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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS
IV. FURTHER DEVELOPMENTS OF THE GENERAL THEORY

By R. S. RIVLIN
British Rubber Producers’ Research Association, Welwyn Garden City

(Communicated by E. K. Rideal, F.R.S.—Received 12 November 1947)

The equations of motion, boundary conditions and stress-strain relations for a highly elastic
material can be expressed in terms of the stored-energy function. This has been done in part I of
this series (Rivlin 1948 a), for both the cases of compressible and incompressible materials, following
the methods given by E. & F. Cosserat for compressible materials.

The stored-energy function may be defined for a particular material in terms of the invariants of
strain. The form in which the equations of motion, etc., are deduced, in the previous paper, does
not permit the evaluation of the forces necessary to produce a specified deformation unless the
actual expression for the stored-energy function in terms of the scalar invariants of the strain is
introduced. In the present paper, the equations are transformed into forms more suitable for
carrying out such an explicit evaluation. As examples, the surface forces necessary to produce simple
shear in a cuboid of either compressible or incompressible material and those required to produce
simple torsion in a right-circular cylinder of incompressible material are derived.

1. INTRODUCTION

In part I of this series of papers (Rivlin 19484) the equations of motion and boundary con-
ditions for a highly elastic material, which is isotropic in its undeformed state, are derived
both for the case when the material is compressible and when it is incompressible. These
were given in terms of an arbitrary stored-energy function W, which was considered to be
completely determined by the principal extensions of the material at the point considered.
The notion of an incompressible, neo-Hookean material was introduced as one in which the
stored-energy function and the corresponding stress-strain relationships take a particularly
simple form. The equations of motion and boundary conditions for an incompressible
material were particularized for this case. In parts IT and IIT (Rivlin 1948 b,¢) certain
implications of these equations of motion and boundary conditions for an incompressible,
neo-Hookean material are derived.

In the present paper, we first discuss, in § 2, the definition of components of strain somewhat
more critically than has been done hitherto and derive a relationship between the com-
ponents of large strain as defined by Coker & Filon (1931) and those based on the original
definition of large strain given by Cauchy (1827) and employed in the previous papers
of this series.

In §§ 3 to 6 the expression of the stored-energy function in terms of the strain invariants is
discussed and the stress-strain relations corresponding to any choice of the stored-energy
function are derived in a form more suitable for application to particular problems than
those given in part I (Rivlin 19484, §§7,8). In §7 the application of these results to the
problem of determining the stored-energy function, from experiments on a highly elastic
material, are discussed.
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In §§8 to 11, the equations of motion and boundary conditions obtained in part I are
also expressed in a form more suitable for application to particular problems and, in §§ 12
to 14, these are applied to determine the system of forces required to produce simple shear
in a cuboid of either compressible or incompressible material and pure torsion in a right-
circular cylinder of incompressible, highly elastic material.

A. THE STRESS-STRAIN RELATIONSHIPS

2. THE DEFINITION OF STRAIN

The original complete definition of a large strain was, it appears, given by Cauchy (1827).
The strain at a point of a body which, in the undeformed state of the body, lies at (x,y, z),
is defined by means of six components €,,, €,,, €.., €,., €, and €,,, in a rectangular, Cartesian
co-ordinate system (x,y,z). Suppose, in the deformation, the point (x,y,z) moves to
(x4u,y+v,z+w) = (&9,{), where u, v and w and hence &,  and { are functions of x, y
and z. Suppose, too, that a linear element of the material, which in the undeformed state is
situated at (x, 7, z), haslength ds and direction-cosines (/, m, n) and moves, in the deformation,

to the point (&, 7, {), its length changing to ds” and its direction-cosines to (I',m’,n’).
Then oV =dElds, Tmi=dyid and n' = d¢lds’, (2-1)

where d&, dy and d( are the components of length of the element ds” parallel to the axes x, y

and z respectively.
Since &, # and { are functions of x, y and z, we have

di = & dx+&,dy+E.dz, (2:2)
together with similar expressions for dy and d{. Thus, combining (2-1) and (2-2), and bearing
in mind that R dx/ds, m =dy|/ds and n= dz/ds, ' (2-3)
Sl e ' = (ds|ds") (E 1+E,m+E.n), m' = (ds/ds’) ('le+’7ym+'lzn)} (2:4)
and n' = (ds/ds") (G A+, ,m+L n).

Since P2 4m24n =1,

equations (2-4) yield
(ds'[ds)? = (E2+n2+C2) LB+ (E2 492+ 2) m?
+ (E2+ 72+ C2) i+ 2(8, €, +1,1,+,C;) mn
+2(E,8+n.0.+L.8) nl+-2(E,8, +7.9,+.C) Im. (2-5)
Since P+m24n2=1,
H(ds'/ds)2—1} = 3(E2 + 92+ 32— 1) P+ 3(E2+- 92+ (2 —1) m?

+3(E2+72+2—1) i+ (£, 6, +n,7.+§, L) mn
+ (6.8 + 1.0+ 6) nl+ (6,6, +n.7,+8.L,) Im. (2-6)

The six components of strain €, €,,, €.., €,., €., and ¢,, are defined by Cauchy as the
coefficients of /2, m?, n?, mn, nl and Im respectively, in the expression on the right-hand side
of equation (2-6).
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Thus, writing E=x+u, p=y+v and {=z+w,
we have € = U+ 3 (42402 +w?), etc.
and €z = W, +v,+u,u +v,9,+w,w, etc. (2:7)

If we know the six components of strain at a point of specified position, in the undeformed
state of the body, then equation (2-6) can be used to calculate the extension of any linear
element at that point, whose direction-cosines in the undeformed state of the body are
given. It is just in this sense that the components of strain as defined above describe the
deformation in the neighbourhood of the point to which they refer. It is clear that the
deformation could equally be described by any six independent functions of the six com-
ponents already defined. However, such a procedure and the description of these functions
as the components of strain would not add anything to our knowledge of the deformation
in the neighbourhood of the point considered and could only be justified on the grounds of
mathematical convenience.

