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L A R G E  E L A S T IC  D E F O R M A T IO N S  O F  I S O T R O P I C  M A T E R IA L S  

IV . F U R T H E R  D E V E L O P M E N T S  O F  T H E  G E N E R A L  T H E O R Y

By  R . S. R IV L IN

British Rubber Producers’ Research Association, Welwyn Garden City 

(Communicated by E. K. Rideal, F.R.S.— Received 12 November 1'947 )

T he equations of motion, boundary conditions and stress-strain relations for a highly elastic 

m aterial can be expressed in  terms of the stored-energy function. This has been done in part I of 

this series (Rivlin 1948 a), for both the cases of compressible and incompressible m aterials, following 

the methods given by E. & F. Cosserat for compressible materials.

T he stored-energy function m ay be defined for a particular m aterial in terms of the invariants of 

strain. T he form in which the equations of motion, etc., are deduced, in  the previous paper, does 

not perm it the evaluation of the forces necessary to produce a  specified deform ation unless the 

actual expression for the stored-energy function in terms of the scalar invariants of the strain is 

introduced. In  the present paper, the equations are transformed into forms more suitable for 

carrying out such an explicit evaluation. As examples, the surface forces necessary to produce simple 

shear in  a cuboid of either compressible or incompressible m aterial and those required to produce 

simple torsion in a right-circular cylinder of incompressible m aterial are derived.

1 .  I n t r o d u c t i o n

In  p a rt I of this series of papers (Rivlin 1948 a) the equations of m otio

ditions for a highly elastic m aterial, which is isotropic in its undeform ed state, are derived 

both  for the case w hen the m aterial is compressible and when it is incompressible. These 

were given in term s of an  arb itrary  stored-energy function W, which was considered to be 

com pletely determ ined by the principal extensions of the m aterial a t the point considered. 

T he notion of an incompressible, neo-Hookean m aterial was introduced as one in which the 

stored-energy function and the corresponding stress-strain relationships take a particularly  

simple form. T he equations of m otion and boundary  conditions for an incompressible 

m aterial were particularized for this case. In  parts I I  and I I I  (Rivlin 1948 certain  

im plications of these equations of m otion and boundary conditions for an incompressible, 

neo-H ookean m aterial are derived.

In  the present paper, we first discuss, in § 2, the definition of com ponents of strain som ewhat 

m ore critically than  has been done hitherto  and derive a relationship between the com 

ponents of large strain as defined by Coker & Filon (1931) and those based on the original 

definition of large strain  given by Cauchy (1827) an d employed in the previous papers 

of this series.

In  §§ 3 to 6 the expression of the stored-energy function in terms of the strain invariants is 

discussed and the stress-strain relations corresponding to any choice of the stored-energy 

function are derived in a form more suitable for application to particu lar problems than  

those given in p art I (Rivlin 1948 <2, §§7 , 8). In  §7  the application of these results to the 

problem  of determ ining the stored-energy function, from experiments on a highly elastic 

m aterial, are discussed.
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380 R. S. R IV L IN  O N  L A R G E E L A S T IC

In  §§8 to 11, the equations of m otion and boundary  conditions obtained  in p a rt I are 

also expressed in a form m ore suitable for application to particu lar problem s and, in §§ 12 

to 14, these are applied to determ ine the system of forces required  to produce simple shear 

in a cuboid of either compressible or incompressible m aterial and  pure torsion in a right- 

circular cylinder of incompressible, highly elastic m aterial.

A. T H E  ST R E SS-ST R A IN  R E L A T IO N S H IP S

2 .  T h e  d e f i n i t i o n  o f  s t r a i n

T he original com plete definition of a large strain  was, it appears, given by C auchy (1827). 

T he strain  a t a point of a body which, in the undeform ed state of the body, lies a t (x,y, z), 

is defined by means of six com ponents exx, eyy) , eyz, and  e ,

co-ordinate system (x,y,z). Suppose, in the deform ation, the point moves to

(;v +  M,y +  y, z + w) — (£,77? 0 , where u , v and  w and  hence £, t] and

and z. Suppose, too, th a t a linear elem ent of the m aterial, which in the undeform ed state is 

situated a t (*, y , z), has length ds and direction-cosines (/, n) and moves, in the deform ation

to the point (£, rj , f), its length changing to ds' and its direction-cosines to (/',

T hen  V =  d^\ds\ m' =  

where «f£, drj and dC, are the com ponents of length of the elem ent parallel to the axes x, y 

and  z respectively.

Since £, y and £ are functions of x, y and z, we have

dl =  i xdx+ i d,y+lzdz, ( 2 -2 )

together with sim ilar expressions for drj and dC,. Thus, com bining (2T) and (2*2), and bearing 

in m ind th a t /.== dx/ds, m = dy/ds and n — 

we have 

and

/' =  (ds/ds) (U + £ym+ L n)>m' (d s / d s ( )

n' =  (ds/ds')
(2 *4 )

Since l '2 + m'2-\-n'2 = 1,

equations (2 -4 ) yield

(ds'Ids)2 = (g  +  r/2 +  g )  l2 +  (g  +  72 +  g )  m2

+  ( g +  +  g )  n2 +  2 ( g g +

+  2(Szf*+?z7»+fz£t) +  (2 -5 )

Since /2 +  m2 +  «2 =  1,

H ( * '/ * ) 2- i } = * ( e + ^ + e - i ) / * + * ( e + ^ + g - i ) « 2

+  +  +  lm- (2*6)

The six com ponents of strain eyy,ezz, 

coefficients of /2, m2, w2, mn, nl and Im respectively, in the expression on the right-hand side 

of equation (2*6).
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D E F O R M A T IO N S  O F IS O T R O P IC  M A TER IA LS. IV 381

Thus, w riting 

we have 

and

£ = x+u, tj — y v and C, = z + w,

6xx =  + « £ + « £ ), etc-

ey z  = %  + Vz  + Uy U2 + Vy V2 + Wy W zetC. (2 -7)

I f  we know the six com ponents of strain  a t a point of specified position, in the undeform ed 

state of the body, then  equation (2-6) can be used to calculate the extension of any linear 

elem ent a t th a t point, whose direction-cosines in the undeform ed state of the body are 

given. I t  is ju s t in this sense th a t the com ponents of strain as defined above describe the 

deform ation in the neighbourhood of the point to which they refer. I t  is clear th a t the 

deform ation could equally be described by any six independent functions of the six com 

ponents already defined. However, such a procedure and the description of these functions 

as the com ponents of strain  would not add  anything to our knowledge of the deform ation 

in the neighbourhood of the point considered and could only be justified on the grounds of 

m athem atical convenience.

