
Large FHE Gates from Tensored
Homomorphic Accumulator

Guillaume Bonnoron1(B), Léo Ducas2, and Max Fillinger2

1 Chair of Naval Cyber Defense & Lab-STICC/CID/IRIS, Brest, France
guillaume.bonnoron@telecom-bretagne.eu

2 CWI, Amsterdam, The Netherlands

Abstract. The main bottleneck of all known Fully Homomorphic
Encryption schemes lies in the bootstrapping procedure invented by Gen-
try (STOC’09). The cost of this procedure can be mitigated either using
Homomorphic SIMD techniques, or by performing larger computation
per bootstrapping procedure.

In this work, we propose new techniques allowing to perform more oper-
ations per bootstrapping in FHEW-type schemes (EUROCRYPT’13).
While maintaining the quasi-quadratic Õ(n2) complexity of the whole
cycle, our new scheme allows to evaluate gates with Ω(log n) input bits,
which constitutes a quasi-linear speed-up. Our scheme is also very well
adapted to large threshold gates, natively admitting up to Ω(n) inputs.
This could be helpful for homomorphic evaluation of neural networks.

Our theoretical contribution is backed by a preliminary prototype
implementation, which can perform 6-to-6 bit gates in less than 10 s on
a single core, as well as threshold gates over 63 input bits even faster.

Keywords: Fully Homomorphic Encryption · Large gates
Threshold gates · Ideal lattices

1 Introduction

Since the first scheme of Gentry [1,2] a lot of effort has been made to push Fully
Homomorphic Encryption (FHE) toward practicality. A first line of research
followed the initial approach of Gentry, by bootstrapping FHE from a Some-
what Homomorphic Encryption (SHE) scheme supporting arbitrary circuits of
bounded depth. This bootstrapping step consists in homomorphically evaluat-
ing the decryption procedure, to refresh ciphertexts. After successive theoretical
and practical improvements [3–7], this bootstrapping procedure has been made
feasible in practice, but remains quite expensive, taking several minutes on a
single core. Fortunately, this cost can be mitigated thanks to SIMD techniques,
allowing to perform the same homomorphic computation on several data sets
for the price of one.

G. Bonnoron—Funded and supported by Ecole Navale, IMT Atlantique, Naval
Group and Thales.
L. Ducas is supported by a Veni Innovational Research Grant from NWO under
project number 639.021.645.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 217–251, 2018.
https://doi.org/10.1007/978-3-319-89339-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_13&domain=pdf

218 G. Bonnoron et al.

A second line of FHE schemes arose from the SHE scheme of Gentry-Sahai-
Waters [8]. This SHE scheme supports a different class of functions, includ-
ing branching programs, and this was also proved sufficient to bootstrap it to
FHE via Barrington’s theorem [9,10]. Interestingly, this approach theoretically
allows obtaining FHE from a weaker version of the LWE assumption (namely
the approximation factor decreases from super-polynomial to polynomial). On
the efficiency front, Alperin-Sheriff and Peikert [11] showed how to avoid the
costly use of Barrington’s transformation by implementing the homomorphic
decryption procedure more directly. Then, Ducas and Micciancio [12] adapted
the construction to the ring-setting. Providing parameters and implementation,
they demonstrated this approach to be feasible with a proof of concept scheme
(FHEW): the bootstrapping procedure could be run in under a second on a sin-
gle core. While their parameters allow one binary gate per bootstrapping, they
noted it should be possible in principle to perform slightly larger gates, such
as the add-with-carry gate (3-inputs, 2-outputs). This idea was implemented
in [13].

Further improvements and generalization were proposed in [14,15], leading
to a scheme named TFHE. In particular they contributed two improvements of
the bootstrapping step, accelerating it by a polylog factor. In practice, this leads
to a bootstrapping in less than 0.1 s, allowing the same bootstrapped gates as in
FHEW [12].

FHE from Homomorphic Accumulator. The core idea in FHE schemes from this
second line is to tailor the SHE scheme precisely to the decryption procedure.
Namely, the decryption procedure of an LWE ciphertext c = (a, b) ∈ Z

n+1
q under

key s ∈ Z
n
q for a plaintext space Zt is given by:

m = �t(b − 〈a, s〉)/q� mod t ∈ Zt.

Given the ciphertext c, this procedure can be split into a Zq-linear step Lc :
s �→ b − 〈a, s〉, followed by a non-linear function N : Zq → Zt. Note that one
can embed an arbitrary post-decryption transformation f : Zt �→ Zt by setting
Nf : x �→ f(�tx/q� mod t).

Assume that we have an SHE scheme that precisely supports the class of
functions that can be written as Nf ◦Lc (a notion formalized as a homomorphic
accumulator in [12]), and such that the output is again an LWE ciphertext. Then,
taking t = 4 one can construct an FHE scheme, performing any binary gate g
over encryptions of bits (b1, b2) for each bootstrap operation. Indeed, using the
linearity of LWE ciphertexts, one can compute an encryption of m = b1 + 2b2,
and construct the appropriate function f such that f(m) = g(b1, b2).

In more detail, messages m are encoded as powers of a q-th root of unity Xm.
With such an encoding, the linear step Lc is performed by sequential ciphertext
multiplications. The non-linear part Nf is performed by computing a subset-
sum of the coefficients of the polynomial E = Xm =

∑
eiX

i, by exploiting the
identity f(m) =

∑
f(i)ei.

As the useful computation is provided by the function f : Zt → Zt, a larger
plaintext modulus t allows to perform more computation between each bootstrap

Large FHE Gates from Tensored Homomorphic Accumulator 219

operation. Namely, one can build arbitrary k-bit to 1-bit gates if t ≥ 2k, and,
if we restrict to certain classes of gates, even larger ones (e.g. threshold gates
only require t ≥ k + 1). For most k-to-1 bit functions, this corresponds to a
speed up of Ω(2k/ log k) = Õ(t), according to the classical circuit lower-bound
of Riordan and Shannon [16]. It is therefore worth increasing the size of the
plaintext modulus t in order to perform much more computations per bootstrap
operation.

Parameter Constraints and Efficiency. In the set-up of [12,13,15], the con-
straints for correctness impose asymptotically that t ≤ O(q/n).1 Taking q =
Θ(n), this gives a quasi-quadratic runtime for the whole process, but allows
quite small plaintext size: t ≤ O(1). In practice, this t cannot be made much
larger than 4, maybe up to 6 as done in [13].

Looking more precisely at the complexity of each step, we note an imbal-
ance between the cost of the linear and non-linear steps. Indeed, the linear
part requires Θ̃(n) operations over Rq, while the non-linear part requires only
Θ(log n) such operations.

This Work. We aim to improve the performance of this line of FHE schemes
by increasing the plaintext modulus t. Having remarked the imbalance of the
costs of the linear and non-linear steps, we proceed to increase the cost of the
non-linear step while maintaining the overall quasi-quadratic complexity.

Our approach consists in choosing a ciphertext modulus of the form pq for
co-primes p, q, and to perform the linear-step Lc in a CRT fashion. During this
linear-step, our SHE scheme only works with the rings Rp = Z[X]/(Xp −1) and
Rq = Z[Y]/(Y q − 1) separately, for a cost of Õ(n(p + q)). Then we proceed to a
CRT reconstruction by tensoring the two rings: Rp⊗Rq Rpq = Z[Z]/(Zpq−1),
noting that Xa ⊗ Y b = Zaq+pb mod pq. This raises the cost of the non-linear part
to Θ̃(pq). Setting p, q = Θ(n) we maintain the quasi-quadratic complexity, but
reach a larger plaintext-modulus t = Θ(n). This is somehow a reminiscence of
the approach of [11], adapted to the ring-setting.

One (not so) novel technical aspect is that we choose in this work to use
convolution rings Z[X]/(Xp − 1), as in the NTRU schemes [17] rather than
cyclotomic ones. The reason is that we need to use some non-power of 2 roots of
unity to ensure co-primality of p and q. Indeed, if (say) p is prime, the fact that
Xp−1 = −1 − X − · · · − Xp−2 in the p-th cyclotomic ring Z(X)/(Φp(X)) makes
the non-linear step described above quite problematic.2 Yet, we show that the
switch to convolution rings can be done without affecting security, by formalizing
what we call the NTRU trick.3 More precisely, an appropriately defined version
1 More precisely, t ≤ q/

√
n · log 1/pfail, where pfail is the failure probability. In this

paper, we will always aim for exponentially small failure probability.
2 And maybe even impossible due to dimensionality constraints.
3 We wish to clarify that our scheme does not require the NTRU assumption, namely

the assumption that f/g mod q is indistinguishable from random even for small f
and g. Up to the usual circular-security assumption, our scheme is based on a ring-
LWE type of assumption.

220 G. Bonnoron et al.

Fig. 1. Scheme overview.

of Ring-LWE over convolution rings is as secure as the usual cyclotomic version
of Ring-LWE from [18].

Our work also relies on one of the improvements of [15], namely, the use of an
“external multiplication” GSW×LWE → LWE replacing the GSW×GSW → GSW

Large FHE Gates from Tensored Homomorphic Accumulator 221

operation used in [8,11–13], which saves a log factor on time and memory. It turns
out that the trick of [14,15] of implementing a mux-gate, is not compatible with
our circulant ring set-up, but we instead propose to exploit the Galois action for
a similar logarithmic speed-up.