It is noted that in the definition of strain based on equation (2-6), the point at which the
strain is specified is defined by its position in the undeformed state of the body, and the strain
components are given by the variation of the displacement components («, », w) as functions
of position (x, y, z), measured in the undeformed state. It has been suggested by Coker &
Filon (1931)—and this suggestion has been taken up by others, notably by Seth (1935) and
by Murnaghan (1937)—that the strain should be defined in terms of the variations of the
displacement components (, v, w) as functions of position (§, 7, {) measured in the deformed
state of the body.

Since (x,y, z), the co-ordinates of a point of the body before deformation, can be con-
sidered as functions of its co-ordinates (§, 7, {) after deformation, we have

dx = xgdE+x,dy+x,dg, (2:8)

together with similar expressions for dy and dz. From these equations and the relations
(2-1) and (2-3), we have

L= (ds'[ds) (gl +xym +xg0'), m= (ds']ds) (gl +y,m + ) } (29)

and n = (ds'[ds) (zgl' +z,m' +z.n').
Equations (2-9) yield

—{(ds[ds")2—1} = — (23 +y3+23—1) "2 —§(x2+y2+22—1) m'?

i %(x% +y§ + zg —1)n"2— (x,,xg +9,9:+2, zg) m'n’
— (X xe+yeyet+zezy) W'l — (2, +yey, +2,2,) Im'. (2:10)
The six components of strain, which we shall denote by ¢, €, ,, €1, €, €, and ¢, are defined
as the coefficients of I'2, m'2, n'2, m'n’, n’l’ and I'm’ respectively in the expression on the right-

hand side of (2-10). Thus, writing

x=f—u, y=n—v and z=(_—w,
we have 6ge = ug— 3 (uf +vi+wj), etc. | (211)

and €yp = Vgt W, — Uy Uy —V, Ve — W, Wy, etc. |
47-2
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Now, a knowledge of these six components of strain, appertaining to a specified point of
the deformed material, enables us to calculate, from equation (2:10), the extension which
has been undergone by any linear element at the point considered, whose directions in the
deformed state are given.

Alternatively, instead of using the expression (2:9) for obtaining (/,m,n) in terms of
(I'ym',n") and deriving the result (2:10), we find, from (2-4), that

ds'1(dr ,, 61, 31, ds'l{0r , 07 61,
= m(agl o ol w), m= dsr(6§l+0 L )
ds'y (o, O, 0 Sk
s Ty O T
and wr(agl +3§ )
& Ey €z
where T=| 0 Uy el
G Gty
Since . P+m24+n? =1,

equations (2-12) yield

(5 L e ) 2 ) e

() + ) +og) 1+ Lo o+ ]

dr dr Ot a‘r or ot Jor or 61 dr dr or

g, €, T ag, o€, oz, ae, "'+2[5§ ) (1Y)

Thus, comparing (2-13) with (2:10), the components of strain given by equations (2-11)

are also given by 3 Ir\2 [ 9r\2
- A )
dr dr dr dr Ot Or
o= 2 a1,9C, " am, 3¢, " ap, )’

Now, if we accept the Cauchy definition of strain, i.e. that given by equations (2-7), it
can be shown that the strain in the neighbourhood of any point of the material can be con-
sidered to consist of a pure rotation followed by a pure, homogeneous strain This pure,
homogeneous strain has, in the axial system (x,y,z), the six components €, €,,, ..., €y,

given by 1426, = (1+u,)2+u2+u2, etc.
and €y = VW, + (14+v,) w,+v,(1+w,), etc.

+2

(2-14)

and 5. BtC,

(2-15)

From the formulae (2:14) and (2-15), we can derive, by simple algebraic manipulation,

the six relations ’ ’
1 —2¢;, = [(1426;,) (14-2¢,) —€2]/7% etc.l

’ ’ (2‘ l 6)
and —6yr = [€y 60— (1+26,,) €,.]/7%, ete. J
FHadlt AR e
Bearing in mind that 72=| ¢, 1426, &l
o S My e
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it is seen that equations (2:16) express the six strain components €, ..., 6, in terms of the

six strain components ¢ €,

e 8
From (2:16), the six inverse relations

1426, = 72[(1—2¢,,) (1 —26,,) —€2,], etc.|

and ; €y: = T2[€gyee+ (1 —26) €,¢], ete. |
can be obtained. ;

(2:17)

3. THE PRINCIPAL AXES OF STRAIN AND STRAIN INVARIANTS
By a suitable choice of the co-ordinate axes (x,y, z), equation (2+5) can be written in the
oy (ds' [ds)2 = A312++ 3m?+ A3, (3-1)

At each point of the material, there is, for a specified deformation, one and only one choice
of the co-ordinate axes which allows (ds’/ds)? to be expressed in this way. The directions of
these axes remain at right angles after the deformation has taken place, but, in general,
each direction is changed. Taking axes in these new directions as co-ordinate axes, it can be
seen that equation (2:10) becomes

dS 2_ 1 9 1 9 1 19 .
(@) — gt &6)

where (I',m’,n") are the direction-cosines of a linear element in its deformed state, relative
to the new system of axes. The directions of the axes of this new system vary, in general,
from point to point of the material.

