stimulate human tissues in culture. In addition,
BPA has been shown to act as a SERM and to have activities
that include actions through nonclassical estrogen signaling
pathways. This can lead to substantially increased estrogenic
activity, relative to its weak activity in some bioassays con-
ducted only in adults, as well as unique effects.

It is important to indicate that some laboratories have not
reproduced the initial in vivo findings that very low doses of
BPA altered development of the fetal reproductive system in
male mice, although we and now many others have repli-
cated our findings. However, an analysis of the outcome of
low-dose in vivo studies with BPA in relation to source of
funding provides strong evidence of conflict of interest and
bias in reporting findings on BPA; we have discussed this
issue in detail in other recent reviews (22, 35, 44). Specifically,
the majority of published reports that our findings are not
valid or reliable emanate from corporate-funded publica-
tions, 100% of which report that BPA causes no significant
effects (Table 2 in Ref.35), not just effects on the male repro-
ductive system.

In sharp contrast, there are now over 125 published studies
funded by government agencies such as the National Insti-
tutes of Health documenting that BPA has a wide range of
significant effects including structural and neurochemical
changes throughout the brain associated with behavioral
changes, such as hyperactivity, learning deficits, increased
aggression, and increased likelihood of drug dependency;
abnormalities in sperm production in males and oocytes in
females; disruption of hormone production and fertility in
both males and females; immune disorders, increased
growth rate; and early sexual maturation (listed in Table 1 in
Ref. 35). Most of the small number of studies funded by
government agencies that report no significant effects of BPA
used one model animal (the CD-SD rat) that after being
subjected to selective breeding for over 1000 generations has
become extremely insensitive to any estrogenic chemical or
drug, thus revealing the importance of determining the ap-
propriateness of the animal model being used by including
a positive control, such as DES, in studies of the estrogenic
effects of BPA (22, 35). Endocrinologists are well aware of the
issue of corporate bias in research, and this issue has recently
received considerable attention in articles published in spe-
cial issues of journals (45–49), in a letter we have published
(44), as well as in a review in Scientific American (50).

Molecular Mechanisms of BPA Action
BPA is a SERM

There is now evidence that BPA acts as a SERM and,
relative to estradiol, 1) interacts differently within the ligand-
binding domain of ERs (51), 2) shows a different binding
affinity for and regulation of ER� and ER� in target cells (25,
52), and 3) interacts differently with transcriptional coregu-
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lators (25). In addition, there is evidence that similar to es-
tradiol, BPA can elicit rapid responses in cells through non-
genomic signaling systems (9, 53–59).

After binding hormone, ER regulates the rate of gene tran-
scription through its association with coregulators. Findings
from a number of studies (25, 51, 52, 60) suggest that at a
molecular level, the interaction of BPA and estradiol with
ERs is different, and it is likely that BPA induces a unique ER
conformation. This provides the basis for a difference in the
interaction of ER with coregulatory proteins that act as co-
activators or corepressors of ER-mediated transcription. The
recruitment of some coregulators by the BPA-ER complex
has been shown to be disproportionate to BPA’s binding
affinity for each ER subtype. Specifically, although BPA dis-
played a 10-fold higher binding affinity for ER� over ER�,
the BPA-ER� complex had over 500-fold greater potency
than the BPA-ER� complex in recruiting the coactivator TIF2
(25). It is hypothesized that the overall balance of the relative
expression levels of ER subtype and ER coregulators is an
important determinant of the tissue specificity of SERMs
such as BPA.

Additionally, within the same tissue, different cell types
have unique profiles of estrogen-stimulated gene expression,
and thus individual SERMs can have a mix of agonist and
antagonist activity within the same tissue. For example, stim-
ulation of uterine cell proliferation and water imbibition in
the uterus of rodents is a standard assay for assessing the
potency of xenobiotic estrogens. BPA was a weak partial
agonist for stimulation of uterine wet weight gain. However,
in the same tissue, BPA significantly stimulated an estrogen-
responsive reporter gene (three copies of the vitellogenin
estrogen response element linked to the lac Z gene) in uteri
from ER action indicator (ERIN) transgenic mice (61). Con-
versely, tamoxifen is a potent stimulator of uterine wet
weight gain in mice but did not stimulate ERIN reporter gene
activity in this tissue (61).