In addition, we propose to use an alternative Gadget matrices based on the
Chinese Remainder Theorem, an idea already presented in [19] for different pur-
poses. We show that such gadgets permit a logarithmic speed-up when dealing
with gadget inversions of tensored ciphertexts; this contribution may find theo-
retical and practical applications in other contexts.

To summarize our theoretical construction, we provide schematics in Fig. 1,
omitting some extra tweaks for practical efficiency that are deferred to
AppendixF. We hope this overview may guide the reader through our paper.

Circular Security. We recall that all the FHE literature, including our work,
relies on (sometimes implicit) circular-security assumptions [2], that may be dif-
ferent from one scheme to the next. Understanding those assumptions is arguably
the most important theoretical question in this field.

One particular property of our scheme is that this circular security assump-
tion can not be avoided even when relaxing the scheme to a leveled FHE
scheme [2]. Indeed, the careful reader may notice that “External Inner-product
in the Exponent” step (ExtExpInner, Sect. 4.3) requires circular encryption.

Instantiation and Implementation. To attest to the feasibility of our approach,
we also provide an instantiation supporting 6-to-6 bit gates, at a security level
of about 100 bits. Its current implementation runs this 6-to-6 bits bootstrapped
gate in about 10 s.

Related Work. Recently Chillotti et al. [20] also proposed the construction of
large homomorphic gates, using a quite different approach. They claim impres-
sive performances, such as a 16-to-8 bit homomorphic gate running in about 2 s.
Admittedly, our current implementation is significantly slower.

Impact. Our implementation should certainly not be understood as publicity for
the practical efficiency of this overall design. It nevertheless serves the purpose
of demonstrating that our new building blocks can be used inside a reasonable
scheme. It is therefore plausible that our contributions are not only of theoretical
interest, but may as well find some use in future practical FHE designs.

Plan. We begin in Sect. 2 with preliminary results and notations. Then we intro-
duce the underlying encryption schemes at hand in Sect. 3. Section 4 presents in
detail the building blocks of the gate, leading to the overall description in Sect. 5.
Finally Sect. 6 reports implementation details and performances.

All proofs are deferred to appendices. Moreover, AppendixF provides several
useful optimization of our scheme for its concrete efficiency.

222 G. Bonnoron et al.

2 Preliminaries

2.1 Subgaussian Random Variables

Definition 1. We say that a real random variable X is subgaussian with param-
eter δ (or δ-subgaussian) if E[X] = 0, and for all t, E[exp(tX)] ≤ exp

(
t2δ2/2

)
.

Subgaussian random variables have the following well known properties (see
[21,22]):

Theorem 1. Let X1 and X2 be subgaussian random variables with parameters
δ1 and δ2, respectively.

– X1 + X2 is (δ1 + δ2)-subgaussian.
– If X1 and X2 are independent, X1 + X2 is

√
δ21 + δ22-subgaussian.

– aX1 is (|a|δ1)-subgaussian.
– Subgaussian tail estimate: P (|X1| ≥ √

2λδ1) ≤ 2 exp(−λ).

Note that [21] also defines non-centered subgaussian variables. However, in
this work, we only consider centered ones, i.e. with E[X] = 0.

2.2 Rings

Our FHE scheme uses circulant convolution rings (or, for short, circulant
rings). Circulant rings of degree d will be denoted with indeterminate T :
Rd = Z[T]/(T d − 1). We fix two distinct odd primes p and q. When speak-
ing specifically of rings Rp, Rq, and Rpq we shall use indeterminates X,Y and
Z, respectively. We write R̃d for the cyclotomic ring Z[T̃]/Φd(T̃) where Φd(T̃) is
the d-th cyclotomic polynomial; if d is prime, Φd(T̃) = 1 + T̃ + T̃ 2 + . . . + T̃ d−1.
We identify a ring element a ∈ Rd with its lowest degree representative
a0 + a1T + . . . + ad−1T

d−1 ∈ Z[T] and call a0, . . . , ad−1 the coefficients of a.
We identify a ∈ Rd/QRd with its lowest degree representative with coefficients
a0, . . . , ad−1 ∈ [−Q/2, Q/2). We define the following norms for ring elements:

Definition 2. Let a ∈ Rd (or Rd/QRd). We define the coefficient norm of a
as ‖a‖ = ‖(a0, . . . , ad−1)‖ =

√∑
a2

i .

Definition 3. Let a ∈ Rd (or Rd/QRd). We define the operator norm of a
as |a| = maxb∈R\{0} ‖ab‖/‖b‖. We expand this notion to vectors x ∈ Rn

d by
maximizing y over Rn \ {0} and replacing the multiplication with the inner
product over Rd.

Definition 4. We define the (normalized) trace function4 as follows: We let
Tr∗

Rd/Z : Rd → Z, a �→ a0. If d is clear from context, we simply write this
function as Tr∗. We let Tr∗

Rpq/Rp
: Rpq → Rp be the linear function defined by

Tr∗
Rpq/Rp

(
Zk

)
=

{
Xk/q if q|k
0 otherwise

4 This is simply a special case of the usual definition of the trace function, but we do
not need the general definition here.

Large FHE Gates from Tensored Homomorphic Accumulator 223

The following property is easy to see:

Lemma 1. Tr∗
Rd/Z and Tr∗

Rpq/Rp
are linear, and Tr∗

Rp/Z ◦Tr∗
Rpq/Rp

= Tr∗
Rpq/Z.

Definition 5. A random variable A ∈ Rd is δ-subgaussian if, for every b ∈
Rd \ {0}, Tr∗(Ab)/‖b‖ is δ-subgaussian.

Finally, we show that if we trace down a subgaussian random variable over
Rpq down to Rp, the result is a subgaussian random variable over Rp.

Lemma 1. Let A be a δ-subgaussian random variable over Rpq. Then
Tr∗

Rpq/Rp
(A) is δ-subgaussian as well.

2.3 Gadgets

Throughout this exposition we use a binary decomposition operation on ring
elements, and the reverse. For simplicity we adopt the notation of gadget vector
and matrix.

Definition 6. The gadget vector gT of size K is set to
(
1 2 22 · · · 2K−1

) ∈ RK
d .

Reciprocally, we define g−T as a function such that, for w ∈ Rn
d , V = g−T (w)

is a (K × n)-matrix whose entries are ring elements with coefficients in {0, 1}
such that gTV = w.

Definition 7. For some integer n ≥ 1, the gadget matrix Gn is defined by
Gn = In+1 ⊗ g ∈ R(n+1)K×(n+1)

d .

GT
n =

⎛

⎜⎜⎜
⎝

1 2 · · · 2K−1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 2 · · · 2K−1 · · · 0 0 · · · 0

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 2 · · · 2K−1

⎞

⎟⎟⎟
⎠

We define G−1
n similarly to g−T : for a ∈ Rn+1

d , we let d = G−1
n (a) ∈ R(n+1)K

d

be the vector whose entries have coefficients in {0, 1} such that dT · G = a. For
convenience we write Gn = G as n is typically clear from context.

2.4 Circulant LWE and Reduction to Ring-LWE

It is well known that the naive decisional version of Ring-LWE is insecure over
circulant rings, simply by exploiting the CRT decomposition. Say that d is prime,
and note that Rd/QRd R̃d/QR̃d × Z/QZ if Q is coprime to d, so one may
mount an attack on the Z/QZ part (projecting to this part corresponds to evalu-
ate the polynomial at 1, and therefore maintain smallness of the error). However,
this does not mean that such rings are inherently insecure: the NTRU cryptosys-
tems [17,23] use circulant rings, choosing the secret key and errors that evaluate
to a fixed known value (say 0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant
rings that would be as secure as the cyclotomic Ring-LWE, simply by lifting
all elements x̃ ∈ R̃d/QR̃d to x (x̃, 0), yet this reverse CRT operation may
not keep small elements small. In Appendix E.1 we show how to circumvent this
obstacle, and discuss error sampling in practice in AppendixE.2.

224 G. Bonnoron et al.

3 Encryption Schemes

3.1 LWE Encryption

We recall the definition of the most basic LWE symmetric encryption scheme
(see [24–26]). LWE symmetric encryption is parametrized by a dimension n, a
message modulus t ≥ 2, a ciphertext modulus Q = nO(1) and an error distribu-
tion χ. The message space of the scheme is Zt. (Typically, e ← χ satisfies the
condition |e| < Q/2t, and t = 2 is used to encrypt message bits.) The (secret)
key of the encryption scheme is a vector s ∈ Z

n
Q, which may be chosen uniformly

at random, or as a random short vector. The encryption of a message m ∈ Zt

under key s ∈ Z
n
Q is

c = (a, 〈a, s〉 + e + �Q/t� m mod Q) ∈ Z
n+1
Q (1)

where a ← Z
n
Q is chosen uniformly at random. A ciphertext (a, b) is decrypted

by computing
m′ = �t(b − 〈a, s〉)/Q� mod t ∈ Zt. (2)

We write c ∈ LWEt|Q
s (m) to denote that c is an LWE-encryption of m, and

c ∈ LWEt|Q
s (m;E) if c is a random LWE-ciphertext such that c = (a, 〈a, s〉 +

�Q/t� m + e) where e is a subgaussian random variable with parameter E. The
error of c = (a, b) ∈ LWEt|Q

s (m) is err(c) = (b−〈a, s〉−�Q/t� m) mod Q, reduced
modulo Q to the centered interval [−Q/2, Q/2).