The values of 13, A2 and A3 can be determined in terms of the components of strain in a
rectangular, Cartesian co-ordinate system, as the values of A% satisfying

14 2¢,,—A? & €4
b 142, =A% €ye
[ 6ys 1+ 2¢,,—A?
RN S ,
= €y 14-2¢,, —A? €s =0, (3:8)
[ Eyz 1+ 2, —A*

From (3-3), we have
L = B+ 15 = 3+2(e,+6,,+6..) = 3+ 26+, +¢..),
I, = A3A3+A3A3+A3A% ;
= (l +2€yy) (l +2€zz) i (l +26zz) (l +2€xx) + (l +2€xx) (1 +2€yy) —‘eiz—egx—efy
=(1+2¢,) (14+2¢.,) + (1 42¢;.) (1+26,) +(1+2¢;,) (1+2¢,) —€2 —e2—€2
and I, =72 = A%A%42 = (1+2¢,,) (1 +2eyy) (1+2¢,,)
e B C — (1+2¢,,) ez, —(1+ e ) et~ (k42 ) e,
= (1+2¢,) (14-2¢},) (142¢;,) + 26, €..64
— (14260 ) 62— (1+26, ) 63— (1+26;,) 62, .

L (3-4)
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where 7 is the ratio of a volume element of the material in the deformed state to that in the
undeformed state. [, /, and Z, are invariants, since A}, 13 and A3 depend only on the state of
strain and not on the choice of the reference axes.

Again 1/A3, 1/A} and 1/A3 can be obtained, in terms of the components of strain e, €,,, €,
6,¢> €c¢ and €g,, as the values of 1/4* given by

—ég, 1—2¢,—(1/A%) —&yr = @ (3:5)
—6gp — &y 1—2¢,—(1/A%)

2

. I3 Rt
Whence J; ‘= /{—%4—@4—1@ = 3—2(6g; +€,, +€2)s

1 1 1
+ (1 —2€) (1 —2€4) + (1 —2¢) (1—2¢,,) —€2,—€F—€E,
and Jy = 1/r* = 1/AF 345 = (1—2¢) (1—2¢,,) (1 —2¢4)

—2egepgegy — (1—26gg) ey — (1—26,) g — (1—26) €, |

where J}, J, and J; are also strain invariants. It can readily be seen, by comparing equations

. d (3-6), that
() < s Jy =Ll J,=15L/l; and J;=1/L. (81)

4, EXPRESSION FOR THE STORED-ENERGY FUNCTION IN AN INITIALLY ISOTROPIC MATERIAL

If the highly elastic material considered is isotropic in its undeformed state, then the
stored energy W, per unit volume measured in the undeformed state, must be a sym-
metrical function of A, 4, and A,. Moreover, the energy stored in an element of the material
is unaltered by a pure rotation of the element—for example, by a change of sign, but not of
magnitude, of A, and 4,, leaving A; unaltered. Consequently, the stored energy can be
considered to be a symmetrical function of A}, A3 and A% and can therefore be expressed as
a function of the three strain invariants I, /, and 7, defined by (3-4). We may then write

W ="MWl Iz L) (4-1)
In view of the relationships (3-7) it is, of course, possible to write
W = W(J, Jp, Jy).

However, nothing further except perhaps, in some cases, formal simplicity can be obtained
by writing W in this form and we shall not consider it further.

The corresponding stress-strain relationship can be obtained, for a compressible material,
by substituting for W, from (4-1), in the relationships (Rivlin 1948 4, equations (7:5))

1 W W W
tx,,:;[(l S TRt uz]’ etc.

1 ow ow oW
and -ty:z; wx%;+wy%;+(l+wz) E], EtcC.

(4-2)
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Thus, for example,

i WL, WL, IWILy\ (aWal, oW adl, IW
‘xx‘?[(“”)(al % L 0u)+ (aI ou, i1 ou, tar au)

IW oL, aw oL, oWl

i (aI ) T TR e )]
o, A, LW

[ %) 3. +y3u+20u oI,

2 oL, L, w1
—?[(”“")a yau U ’a o tr
1

oI, A, AW
+;[(l+“)a +ya T 5y | 3T,

Making use of the formulae (3-4) and (2-15), equation (4-3) and similar equations for
the remaining stress components become

g , , oW oW i
[1+2e,,,, ar—{(1+26,) (142e,) - }aI +(331 1251—2)],etc.

(4:3)

ow ow o
and ¢, = = l:e;z I, —fe e —(1+2 ) e} 772—] 5 ete.

In view of the relations (2:16), these equations may be written in the alternative form

2 oW W ([, IW W
o= [(”2“)01 —(1—2e) Ly 37 +(I3al ”231)] etc.
4-5
i oW e

i §

and t bee T +€y 1 A o o

vz =
For an incompressible material, the stored energy W is a function of 7, and 7, only, /;
being always unity. The stress-strain relationships then become

, OW i)
txx = 2[(1+2€xx) W_(l 2 55) aI}V+IZ 31 ]‘l‘p, etc.

(4-6)
and = 2[ o 9T + N 3[ 5 e,

where p is a hydrostatic pressure. The terms 7,(dW/dl,) in the first three of these equations
may be incorporated into p.