I t  is noted th a t in the definition of strain  based on equation (2-6), the point a t which the 

strain  is specified is defined by its position in  the undeform ed state of the body, and the strain 

com ponents are given by the variation of the displacem ent com ponents («, , w) as functions 

of position (x,y,z), m easured in the undeform ed state. I t  has been suggested by Coker & 

Filon (1931)— and this suggestion has been taken up by others, notably by Seth (1935) and 

by M urnaghan  (1937)— th a t the strain  should be defined in term s of the variations of the 

displacem ent com ponents (u, v, w) as functions of position (£, , Q m easured in the deformed 

state of the body.

Since (x,y,z), the co-ordinates of a point of the body before deform ation, can be con

sidered as functions of its co-ordinates (£, 7/, Q after deform ation, we have

dx = x^d^+Xydy-^x^dC,, ( 2 -8 )

together w ith sim ilar expressions for dy and dz. From  these equations and the relations 

(2 T) and (2 -3), we have

/ =  ( ds'\ds ) (x^l' -\-xym' -{-x̂n'),m — ( ) {y^l'+yvm,Jry^n') 

and n =  ( ds'/ds ) (zgV + z  m!

Equations (2 -9) yield

-  i  {(ds/ds') 2 _ l} = _ l { x 2 + y 2 + z 2 _ l ) r _ l {x2 + y 2 +  z 2 _  J )

- i ( x l + y l + z l - l ) n ' 2- ( x vx

- ( xZ*i+ysyi+zzZg)nT - ( x ^ + y ^ + z ^ )  I'm'. (2-10)

T he six com ponents of strain, which we shall denote by evy, and are defined

as the coefficients of l'2, m'2, n'2, m'n, n'l' and I'm respectively in the expression on 

hand  side of (2 T 0). Thus, w riting

x — g—m, y = rj — v and z = £—w,

egg =  Mg— i(uj + vl + wf),etc. |

SC =  v^f~Wri~UyÛ ~ VyiV̂ ~ WyŴetC-J
(2 T 1)

we have 

and
47-2
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382 R. S. R IV L IN  O N  LA R G E E L A ST IC

Now, a knowledge of these six com ponents of strain, appertain ing  to a specified poin t of 

the deformed m aterial, enables us to calculate, from equation (2 T 0), the extension w hich 

has been undergone by any linear elem ent a t the point considered, whose directions in  the 

deformed state are given.

A lternatively, instead of using the expression (2 -9 ) for obtain ing ( ) in term s of

(. l',m'}n ')and deriving the result (2 T 0), we find, from (2 -4 ), th a t

dr/ =  A ' l / 5r

d s r \  d£xd>i, C  / ’

and n —
ds r

, dr 

dVz K

where

Since

equations (2T2) yield 

dr\ 2

wJ

w'j, =

ds' 1 / dr j ,dr

W z +

L

*lx rjz

Cx C

l2jr m 2jr n 2 — 1 ,

ds' 1 / dr ,,dr ,
l -f- -̂-TYl ~j-- 71

I I
( 2 -12 )

r 2 — dr \ 2 . / dr

+ {d U

2~\
l'2 +

€ I + l l + « a * T + < f i , + l £ + £ S « -  <»■*>

(2 -14)

Thus, com paring (2 T 3) with (2 T 0 ), the com ponents of strain  given by equations (2 T 1) 

are also given by l  r /5 r \*  , ldr\*  ,

e«  t 2L U J  + W J  + U J  J , e t c '

, 1 r  St  St  3t  dr dr

“ ** ~~ T2\-WM* WyWy + WzK z\CtC'

Now, if we accept the C auchy definition of strain, i.e. th a t given by equations (2 *7), it 

can be shown th a t the strain  in the neighbourhood of any point of the m aterial can be con

sidered to consist of a pure ro tation  followed by a pure, homogeneous strain. This pure, 

homogeneous strain has, in the axial system (x,y,z), the six com ponents e'xx9 ..., 

given by
a  — r ~  x j i ,    i a  m M m  l a , i mk l a , i—  i a , v  .  l v  > .  i

(2 -15)
1 +  2 4  =  (1 +ux)2 + u2 + u2,etc. i

and 4  = v xwx+ ( l+ v y)wy + vz( l+ w 2),etc.J

From  the form ulae (2 T 4 ) and (2 T 5), we can derive, by simple algebraic m anipulation,

l - 2 e , ,  =
the six relations

and

•a — [ ( 1 + 2 4 )  ( i + 2 4 )  - 4 ] / r2> etc-\

e,t = [4 4 -( 1+24)4]/r2> etc- J
(2 -16)

Bearing in m ind tha t 72 =

1 + 2 4 p '
c x y 4

e x y 1 + 2 4 £

4 4 1 + 2 4
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DEF ORM AT IO N S  O F IS O T R O P IC  M A T E R IA L S. IV 383

it is seen th a t equations (2T6) express the six strain  com ponents ..., in  terms of the 

six strain  com ponents 4 ,  ...,e'xy.

From  (2T6), the six inverse relations

and

can be obtained.

1 +  24  = T2[ ( l - 2 e „ )  ( l - 2 e f£) - e j y ,  etc.)