Notice that the error err(a, b) depends not just on (a, b), but also on s, Q, t and
m. By the subgaussian tail estimate, if e = err(c) is subgaussian with parameter
E, then |e| <

√
2λE except with probability at most 2 exp(−λ). Thus, if t divides

Q and E ≤ Q/(2t
√

2λ), the decryption procedure recovers the encrypted message
with high probability:

�t(b − 〈a, s〉)/Q� mod t =
⌊

t

Q
·
(

Q

t
m + e

)⌉

=
⌊

m +
t

Q
e

⌉

= m mod t

because t
Q |e| < 1/2 except with probability 2 exp(−λ).

3.2 CLWE and CGSW Encryption Schemes

Below, we describe two encryption schemes, Circulant-LWE and Circulant-GSW
(Circulant variant of [8]), which we need for our homomorphic accumulator (see
Sect. 4). We do not specify any decryption procedures since these are not needed
for the homomorphic accumulator.

Definition 8. We let R, R̃, d, and Q be as in Sect. 2.2. Let t ≥ 2 be the
plaintext modulus. The Circulant-LWE scheme over R consists of the following
algorithms:

– KeyGen: Output a uniformly random element s of R̃.

Large FHE Gates from Tensored Homomorphic Accumulator 225

– Encs(m) for m ∈ R/tR: Let (a, b) be a sample from the Circulant-LWE dis-
tribution over R with secret s and output (a, b′ = b + �Q/t� · m).

We also define an n-dimensional variant of the scheme where the key is s ∈ Rn,
a is a random vector in Rn and the product a · s is replaced by the inner product
over R〈a, s〉 =

∑n
i=1 ai · si.

Lemma 2. If the decisional R̃- LWE problem is hard, then the Circulant-LWE
scheme is CPA-secure for messages of the form m = Xk.

Definition 9. We let R, R̃, d, and Q be as in Sect. 2.2 and G as in Definition 7.
Furthermore, let t ≥ 2 be the plaintext modulus and B an integer ≥ 2, let K be
the smallest integer such that BK ≥ Q.

The Circulant-GSW scheme is described by the following algorithms:

– KeyGen: Sample a uniformly random s from R̃.
– Encs(m) for m ∈ R/tR: Generate a matrix A ∈ R2K×2 where each row is a

sample from the Circulant-LWE distribution with secret s. Output A+�Q/t�·
mG.

We also define a n-dimensional variant of the scheme where A ∈ R(n+1)K×(n+1)

whose rows are samples from the n-dimensional Circulant-LWE and where G1

is replaced by Gn.

Lemma 3. If the decisional R̃- LWE problem is hard, then the Circulant-GSW
scheme is CPA-secure.

Finally, we define the following notations for various ciphertext spaces:

– We write c ∈ RdLWEt|Q
s (m,E) if c = (a,ats +

⌊
Q
t

⌉
m + e) for some

random error vector e that is E-subgaussian. We extend the notation to
C ∈ RdLWEt|Q

s (mT , E) for message m ∈ Rk
t that are vectors, meaning that

the i-th column Ci of C is in RdLWEt|Q
s (mi, E). Furthermore, we write err(c)

for the error term e in c.
– We write C ∈ RdGSW

t|Q
s (m,E) if C = (a,as + e) +

⌊
Q
t

⌉
· mG, and the

components of e are independent E-subgaussian variables. We write err(C)
for the error vector e in C.

4 Homomorphic Operations

Most of the operations presented below are meaningful both in the
ring/circulant-setting or over the integers. We consider the RLWE problem over
rings Rd = Z[X]/(Xd − 1) with d prime and over R = Z (i.e., simply the LWE
problem). However, most of the results presented in this section also hold for
cyclotomic rings. We assume that coefficients of ring elements in R/QR can be
added and multiplied in constant time since, in our implementation, each coeffi-
cient fits into a machine word. Thus, adding two ring elements takes time O(d)
and multiplying them takes time O(d log d) using FFT.

226 G. Bonnoron et al.

4.1 Known Building Blocks

Let us first recall, within our formalism, known building blocks from the liter-
ature. The only novelty is in this section concerns the FunExpExtract function:
while this was already constructed in previous work, in our set-up we will need
to apply a trick from [27] to improve its efficiency.
Linearity.

Key Material: None
Runtime: O(nd) for addition, O(nd log d) for multiplication
Signature:

Add : RdLWEt|Q
s (m; E) × RdLWEt|Q

s (m′; E′)

→ RdLWEt|Q
s

(
m + m′;

√
E2 + E′2

)

x ∈ Rd,Multx : RdLWEt|Q
s (m; E) → RdLWEt|Q

s (xm; |x|E)

(3)

The error term in the result of Add holds when the error terms in the
input ciphertexts are independent. Otherwise, it is E + E′.

The Add operations are computed by simply adding the ciphertexts
component-wise. The Multx operations work by scalar multiplication with x.
Modulus Switching.

Key Material: None
Runtime: O(d)
Signature: ModSwitchQ→Q′

:

RdLWEt|Q
s (m; E) → RdLWEt|Q′

s

(

m;
√

(kE)2 + 1 +
∑

i

|si|2
)

(4)

where s ∈ Rn
d and k = �Q′/t� / �Q/t� ≈ Q′/Q.

The basic idea of modulus switching is to multiply the ciphertext with Q′/Q,
or rather �Q′/t� / �Q/t�. However, since this factor is not necessarily an integer,
we instead use a randomized rounding function [x] = �x� + Br where Br is
a Bernoulli random variable with Pr[Br = 1] = x − �x�. The rounding error
r = [x] − x is subgaussian with parameter 1. Let us write k = �Q′/t� / �Q/t�.
Applying the rounding function component-wise to k · (a, 〈a, s〉 + �Q/t� m + e),
we obtain

(ka+r, k〈a, s〉+�Q′/t� m+ke+r′) = (ka+r, 〈ka+r, s〉+�Q′/t� m+ke+r′−〈r, s〉)

where r is the vector of rounding errors for ka and r′ is the rounding error for
b. Thus, the error term of the modulus-switched ciphertext is ke+ r −〈r, s〉. For
each i, risi is |si|-subgaussian. Since all terms in the sum are independent, the
error parameter is

√
(kE)2 + 1 +

∑
i |si|2.

Large FHE Gates from Tensored Homomorphic Accumulator 227

Remark 1. We only use modulus switching in the following two cases: when the
dimension of the key is n = 1, and for short keys in Z

n, i.e., n-dimensional
keys where |si| ≤ 1. In the first case, the error parameter simplifies to√

(kE)2 + 1 + |s|2, in the second case to
√

(kE)2 + n + 1.

Key switching.

Key Material: S = [Si]i∈[n] where Si ∈ RdLWE
Q|Q
s′ (si · gT ; σ) (Size:

O(nd log2 Q))
Runtime: O(d log dn log Q)
Signature: KeySwitchs→s′

S :

RdLWEt|Q
s (m; E) → RdLWE

t|Q
s′

(
m;

√
E2 + σ2d2nK

)
. (5)

where s ∈ Rn
d , s′ ∈ Rd.

Algorithm 1. KeySwitchs→s′
S (c): Transform an RdLWE ciphertext under key s

into a ciphertext under s′.
Require:

S = [Si]i∈[n] where Si ∈ RdLWE
Q|Q
s′ (si · gT ; σ).

A ciphertext (a, b) ∈ RdLWE
t|Q
s (m; E) for some m ∈ R/tR.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s′

(
m;

√
E2 + σ2d2nK

)
if the error terms in c and

S are independent.

return (0n′ , b) − g−T (a) · S

Lemma 4. Algorithm1 is correct. Furthermore, if e = err(c) and ei = err(Si),
then the error term of the output ciphertext is e +

∑n
i=1 d

T
i ei, where each di is

a vector whose entries have operator norm at most d.

Remark 2. In practice, the choice of the basis decomposition B for the gadget is
important. It allows to trade off key size and running time against error growth.
We use

S =
[
RdLWE1,Q

s′ (Bjsi;σ)
]

i=1...n,j=0...K−1
,with K = �logB Q�

as key material. The key size decreases to O(nn′dK log Q), and the running time
decreases to O(d log dnn′K), while the output error parameter also increases to√

E2 + σ2d2B2nK.

228 G. Bonnoron et al.

External Multiplication.
Key Material: None
Runtime: O(Kd log d)
Signature: ExtMult :

RdLWEt|Q
s (Tm; E) × RdGSW

t|Q
s (Tm′

; E′)

→ RdLWEt|Q
s

(
Tm+m′

;
√

E2 + 2Kd2E′2
)

(6)

for s ∈ R if �Q/t� is invertible modulo Q.

Algorithm 2. ExtMult(c,C): Multiply an RdLWE ciphertext and a RdGSW
ciphertext into a RdLWE ciphertext.

Require: A ciphertext c ∈ RdLWE
t|Q
s (T m; E), and a ciphertext C ∈

RdGSW
t|Q
s (T m′

; E′) with �Q/t� invertible modulo Q.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s

(
T m+m′

;
√

E2 + 2Kd2E′2
)

.

return G−1
(�Q/t�−1 · c) · C

Lemma 5. Algorithm2 is correct. Furthermore, for e = err(c) and e = err(C),
the error term of the output is Xk · e + dTe for some k and a random vector
d ∈ R2K

d independent of e with ‖di‖ ≤ d for every i.