5. LIMITATIONS ON THE FORM OF THE STRESS-STRAIN RELATIONSHIPS

It has been tacitly assumed by certain workers that if the material is initially isotropic,
then any stress-strain relationship, which is unaltered by a cyclic rotation of the axes x, y, z
of the rectangular, Cartesian reference system, is allowable. Thus, Seth (1935), for example,
has taken as basic stress-strain relationships, six equations which have, with our notation,

o i L = A(6get€,y+6pe) +2ueg, etc. and ¢, = pe,, etc. (5:1)

In these, A and x are physical constants for the particular material considered. The material
to which the stress-strain relationships (5:1) apply must be compressible, for by means of
them the stress components are uniquely determined when the strain components are
specified. For an incompressible material they are, of course, undetermined to the extent
of an arbitrary hydrostatic pressure.
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From (3-6) we have 6ge+€yyt+Ege = —3(S1—3). (5:2)
Employing the relations (3:7), this yields
= Al gl ;
€§§+€1m+6g§———*2‘(73—3). (5 3)
Thus, the stress-strain relations (5:1) may be rewritten in the form
t. = —u(1—2¢) —%/1(%—3) +u, etc. and ¢, = pé,, etc. (5-4)
3
Comparing equations (5-4) and (4:5), we have
ow 2 dW N4
A #=rhar =25
oW W (5:5)
=2 S2s
and %A(IS 3)+ [13 oI, +1, 5 i,

oW aw # = I
Whence A =ty I, = fuls* and ﬁ = 35t l:_ (34 +/‘)Tz+ (‘;"H‘/‘)]- (56)

From the second and third of equations (5:6), we obtain

2 2
sTor,—— Wit and gor = —30a+ I, (57)
respectively.

Equations (5'7) are compatible only if A = —x. Otherwise, the stored-energy function
W for the material cannot be a function of the strain invariants only. The equations (5+1)
are therefore not allowable for the description of the elastic properties of an isotropic
material in which the stored energy is determined solely by the state of pure, homogeneous
strain at the point considered.

6. STRESS-STRAIN RELATIONSHIPS FOR PURE, HOMOGENEOUS STRAIN

For a general pure, homogeneous strain of a highly elastic material, in which a unit cube
of the material is deformed into a cuboid of dimensions A,, 1, and A4 parallel to the , y and z
axes respectively, the stress-strain relationships are readily obtained, from equations (4+5)

or (4:6), by putting
u=A;—1)x, v=(A,—1)y and w=(;3—1)z. (6-1)

They are, for a compressible material, from (4:5),

W LW oW . oW
[Al ) AR 7 R 312]’

(6-2)

with similar equations for #,, and #,, obtained by replacing 4, by 4, and A, respectively.
For an incompressible material the corresponding equations may be obtained from (4-6)
in a similar manner. They are

1 oW
t = 2[/11 al Ig 79‘]; +p, etc. (6'3)
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For a pure, homogeneous strain, in which forces are applied only to the faces of the cube
normal to the x and y axes, ¢,. = 0. Then, for a compressible material, we obtain, from (6-2),

2, I\ (AW ,0W 2, L (AW ,0W |
o= (4 A‘;’Ag)(al,“2 312) and ’w“r‘(’{z“m;,{g)(all“l 512)' (6:4)

For an incompressible material we obtain, from (6-3),

1\ (W W
"mg) (al1 il

(i 2(/{%

) and tyyzg(,{g_ 1 )(3W zc?W).

zx) \ar 4

Lty L

Equations (6-2) or (6-3) can be specialized for the case of simple extension by putting
23 =13 = I,
and, for the case of pure shear, by putting
=1 and Ay=1A;,

bearing in mind that /; = 1 for an incompressible material.

7. SOME REMARKS ON THE DEDUCTION OF THE ELASTIC LAWS FROM EXPERIMENT

By comparing the results of experiments with the predictions of the theory it should be
possible to determine the form of the stored-energy function. The accuracy of this deter-
mination is, of course, ultimately limited by the accuracy with which the experiments are
carried out.

In the past it has been customary to carry out deformation-load tests for some simple type
of deformation, e.g. simple extension or simple shear, subsequently fitting some arbitrary
and apparently simple types of stress-strain characteristic to the experimental results
obtained. In the light of the theory given above, it is clear that the form of the stress-strain
characteristic, which should be fitted to the experimental results, is the specialization of
(4+5) or (4-6) to the type of deformation obtaining in the experiment. Various simple forms
of W as functions of the strain invariants should be introduced and the physical parameters
involved obtained from the experimental results. It is only by such means that it can be
hoped to obtain from experiment stress-strain relations for particular materials, which will
enable us to correlate the results of experiments on different types of deformation.

The simplest forms of W, which will in turn lead to simple mathematical formulations
of the general elasticity theory for the materials concerned, do not necessarily lead to the
simplest stress-deformation relationship for particular simple types of deformation.

As an example of this, we can consider the case of an incompressible neo-Hookean material
considered in earlier papers of this series. The stress-deformation relationship for simple

extension takes the form -
stress proportional to (/{2— I)’

where A is the ratio of stretched to unstretched length. The stored-energy function, however,
has the particularly simple form

W proportional to (/;—3).

Vol. 241. A. 48
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If we considered a material for which stress is proportional to (A— 1) for simple extension,
the corresponding stored-energy function would have a relatively complicated form and
the general stress-strain relationships would also assume a relatively complicated form.

In deducing the form of the stored-energy function from experiment, care must be taken
not to make too general a deduction from any particular experiment. In general, any
particular experiment will leave certain elements in the form of the stored-energy function
undetermined, and it is important, in interpreting results, to see from an examination of
equations (4-5) or (4-6) just how much information we could expect the experiment to yield.
Let us consider, as an example, the case of simple shear. It is shown below, in § 12, that the
relation between shearing stress and amount of shear K, for a simple shear, is

=)
and L=11, = 8-+K=.