It is not always possible to predict the dose required for
BPA to elicit specific effects in one tissue based solely on the
dose of the chemical that will elicit responses in other tissues.
This, of course, is not specific to BPA. Numerous articles now
describe marked differences in BPA potency between dif-
ferent estrogen-responsive tissues within the same animals
(consistent with SERM activity) at doses far below those
previously predicted to cause biological effects based on
traditional high-dose toxicological studies (19). As a result,
BPA has become one of the primary EDCs being chosen for
study by researchers in many different disciplines outside of
the field of toxicology who have an interest in chemicals that
interact in unique ways with the various components of
genomic and nongenomic hormone-response systems.

Although the term SERM was originally applied to chem-
icals, such as the drug tamoxifen, that act as both ER agonists
and antagonists, depending on the tissue being examined,
SERM is now also applied to chemicals, such as BPA, that
have tissue-specific and species-specific effects. With regard
to tissue-specific effects, there are published studies showing
that the effects of BPA are virtually identical to estradiol,
ethinyl estradiol, and DES in the fetal mouse prostate (33, 38,
41) but markedly different from estradiol in the uterus (61,
62). For example, administering pregnant mice a daily dose

of 10 �g/kg�d BPA produced permanent changes in repro-
ductive organs in male offspring in CD-1 mice (41). In con-
trast, effects of BPA in the uterus of developing CD-1 female
mice occur only at maternal doses dramatically higher (100
mg/kg�d) than those required to alter reproductive organ
function in males of the same mouse strain (62). However, the
extremely low dose of 0.025 �g/kg�d BPA was administered
to pregnant and lactating female CD-1 mice via an implanted
Alzet mini-pump, and mammary gland duct development
was stimulated in female offspring (similar to the effect of
BPA on prostate ducts in CD-1 male mice), and there was also
altered postnatal growth, rate of sexual maturation, and es-
trous cycles during later adulthood (63–65). Similar findings
that prenatal exposure to BPA accelerated postnatal growth
and caused an early onset of puberty were also reported after
oral administration one time per day of 2.4 �g/kg�d BPA to
pregnant mice (66). In this regard, it is interesting that BPA
stimulates insulin secretion in mice (58, 59).

Not all responses to BPA are predicted by effects of es-
tradiol. BPA has been shown to antagonize the action of
estradiol in the rat hippocampus by blocking the stimulatory
effect of estradiol on synaptogenesis (26). In another study,
BPA was shown to act as a highly potent estradiol mimetic
and also to disrupt the rapid actions of estradiol at very low
concentrations during cerebellar development via rapid non-
genomic signaling systems (57).

With regard to different effects in different strains of an-
imals, BPA stimulates responses in the pituitary and repro-
ductive organs of female Fischer 344 rats at doses much lower
than those required to stimulate responses in Sprague Daw-
ley rats, although these two different types of rat did not
show differences in the metabolic clearance of BPA (67) or
response to estradiol, and binding of BPA in target tissues to
ER� was similar for the two strains (67–69). We have dis-
cussed in detail elsewhere the insensitivity of the CD-SD rat
to estrogenic drugs as well as BPA (22).

Effects of BPA mediated by nongenomic response systems

There is now extensive evidence that some effects of es-
tradiol occur through the activation of cell signaling systems
associated with receptors that are not located in the cell
nucleus and, instead, may be associated with the cell mem-
brane. These effects are very rapid and occur in addition to
the well studied effects mediated by receptors located in the
cell nucleus, which take longer to occur (70). A characteristic
of cell signaling systems is a very high level of amplification,
with the result that a very low concentration of a compound
can activate large changes in cell function.