Exponent Function Extraction.

Key Material: A key-switch key S from s(pq) ∈ R3
pq to s′ =

∑p−1
i=0 si+1

Xi ∈ Rp ⊆ Rpq (Size: O(p(q + n)K2)
Runtime: O(pq log(pq)K)
Signature: FunExpExtracts

(pq)→s
F,S :

RpqLWE
t|Q′

s(pq)(Zm; E) → LWEt|Q′
s

(
F (m); |F |

√
E2 + 3σ2p2q2K

)
(7)

for some function F : Zpq → Zt where |F | =
∑

i∈Zpq
|F (i)| and s ∈ Z

p.

Let us first consider the function F0 that maps 0 �→ 1 and k �→ 0 for k �= 0.
If we can extract this function, we can extract any function by first multiplying
the ciphertext with an appropriate polynomial.

This extraction is easily provided by the trace function Tr∗ = Tr∗
Rpq/Z (see

Lemma 1). Indeed, if (a, b) ∈ RpqLWEs(m), then (a,Tr∗(b)) ∈ LWEs(m0), where
a, s ∈ Z

pq are the vectors of coefficients of a and s.
However, this leads to an LWE ciphertext with quadratic dimension pq =

Θ(n2), that must be key-switched to a much smaller dimension Θ(n). Such a

Large FHE Gates from Tensored Homomorphic Accumulator 229

key-switch without any ring structure would require up to Θ̃(n3) running time,
and as much key-material.

To circumvent this issue, we exploit the intermediate ring, following one of
the tricks of [28]. Namely, we choose a key in Rp, which can also be viewed as an
element of Rpq. Switching to this key, exploiting the structure of Rpq, requires
only Θ̃(pq) = Θ̃(n2) operations. Then, one can trace a down to Rp, and b down
to Z, and obtain the desired result.

Algorithm 3. FunExpExtracts
(pq)→s

F,S : Turn an RpqLWE encryption of Zm into
an LWE encryption of F (m).
Require:

A ciphertext c ∈ RpqLWE
t|Q′

s(pq)(Z
m; E),

A function F : Zpq → Zt,

A key-switch key S from s(pq) to s′ ∈ Rp ⊆ Rpq, where s′ =
∑p−1

i=0 s
(pq)
i+1 Xi.

Ensure: A ciphertext c′ ∈ LWE
t|Q′
s

(
F (m); |F |√E2 + 3σ2p2q2K

)
.

f ← ∑
i∈Zpq

F (i)Z−i mod pq ∈ Rpq

c ← KeySwitchs
(pq)→s′

S (c) � ∈ RpqLWE
t|Q′
s′ (Zm)

c ← Multf (c) � ∈ RpqLWE
t|Q′
s′ (

∑
i∈Zpq

F (i)Zm−i mod pq)

(a, b) ← Tr∗
Rpq/Rp

(c) � ∈ RpLWE
t|Q′
s′ (

∑
i, st q|(m−i) F (i)Xm−i mod pq)

a ← (a0, ap−1, ap−2, . . . , a1)
b ← Tr∗

Rp/Z(b)
return (a, b)

Lemma 6. Algorithm3 is correct and runs in time O(pq log(pq) log Q′).

Remark 3. Note that we could reduce the error parameter in Algorithm 3 by
performing the multiplication before the key-switch. However, doing the key-
switch first allows to amortize the cost of gates with multiple outputs, as we
shall describe in Sect. F.3.

4.2 New Building Blocks

Exponent Multiplication by Galois Conjugation.
Key Material: None
Runtime: O(nd)
Signature: Galoisα :

RdLWEt|Q
s (Tm; E) → RdLWE

t|Q
ψα(s) (Tαm; E) . (8)

where α ∈ Z
∗
d and ψα is the automorphism of Rd defined by T �→ Tα.

230 G. Bonnoron et al.

Given a RdLWE-ciphertext (a, as + �Q/t� Tm + e), by applying ψα component-
wise, we obtain (ψα(a), ψα(a) · ψα(s) + �Q/t� Tαm + ψα(e)). Applying Galoisα

does not change the error parameter because Tr∗(ψα(e)b) = Tr∗(ψα(eψ−1
α (b))) =

Tr∗(eψ−1
α (b)). The running time is O(d) because for x ∈ R, ψα(x) is computed

simply by permuting the coefficients of x. Even if the ciphertext is in FFT rep-
resentation, the runtime remains O(d), as ψα also acts on those representations
by permutation.
Exponent CRT by tensoring.

Key Material: None
Runtime: O(pq)
Signature: ExpCRT:

RpLWEt|Q⊗
sp

(Xmp ; Ep) × RqLWEt|Q⊗
sq

(Y mq ; Eq)

→ RpqLWEt|Q⊗
s

(
Zm;

√
E2

p + E2
q + t

√
2λEpEq

)
(9)

if t · �Q⊗/t� = 1 mod Q⊗, and where m = αmp + βmq is such that mp =
m mod p and mq = m mod q and s = (−ψα(sp) ⊗ ψβ(sq), ψα(sp) ⊗ 1, 1 ⊗
ψβ(sq)).

Note that the condition t·�Q⊗/t� = 1 can be easily satisfied in our bootstrap-
ping scheme because we perform a modulus switch before and after ExpCRT.

Algorithm 4. ExpCRT
(
c(p), c(q)

)

Require: Ciphertexts c(p) ∈ RpLWE
t|Q⊗
sp (Xmp ; Ep) and c(q) ∈ RqLWE

t|Q⊗
sq (Y mq ; Eq).

Ensure: A ciphertext c ∈ RpqLWE
t|Q⊗
s (Zm;

√
E2

p + E2
q + t

√
2λEpEq) except with

probability 2min(p, q) exp(−λ)

(ap, bp) ← Galoisα
(
c(p)

)
� ∈ RpLWE

t|Q⊗
ψα(sp)

(
Xαmp ; Ep

)

(aq, bq) ← Galoisβ
(
c(q)

)
� ∈ RqLWE

t|Q⊗
ψβ(sq)

(
Y βmq ; Eq)

a ← (ap ⊗ aq, ap ⊗ bq, bp ⊗ aq)
return (ta, tbp ⊗ bq)

We will need the following lemma to bound the tensor product of two sub-
gaussian random variables.

Lemma 7. Let A and B be independent subgaussian random variables on Rp

and Rq, respectively, with parameters γ and δ. Then, for every λ ∈ R, A ⊗ B is
subgaussian with parameter

√
2λγδ except with probability 2min(p, q) exp(−λ).5

Lemma 8. Algorithm4 is correct and runs in time Θ(pq).
5 More formally, for some event E with p(E) ≤ 2 min(p, q) exp(−λ), when conditioning

on E, A ⊗ B is subgaussian with parameter
√

2λγδ.

Large FHE Gates from Tensored Homomorphic Accumulator 231

4.3 Evaluating Inner Products in Exponents

This procedure allows evaluation of inner products in exponents with log d times
less homomorphic additions in exponents than in FHEW, also less key material.

As a subroutine, we construct an (External) Multiply-and-Add operation in
the exponent, for a public coefficient α ∈ Z

∗
d. We defer the error analysis of this

step to the Algorithm 6 with = 1.

External Multiply-and-Add in the Exponent.

Key Material: Key-switch keys Sα (from ψα(s) to s) and Sβ (from ψβ(s)
to s), where β = α−1 mod d (Size: O(Kd log Q))
Runtime: O(Kd log d)
Signature: ExtExpMultAddα

Sα,Sβ :

RdLWEt|Q
s (Tm′

; E) × RdGSW
t|Q
s (Tm; E′) → RdLWEt|Q

s

(
Tαm+m′

; E′′
)

.

where E′′ =
√

E2 + d2K(4σ2 + E′2).

Algorithm 5. ExtExpMultAddα
Sα,Sβ (c,C)

Require: α ∈ Z
∗
d, with inverse β = α−1 ∈ Z

∗
d

A ψα(s) → s Key-Switching key Sα ∈ RdLWE
Q|Q
s

(
ψα(s) · gT ; σ

)

A ψβ(s) → s Key-Switching key Sβ ∈ RdLWE
Q|Q
s

(
ψβ(s) · gT ; σ

)

A ciphertext c ∈ RdLWE
t|Q
s (T m′

; E). A ciphertext C ∈ RdGSW
t|Q
s (T m; E′)

Ensure: A ciphertext c′ ∈ RdLWE
t|Q
s (T αm+m′

; E′′).

c1 ← Galoisβ(c) � ∈ RdLWE
t|Q
ψβ(s)

(
T βm′)

c2 ← KeySwitch
ψβ(s)→s

Sβ (c1) � ∈ RdLWE
t|Q
s

(
T βm′)

c3 ← ExtMult(C, c2) � ∈ RdLWE
t|Q
s

(
T m+βm′)

c4 ← Galoisα(c3) � ∈ RdLWE
t|Q
ψα(s)

(
T αm+m′)

c5 ← KeySwitch
ψα(s)→s
Sα (c4) � ∈ RdLWE

t|Q
s

(
T αm+m′)

return c5.