If, in an experiment, we find that the relation between £, and K is linear, this implies that
(W[dl,+adW]dl,) is a constant, but does not tell us completely the form of W. Other
measurements are necessary to obtain this.

B. THE EQUATIONS OF MOTION AND BOUNDARY CONDITIONS
8. THE EQUATIONS OF MOTION FOR A COMPRESSIBLE MATERIAL

In part I (Rivlin 19484, § 15) the equations of motion for a body of compressible, elastic
material, which is isotropic in its undeformed state, are given as
a (aw\ a (oW aw 0%u
az(@;)*a@(a—uy)+az(au ) +oX = pga ete. =
where p is the density of the material of the body in its undeformed state and (x, y, z) is the
body force per unit mass of material at the point considered. The equations (8-1) refer to
a point of the body which is at (x, 7, z) in the undeformed state.
These may be transformed into a form more suitable for the discussion of certain problems
by introducing the expression (4-1) for W.
Thus, from (4+1), we have

W AW L, aW I, W il
du, — oI 9u, " 3L, 9u, " 9L, 0u.’

oW _ W o, oW il awaI
du, — 3I, du, " 9T, du, +az ou,

Introducing the expressions (8:2) into the first of equatlons (8-1), we obtain

awra (oI, @ d (dL,\ @ (d1,\7
97, Ec(a_zz,r)+3y(au)+az(3u):|+0l 0x(0u)+0y(3u)+0z(3u)

W (L 2 o1, @ oI, @ (IW\ oL, 9 (AW
3 ) 3x(3ux)+c?y((7u) Bz(au):l+0u 3x( ) u, ay(al)%_uﬁ(a—ll)
?!z_‘l(a_”f).é{z_," (QW)+%2(?LV)+%.Q (@Ef) ?l:si(iW 01y 0 (AW
du,2x\91,) " u, 9y \o1,) " ou,02\1,) T ou, ax \a1;) " du, 3y 013) EE(?}TS)
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Employing the expressions (3-4) for I,, I, and /; and the relations (2-15), we obtain

a1, a1, a1, X .
e 2(1+4u,), T, 2u, and = 2u,; (8-4)
oI, ar ar ar ar
aux l:(l+ )a +(l+ )3Uy Uzngl*wyaz:l:
a1, ¥ ar or ar
_:2[v2—+w"ﬁ—v’a_%_(l+w2)a—v f (8:5)
BI ar ar ar
d Lo
ol 2[ 8 T Y v, —(1-+e )6wx "00] )
o PR S ERY oy > or
a—ux = 2T*a—u;,. a_l,ty = 27 0&; and auz g auz (8'6)
1+4u, u, u, .
7 is given by G 5SS o (8:7)
w, w, 14w,
From the relations (8-4), we obtain
¢ () 0 (ol @iy e
97:(8—%)+8y(0u)+3 (a—uz)_2Vu—-Al (say). (8-8)

From the relations (8-5), we obtain
32 ) 25 )+ 22 )
= oo 5 () 35 ) ]+ 000 [ ) 23 ) ]+ g ) a5 )
+“’x[a%(aav) 0z((?v):|+ [az( ) B&(v)]H* [ax( ) «%(gg)]}

= A4, (say). (89)
Also, from (8:6), we obtain

9 L\ @ (dL\ 9 (3L .[ordr ordr oror
Bx(ﬁu)+3y(3u) ;9}(37)—2 du,dx " duy dy o 0z

. 0 (0t d (0t a(ar\ __
=t ox (a—u) Ty (au )% (a—u) =

Employing the operational relationships

= 4y (say),  (8:10)

9 a9 AL a ol a

P TETRRE g o

48-2
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we obtain

oI, (aw) al, 9 (aw) oI, @ (aw)

ou,dx\o1,) " ou, ay\or1;) " ou. 92\ o1,
WL oLl L dL | W 57_1_1@_,+%%+%%]
01} Ldu, 0x " du, dy ' Ou, 6z:| 1,01, du, 0x * du, dy * du_ 0z

oW 9,91, 9I,dL, 3, %]
an,01, | au, 9x 0w, 3y " du, 0z
= B, (say), (8-11)
01, 9 (“”.’)g’é ‘2(‘?&’ a1, i(al!f)
du,9x\a1,) * du, 3y 312) du, 92\ 01,

W ool bl okl FWTokaly A, 20l
0L, 0u, 0x * Ou, 0y du, 0z | 013 Lou dx " du,dy  du, 9z
G W Folyols , 0L 0l ?é_‘?f_s]
01,01, du, dx ~ du, dy ~ du, dz

= B (say) (8:12)
oL, 0 (aW\  3l, 3 (IW\ 0L, d (AW
and o ( I, )+ 3u, 3y (az;, )+ i 202 (’37;)

_PW oL ook dLOIY W [oLaly., oLl | 3Lyl
- LI du, dx " du, 0y " du_ 0z | II,0L,| du, 0x " du, dy ' Ju, 0z
WAL, oL, okl
0I% | 0u, 0x " Ou, dy ' du. 0z
= B, (say). (8-13)

The equation of motion (8:3) may therefore be written

oW ow aw 0%u
AxaTl+A2712+AarIS+Bl+Bz+Bs=P(W—X), (8-14)

where 4,, 4,, 45, B,, B, and B, are given by equations (8-8) to (8-13).