4  =  t 2[«j , c£s +  (x -  2«c{) «rt]> etc ' ’
(2 -17)

3. T h e  p r i n c i p a l  a x e s  o f  s t r a i n  a n d  s t r a i n  i n v a r i a n t s

By a suitable choice of the co-ordinate axes (x ,y ,z )f equation (2*5) can be w ritten in the

form (ds'jdsY =  k\P+\\nfi+\ln*.  (3 -1)

A t each point of the m aterial, there is, for a specified deform ation, one and only one choice 

of the co-ordinate axes which allows (ds'/ds)2 to be expressed in this way. 

these axes rem ain  a t right angles after the deform ation has taken place, but, in general, 

each direction is changed. Taking axes in these new directions as co-ordinate axes, it can be 

seen th a t equation (2T0) becomes

® ) H /,2 + r ' 2 + r ' 2’ (3-2)

where (/', m', n') are the direction-cosines of a linear elem ent in its deformed state, relative 

to the new system of axes. T he directions of the axes of this new system vary, in general, 

from  point to point of the m aterial.

T he values of Af, A| and Â  can be determ ined in terms of the com ponents of strain  in a 

rectangular, C artesian co-ordinate system, as the values of A2 satisfying

1 +  2 ^ - ^ Ex y e z x

Cx y l  +  2^ - A 2 4

ezx e y z 1 +  2

1 +  24 ~  A2 exy 4

e x y I + 2 4 - A 2 e y z

4 4 I +  2 4 - A 2

From  (3*3), we have

(3*3)

I\ =  A? +  ̂ 2 +  ̂ 3 =  % + <2‘(exx-\-eyy+ezz) =  3 +  2 ( 4 + 4  +  4 ) >

h  =  Af A| -{- A| A§+ A§ Af

=  (1 +  %eyy) (1 +  2ezz) +  (1 +  2ezz) (1 +  +  (1 +  (1 +  2eyy) —

-  (1 +  2e'J  (1 + 2 4 )  +  (1 +  2 4 )  (1 +  2 4 )  +  (1 +  2 4 )  (1 +  2e'yy) -  e'2 -  s' 2 -  e’2 

a n d  / 3 =  t 2 =  A2A2A2 =  (1 +  2 0  (* + 2eyy)(! +  20

+ 2eyzezxexy- ( l  + 2exx) (1 +  2 4 )  e2xy

= (1 + 2 4 ) (1 + 24) (1 + 2e'zz) + 
-  (1 + 2 4 )  4  -  (1 + 2 4 )  4  -  (1 + 2 4 )  4 ,
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384 R. S. R IV L IN  O N  LA R G E E L A ST IC

where r is the ratio  of a volume elem ent of the m aterial in the deformed state to th a t in the 

undeform ed state. I x, I 2 and / 3 are invariants, since AJ, A| and  Af depend only on 

strain  and not on the choice of the reference axes.

Again 1 /Af, 1 /A| and 1 /A§ can be obtained, in term s of the com ponents of strain  

ev& eUan<  ̂e£v’ as va ûes XM2 given by

W hence

and

M2)

~~eiy

~ ea

eiy

l - 2evv- ( l / X * )

~ ea

~~ey£
1 — (1/A2)

=  0.

I l l  }
*4 =  Af+ A|+ A |=  3 ~ 2 (e§ £ + S ? + ^ )>

1/2 = Jpl+Apf+I p |= (1_2eK)

+  (1 -  2< y  (1 -  2e«) +  (1 -  2*«) (1 -  2e„) -  1c -  I f  -  «f»

J 3 =  1 / t 2 =  1/A2A2A2 =  ( l - 2 e {{) ( l - 2 e „ )  ( l - 2 e ££)

-  2e?CeCf %  “  (1 “  2e£f) 1c “  (1 “  % f)  eC£ -  C1 -  % )  efV .

(3 -5 )

(3 -6)

where J 1? J 2 and *4 are also strain  invariants. I t  can readily be seen, by com paring equations 

(3*4 ) and (3 -6), th a t
Ji 4 /4 > 4 > I J I S and *4 — V 4 (3 -7)

4 .  E x p r e s s i o n  f o r  t h e  s t o r e d - e n e r g y  f u n c t i o n  i n  a n  i n i t i a l l y  i s o t r o p i c  m a t e r i a l

I f  the highly elastic m aterial considered is isotropic in its undeform ed state, then  the 

stored energy W, per unit volum e m easured in  the undeform ed state, m ust be a sy

m etrical function of A1} A2 and A3. M oreover, the energy stored in an  elem ent of the m aterial 

is unaltered  by a pure ro tation  of the elem ent— for exam ple, by a change of sign, b u t not of 

m agnitude, of At and A2, leaving A3 unaltered. Consequently, the stored energy can be 

considered to be a sym m etrical function of A?, A§ and A§ and can therefore be expressed as 

a function of the three strain invariants I x,I2 and / 3, defined by

W = W ( I X, I 2,/ ,) .  (4 -1)

In  view of the relationships (3*7) it is, of course, possible to write

W = W ( J l, J 2, J 3).

However, nothing further except perhaps, in some cases, form al sim plicity can be obtained 

by w riting W  in this form and we shall not consider it further.

T he corresponding stress-strain relationship can be obtained, for a compressible m aterial, 

by substituting for W, from (4T ), in the relationships (Rivlin 194 equations (7*5

and

*“ - t [ ( 1 + “’) w x

l b

dW

• du.

dlV~\

u* d u A ’ e tc '

e w  dW , t

^ ; + ",y * r + (  +

dJVl|
(4 -2 )
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DEF ORM AT IO N S  O F IS O T R O P IC  M A T E R IA L S. IV 385

Thus, for exam ple, 

1
Kx

„  , x tdWdL  , d W d I 2

U x dux dl2 dû du)JrUy\ d I l

dW di2 dW di3

y dl2duy dh  duy)

(dJVdJ, dJVdJ, dWdl.Y]  

z\d l l duz ' dl2 d u j \

'(1+ u ) dIi + u dI'+ 1
, ( 1 + “J  i ? 7 + f

+  •
( 1 + “*) w „+ u»m + u

dl£\dW_ 

d u j  dl2

d ! f \d W  
d u j  dL '

(4 -3)

M aking use of the form ulae (3*4 ) and (2 T 5), equation (4 *3) and sim ilar equations for 

the rem aining stress com ponents become

m  s m i

3 dl. + 2 d l J j ’Lx — -|” ( !  +  2e'xx) — +  %eyy) ( 1  +  2ezz) J]T  +  (

and tyz — —1~ eyz -q j  {exy ezx (1 +  ^ Xx) eyz$ "1 ? e ĉ>

In  view of the relations (2T6), these equations m ay be w ritten  in the alternative form

(4 -4 )

and
2 r  , dW

I , ds + I.
dWY]

t - d L ^ d l j ]
, etc.

tyz T \_e«* e„J,dL -  I, etc.
]■

(4 -5 )

For an  incompressible m aterial, the stored energy IT is a function of I x and I2 only, / 3 

being always unity. T he stress-strain relationships then become

dW

and

L  =  2 [ ( l  +  2 4 ) ~ - ( l - 2e£{)

- { ■

d w  d w
dL +12 ]+/>. etc.