Remark 4. A similar speed-up was obtained in [15] using a different technique,
namely a Mux operation. We are unfortunately unable to use it in our cir-
culant set-up, essentially because encryptions of 0 are not allowed: our IND-
CPA-security guarantee (Lemma 2) only applies to encryptions of Xm for some
m ∈ Zd. Yet our technique is more general, precisely, we do not restrict the
secret input vector to have binary coefficients.

By chaining, this allows us to evaluate inner products 〈x,y〉 over Zd in the
exponent, given GSW encryptions RdGSW

t|Q
s (T xi) and a public vector of coef-

ficients y ∈ Z
�
d.

232 G. Bonnoron et al.

External Inner-product in the Exponent.
Key Material: Key-switch keys Sα from ψα(s) to s, for every α ∈ Z

∗
d.

(Size: O(d2 log2 Q))
Runtime: O(lKd log d)
Signature: ExtExpInner y[Sα]α

:

�⊕

i=1

RdGSW
t|Q
s (T xi ; E′) → RdLWEt|Q

s

(
T 〈x,y〉;

√
2K2d2σ2 + 2Kd2E′2

)
.

(10)

Algorithm 6. ExtExpInner y[Sα]α
([Ci]i∈[l])

Require: A public vector y ∈ Z
�
d

A ψα(s) → s Key-Switching key Sα ∈ RdLWE
Q|Q
s

(
ψα(s) · gT ; σ

)
for each α ∈ Z

∗
d

A ciphertext Ci ∈ RdGSW
t|Q
s (T xi ; E′) for each i ∈ [�]

Ensure: A ciphertext c ∈ RdLWE
t|Q
s

(
T 〈x,y〉;

√
4K�2d2σ2 + 2K�d2E′2

)

c ← (0, T 0) � ∈ RdLWE
t|Q
s (T 0; 0)

for i from 1 to � where yi �= 0 do
α = yi; β = α−1 mod d

c ← ExtExpMultAddα
Sα,Sβ (c,Ci) � ∈ RdLWE

t|Q
s

(
T

∑i
j=1 xjyj , . . .

)

end for
return c

Theorem 9. Algorithm6 is correct and runs in time Θ(lKd log d).

Remark 5. The asymmetry in the error parameter
√

4K2d2σ2 + 2Kd2E′2 with
2 on the left-hand side and on the right is due to the fact that key-switch keys
can be reused in multiple loop iterations. Thus, the error parameter that we state
in Algorithm 6 represents the worst case where we have the same α in every loop
iteration, and α = α−1 mod d. In practice, this will happen very rarely, so we

can expect an error parameter close to
√

Kd2
(
4σ2 + 2E′2).

5 Joining the Building Blocks

In this section, we explain how the building blocks we described in Sect. 4 fit
together to form the homomorphic evaluation and bootstrapping procedure
EvalBootstrap. See Fig. 1 for a schematic overview. We build an algorithm that,
given ciphertexts ci ∈ LWEs(mi;Ein), i ∈ {1, . . . , k} with s ∈ Z

p
Q′ a short vec-

tor (i.e., si ∈ {−1, 0, 1} for all i), a function f : Zt → Zt, and coefficients
γ1, . . . , γk ∈ Zt such that

∑
i |γi| ≤ t, produces c ∈ LWEs(f(m);Eout) where

Large FHE Gates from Tensored Homomorphic Accumulator 233

m =
∑k

i=1 γimi. We do not assume that the error terms in the ci are indepen-
dent of each other, or independent of the key material used by EvalBootstrap: if
an input ci is the result of a previous application of EvalBootstrap, then its error
term is not independent of the error terms in the bootstrapping/evaluation key
material. We use the following parameters for the building blocks:

– n as the security parameter,
– p, q = Θ(n), Q = poly(n), K = �log Q� = O(log n), t = Θ(n) such that

t ≤ √
pq/4,

– λ = Θ(n) such that λ ≤ q as the failure parameter; the decryption and homo-
morphic evaluation procedures should only fail with probability exponentially
small in λ,

– σ as the error parameter used in the key material,
– Q′, Q⊗ = O(Q/

√
n3σ), with t · �Q⊗/t� = 1 mod Q⊗.

For mi ∈ {0, 1}, the algorithm can evaluate arbitrary k-bit gates if t ≥ 2k,
using γi = 2i−1 and an appropriately chosen f . We can compute a threshold
gate if t > k by setting γi = 1 for all i.

Theorem 10. Algorithm7 is correct and runs in time Õ(n2). Moreover, there
exists Q = O(γ′|f |n6.5σ1.5) such that the output of EvalBootstrap can be used
as input for another execution of EvalBootstrap with coefficients γ′

1, . . . , γ
′
k such

that γ′ =
∑

i |γ′
i| (with failure probability exponentially small in n).

6 Implementation

In addition to the formal analysis, we developed a complete implementation of
the scheme. Our objective was to make it efficient and usable. We present below
the key techniques that enable us to evaluate a 6-bit gate in roughly 6.4 s.

6.1 Implementation Details

FFT. The most intensive computations throughout the scheme are the multi-
plications of ring elements. For efficiency this is classically done in the frequency
domain. The cost for a multiplication decreases from Θ(nc) down to Θ(n log n),
where c = log(3) in the case of Karatsuba algorithm for example. Since we are
dealing with circulant ring elements, we may wish to run the FFT operation
in the ring dimension exactly. But our ring dimensions are prime, which is the
worst case for FFT efficiency. We ran some benchmarks and it turned out that
it was much faster to use a bigger dimension (with small prime factors), and
do the polynomial reduction afterwards. Also we do not meet the conditions to
apply NTT (our moduli are not primes), so our choice was to stick with FFT
computations and we use the FFTW library [29] for the forward and backward
transforms.

More challenges arose with FFT computations since our biggest modulus
is Q = 256 and the FFT works with double precision numbers (i.e. 53 bits

234 G. Bonnoron et al.

Algorithm 7. EvalBootstrapf,γ1,...,γk

S (c1, . . . , ck): Homomorphically evaluate a
function and produce a bootstrapped encryption of the result.

Require: ci ∈ LWE
t|Q′
s (mi; Ein), f : Zt → Zt, γi ∈ Zt where γ =

∑ |γi| and γEin ≤ T
for a certain T = Θ(Q/(n2√σ)), and S is the required public key material consisting
of:

– Bootstrapping keys BK
(d)
i ∈ RdLWE

t|Q
s(d)(si mod d; σ) for i = 1, . . . , n and d =

p, q, where |s(d)| = O(n
√

σ)
– Key-switch keys Sd,α from ψα(s) to s for d ∈ {p, q} and α ∈ Z

∗
d

– A key-switch key S from s(pq) to s′ where s(pq) =
(−ψα

(
s(p)

) ⊗
ψβ

(
s(q)

)
, ψα

(
s(p)

) ⊗ 1, 1 ⊗ ψβ

(
s(q)

))
for α = q−1 mod p, and β = p−1 mod q,

and s′ =
∑p−1

i=0 si+1X
i

Ensure: c ∈ LWE
t|Q′
s

(
f
(∑k

i=1 γimi

)
; Eout

)
where Eout = O

(|f |n4.5σ
)
, except with

probability exponentially small in n.

c ← ∑k
i=1 γici � ∈ LWE

t|Q′
s (m; γE

)

c ← ModSwitchQ′→pq(c) � ∈ LWE
t|pq
s (m;

√
r2γ2E2 + (p + 1)2) where

r = �pq/t� / �Q′/t�(
a(p), b(p)

)
← c mod p

(
a(q), b(q)

)
← c mod q

c(p) ← Xb(p) · ExtExpInner−a(p)

[Sp,α]α

([
BK

(p)
i

]
i

)

� ∈ RpLWE
t|Q
s

(
Xb−〈a,s〉 mod p; O

(
n2.5σ

))

c(q) ← Y b(q) · ExtExpInner−a(q)

[Sq,α]α

([
BK

(q)
i

]
i

)

� ∈ RqLWE
t|Q
s

(
Y b−〈a,s〉 mod q; O

(
n2.5σ

))

c(p) ← ModSwitchQ→Q⊗
(
c(p)

)
� ∈ RpLWE

t|Q⊗
s(p)

(
Xb−〈a,s〉 mod p; O

(
n
√

σ
))

c(q) ← ModSwitchQ→Q⊗
(
c(q)

)
� ∈ RqLWE

t|Q⊗
s(q)

(
Y b−〈a,s〉 mod q; O

(
n
√

σ
))

c(pq) ← ExpCRT
(
c(p), c(q)

)
� ∈ RpqLWE

t|Q⊗
s(pq)

(
Zb−〈a,s〉; O

(
n3.5σ

))

c(pq) ← ModSwitchQ⊗→Q′(
c(pq)

)
� ∈ RpqLWE

t|Q′

s(pq)

(
Zb−〈a,s〉; O

(
n3.5σ

))

F ← (x �→ f(�tx/q� mod t)) � F : Zpq → Zt, |F | = |f |pq/t = O(|f |n)

c ← FunExpExtracts
(pq)→s

F,S

(
c(pq)

)
� ∈ LWE

Q′|t
s

(
f(m); O

(|f |n4.5σ
))

return c

mantissa). So we have to split the ring coefficients into two halves of 28 bits
each and apply the FFT transformation on each to prevent rounding errors. We
perform this splitting trick only when needed, i.e. when the ring element is not
small. For example, in ExtMult products of ring element are computed where one
of the operands is the output of a Gadget decomposition. This operand needs
not be split before FFT forward transform because it is very small.