9. THE EQUATIONS OF MOTION FOR AN INCOMPRESSIBLE MATERIAL

The equations of motion for a body of incompressible, elastic material, which is isotropic
in its undeformed state, are given (Rivlin 19484, §19) as

ad (oW\ ad (dW\ d (dW\ dpdr dpadr dpdr (3211_ Y
o ()~ 30, 2 0,) + ot oy, o = Plam— %) etes (0D
where p has the nature of a hydrostatic pressure. These equations can be rewritten, in a
manner similar to that employed for a compressible material in § 8, but now 7; = 1, through-
out the material, and W is a function of 7, and 7, only.

Equations (9-1) therefore become

ow ow dpdr dpdr dpadr (0% -
A, o, +A271‘2-+Bn+32+am+5;9u—y+&az - p(;ﬁ—X), etc., (9-2)
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where 4, and 4, are given by equations (8-8) and (8-9) respectively,

T *wral, dl, alI, dl, 81 a1, 02_I/~1{'_ a1, d1, oI, dl, 09I, %jl (9-3)
L 012 | du, 0x du, dy (3u 62 (711 o1, 0u, 0x * du, dy ' du, 0z '

?’W ral,ol, oI, al, dI,dl d*Wral,adl, 9I,dl, dl,al,

e s 1,01, du, 6x du, dy +0u 87:| 12 | du, dx +0u dy " Ou, 32] Gk

10. THE BOUNDARY CONDITIONS FOR A COMPRESSIBLE MATERIAL
For a compressible material the boundary conditions are (Rivlin 19484, § 16)
ow aw aw
u S0 (x,v) +5, cos (y,v) +E cos (z,v) — X, = 0, etc. (10-1)

x Y

Here (X, Y,, Z) is the surface traction, acting on the surface at the point which is at (x,y, z)
in its undeformed state, per unit area of surface measured in the undeformed state. (x,v),
(y,v) and (z,v) are the angles between the direction of the normal v to the surface, in its
undeformed state, at the point considered, and the x, y and z axes respectively.

Making use of the relations (8-2), the first of equations (10-1) becomes

awrol, oI, 1
il cos (x,v) }—a Lcos (y,v )—%aicos(z,v)]
dW a1, dl. al
+3] I:ﬁ cos (x, )A—ﬁcos (y,v)+5—uzcos (z,v)]

Y <

W 3 ) ala (7] s e 5
+a—13‘[ﬂ003 (x,l) +a° COSs (y, )+—a—- cos (_,, 1‘):|_"Xv = 0. (10 2)

Y
The remaining two equations of (10-1) can be cast into a similar form. We obtain equations
similar to (10-2) in which X, is replaced by Y, and Z, respectively and « by » and w respec-
tively.
11. THE BOUNDARY CONDITIONS FOR AN INCOMPRESSIBLE MATERIAL

For an incompressible material the boundary conditions are (Rivlin 19484, § 19)

aw aw aw
(8u ‘f‘/’a )COS (%, v) + (0 +1)(7 )COS (y,v) + (6‘u +/)a )cos (z,v)—X,=0, etc. (11-1)
Making use of the relations (8:2) and bearing in mind that I is now independent of /3,
‘we obtain
owral,

a1, a1,
7 o cos (x, )+Tcos(y, )+9—cos(z v)]
I: —l— ~I~ cos (y,v) + o cos (z, v):l
du du,
-—COs ( )+£—cos( V)+1cos(z v)]—X =0, €lc., (11-2)
—l—p[auxcos X,V ou, Y, ou, > , = 0, etc., 2

where 01, /du,, 01,/du,, etc. are given by equations (8-4) and (8-5).
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C. SIMPLE SHEAR AND PURE TORSION

12. SIMPLE SHEAR OF A CUBOID OF INCOMPRESSIBLE MATERIAL

Let us consider a block of incompressible material which, in the undeformed state, is
a cuboid whose faces are

x=4a, y=4+b and z=-+tc.

If this is subject to a simple shearing deformation, in which each point of the material moves
parallel to the x-axis by an amount which is proportional to its y-co-ordinate, then the
displacement components #, » and w, for a point which is initially at (x,y, z), are given by

u=K¢§, 1=uw=0 (12-1)

where K is a constant.
By substituting these expressions for #, v and w in the stress-strain relations (4:6) for an
incompressible material, we see that the simple shear described by (12-1) is associated with

stress components given by

0W oW ]
2
bex = [(1+K ) 3[ 3] +p,
ow oW
2[(” ~(L+K) G |+,
) (12-2)
5 2[0W W 3
: ow oW
ty;=14,=0 and ¢,= (31 +3I)K

dW|[dl, and dW[dI, are, in general, functions of I, and I,, where, from (12-1), (3:4) and (2:15),
IL=1,=3+K2 (12-3)

It is seen that, in general, a simple shear is associated, not only with a simple shearing stress,
but with normal stress components ¢, #,, and ¢,.. Any one of these may be made zero.
For example, if

ow  ow
be =0, p= _2(5—11—73—1;)
ow ow (13:4)
and o = 2K2 — or, and ¢, = g o

The body forces, which must be applied in order to produce the state of deformation described
by (12-1), are given by introducing (12-1) into equations (9-2). We obtain

d d d
9—£+pX= 0, (—%—l—pY: 0 and aé—l—pZ: 0. (12-5)

Thus, the state of strain (12:1) can be produced without the application of body forces,
i.e. when X = Y = Z = 0, and then p is constant throughout the body.
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The surface forces which must be applied are given by introducing (12-1) into equations
(11-2). We obtain, for the surface forces acting on the planes initially at x = +a, i.e. for

cos (x,v) =41, cos(y,v) =0 and cos(z,v) =0,

X, = +2 (‘f,?’/+2‘ZV)+p: Y, — - 21(%51’ Kp| and Z,=0.  (12¢)