Recent studies have shown that BPA can act via non-
genomic (nonnuclear) receptors to activate cell-signaling
pathways at very low concentrations. In rat pituitary tumor
cells, BPA significantly stimulated a rapid (within 30 sec)
influx of calcium at a dose of 1 pm, and prolactin release,
which is triggered by calcium influx in these cells, was also
detected within 1 min, similar to the response to estradiol (9).
In mouse pancreatic �-cells, phosphorylation of the tran-
scription factor cAMP response element-binding protein as-
sociated with rapid induction of calcium influx was reported
at a BPA dose of 1 nm, which was equal in magnitude to the
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response caused by the same dose of estradiol (55). In ad-
dition, rapid (within 1.5 min) influx of calcium was observed
in human MCF-7 breast cancer cells in response to estradiol
and BPA that was significant at the lowest dose tested, which
was 0.1 nm BPA; for estradiol, the EC50 was 0.11 nm, and for
BPA the EC50 was 0.15 nm (56).

BPA also induces expression of the nuclear transcription
factor Nur77 in mouse Leydig cells, which is involved in
LH-mediated testosterone synthesis (71). BPA-induced ex-
pression of Nur77 in Leydig cells is mediated by activation
of protein kinase A and MAPK, with phosphorylation of
MAPK being detected within 5 min after administration of
BPA and reaching a maximum at 10 min; this results in
altered steroidogenesis. This response is too rapid to be me-
diated by activation of transcription factors, which includes
the classical nuclear ERs. Nur77 mRNA levels were increased
above baseline at 1 nm BPA (71).

Anti-thyroid-hormone effect of BPA

BPA has been reported to antagonize T3-stimulated tran-
scription of genes in human TSA201 cells at concentrations
between 100 nm and 1 �m. BPA recruited the nuclear core-
pressor to the thyroid hormone receptor. This provides the
first evidence for direct effects of low doses of BPA on dis-
ruption of thyroid hormone action within cells by compet-
itively displacing T3 from the receptor and by recruiting a
corepressor to the thyroid receptor, thus suppressing acti-
vation of transcription of thyroid hormone-regulated genes
(4). Zoeller and colleagues (72) have also reported antithy-
roid effects of BPA in vivo in rats.

Sources and Levels of Exposure of Animals and
Humans to BPA

A critical issue with regard to EDCs that are components
of commonly used products is whether or not it is likely that
normal use of the products will result in exposure of humans
and/or wildlife because of manufacturing practices, degra-
dation of products after disposal, or leaching from the prod-
ucts during use. The large and rapidly expanding literature
on BPA reveals that there are a multitude of sources of
exposure to this very-high-volume chemical that is now
ubiquitous in our environment. For example, BPA accounts
for the majority of estrogenic activity detected leaching out
of landfills in both the United States and Japan (73, 74).

There appear to be extensive sources of exposure to BPA
(22). For example, it is known that human exposure to BPA
occurs as a result of the use of BPA to manufacture food-
storage containers, water bottles, baby bottles, and the resin
lining of food and beverage cans and in dental sealants.
Exposure from these products thus accounts for a portion of
the high levels of BPA being reported in human blood and
tissues in multiple studies. These published findings contrast
dramatically with assurances by chemical manufacturers
and their surrogates that there is little human exposure to
BPA (75–77), which has led to critiques of these claims (22,
35, 44, 78). That there is significant exposure to BPA reported
in all regions of the world so far examined is not surprising,
given that production capacity for this chemical exceeds 6
billion pounds per year (1).

An important aspect of effects seen in animals within the
low-dose range (reviewed in Ref. 22) is that the doses used
are within the range of human exposure based on the rate of
leaching of BPA from food and beverage containers, other
polycarbonate products, and some dental sealants (14–18,
79–84) and as a result of the presence of BPA in rivers and
streams (85), in drinking water (86), and in indoor air (87, 88).
The consequence of this exposure is that the concentration of
unconjugated BPA in men and nonpregnant women, as well
as pregnant women and their fetuses, is higher than any
chemical industry-sponsored models of exposure predict (75,
77).