, dW d w -1

yz ~\~v‘ d l i *  dl2\
, etc.,

(4 -6 )

where/? is a hydrostatic pressure. T he terms I2(dWldI2) in  the first three of these equations 

m ay be incorporated into p.

5 . L i m i t a t i o n s  o n  t h e  f o r m  o f  t h e  s t r e s s - s t r a i n  r e l a t i o n s h i p s

I t  has been tacitly assumed by certain  workers th a t if  the m aterial is initially isotropic, 

then any stress-strain relationship, which is unaltered  by a cyclic ro tation of the axes x, y, z 

of the rectangular, Cartesian reference system, is allowable. Thus, Seth (1935), for example, 

has taken as basic stress-strain relationships, six equations which have, with our notation,

Lx — +2//6g£, etc. and tyz etc. (5 *1)

In  these, A and y are physical constants for the particu lar m aterial considered. T he m aterial 

to which the stress-strain relationships (5T) apply m ust be compressible, for by means of 

them  the stress com ponents are uniquely determ ined w hen the strain com ponents are 

specified. For an incompressible m aterial they are, of course, undeterm ined to the extent 

of an  arb itrary  hydrostatic pressure.
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386 R . S. R IV L IN  O N  LA R G E E L A ST IC

From  (3*6) we have ei£~^evv^reK iC'A — ‘

Em ploying the relations (3-7), this yields

+ e v r , + —  A2 °) *
1 ^ - 3

Thus, the stress-strain relations (5 T) m ay be rew ritten  in the form

h

Com paring equations (5 *4 ) and  (4 *5 ), we have

Kx =  — /<(! -  2% ) -  i A ( ^ -  3) + //, etc. and  tyz =  etc.

dW

M i

and

W hence

=  o,

(I.

2 r dW

7

d m

dW dWl1

3 d l , + h  d l j

d w  n sw. , m

dlx ~  ° ’ dl2~ 2/4/3 and dl3

(5 -2 )

(5 -3 )

(5 -4 )

(5 -5)

2-̂ 3 * (2^+A) (f^+A ) • (5 '6 )

From  the second and th ird  of equations (5 -6), we obtain

d2W  , d2W

d i j T  = - ^  and d i^ n 3 = ~ ^ x + ^ Ii i ’ (5' 7)

respectively.

Equations (5 -7 ) are com patible only if A =  —ju. O therwise, the stored-energy function 

W  for the m aterial cannot be a function of the strain  invariants only. T he equations (5 T) 

are therefore not allowable for the description o f the elastic properties of an  isotropic 

m aterial in which the stored energy is determ ined solely by the state of pure, homogeneous 

strain  a t the point considered.

6 .  S t r e s s - s t r a i n  r e l a t i o n s h i p s  f o r  p u r e , h o m o g e n e o u s  s t r a i n

For a general pure, homogeneous strain  of a highly elastic m aterial, in  which a un it cube 

of the m aterial is deformed into a cuboid of dimensions Al5 A2 and A3 parallel to the y and  z 

axes respectively, the stress-strain relationships are readily obtained, from equations (4 -5 ) 

or (4 *6), by putting

They are, for a compressible m aterial, from (4 *5 ),

2 r  dW i 3 dW  , r 

xx T L  1 d l xA f d l2

w ith similar equations for t and tzzobtained by replacing Aj by A2 and

For an incompressible m aterial the corresponding equations m ay be obtained from (4 *6) 

in a similar m anner. They are

r„dW l d W i  t
L  -  2 p i  dIiA2 J  +P> e t c -

(6-1)

dW~\
(6-2)

2 d l j '

(6 -3 )
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For a pure, homogeneous strain, in which forces are applied only to the faces o f the cube 

norm al to the x and  y axes, tzz — 0. T hen, for a compressible m aterial, we obtain, from (6*2),

For an  incompressible m aterial we obtain, from (6*3),

t,x =  2 (' lf - j p | ) a n d  tyy = 2{)'

E quations (6*2) or (6*3) can be specialized for the case of simple extension by pu tting

Ai =  Ai =  / 1/A 1?

M / d w
1 v d W \

W [dl, 1 Al d i j -

1 \ IdW

w W ,  1 1 dl2) m

and, for the case of pure shear, by pu tting

A2 =  1 and  A3 =  /|/A 1?

bearing in  m ind th a t / 3 =  1 for an  incompressible m aterial.

7 . S o m e  r e m a r k s  o n  t h e  d e d u c t i o n  o f  t h e  e l a s t i c  l a w s  f r o m  e x p e r i m e n t

By com paring the results of experim ents w ith the predictions of the theory it should be 

possible to determ ine the form  of the stored-energy function. T he accuracy of this deter

m ination is, o f course, ultim ately  lim ited by the accuracy w ith which the experim ents are 

carried  out.

In  the past it has been custom ary to carry  out deform ation-load tests for some simple type 

of deform ation, e.g. simple extension or simple shear, subsequently fitting some arb itrary  

and  apparen tly  simple types of stress-strain characteristic to the experim ental results 

obtained. In  the light of the theory given above, it is clear th a t the form  of the stress-strain 

characteristic, which should be fitted to the experim ental results, is the specialization of 

(4 *5 ) or (4 *6) to the type of deform ation obtaining in the experim ent. V arious simple forms 

of W  as functions of the strain invariants should be introduced and the physical param eters 

involved obtained from the experim ental results. I t  is only by such means th a t it can  be 

hoped to obtain  from experim ent stress-strain relations for particu lar m aterials, which will 

enable us to correlate the results of experiments on different types of deform ation.