For the surface forces acting on the planes initially at y = b, i.e. for
cos (x,») =0, cos(y,») =41 and cos(z,v)=0,

aw 3W) ¥ L{ (8W ow

X = izK(a] +o 2 31)+p} and Z.=0. {127)

Similarly, the surface tractions acting on the surfaces initially at z = +¢, i.e. for

cos (x,v) =0, cos(y,») =0 and cos(z,v) =1,

are given by A = =0 and Z = i—{QI:%?—V—{— (2+K?) %—V +p}. (12-8)
1 2
Now, if we make the surface tractions on the surfaces z = +¢ zero, so that
6‘W .
s 2[ +@+K) 57 (12:9)

we obtain, from (12-6), that the surface tractions on the surfaces initially normal to the
x-axis are given by

- ;21(23”’ aw  ow aw

— 2 — 3
i K’—iQK[(aI+3I)+K o] awd Z,=o.  (1210)

Those on the surfaces normal to the y-axis are given, from (12:7) and (12-9), as

oW oW oW ,,
az*al) Y= Foke” " and Z =0 (12:11)

XV=352K( T

Resolving the surface tractions (12:10) into components tangential and normal to the
surfaces on which they act in their deformed state, we find that the tangential components
T are given by

aw oW
T 2K(al +9T. )/(1 +K2)i (12-12)
and the normal components N by
aw
N=—2K2|:(61 +2 al) ]/ (1+K2)h, (12:13)

It is thus apparent that the state of pure shear described by equation (12:1) cannot be
supported by tangential tractions applied to the surfaces y = 4-b and x = -4, as in the case
of small deformations dealt with in the classical theory of elasticity. However, the system of
surface tractions applied to the surfaces ¥ = +a and y = 4-b and described by equations
(12-11), (12-12) and (12-13) are adequate to support the deformation.

It should be borne in mind that all these components of the surface traction refer to unit
area of the surface measured in the undeformed state of the body. The areas of elements of
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the surfaces y = b and z = +4-¢ are unaltered by the deformation. However, the areas of

elements of the surfaces ¥ = +a are multiplied by the factor (14 K?)! in the deformation.
The tangential and normal components 7" and N’ respectively of the surface tractions,

on the surfaces initially at x = +4-a, per unit area of surface of the deformed body, are given,

from (12-12) and (12-13), as

5W aw 3W 3W+K2¢?W)

a1, 312 a1, al. a1,

Thus, the system of surface tractions described by (12-11) and (12-14) is adequate to
support the state of simple shear described by (12:1). An alternative system of surface
tractions may be obtained by adding to this system a hydrostatic pressure

T_QK( )/(1+1<2) and N' = 21("( /(1+K2). (12:14)

ow oW ow &
2K(al +2al + K2 al, )/(1+K).
This gives the system of surface tractions
8W oW 2K2 (W oW :
X = ﬂK(al 312) Y-'ziwki(w +31) and Z —aq, " " (iedb)
acting on the surfaces y = 45,
oaw oW

P 21((51 31 )/(1+K2), (12-16)

acting tangentially to the surfaces which are initially at x = +-4, and

S (0W W W : :
Zv—2K(3I +2gr+ KAy )/(1+K), (1217)

acting normally to the surfaces z = +¢.

13. SIMPLE SHEAR OF A CUBOID OF COMPRESSIBLE MATERIAL

Suppose the cuboid of material considered in the last section is composed of a compressible
material, for which the stress-strain relationships are given by (4-5), and is subjected to
a simple shearing deformation described by equation (12:1). It can readily be seen by
introducing (12-1) into equation (8:3) and two similar equations of motion that, for’ this
state of simple shear to be maintained, the applied body forces (X, ¥, Z) must be zero.

The surface forces which must be applied to the cuboid are obtained by substituting
from (12:1) for , v and w in equations (10-2). We obtain, for the surfaces x = +a,

ow oW ow aw oW ; =
X = 352(31 +25r +al) o T2K(al +aI) and Z,—=0;  (131)
for the surfaces y = +-b,
ow oW ow 3W aw Bie:
X,=j;2K(aI +31) Y,,=ﬂ:2(al +agr 3—13) and Z,—0;  (i32)

and for the surfaces z = +¢,
X=X =0 and Z = iQ{aI +2+K2)3W aW}

oT, T 71 (13-3)
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These surface tractions are expressed per unit area of the surface measured in its undeformed
state. They can readily be expressed per unit area of surface measured in its deformed state
by a method similar to that adopted in §12.

14. THE TORSION OF A RIGHT-CIRCULAR CYLINDER OF INCOMPRESSIBLE MATERIAL

In this section we shall calculate what force system is necessary to produce a pure torsion
in a right-circular cylinder of incompressible material, of length / and radius a. The problem
has already been worked out for an incompressible, neo-Hookean material in a previous
paper of this series (Rivlin 19484, §§ 8 to 10). There the problem was dealt with on the basis
of the appropriate equations of motion and boundary conditions expressed with reference
to a cylindrical polar co-ordinate system. Here, however, it will be more convenient to use
the equations of motion and boundary conditions, referred to a rectangular, Cartesian
co-ordinate system, in the forms they have been given in §§ 9 and 11.

The co-ordinate system chosen has its z-axis coincident with the axis of the cylinder and
its origin at the mid-point of this axis. The x and y axes may then be chosen in arbitrary
directions consistent with the co-ordinate system being rectangular Cartesian.