Pre-computations. In order to minimize the evaluation time of the gate, a max-
imum of heavy computations are done in the setup phase. Consequently all keys

Large FHE Gates from Tensored Homomorphic Accumulator 235

materials: bootstrapping keys, key-switching keys, among others, are computed
ahead of time and in FFT domain. Our CirculantRing class allows to transpar-
ently manipulate ring element in FFT or coefficient representation which greatly
contribute to both performance and code readability.

Further Optimization. The implementation has been done in C++11, using its
most convenient and efficient features. For example, all classes are extensively
defined with template parameters (dimension, moduli, basis decomposition...).
This trick allows the computer to know, at compile time, the values of many
variables. The compiler then produces dedicated and highly optimized binaries.

Open-Source. Many efforts have also been made for general availability and
usability. The whole code is documented with Doxygen and many unitary tests
are provided. With under 4,000 lines of code, it remains accessible to whoever
wants to tweak or improve it. The implementation is open-source 6.

At the first start (and only then), heavy computations are performed by the
FFTW components, in order to optimize the FFT for the current computer.

6.2 Parameters

For our first implementation, we targeted a 6-bit input gate. The parameters of
the scheme are as follows:

– For 6 input bits, the plaintext modulus t = 26.
– The ring dimensions p and q are 1439 and 1447, so pq = 2, 077, 892.

Hence the FFT dimensions are dFFT
1 = 3072 = 3 ·210 for Rp,Rq and dFFT

2 =
4, 194, 304 = 222 for Rpq.

– The modulus in ExtExpInner and the LWE are Q,Q′ = 256.
– Errors and secrets are sampled according to Sect. E.2. Secrets are ternary, one

third of the coefficients are set to −1, another to 1 and the rest to 0. Errors
have variance 4.

For ExpCRT we want a small inverse to �Q⊗/t� mod Q⊗. Hence we choose
Q⊗ = (219 − t + 1)2. Finally, for the gadget decomposition we use B = 28 and
K = 7 for ExtExpInner and FunExpExtract and their key material.

We also have extra parameters related an to optimization presented in
AppendixF.1. Namely, we apply an extra KeySwitch over LWE ciphertext to
decrease the length l of the decryption inner-product from l = p = 1439 down
to l = 600. This key-switch happens with modulus Q = 256, error standard
deviation 233, and gadget parameters B = 26, K = 10.

Error Growth and Correctness. To choose the parameters, we simulated the
error growth throughout the gate, using heuristic error propagation assumption,
described in AppendixF.2. This simulation script is provided with the code as
file scripts/parameters.sage. We compared the predicted variance of each
6 https://github.com/gbonnoron/Borogrove.

https://github.com/gbonnoron/Borogrove

236 G. Bonnoron et al.

step to the experimental one, and found them to be corroborated. From the
final variance, and according to a central limit heuristic, we predict a failure
probability of only 2−74 for the above parameter set. In practice we have tested
our scheme hundreds of time on different inputs, and never observed failure.

Security. To estimate the concrete security of our parameter set, we use the
lwe-estimator from Albrecht [30]. All the LWE instances behind our LWE,
RpLWE, RqLWE ciphertexts given as part of the evaluation key offers at least
100 bits of security, according to the estimator as of commit cc5f6e8, which
includes the latest result of [31] for small secrets. Therefore we feel safe to claim
at least 80 bits of security.

6.3 Performances

We run our test on a punchy laptop: Core i7-6500U (2.50 GHz, 4 MB L2 cache),
16 GB RAM with a GNU/Linux Fedora 26 installed on a SSD. The computation
is single-threaded and we got the following timings:

– FFTW wisdom computation (only once per computer): 68 min
– Key pre-processing (once per user key pair): 38 s
– 6-bit input, 1-bit output gate evaluation: 6.4 s

The gate time breaks down into: 0.60 s per ExtExpInner (the two could be run in
parallel), 4.0 s for the KeySwitch in FunExpExtract and only 0.55 s for the output
bit related operations. Consequently, computing another function (1 more output
bit) on the same 6 input bits would add only 0.55 s, and so on. For 6-to-6 bit
gate it yields just above 10 s. On the memory front, we need 9.2 GB of RAM to
store all key materials for the computation.

Optimisations. This first implementation includes only those on ExtExpInner
described in Sect. F.1. Over the total gate evaluation time, 60% (3.8 s) are spent
on FFT forward and backward transforms. The 3.8 s break down into 0.9 sec
for more than 350k FFT in dimension dFFT

1 (Rp and Rq), and 2.9 s for only
around 250 FFT in dimension dFFT

2 for Rpq. We estimate that the optimisations
of AppendixF.4 will bring these 2.9 s down to 1 or 1.5 s at most. This rough
estimate is based on partial implementation, soon to be confirmed after complete
integration. The overall gate time should drop below 6 s and the cost of additional
output bits become negligible.

A Proofs for Section 2 (Preliminaries)

Lemma 1. Let A be a δ-subgaussian random variable over Rpq. Then
Tr∗

Rpq/Rp
(A) is δ-subgaussian as well.

Proof. Let b ∈ Rp. Then, Tr∗
Rp/Z

(
Tr∗

Rpq/Rp
(Ab)

)
/‖b‖ = Tr∗(Ab)/‖b‖ which is

δ-subgaussian by assumption.

Large FHE Gates from Tensored Homomorphic Accumulator 237

B Proofs for Section 3 (Encryption Schemes)

Lemma 2. If the decisional R̃- LWE problem is hard, then the Circulant-LWE
scheme is CPA-secure for messages of the form m = Xk.

Proof. If R̃- LWE is hard, then by Lemma3, the Circulant-LWE distribution
is indistinguishable from the uniform distribution over S2

d,Q. To prove CPA-
security, it suffices to show that, for any k ∈ Z/dZ and u = �Q/t�, we have
Sd,Q+uXk = Sd,Q+u. This then shows that a Circulant-LWE encryption of m =
Xk is indistinguishable from a uniformly random sample from Sd,Q × (Sd,Q +u).
Indeed, Sd,Q + u = {∑d−1

i=0 aiX
i | ∑ ai = u mod Q} = Sd,Q + uXk.

Lemma 3. If the decisional R̃- LWE problem is hard, then the Circulant-GSW
scheme is CPA-secure.

Proof. Let C be a Circulant-GSW ciphertext. Each row of C is of the form
(a, b) + (0, uBim) or (a, b) + (uBim, 0) where m = Xk and (a, b) is a Circulant-
LWE sample, and thus indistinguishable from a random element of S2

d,Q. By the
same argument as in the previous proof, each row of C is indistinguishable from a
uniformly random samble from either (Sd,Q +uBi)×Sd,Q, or Sd,Q ×(Sd,Q +uBi)
where i only depends on the row number, not on m.

C Proofs for Section 4 (Homomorphic Operations)

Lemma 4. Algorithm1 is correct. Furthermore, if e = err(c) and ei = err(Si),
then the error term of the output ciphertext is e +

∑n
i=1 d

T
i ei, where each di is

a vector whose entries have operator norm at most d.

Proof. By definition of g−T , it is easy to see that the error term is e −∑n
i=1 g

−T (ai)ei and each component of g−T (ai) is in Rd/2Rd. Thus, the second
part of the lemma follows. The first part holds because for every i, g−T (ai)ei is
subgaussian with parameter at most

√
Kdσ. If the error terms are independent,

it follows that the error parameter is as stated in the algorithm.

Lemma 5. Algorithm2 is correct. Furthermore, for e = err(c) and e = err(C),
the error term of the output is Xk · e + dTe for some k and a random vector
d ∈ R2K

d independent of e with ‖di‖ ≤ d for every i.

Proof. Write u = �Q/t�, so c = (a, as + e + �Q/t� Tm) and C = (a, 〈a, s〉 + e) +
uTm′

G. Let d = G−1(u−1 · c). We have:

dT · C = dT · (a,as + e) + uTm′
dTG

= (dTa,dTas + dTe) + uu−1Tm′
(

a, as + e +
⌊

Q

t

⌉

Tm

)

=
(

a′, a′s + e′ +
⌊

Q

t

⌉

Tm+m′
)

238 G. Bonnoron et al.

where a′ = dTa+aTm′
and e′ = dTe+eTm′

. Each component of e is independent
and subgaussian with parameter E′, and d is a vector in R2K

d , where each entry
has binary coefficients. Thus, for every i, we have |di| ≤ d. Using the following
Lemma 2, the error parameter follows.

Lemma 2. Let e be a γ-subgaussian variable over Rd and e = (e1, . . . , en) be
a vector of independent δ-subgaussian random variables over Rd. Let d be a
random variable over Rn

d such that |di| ≤ k for all i. If d and e are independent
and e and e are independent, then e + 〈d, e〉 is

√
γ2 + k2nδ2-subgaussian.

We first consider the case where e = 0 and d is a fixed vector instead of
a random variable. For every b ∈ Rd and every i, we have Tr(dieib)/‖b‖ ≤
kTr(ei(dib))/‖dib‖ which is (kδ)-subgaussian. From the independence of the ei,
it follows that Tr(〈d, e〉b)/‖b‖ is (

√
nkδ)-subgaussian.