T he simplest forms of W, which will in tu rn  lead to simple m athem atical form ulations 

of the general elasticity theory for the m aterials concerned, do not necessarily lead to the 

simplest stress-deformation relationship for particu lar simple types of deform ation.

As an exam ple of this, we can consider the case of an  incompressible neo-H ookean m aterial 

considered in earlier papers of this series. T he stress-deformation relationship for simple 

extension takes the form ,
stress proportional to IA2---j-J,

w here A is the ratio  of stretched to unstretched length. T he stored-energy function, however, 

has the particularly  simple form

W  p roportional to (^  — 3).

Vol. 241. A. 48

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 



388 R . S. R IV L IN  O N .L A R G E  E L A S T IC

I f  we considered a m aterial for which stress is proportional to (A — 1) for simple extension, 

the corresponding stored-energy function would have a relatively com plicated form  and  

the general stress-strain relationships would also assume a relatively com plicated form.

In  deducing the form of the stored-energy function from experim ent, care m ust be taken 

not to m ake too general a deduction from any p articu lar experim ent. In  general, any 

particu lar experim ent will leave certain  elements in the form  of the stored-energy function 

undeterm ined, and  it is im portan t, in  in terpreting  results, to see from an  exam ination of 

equations (4 -5) or (4 *6) ju s t how m uch inform ation we could expect the experim ent to yield. 

Let us consider, as an  exam ple, the case of simple shear. I t  is shown below, in § 12, th a t the 

relation betw een shearing stress and  am ount of shear K, for a simple shear, is

If, in  an  experim ent, we find th a t the relation betw een and K  is linear, this implies th a t 

(dW/dli + dW/d^)  is a constant, b u t does not tell us com pletely the form  of W. O th er 

m easurem ents are necessary to obtain  this.

B. T H E  E Q U A T IO N S  O F M O T IO N  AND B O U N D A R Y  C O N D IT IO N S

8. T h e  e q u a t i o n s  o f  m o t i o n  f o r  a  c o m p r e s s i b l e  m a t e r i a l

In  p a rt I (Rivlin 1948 a, § 15] the equations of m otion for a body of compressible, elastic 

m aterial, which is isotropic in its undeform ed state, are given as

where p is the density of the m aterial of the body in its undeform ed state and  (#, , is the 

body force per un it mass of m aterial a t the poin t considered. T he equations (8T) refer to 

a point of the body which is a t (*, y, z) in  the undeform ed state.

These m ay be transform ed into a form m ore suitable for the discussion of certain  problem s 

by introducing the expression (4 T) for W.

Thus, from (4 T ), we have

and I l = I 2 = 3 + K 2.

( 8 -1 )

3W  dW dL, 3

dux dlx dux dl dux dl3 dux

d W _ d W d i l d w s i 2 ( d W d i3
i t  ' or 1 i t

( 8 -2 )

duy di, duy+ di2 du„+ 91, < v etc-.

In troducing  the expressions (8-2) into the first of equations (8T ), we obtain
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Em ploying the expressions (3 *4 ) for I u I 2 and / 3 and the relations (2T 5 ), we obtain

S j - 2 (  ■+ * ,), • n J

dr

(8 -4 )

^  =  21 y
r dr dr

L ( 1 + ^ 4 ]

and =  2 [ » ,
d zy  y dvx

wy ̂  (1 +  yw) d

8 t ~]

V* W j ;

(8 -5)

^  =  2 r ^ ,  f 3 =  2 r | ^  and ^  =  2 r | l  
oux dux ou„ ou„ „

t  is given by

y

l+ u x

Vx

1 + w ,

( 8 -6 )

(8 -7)

From  the relations (8*4 ), we obtain

l@ + |  © + 1  ©  =  2 V 2 “  =  ^  ( s a ^ - ("8 *8 )

From  the relations (8 -5 ), we obtain

l_ idJ i \  4-1 . (?Iz\ _l_ 2
d# \d zy  ' dy \duyJ ' dz w y

d ( dr \ d I dr
l t £ . ) » l * \ I

,/ (A O mjJ J

(8 -9)— A2 (say).

Also, from (8-6), we obtain

1. & H & H & ) - { £ % + £ , i + £ , 0  - • < .  w .  ( - • )

d l St
since 1 (iL\ 4-1 (iL\ +JLliL'\ = o

dx \duĵ  dy [du ĵ  dz \ d u j

Employing the operational relationships

d L ,d _ J h ±_
dx ~  dx d lx +  dx d dx ’ ’

48-2
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390 R. S. R IV L IN  O N  L A R G E E L A ST IC

we obtain

dlx J  idW\dli d_ tdW\ dIA
dux dx \ dIY/ duy dy \ dlx / duz dz \ dlx)

d W r d J i d J i d l i  dli  d ^ d / f l  r  dZ^d/, d A d /f l

dl\ \_dux dx duy dy duz dzjdlx dl2 [_dux dx

9H V  r d lj d h  Bit SJj , 9Ji m

' dli L dx ' duy dy duz dz J

=  B i (say), ( 8 -1 1 )

dl2 9 (9W\ 9I_2 9 idW\ 9J2 9_ /9W\

dux dx \ d /2/  ̂ duydy \d /2 j duzdz 

dl̂djidl2dji dl2dl{\ d2W rdI2dl2 dl2dl2 dl2dl{\ 

dl{ dl2 L duxdx ^ dUy dy  ̂duz dz J  dll \_dux dx duy dy duz dz J

d2W  rdJ^dJ^ dJ^dL 

^  dl2 L dx du dy 
=  £3 (say) (8*12)

dJ i  L  ld w \ dJi3 ldW\  dL> 3 ldw \
dux dx \ d /3 / * dUydy \ d /3 / ^ duzdz 

d2w  rd/3 diidi3 djid/3 d in  j w  rdi

dlx dl3L duxdx ' duy dy duz dz J  dl2 dl3 L dx duy dy 

dHV rd/3 d /3 d/3 d/3 d /? d /f l

d / | L dx dy ' duz d z j
= B3 (say). (8 -13)