The doses of BPA used in the experimental studies de-
scribed here are within the range of exposure to BPA of
laboratory animals housed in polycarbonate cages or pro-
vided water in polycarbonate water bottles (16, 17, 89), and
these biologically active exposures result in blood levels of
BPA (90) that are exceeded by the range currently detected
in human adult or fetal blood (Table 1). Given these findings,
researchers must be careful to avoid the use of polycarbonate
products in studies of the effects of BPA or other estrogenic
chemicals. It is also important to avoid the use of polycar-
bonate or polystyrene products that can leach BPA or other
estrogenic additives, such as nonylphenol (14, 91). In our
animal studies, for example, we use polypropylene cages and
glass water bottles, the drinking water is purified by reverse
osmosis and carbon filtration, water flows through copper
pipes, and we avoid the use of polycarbonate and modified
polystyrene products in our cell culture studies.

Human exposure to BPA in relation to adverse effects in
animal experiments

Although it has been maintained that there is little human
exposure to BPA from plastics in ordinary use, circulating
levels of unconjugated BPA in humans have been reported
since 1999 (Table 1). BPA determinations in human serum
require sensitive methods with detection limits of less than
1 ng/ml (�1 ppb). This is because 1) the circulating levels of
the unconjugated, biologically active chemical in blood of
animals responding to low-dose exposures falls in the low
picogram through low nanogram per milliliter range, based
on low-dose animal studies (90), and 2) specific biological
actions of BPA in cell culture have been reported in and
below this same low nanogram per milliliter to picogram per
milliliter range (Table 2). Therefore, methods to detect en-
vironmentally relevant exposures must be sensitive within
this range. There have been studies that report no human
exposure using insensitive methods of detection (92), with
sensitivities in extraction media surveyed limited to 100 ppb
(93). Standard UV or fluorescence detection can be limited in
serum to 10–150 ng/ml (94), and these older detection tech-
niques are subject to sensitivity limits 200- to 3000-fold
weaker than modern techniques (10, 94). Therefore, older
studies with poor sensitivity that claimed that there was no
human exposure to BPA are not relevant to current under-
standing of the specific high activities of BPA on many end
points within the range of human exposure being detected by
current methods (Table 2).

Over a dozen published studies (Table 1) meet or exceed
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the detection limit above, and, not accidentally, these are the
studies that report detection of BPA in human serum and
tissues in most or all samples. Beginning in 1999 (95), a
number of investigators using a variety of different tech-
niques have reported human circulating levels of unconju-
gated parent BPA ranging from 0.2–20 ng/ml serum and
exceeding 100 ng/g tissue in the placenta. A number of these
studies are detailed in Table 1, where the authors, the ana-
lytical technique, the sensitivity of the specific technique in
application for BPA in human samples, and the resulting
levels observed have been compiled, although this is not a
comprehensive list.

The techniques used to measure BPA include gas chro-
matography mass spectrometry (GC-MS), derivatization
with at least three different chemical moieties, and ELISA, all
with sensitivities for BPA (in serum) ranging from 0.01–0.5
ng/ml. Several of these publications also detailed the pre-
cautions that must be undertaken to prevent contamination
to achieve the level of detection required for human samples
(94, 95); contaminations by BPA appear almost ubiquitous in
many lab plastics and may indicate sources of human ex-
posures leading to the high tissue levels being detected.
Human exposures are most likely through the oral route,
although transdermal exposure by bathing in BPA-contam-
inated water is also of concern, as is exposure via inhalation;
both of these latter routes of exposure would escape the
extensive first-pass conjugation that occurs with oral
administration.

Of particular concern are the high levels of BPA detected
in many studies in fetal cord serum, maternal serum during
pregnancy, and fetal amniotic fluid at developmental stages
of perhaps greatest sensitivity to BPA (10). In one report (96),
the human maternal sera showed average BPA at 1.4–2.4
ng/ml levels, whereas the 15- to 18-wk fetal amniotic fluid
showed higher levels averaging 8.3 ng/ml. The highest level
of fetal exposure thus unfortunately coincided with the pe-
riod of greatest fetal sensitivity to disruption of development
by estrogenic chemicals (97).