If, in the pure torsion, each section of the cylinder which is normal to the z-axis is rotated
through an angle ¥z, then the displacement components u, v and w, parallel to the axes
x, y and z respectively, of a point which before the deformation is at (x,y, z), are given by

u= (xcosyz—ysinyz)—x, v= (s¥sinyztycosyz)—y -and w=0. (14'1)

We readily see, by substituting from (14-1) in (8:7), that the relation 7 = 1, which must
be obeyed by an incompressible material, is automatically satisfied.
Substituting from (14-1) in (2-15) and (3-4), we obtain
Li=L,=84y%* and L =1. (14-2)
Employing the relations (14-1) and (14-2) in equations (8-8), (8-9), (9-3) and (9-4), we
obtain the expressions for 4,, 4,, B, and B, in the first of the equations of motion (9-2), as
A, =—2y*(xcosyz—ysinyz),
4, = 4y*(xcosYyz—ysinyz),
2w PW

— A2 Sty & ¢ 14-3
B, =4y (0112 +011012) (x cos yz—ysinyz) (14:3)
i A :
WY LTS A ST by
and B, =4y (01,512+ 0122)(2 FY?r?) (xcos Yz ysmg&z).)

Employing these expressions in equation (9-2), using (14:1) to obtain dr/du,, dr/du,, etc.,
and bearing in mind that 9%/dt*> = 0, we obtain

W AW 2w W s
2 oS T B A AR S . S U AR _ 22N T
(2 I, azl)+4¢2 gl = A gror (@ hp ) 0122]}

% (xcos yz—ysin Y z) +cos ;&z?—i—sin ;ﬁzg—gﬁ—p)( =0. (14-4)

-
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In a similar manner, we obtain the remaining two equations of motion as

(o (25— 31) + 4o + G +# g e+ )

——

><(xsin;/rz—l—ycosg#z)—i—sin;ﬁza}-l—cos%z@—}—pY=0 (14-5)

9P _
and pL+ = = 0. )
If the body forces are zero, i.e. X = ¥ = Z = 0, we have, noting that 9p/dz = 0, since
the strain is indepcndent of z,

SRR WY CARNeY

1,
a2 W W

o OW AW\ s (14:6)
L —ify_:{2¢( o az)+4¢ 312+(3+¢ Jirar Y@ o Jy.

From (14-6), it can be seen that p is a function of r only and

) W W 2w W
a—p=2¢2( e )+4¢2[{712+ 3+y%r )0”1+(2+¢ )ap:lr (14-7)

If the form of W as a function of 7, and I, is known, then p can be determined, from this
equation, throughout the material, except for a constant of integration which must be
obtained from the boundary conditions over the curved surface.

The boundary conditions over the curved surface of the cylinder are obtained from (11-2),
by substituting .
cos (x,v) = x/a, cos(y,v) =yla and cos(z,v) =0, (14-8)
and the relations of the types (8-4), (8:5) and (8-6), in which the expressions (14-1) have been
substituted for u#, v and w. We obtain

ok — {‘ZVJF (2+y2) O)F +§p} (xcos yz—ysinyz),
(14-9)
a¥, = {?}V +(2+ ;ﬁ"’a”) —I/Z -+ %p} (xsinyz+y cos Y z) (
and Z, = O.

The surface traction on the curved surface of the cylinder is thus purely radial in the

deformed state of the body and has magnitude R, given by
aw aw
3= 2(01) +2(2+¢2a2)(ﬂ) +p. (14-10)

If the value of R, is specified, then equation (14-10) can be used to determine the value of
p when r = a and thus to eliminate the constant of integration from the integrated form of
equation (14-7).

In the particular case when the surface traction R, over the curved surface vanishes, then
on the curved surface oW

) el ) ey

2
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and from (14:7) we have, throughout the material,

p=20 (5 1 —23) 2

by substituting

and employing the relations (8-4), (8-5) and (8-

for u, v and w.

[32 w

cos (x,7) =cos (y,v) =0 and cos(z,v)

o GVl oror +

2w

397

(2-+y22) al"f]}rdr

—2{(%‘:)r=a (2+y%a?) (‘ZV)J (1412)

The boundary conditions over the plane ends of the cylinder are obtained, from (11-2),

=41
6), in which (14-1) have been substituted

(14-13)

We obtain X s ?2%(%1;/4— %I}V) (xsinyz+4y cos ;ﬁz),’
aw  ow :
Y. = j:2¢(aT+a—I) (xcosyz—ysinyz) } (14-14)
3W Iw

J

The surface traction on the plane ends therefore consists of a component ®, which is
azimuthal in the deformed state of the body and another Z, which is normal in the deformed
state. Noting that p is given by (14:12), we obtain

w W
©, =2yr (az al)

oW AW AW\ [EW 2w
z,=~ava(Gr) -+ (522 ) 2L ar + 3+¥ i

cowsn ool oo~ )

If the expression W = G(I,—3), for the stored-energy function of an incompressible,
neo-Hookean material is substituted in (14-15), we obtain the expressions for ®, and Z,
which were obtained in part IIT (Rivlin 1948¢, §8). For a material whose stored-energy
function is that postulated by Mooney (1940), i.e.

W = Cy(1;—3)+Cy(1,—3),

(14:15)

and

v

equations (14+15) become
0, — 2Yr(C,+C)

This work forms part of a programme of fundamental research undertaken by the Board
of the British Rubber Producers’ Research Association.

and Z, =—y?*(C,—2C,) (a®—1r?) +2a2C,)]. (14-16)
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