9h 9l£\
duz d z j

T he equation of motion (8 -3) m ay therefore be w ritten

dW . n „  (d2uA dW y A dW  

Al d^  + ^ 2 dl2 '

. d W , D , D /d ^  v\

^ 3 5r + 5 i + 5 2 + £ 3
(8T 4 )

where T 1? .d2, A3, Bl5 Z?2 and .63 are given by equations (8*8) to (8T 3),

9. T h e  e q u a t i o n s  o f  m o t i o n  f o r  a n  i n c o m p r e s s i b l e  m a t e r i a l

T he equations of m otion for a body of incompressible, elastic m aterial, w hich is isotropic 

in its undeform ed state, are given (Rivlin 1948 a,§ 19) as

d /dIT\ d /dHA d /dIT\ dp dr dp dr ld2u \ 

d x y d ^ /  tfy \ duyJ ' d z \ d u z / ' dxduxdyduy ' ^ \

where p has the nature of a hydrostatic pressure. These equations can be rew ritten, in a 

m anner similar to th a t employed for a compressible m aterial in § 8, bu t now =  1, th rough

out the m aterial, and IT is a function of I Y and I2 only.

Equations (9T) therefore become

dW

1 dh
^2

, d  1 d  1 dp , dr dp dr 
d /2 1 2 ^ dxdux

, etc., (9 -2 )
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where A x and A2 are given by equations (8-8) and (8 -9 ) respectively,

and

_  d2w r d i x dix djidix dix d in  rdit

1 d l l  L  duxdx du dy duz dz_|

dl2 dlxdl2 dlx
+  ■dx du dy duz dzg

n _  d2W  rdl2 dl{ dl2 dlt dl2 dl{\ d2W fd I 2dI2 dl, dl2 dl2 dlf l

dl^dl2\_dux dx ' du dy 1 du. d z \  dl% L dy ' duz d z j '

(9 -3 )

(9 -4 )

1 0 .  T h e  b o u n d a r y  c o n d i t i o n s  f o r  a  c o m p r e s s i b l e  m a t e r i a l  

For a compressible m aterial the boundary conditions are (Rivlin 1948 a, § 16)

dW 1 \ J W  , x dW  , ^
cos ( * > v) + w cos (y»v) cos (z> v) ~ x v = ° » etc- ( 10 - 1 )

H ere (Xv)Yv, Z v) is the surface traction, acting on the surface at the point which is a t (#, y, z) 

in  its undeform ed state, per un it area of surface m easured in the undeform ed state, (x, v), 

(y, v) and (z, v) are the angles between the direction of the norm al v to the surface, in its 

undeform ed state, a t the point considered, and the x, y and z axes respectively.

M aking use of the relations (8-2), the first of equations (10T) becomes

%  E cos S cos § cos (z> *>]

dW Vdl2 . dl2

i r 2 h u xc o s<*> v)+ w vcos

+ 5 E cos ( * > + l | cos(2/’ (z> =  °- ( io ' 2)

T he rem aining two equations of (10T) can be cast into a similar form. W e obtain equations 

similar to (10-2) in which Xv is replaced by Yv and Zv respectively and u by and w respec

tively.

11. T h e  b o u n d a r y  c o n d i t i o n s  f o r  a n  i n c o m p r e s s i b l e  m a t e r i a l  

For an incompressible m aterial the boundary conditions are (Rivlin 1948 a, § 19)

( w x + p  £ ) c o s  < *>v ) + ( w x p  ® c o s  {y’ v ) + ( w z + p  Q c o s  ( z >") -  ^ = o> e t c - (11 • 1 )

M aking use of the relations (8*2) and bearing in m ind th a t W  is now independent of / 3, 

we obtain

j f X i C0 s (x ’ v ) + w s c o s { p ’ v) + ruz c o s ^ v) ]

+ w t E cos (x’ v) + § cos {y’v)+S cos {z’

n 8t  dj 8t  n
+ p \ j t I cos (*, v)+w c°s (y, v) c°s (z, V) j - X x = 0, etc., (11-2)

where d l x\d u x  ̂ d l 2jd u x, etc. are given by equations (8-4) and (8-5),
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392 R. S. R IV L IN  O N  L A R G E E L A ST IC

G. S IM P L E  SH EA R  AND P U R E  T O R S IO N

12 . S i m p l e  s h e a r  o f  a  c u b o i d  o f  i n c o m p r e s s i b l e  m a t e r i a l

Let us consider a block of incompressible m aterial which, in the undeform ed state, is 

a cuboid whose faces are
x --= y — ±.b and  z =  ±

I f  this is subject to a simple shearing deform ation, in w hich each point of the m aterial moves 

parallel to the A>axis by an  am ount which is proportional to its y-co-ordinate, then  the 

displacem ent com ponents u, v and w, for a point w hich is initially a t (#, , z ) , are given by

u — Ky, 
where K is a constant.

By substituting these expressions for u, v and w in  the stress-strain relations (4 -6) for an 

incompressible m aterial, we see th a t the simple shear described by (12*1) is associated w ith 

stress com ponents given by

' .  =  ^ - < ■ + * ' > 7 0 + *

hz =  2
r d W  d W

Lw," ]+ A

tyz = hx = 0 and = 2
d W d W \

d i t 1 d i 2j
) , . j

( 12 *2 )

dWjdli and are, in general, functions o f a n d  / 2, where, from (12T ), (3 -4 ) and  (2 T 5),

+ (12-3 )

I t  is seen that, in general, a simple shear is associated, not only w ith a simple shearing stress, 

bu t w ith norm al stress com ponents txx,t and tzz. Any one of the

For example, if

tzz = P = — 2|

dW

( d w d w \

d i 2)

and txx 2R and L„ =  —
d \ v

~yy $T ‘

(12-4 )

T he body forces, which m ust be applied in order to produce the state of deform ation described 

by (12T ), are given by introducing (12T) into equations (9 -2). W e obtain

1 + ^ = 0 , f +PT -  0 and  f z + p Z = 0. (12-5 )

Thus, the state of strain (12T) can be produced w ithout the application of body forces, 

i.e. when X  =  Y — Z  =  0, and then p is constant throughout the body.
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T he surface forces w hich m ust be applied are given by in troducing (1 2 T ) into equations 