If d and e are random variables independent of e, it holds for every b ∈ Rd

that

E[exp(tTr(eb + 〈d, e〉b)/‖b‖)]

=
∑

e∗,d∗
P [e = e∗,d = d∗] · E[exp(tTr(eb + 〈d, e〉b)/‖b‖) | e = e∗,d = d∗]

=
∑

e∗,d∗
P [e = e∗,d = d∗] · exp(tTr(e∗b)/‖b‖) · E[exp(tTr(〈d∗, e〉b)/‖b‖)]

≤
∑

e∗,d∗
P [e = e∗,d = d∗] · exp(tTr(e∗b)/‖b‖) · exp

(
t2nk2δ2/2

)

= E[t exp(Tr(eb)/‖b‖)] · exp
(
t2nk2δ2/2

)

≤ exp
(
t2
(
γ2 + nk2δ2

)
/2
)

which concludes the proof.

Lemma 6. Algorithm3 is correct and runs in time O(pq log(pq) log Q′).

Proof. We can compute Tr∗
Rpq/Rp

(x) by examining p coefficients of x, and
Tr∗

Rp/Z(x) is simply the constant term of x. Thus, the runtime is dominated
by the key-switch, which runs in time O(pq log(pq)K). After the multiplication
and key-switch, it holds that

c ∈ RpqLWE
t|Q′

s(pq)

(
∑

i∈Zpq

Zm−i mod pq; |F |
√

E2 + 3σ2p2q2K

)

since |f | ≤ |F |. Using Lemma 1, the linearity of the trace function, and the fact
that s′ ∈ Rp, we conclude that after the trace,

(a, b) ∈ RpLWE
t|Q′

s′

(

Tr∗
Rpq/Rp

(
∑

i∈Zpq

F (i)Zm−i mod pq

)

; |F |
√

E2 + 3σ2p2q2K

)

Large FHE Gates from Tensored Homomorphic Accumulator 239

It holds that

Tr∗(b) = Tr∗(a · s′) + �Q′/t� Tr∗
Rpq/Z

(
∑

i∈Zpq

F (i)Zm−i mod pq

)

+ Tr∗(e)

and by Lemma 1, Tr∗(∑
i∈Zpq

F (i)Zm−i mod pq
)

= F (j) if m = j. Since

Tr∗(as) = a0s0 +
∑p−1

i=1 ap−isi = 〈a, s〉 and Tr∗ does not increase the error
parameter, the correctness of our algorithm follows.

Lemma 7. Let A and B be independent subgaussian random variables on Rp

and Rq, respectively, with parameters γ and δ. Then, for every λ ∈ R, A ⊗ B is
subgaussian with parameter

√
2λγδ except with probability 2min(p, q) exp(−λ).7

Proof. We want to show that for every y ∈ Rpq \ {0}, Tr∗((A ⊗ B)y)/‖y‖ is
subgaussian (except with a small probability). Let y ∈ Rpq \ {0}. We can write
y =

∑q−1
i=0 yi ⊗ Y i. It holds that ‖y‖ =

√∑
i ‖yi‖2. Thus,

Tr∗((A ⊗ B)y)
‖y‖ =

∑

i

Tr∗(Ayi ⊗ BY i)
‖y‖ =

∑

i

Tr∗(Ayi) · Tr∗(BY i)
‖y‖

Let Ei be the event that |Tr∗(Ayi)| ≥ √
2λγ‖yi‖. Applying the subgaussian tail

estimate, we conclude that for each i, p(Ei) ≤ 2 exp(−λ). By the union bound, it
follows that, for E =

⋃
i Ei, p(E) ≤ 2q exp(−λ). We now proceed similarly to the

proof of Lemma 2. For every fixed value a ∈ Rp such that Tr∗(ayi) <
√

2λγ‖yi‖
for all i, we have

∑

i

Tr∗(ayi) · Tr∗(BY i)
‖y‖ =

Tr∗(∑
i BTr∗(ayi)Y i

)

‖y‖

which is subgaussian with parameter
∥
∥
∑

i Tr∗(ayi)Y i
∥
∥ δ

‖y‖ =

√∑
i Tr∗(ayi)2δ

√∑
j ‖yj‖2

<

√
2λγδ

√∑
i ‖yi‖2

√∑
j ‖yj‖2

=
√

2λγδ

We can then use the independence of A and B to conclude that, conditioned on
E, Tr∗((A ⊗ B)y)/‖y‖ is (

√
2λγδ)-subgaussian, as claimed.

Using a similar argument, this time writing y =
∑p−1

i=0 Xi ⊗ yi, it also fol-
lows that Tr∗((A ⊗ B)y)/‖y‖ is (

√
2λγδ)-subgaussian except with probability

2p exp(−λ). This proves our claim.

Lemma 8. Algorithm4 is correct and runs in time Θ(pq).

7 More formally, for some event E with p(E) ≤ 2 min(p, q) exp(−λ), when conditioning
on E, A ⊗ B is subgaussian with parameter

√
2λγδ.

240 G. Bonnoron et al.

Proof. Let m′ = αqmp+βpmq mod pq. It holds that m′ mod p = mp and m′ mod
q = mq. Thus, by the Chinese Remainder Theorem, m′ = m. Let s′

p = ψα(sp)
and s′

q = ψβ(sq). Let us write b′
p = uXαmp + ep and b′

q = Q⊗Y βmq/t + eq. We
have

tbp ⊗ bq = tapsp ⊗ bq + tb′
p ⊗ aqsq + tb′

p ⊗ b′
q

= −taps
′
p ⊗ aqs

′
q + taps

′
p ⊗ b′

q + tbp ⊗ aqs
′
q + tb′

p ⊗ b′
q

and tb′
p ⊗ b′

q = �Q⊗/t� Xαmp ⊗ Y βmq + Xαmp ⊗ eq + ep ⊗ Y βmq + tep ⊗ eq. Since
Xαmp ⊗ Y αmq = Zm, the error term is

epq = Xαmp ⊗ eq + ep ⊗ Y βmq + tep ⊗ eq.

Since ep and eq are independent, the sum of the first two terms is subgaus-

sian with parameter
√

E2
p + E2

q . The third term is subgaussian with parameter

t
√

2λEpEq, except with probability 2min(p, q) exp(−λ) by Lemma 7. In total,

epq is subgaussian with parameter
√

E2
p + E2

q + t
√

2λEpEq except with proba-

bility 2min(p, q) exp(−λ).
Thus, with a = (ap ⊗aq, ap ⊗bq, bp ⊗aq) and s = (−ψα(sp)⊗ψβ(sq), ψα(sp)⊗

1, 1 ⊗ ψβ(sq)) = (−s′
p ⊗ s′

q, s
′
p ⊗ 1, 1 ⊗ s′

q), an easy computation shows that
tbp ⊗ bq − t〈a, s〉 = tb′

p ⊗ b′
q = �Q⊗/t� Zm + epq. The algorithm is correct.

The running time is dominated by the cost of tensoring the ring elements,
which takes time Θ(pq).

Theorem 9. Algorithm6 is correct and runs in time Θ(lKd log d).

Proof. By induction, we prove that the error term of c in the i-th iteration
of the for-loop is of the form e1 + e2 where e1 is (2id

√
Kσ)-subgaussian, and

e2 =
∑i

j=1

〈
d(j), ψyj

(e(j))
〉

with the following properties: e(j) is the error vector

of Cj , and d(j) ∈ R2K
d is a random vector with |d(j)

n | ≤ d that is independent of
e(k) for all k ≥ j.

Clearly, our claim holds prior to the loop (with i = 0) since c has no error
term at this point. Suppose now that the claim holds for i − 1. Let α = yi and
β = α−1 mod d. During the ExtExpMultAdd operation, we first apply a Galois
operation, which results in an error term of ψβ(e1)+ψβ(e2). This is followed by a
key-switch, which, by Lemma 4, changes the error to ψβ(e1)+ψβ(e2)+eks,1 where
eks,1 is independent of e(j) for all j, and subgaussian with parameter

√
Kdσ.

Next comes an ExtMult operation which changes it to Xkψβ(e1) + Xkψβ(e2) +
Xkeks,1 +

〈
d, e(i)

〉
for some k, where e is the error in Ci, and d ∈ R2K

d is a
random vector independent of e(j) for j ≥ i which satisfies |dn| ≤ d for every
n, by Lemma 5. After the second Galois and key-switch, the error term becomes
Xαke1 + Xαke2 + Xαkψα(eks,1) + ψα

(〈
d, e(i)

〉)
+ ψα(eks,2) where eks,2 is again

subgaussian with parameter
√

Kdσ. We can reorder the error terms and write

Xαke1 + Xαkψα(eks,1) + ψα(eks,2)
︸ ︷︷ ︸

e′
1

+Xαke2 + ψα(〈d, e(i)〉)
︸ ︷︷ ︸

e′
2

Large FHE Gates from Tensored Homomorphic Accumulator 241

By the induction hypothesis and since eks,1 and eks,2 are subgaussian with
parameter d

√
Kσ, it follows that e′

1 is (2id
√

Kσ)-subgaussian (because we do
not assume that e1, eks,1 and eks,2 are independent). Finally, it holds that

Xαke2 =
i−1∑

j=1

〈
Xαkd(j), ψyj

(
e(j)

)〉

and thus, setting d′(j) = Xαkd(j) for j < i and d′(i) = ψyi
(d), we have

e′
2 =

∑i
j=1

〈
d′(j), ψyj

(e(j))
〉

which completes the induction step. Finally, by
repeated applications of Lemma 2, we conclude that the error term in the out-
put is subgaussian with parameter

√
4K2d2σ2 + 2Kd2E′2.