In complementary studies, BPA has been measured in
human urine (13, 98–100), which confirms wide human ex-
posure to BPA; the study conducted by the CDC found BPA
in 95% of samples at levels greater than 0.1 �g/liter urine
(�0.1 ng/ml urine) (13) and concluded that “the frequent
detection of BPA suggests widespread exposure to this com-
pound in residents of the United States.” Based on the studies
detecting BPA in human serum above, many as yet uniden-
tified sources may contribute to the total body burden. It is
not unexpected that the range, median, and mean for BPA in
urine reported in the CDC study would be very similar to
these statistics reported in human blood (10, 11, 96).

Current metabolic data in animals are based on single-
dose exposures, whereas human exposure data follow what
appear to be long-term, steady-state exposures. In fact, an
approach to administering BPA that may best mimic what
appears to be tonic exposure by humans is by administration
via SILASTIC brand silicon tubing or osmotic pumps (65).
Based on the available human exposure data, we predict that
there are already extensive human biological actions of BPA
within the range of current human exposures (Fig. 2).
Clearly, research is urgently needed on repeated-exposure

data in animal studies and to evaluate the most likely sources
of a level of human exposure from the products manufac-
tured by over 6 billion pounds per year of BPA. We have
described in detail elsewhere (35) that even in humans in the
lowest fifth percentile of exposure to BPA (
0.1 ppb), the
amount of BPA detected in blood, urine, and other tissues
exceeds adverse-effect levels in a multitude of animal
studies.

Epidemiological studies of BPA

Only recently have the first epidemiological studies been
published concerning the relationship of blood levels of BPA
and disease in humans. There is a relationship between blood
levels of BPA, obesity, polycystic ovary syndrome, and cir-
culating androgens (11, 101) as well as BPA and repeated
miscarriage (102). There is an inverse relationship between
serum BPA and endometrial hyperplasia in women (103).
Additional epidemiological studies are clearly warranted
based on the extensive literature that now exists for adverse
effects of BPA in animals at very low doses.

BPA distribution in mother and transport to the fetus
and neonate

Although the fetus is acutely sensitive to chemical de-
rangement of development, the fetus had initially been pre-
sumed to be protected by the placental barrier between the
maternal circulation and the fetal circulation. However, re-
cent work has shown that BPA has rapid access to the fetus
after maternal exposure, facilitated by accidents of metabo-
lism that may lead to increased levels of BPA in the pregnant
female as well as accumulation in the fetus. Specifically, BPA
is retained in the fetal circulation and increases between 12
and 50 h after a single dose to pregnant rats (104, 105), which
suggests a depot or an enterohepatic circulation of BPA and
that multiple doses may result in accumulation of circulating
levels. However, even in acute single exposures, BPA accu-
mulates in the fetus, such that fetal levels exceed maternal
levels by only 40 min after the maternal dose (105). BPA
levels in the fetus above maternal plasma levels are thus

FIG. 2. Schematic diagram showing the bioactive (parts per trillion)
range in culture medium for most sensitive reported effects of BPA in
rat, mouse, and human tissues in relation to the parts-per-trillion to
parts-per-billion range for unconjugated (parent) BPA in human
blood determined in many studies (Table 1). The detection of BPA in
virtually all people within the relatively high 0.1- to 10-ppb range
suggests multiple exposures from many sources is occurring, which
would be predicted for a chemical that is produced in excess of 6 billion
pounds per year for use in a wide range of products. Studies involving
continuous exposure (64) or multiple exposures per day are required
to address this data gap, whereas it is common in a traditional tox-
icological animal study conducted for regulatory purposes to admin-
ister one dose per day and to examine only a few very high doses.
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achieved (104, 105). Interestingly, the appropriateness of DES
as a positive control for experiments involving exposure
during fetal life to BPA is supported by the finding that DES
accumulates in the fetal circulation at higher levels than in
the treated mother, with similar time course and kinetics
when compared with BPA (37, 104, 105).

Yoo et al. (106) have also described BPA in milk of lactating
Sprague Dawley rats. They found in an infusion study (to
obtain a steady-state circulating level of the chemical) that
BPA was present in milk at 2.4–2.7 times the level in maternal
serum, indicating that BPA accumulates in breast milk and
that transfer of BPA from an exposed mother thus continues
to the pup after birth through weaning.