(11*2). W e obtain , for the surface forces acting on the planes initially a t x =  ± 0 ,  i.e. for

cos (x,v) = ±  1 , cos (y, 

^  =  ± { 2 ( ^ + 2  d- ^ ) + p ) ,  Yr = ±l ^ - 2K ^ - K p j  and Z , =  0. (12-6)

For the surface forces acting on the planes initially a t =  ±b , i.e. for

cos (#, v) =  0, cos (y, v) =  ±  1 and cos (z, r) — 0,

z ' = ± 2X ( 5 + S 9 > y - = ± K J + 2 5 ) H  a n d  z ^ = o -

Sim ilarly, the surface tractions acting on the surfaces initially a t z =  i.e. for 

cos (*, v) =  0, cos (y, v) =  0 and cos (z, v) =  ±  1,

^  ™  dW~
are given by X v =  Yv =  0 and  ^  dz {2[ ^ +  (2 + X 2) ^ j~ ]  +^} •

Now, if we m ake the surface tractions on the surfaces z =  zero, so tha t

r  dW~\

^ - 2E + ( 2 + ^ ? ] ’

( 12 -8 )

(12-9 )

we obtain, from (12*6), th a t the surface tractions on the surfaces initially norm al to the 

x-axis are given by

( W , dW\
+ K2

dW~]

d iA
and Z,.

Those on the surfaces norm al to the y-axis are given, from (12*7) and (12-9), as

dW
Y = ^ 2K2^ -  and Z  =  0.

!d\V dW\

di2j

( 12 - 10 )

( 12 -11 )

Resolving the surface tractions (12-10) into com ponents tangential and norm al to the 

surfaces on which they act in their deformed state, we find th a t the tangential com ponents 

T  are given by /dW 3W\ I

T = 2K( w + i B I {l+Kt)i  ( 1 2 - 1 2 )
and the norm al com ponents N  by

(12-13)

I t  is thus apparen t th a t the state of pure shear described by equation (12-1) cannot be 

supported by tangential tractions applied to the surfaces and x =  ±  as in the case

of small deformations dealt w ith in the classical theory of elasticity. However, the system of 

surface tractions applied to the surfaces x — ±a  and =  ±b  and described by equations 

(12-11), (12-12) and (12-13) are adequate to support the deformation.

I t  should be borne in m ind th a t all these com ponents of the surface traction refer to un it 

area of the surface measured in the undeform ed state of the body. T he areas of elements of
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394 R. S. R IV L IN  O N  LA R G E E L A ST IC

the surfaces y =  ±band z =  i c  are unaltered  by the deform ation. However, the areas of

elements of the surfaces x — ±.aare m ultiplied by the factor (1 +  X 2)4 in the defo

T he tangential and norm al com ponents T'  and N'  respectively of the surface tractions, 

on the surfaces initially a t x =  per un it area of surface of the deform ed body, are given, 

from (12T2) and (12T 3), as

r  =  2K
id W dW\

[dl, 1 d i j) / ( l + * 2)
, n r t f t W  t a dW

and N  — — 2X2|^ rT- +  2-~T-- 
dlx dL

K2~ ) / ( l + K2). (12-14)

Thus, the system of surface tractions described by (12T1) and (12T 4 ) is adequate  to 

support the state of simple shear described by (12T). A n alternative system of surface 

tractions m ay be obtained by adding to this system a hydrostatic pressure

,dW dW dW' 
2 X 2 ~  +  2 ^ -  +  X 2

H i ' dl2

This gives the system of surface tractions

) / ( i + * 2)-

IdW dW\

[dli d i j
X = ± 2K

acting on the surfaces =

Yv = ±
{w dW\

dl2)
and Z v 0,

i m dW\
d i j) / ( i + * 2),T  =  2K[

acting tangentially  to the surfaces which are initially a t x = ±  and

(12-15)

(12-16)

(12-17)

acting norm ally to the surfaces z =

1 3 . S i m p l e  s h e a r  o f  a  c u b o i d  o f  c o m p r e s s i b l e  m a t e r i a l

Suppose the cuboid of m aterial considered in the last section is composed of a compressible 

m aterial, for which the stress-strain relationships are given by (4 -5 ), and  is subjected to 

a simple shearing deform ation described by equation (12-1). I t  can readily be seen by 

in troducing (12-1) into equation (8 -3) and two sim ilar equations of m otion tha t, for this 

state of simple shear to be m aintained, the applied body forces (X, Y, Z) m ust be zero.

T he surface forces which m ust be applied to the cuboid are obtained by substituting 

Trom  (12-1) for u , v and w in  equations (10-2). W e obtain, for the surfaces x =

(dW  

[dl , '
X v — ± 2

for the surfaces =  ±

Xv = ±2  K

dW dW\

dl2 ' d i j

IdW dW\
Yv = T 2K [ ^  + °XL)) ) and Z„ =  0; (13-1)

, w dW\

w / , H dl2j
± 2

dW dW dW\

to
J

d i j
and Z„ =  0: (13-2)

and for the surfaces z =  ±

X , = J ,  =  0 and Z , - ± a j ^ + ( 2 + ^ ) ^ + ^ j .  (13-3)
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These surface tractions are expressed per un it area of the surface m easured in its undeform ed 

state. T hey can readily  be expressed per un it area of surface m easured in its deformed state 

by a m ethod sim ilar to th a t adopted in § 12.

14 . T h e  t o r s i o n  o f  a  r i g h t - c i r c u l a r  c y l i n d e r  o f  i n c o m p r e s s i b l e  m a t e r i a l

In  this section we shall calculate w hat force system is necessary to produce a pure torsion 

in a right-circular cylinder of incompressible m aterial, of length l and radius a. T he problem  

has already been worked ou t for an  incom pressible, neo-H ookean m aterial in a previous 

paper of this series (Rivlin 1948 b , §§ 8 to 10). T here the problem  was dealt w it

of the appropriate  equations of m otion and boundary  conditions expressed w ith reference 

to a cylindrical polar co-ordinate system. H ere, however, it will be more convenient to use 

the equations of m otion and boundary  conditions, referred to a rectangular, Cartesian 

co-ordinate system, in the forms they have been given in §§ 9 and 11 .

T he co-ordinate system chosen has its z-axis coincident w ith the axis of the cylinder and 

its origin a t the m id-point of this axis. T he a  and y axes m ay then be chosen in arb itrary  

directions consistent w ith the co-ordinate system being rectangular Cartesian.

If, in the pure torsion, each section of the cylinder which is norm al to the z-axis is ro tated  

through an angle ^z, then the displacem ent com ponents u, v and w, parallel to the axes 

x, y and z respectively, of a point which before the deform ation is a t (x, y, z ), are given by

 = (x cos i/rz—y sin i/rz)—x, v = (x sin ijrz and w =  0 . (14T)

W e readily  see, by substituting from (14T) in (8*7), th a t the relation r  =  1, which must 

be obeyed by an incompressible m aterial, is autom atically satisfied.

Substituting from (14T) in (2 T 5) and (3*4 ), we obtain

/j  =  I2 = 3 + iJr2r2 and / 3 =  1. (14*2)

Em ploying the relations (14T) and (14-2 ) in equations (8-8), (8*9 ), (9 -3) and (9 -4 ), we 

obtain  the expressions for A lf A2, B x and B2 in the first of the equations of m

A 1 = — 2\jr2(x cosfz — ysin 

A2 =  4^ 2(xcos f z  — ysin 

b ,

and B2

Employing these expressions in equation (9 -2), using (14T) to obtain , etc.,

and bearing in m ind th a t d2u/dt2 — 0, we obtain

4 ^ 2^

4 f

d2W  d2W

d2W

dixdi2 di2

j (x cos tyz—y sin fz )  

j  (2 +  ̂ 2r2) {xcosijrz—ysin fz) .

(14-3)

dW

di2 dix,

■d2W , /0 , , 22N d2W , ,0 , /22^ 2PT-|

. w ? +  (3 + f r )  d m + (2 + f r )  u } \

X (xcos f z —ysin fz )  + cos f z ^  — sin f z ^ + p X  = 0 .(14-4 )
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In  a sim ilar m anner, we obtain  the rem aining two equations of m otion as

dW  dW\  . .  ,X d2W  . , 0  o x  . l
j2 ip2

dl2
V\ , . t2 d*W . ,0 . /2 2, d£W , /0 , /2 2̂ W | 1
7) +  W  + (3 +  ^  37^  + (2 +  ^ J )

dp 

dy

dp dp
X  ( a : sin fz+ycos pz) -j-sin — 0

and , 2 + 1  =  0.

(14-5 )

I f  the body forces are zero, i.e. X  —  Y = Z  = 0, we have, notin

the strain is independent of z,

and

dp

dx

dp

dy

J2^2|

j2 ^ 2̂

dW dW\
di2 d l j

dW dW\
dl2 d l j

~d2W

J I 2

-d2w

d2W  

dl\  d l2

d2w

w - i

j din

d2W i\
(14-6)

From  (14-6), it can be seen th a t is a function of r only and

_dp _ . J  dWdW\  . . , S d 2W .  d2W

dr

0 , J J W  dW\  , w 2p W | / ( ) i  /22, W  | / 0 , /22J ¥ l

2H 2 w - j r J  r + ^ l i i f  + (3+ i r )  d i j r 2+{-2 +

I f  the form of IF  as a function of I x and  I2 is known, then p can be determ ined, from this 

equation, throughout the m aterial, except for a constant of in tegration w hich m ust be 

obtained from the boundary  conditions over the curved surface.

T he boundary  conditions over the curved surface of the cylinder are obtained  from (11-2), 

by substituting
cos (x, v) = x/a, cos (y, v) = yja and  

and the relations of the types (8*4 ), (8*5) and  (8*6), in  which the expressions (14T) have been 

substituted for u , v and w.We obtain

idW dW \ 1
aXv =  \ d l [ + + p 2a2) -q j - +  cos ^ z - y s i n  f z

(dW dW \
aYv = 2 |-q j - + (2  +  ̂ 2«2) -jj- sin + y  cos

(14-9 )

and =  0.

T he surface traction  on the curved surface of the cylinder is thus purely rad ia l in the 

deformed state of the body and has m agnitude Rv given by

dW\
(14-10)

I f  the value of Rv is specified, then equation (14-10) can be used to determ ine the value of 

p when r — a and thus to elim inate the constant of in tegration from the in tegrated  form  of 

equation (14-7).

In  the particu lar case w hen the surface traction Rv over the curved surface vanishes, then 

on the curved surface //aMA ,
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and from (14 -7) we have, throughout the m aterial,

~ 2{ ( ^ L „ + ( 2 + ! W ) f a d J -  (i4 -i2 )

T he boundary  conditions over the plane ends of the cylinder are obtained, from (11*2), 

by substituting cos p) =  cos (y, v) = 0 and  cos (z, ±  1 

and  em ploying the relations (8 -4 ), (8 -5) and  (8-6), in which (14-1) have been substituted 

for u, v and w .

W e obtain

and

Yv = ±2

( W , dW\

u v d i j

dW\

[ d i p d /J

sin f z + y  cos ifrz),

(14-14)

T he surface traction  on the plane ends therefore consists of a com ponent 0 „ which is 

azim uthal in the deform ed state of the body and another which is norm al in the deformed

state. N oting th a t p is given by (14-12), we obtain

(14-15)

I d W d w \

u v d i j

+ ( ^ „ * > + 2  s h © j « s h £ ) J -

I f  the expression W  — G(/j — 3), for the stored-energy function of an  incompressible, 

neo-H ookean m aterial is substituted in (14-15), we obtain  the expressions for 0 „ and 

w hich were obtained in p a rt I I I  (Rivlin 1948 c, §8). For a m aterial whose stored-energy 

function is th a t postulated by M ooney (1940), i.e.

W  — —3) + C 2(/2 —3),
equations (14-15) becom e

0 „ =  2 M C i + C2) and Z , =  - j^2[(C 1- 2 C 2) (14-16)

This work forms p a rt of a program m e of fundam ental research undertaken by the Board 

of the British R ubber Producers’ Research Association.
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