A study was conducted that directly measured BPA levels
in pregnant mice and fetuses after administration of a low,
environmentally relevant dose of radiolabeled BPA (90).
Zalko and colleagues (90) injected pregnant CD-1 mice sc on
gestation d 17 with a 25 �g/kg dose of tritiated BPA. Parent
(unconjugated) BPA levels in fetuses at 0.5, 2, and 24 h after
administration were 4.20, 0.48, and 0.13 ng/g, respectively.
In addition, we have measured 10 and 100 pg/ml in our
pregnant mice at biologically active low doses of BPA of 2
and 20 �g/kg (Welshons, W. V., and J. A. Taylor, unpub-
lished observation). Numerous published findings have
shown that these doses (and lower doses) of BPA adminis-
tered to pregnant mice and rats caused permanent changes
in reproductive organs of male and female offspring (re-
viewed in Ref. 22).

A critical aspect of the findings reported by Zalko is that
it has been reported that the levels of unconjugated BPA in
human fetal serum collected at parturition is in the range of
0.1–10 ng/ml (0.1–10 ppb), and the mean BPA concentration
in human male fetuses is 3.5 ng/ml (10). The levels of BPA
found in human fetuses are thus similar to levels in fetal mice
shortly after pregnant mice are exposed to BPA (in the low
parts per billion range). Between 2 and 24 h after treatment
of pregnant mice with this very low dose of BPA, human fetal
levels exceed the levels in fetal mice.

Significant effects caused in rats and mice by exposure
during development to doses of BPA at and below the level
studied by Zalko include structural and neurochemical
changes throughout the brain associated with behavioral
changes, such as hyperactivity, learning deficits, increased
aggression, and increased likelihood of drug dependency;
abnormalities in sperm production in males and oocytes and
meiosis in females; disruption of hormone production;
changes in nuclear superfamily gene expression, including
aryl hydride receptor, RAR and RXR; changes in all repro-
ductive organs and in fertility in both males and females;
immune disorders; increased growth rate; and early sexual
maturation (reviewed in Ref. 35). A document is posted on
the web that is periodically updated that contains a com-
prehensive list of references concerning research conducted
with BPA (23).

The appearance of BPA in the mouse fetus within the range
of 0.1–5 ng/g (parts per billion) after maternal administration
of a 25 �g/kg dose indicates substantial transport through
the placenta and thus significant fetal exposure after mater-
nal exposure to a very low dose of BPA (90). Maternal levels
of unconjugated, bioavailable BPA were also measured di-

rectly in this experiment. Maternal blood levels of parent
BPA were 1.06 and 0.15 ng/ml at 0.5 and 3 h after exposure,
respectively, whereas the long-term residual exposure at 24 h
was below the quantifiable level. Zalko and colleagues (90)
reported that there was significant variability within and
between replicate experiments, which may indicate substan-
tial individual variation in metabolism of BPA. Our own
findings show that individual CD-1 pregnant mice differ by
as much as 20-fold in the levels of BPA detected during the
24 h after oral administration of a 20 �g/kg dose (Welshons,
W. V., and J. A. Taylor, unpublished observation).

Metabolism of BPA

The main metabolism of BPA is to the monoglucuronide
for excretion, although smaller amounts of other conjugates
are also produced. BPA glucuronide itself does not show
estrogenic activity based on several studies (8, 90, 107), so
only unconjugated BPA is considered bioavailable and bio-
logically active, although there is now evidence that some
metabolites of BPA are as much as 250-fold more potent than
parent BPA (108). Glucuronidation enzymes are hepatic
UDP-glucuronosyltransferases, specifically the BPA-active
isoform UGT2B1 (109). Interestingly, Matsumoto et al. (109)
have reported that this UGT2B1 enzymatic activity with BPA
as the substrate is reduced in the pregnant mother compared
with the nonpregnant female rat. The enzyme is absent in the
rat fetus, and activity appears slowly after birth, with non-
pregnant adult levels attained by 3 wk. Therefore, the preg-
nant mother, the fetus, and the newborn rat pup may show
heightened sensitivity to BPA because of a reduced rate of
clearance and increased half-life of unconjugated, estrogen-
ically active BPA. There are similar data for DES, which is
commonly used as a positive control in studies of the estro-
genic activity of BPA. In a study of rats from birth to 50 d of
age, the clearance of [14C]DES increased by 10-fold between
birth and 25 d of age. Intestinal hydrolysis of DES conjugates
was minimal at birth (because of the lack of intestinal bac-
teria) but fully developed by 25 d of age, and there was also
a deficiency in liver enzymes required for conjugation in
newborn rats (110).

BPA has also been reported to interact with drug- and
steroid-metabolizing activity of rat (111), pig (112), and
human hepatic cytochrome P450s (113, 114) by inhibition
of activities, although these were measured at high micro-
molar concentrations of BPA. For example, testosterone 16�-
hydroxylase and testosterone 2�-hydroxylase activities were
inhibited by BPA at 100 �m (69 and 74%, respectively) (111).
UDP-glucuronosyltransferase activities toward BPA and tes-
tosterone as well as estradiol were significantly decreased in
liver microsomes prepared from adult male Wistar rats ad-
ministered a 1 mg/kg dose of BPA (115). Whether inhibition
of metabolizing enzymes may act to modulate BPA expo-
sures at environmentally relevant doses remains to be de-
termined. However, there are a number of studies that report
higher blood levels of BPA associated with elevated levels of
testosterone in humans (10, 11, 101). This is quite interesting
in that exposure to very low doses of BPA during develop-
ment (116, 117) or after weaning (118, 119) results in a de-
crease in testosterone in male rats and mice. In vitro studies
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indicate that this occurs via an inhibition by BPA of the
androgen-synthesizing enzyme 17�-hydroxylase in both rats
(117) and humans (114).

Implications for Public Health

The findings summarized in Fig. 2 show that BPA stim-
ulates human and rodent tissues at concentrations below
those detected in human blood. This has to be viewed from
the perspective that unconjugated BPA in blood shows very
limited binding to SHBG and thus a higher free (
8%) con-
centration in blood relative to estradiol (34); most BPA would
thus be bound only weakly to albumin in blood. The con-
sistent finding that unconjugated BPA is detected in virtually
everyone at biologically active concentrations implies virtu-
ally continuous exposure, based on the assumption that there
is relatively rapid metabolism, although metabolism after
exposure via respiration or dermal contact would not be as
rapid as after oral exposure. However, we do not have good
information about all of the ways that the over 6 billion
pounds of BPA produced annually can enter the human
body, and no data exist from studies that provide pharma-
cokinetic information about the levels of BPA in humans or
experimental animals as a result of multiple exposures
throughout the day.

It is well understood in endocrinology that doses millions
of times higher than the physiologically relevant range of a
hormone do not produce effects predictive of what would be
seen within the physiologically relevant dose range. In con-
trast, in addressing this issue for the toxicological community
and regulatory agencies such as the U.S. EPA and FDA, the
response by chemical industry trade organizations has been
to reject the possibility of nonmonotonic dose-response
curves and that effects could occur at low doses that would
not be predicted by experiments that examined only a few
very high doses. For example, the Association of Plastics
Manufacturers in Europe (APM) stated that “the fundamen-
tal principle of toxicology assumes that biological effects
increase as the dose increases” (77) (see also the response to
this commentary in Ref. 78). It is disturbing to discover that
this statement by the APM is actually a fundamental as-
sumption upon which regulatory agencies around the world
have designed the methods used to test for the hazards
caused by exposure to EDCs in commerce. The assumptions
that form the basis for chemical risk assessments have led to
the use of experiments that examine only very high doses of
chemicals, based on the assumption that all dose-response
curves for environmental chemicals are monotonic. The re-
sults from these high-dose toxicity studies are then used by
regulators to predict doses of chemicals, such as BPA, that the
public is assured are safe, even though the putative safe
doses are never directly tested in experiments. This process
has remained in place even though scientists studying EDCs
have been warning regulators at the U.S. EPA and FDA over
the last decade that this approach is falsified as a basis for
estimating acceptable human exposures to EDCs by thou-
sands of published findings by endocrinologists concerning
hormone action (22, 120).

In experiments with hormones, drugs, and other chemicals
that act via hormonal, receptor-mediated mechanisms, it is

very common for the dose-response curve to be nonmono-
tonic and form an inverted U, which endocrinologists typ-
ically refer to as a biphasic dose-response curve. In contrast,
there appears to be a lack of awareness of this phenomenon
in toxicology, because many toxicological studies in which
effects occur only in a restricted low-dose range, although the
effect is not seen at lower or higher doses, conclude that there
was no relationship between dose and response. For exam-
ple, in referring to the results of a study by Gupta (38) in
which a low and high dose of DES were tested and stimu-
lating effects on the prostate occurred at the low dose and
inhibition of prostate development occurred at the high dose,
Tyl (121) stated that “the effects of DES (the only chemical
tested at more than one dose) were not dose related, with
greater effects at 0.1 microgram/kg/day than at 200
micrograms/kg/day.”

There are thus toxicologists that consider only monotonic
dose-response relationships to be valid, although Gupta’s
replication of our inverted-U dose-response relationship for
DES and prostate development, where very low doses stim-
ulate growth and very high doses completely inhibit devel-
opment (33, 41), is essentially regarded as indicating no effect
of DES on the prostate. This simplistic approach would elim-
inate virtually all hormones from consideration by regula-
tory agencies as a concern for public health, because there is
evidence from the endocrine literature of nonmonotonic ef-
fects for virtually all hormones (7). A common, but inappro-
priate, response to nonmonotonic dose-response relation-
ships in toxicological studies is thus to declare that because
no monotonic dose-response relationship was observed, any
effects caused by the low doses can be ignored. Depending
on the response being examined, the dose-response relation-
ship may or may not be nonmonotonic, but the fact that
nonmonotonic dose-response relationships do commonly
occur in endocrinology has not been incorporated into the
process of assessing risk of exposure to environmental chem-
icals that disrupt the endocrine system.

For studies examining the biological effects of BPA, there
are currently 18 published reports of inverted-U dose-
response curves (23). One recent example is in rat pituitary
tumor cells, where BPA significantly stimulated a rapid
(within 30 sec) influx of calcium at a dose of 1 pm; the greatest
response occurred at 1 nm, although the magnitude of the
response decreased at 10 nm. The calcium influx response to
BPA at 1 nm was actually greater than that for estradiol or
DES (9). Other examples of unique low-dose effects not pre-
dicted by high-dose studies are 1) the finding of greater
reduction in fertility in mice at low relative to high doses of
pesticides (122), 2) increased DNA damage at low relative to
high doses of x-rays (123), and 3) stimulation of human
prostate cancer cell growth by low but not high doses of BPA
(6). Now that studies of BPA and other chemicals are incor-
porating a much wider dose range than had traditionally
been used (24, 124, 125), unpredicted, unique low-dose ef-
fects are being routinely reported.

In summary, current analytical techniques have detected
BPA in over 95% of human samples (including serum, tissues,
and urine). The techniques include GC-MS, tandem mass spec-
trometry, coulometric array electrochemical detection, deriva-
tization techniques with multiple different moieties, and ELISA.
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These different techniques all detect BPA in human tissues in
similar nanogram per milliliter ranges and indicate widespread
exposure. This is of particular concern with regard to the levels
of BPA being reported in pregnant women and fetuses. The
proposed rapid clearance of BPA described in a number of
chemical industry-sponsored studies, combined with the high,
nanogram per milliliter ranges reported in human circulation
and urine by government-funded studies, would indicate 1)
that the human intake of BPA is actually very much higher than
is calculated by industry estimates and/or 2) that a daily long-
term intake of BPA leads to a bioaccumulation and steady-state
levels that are not represented in any current pharmacokinetic
models for BPA. Taken together, these findings provide a clear
basis for an immediate reevaluation by the U.S. EPA and FDA
of current estimates of safe daily exposure levels of BPA. A new
risk assessment is required that incorporates current published
findings, because the current safe exposure levels are based on
research conducted in the 1980s (20).
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