It is easy to see that the algorithm has the claimed runtime by adding up
the runtimes of the algorithms used in ExtExpMultAdd.

D Proofs for Section 5 (Joining the Building Blocks)

Theorem 10. Algorithm7 is correct and runs in time Õ(n2). Moreover, there
exists Q = O(γ′|f |n6.5σ1.5) such that the output of EvalBootstrap can be used
as input for another execution of EvalBootstrap with coefficients γ′

1, . . . , γ
′
k such

that γ′ =
∑

i |γ′
i| (with failure probability exponentially small in n).

Proof. It is straighforward to verify the error parameters for each step in the
comments of the algorithm. There are two steps where failures might occur: the
ExpCRT step, and the FunExpExtract step. The failure probability for ExpCRT
is 2 exp(−λ). FunExpExtract will not fail to extract the value of F , but if the
error term in c is too large, the output might not be an encryption of f(m).
The subgaussian tail estimate guarantees that the failure probability is at most
2 exp(−λ) if

√
r2γ2E2

in + p + 1 ≤ pq/(2t
√

2λ) where r = �pq/t� / �Q′/t�. Since
t ≤ √

pq/4 and λ ≤ q, this condition is satisfied if
√

r2γ2E2
in + p + 1 ≤ √

2p, or
equivalently,

γEin ≤
√

p − 1
r2

︸ ︷︷ ︸
T

= Θ

(√
Q′2

pq2

)

= Θ

(
Q

n2
√

σ

)

The runtime is dominated by ExtExpInner and FunExpExtract, which run
in time O(nKd log d) and O(Kpq log(pq)), respectively. Given our asymptotic
parameter choices, both of those are Õ(n2).

If we want to use outputs of EvalBootstrap as inputs for another execution
of EvalBootstrap, where the absolute values of the coefficients sum up to γ′, we
require that γ′Eout ≤ T . From the asymptotic formulas for Eout and T , it is
easy to see that this inequality can be satisfied by a Q in O(|f |γ′n6.5σ1.5).

242 G. Bonnoron et al.

E More Details on Circulant LWE

E.1 Circulant LWE and Reduction to Ring-LWE

In all this subsection, we assume d to be prime. It is well known that the naive
decisional version of Ring-LWE is insecure over circulant rings, simply by exploit-
ing the CRT decomposition Rd/QRd R̃d/QR̃d × Z/QZ when Q is coprime
to d, and mounting an attack on the Z/QZ part (projecting to this part corre-
sponds to evaluating the polynomial at 1, and therefore maintain smallness of
the error). However, this does not mean that such rings are inherently insecure:
The NTRU cryptosystems [17,23] use circulant rings, choosing the secret key
and errors that evaluate to a fixed known value (say 0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant
rings that would be as secure as the cyclotomic Ring-LWE, simply by lifting all
elements x̃ ∈ R̃d/QR̃d to x (x̃, 0), yet this reverse CRT operation may not
keep small elements small.

Instead, one can construct such a lift without working modulo Q, in order
to preserve smallness of coefficients (up to some reasonable distortion). We also
note that such a lift should actually start from the co-different ideal R̃∨

d , so as
to match the Ring-LWE instances admitting worst-case hardness proofs [18], yet
a reduction (with some loss on the error parameter) to Ring-LWE without the
co-different was given in [33].

Because 1 − X and Φd(X) are not coprime over Z[X] (their gcd is d, not 1),
we do not have a CRT decomposition of Rd as R̃d × Z. Yet, those polynomials
are coprime over Q[X] which allows to write

Kd = K̃d × Q

where Kd = Q[X]/(Xd − 1) and K̃d = Q[X]/Φd(X).8 We write L the canonical
inclusion map L : K̃d → Kd, which is explicitly given by

L :
d−1∑

i=0

aiX
i �→

d−1∑

i=0

aiX
i − 1

d
(
d−1∑

i=0

ai)(
d−1∑

i=0

Xi).

Note that the above formula can be extended to a Q-linear map Kd → Kd,
viewing K̃d as a subspace of Kd according to the above isomorphism Kd =
K̃d × Q. This extension of L is the projection orthogonal to the all-1 vector in
coefficient representation. Unfortunately the image L(R̃d) is not included in Rd:
the projection does not maintain integrality of coefficients. Yet, one notes that
a small ideal I ⊂ R̃d does have an integer lift: namely, the ideal Ĩ = (1 − X)Rd

satisfies L(Ĩ) ⊂ Rd. Moreover, for a ∈ Ĩ, it holds that
∑

ai = 0, in particular L
preserves sizes of elements of Ĩ.

Also consider the lift L taken modulo Q (assuming Q is coprime to d), simply
replacing 1

d ∈ Q by the inverse of d in Z/QZ, denoted by LQ. Consider a Ring-
LWE sample as defined in [33]: (ã, b̃ = ãs̃ + ẽ) ∈ (R̃/QR̃)2 for small s̃, ẽ ∈ R.

8 While K̃d is a field, Kd is only a ring, but we keep this notation for coherence.

Large FHE Gates from Tensored Homomorphic Accumulator 243

We lift this sample to R/QR:

a = LQ(ã), b = LQ((1 − X)b̃). (11)

We define s = L((1 − X)s̃) and e = L((1 − X)s̃), and it holds that s =
LQ((1 − X)s̃) mod Q and e = LQ((1 − X)ẽ) mod Q since s and e are integral.
Therefore,

b = LQ((1 − X)ã · s̃ + (1 − X)ẽ)
= LQ(ã) · LQ((1 − X)s̃) + LQ((1 − X)ẽ)
= LQ(ã)s + e mod Q

= as + e mod Q

We also note that s, e are still small since the operator norm of 1 − X is less
than 2: these Circulant-LWE samples are useful.

It remains to explain what this transformation does to uniform samples
(ã, b̃) ∈ (R̃/QR̃)2. Assume that Q is coprime to d, it then holds that Q and
(1 − X) are coprimes over the integral ring R̃d. Therefore, the multiplication by
1 − X over (R̃/QR̃) is a bijection, so the sample (ã, (1 − X)b̃) ∈ (R̃/QR̃)2 is
also uniform in (R̃/QR̃)2. Finally, the lift LQ is injective, so the final sample
(a, b) ∈ (R/QR)2 is uniform over (LQ(R̃/QR̃))2. One easily characterizes the
image LQ(R̃/QR̃) of LQ as the set Sd,Q = {∑d−1

i=0 aiX
i | ∑ ai = 0 mod Q} of

elements of R/QR whose coefficients sums to 0 modulo Q.

Lemma 3 (Hardness of Circulant-LWE). Assume that d is prime, and
Q is coprime to d. If it is hard to distinguish samples (ãi, b̃i = ãis̃ + ẽi) ∈
(R̃/QR̃)2 from uniform where ẽi are independent random variables drawn from
a distribution ψ, then the samples (ai = LQ(ãi), bi = LQ((1 − X)b̃i) ∈ S2

d,Q ⊂
(R/QR)2 are also hard to distinguish from uniform samples in S2

d,Q.

E.2 Simpler Error Distribution in CLWE for Practice

In practice, most FHE schemes do not follow precisely the Ring-LWE prob-
lem definition admitting reduction to worst-case problem [18,34]. For example,
HElib [7] uses Ring-LWE with spherical errors in the coefficient embedding, and
very sparse ternary secrets, and ignoring the co-different ideal R∨. The TFHE
scheme [15] also relies on Ring-LWE with ternary secrets, which is not know to
reduce to the regular Ring-LWE. Cutting such corners appears quite crucial to
error growth management and therefore efficiency. We will follow this approach,
and define adjust the distributions as follows.

– we proceed to sample secrets and error isotropically in Sd,Q, while the above
reduction leads to errors with a distortion factor (1−X). This distortion seems
to be an artefact of the proof, as it breaks symmetries: one could choose a
different way of breaking those symmetries by replacing 1 − X by 1 − Xe for
any e coprime to d. Respecting the symmetries seems a better idea in the

244 G. Bonnoron et al.

light of recent analysis [32,36].
This variant could also be proved secure (with a loss of a constant factor
about

√
2 on the size of the error), simply by adding more noise to make it

spherical again, using the convolution lemma of [35], but this would drag us
away from the topic of this paper.

– we choose to use ternary secrets s, which, as in previous schemes leads to
serious performance improvements due to smaller error growth. It has recently
been showed that such choices make lattice attacks somewhat faster [31],
especially when s is very sparse: we will account for this refined analysis
when measuring the concrete security of our proposed parameters.

Sampling of a. We sample a uniform in Rd/(QRd) under the constraint a(1)
mod Q = 0 by choosing all the coefficients ai at random for i ≥ 1, and setting
a0 = −∑

i>0 ai mod Q.

Sampling of s. When d is prime, we sample a a ternary s of density δ = 2/3 by
choosing exactly �δd/2� coefficients set to 1 and �δd/2� coefficients set to −1.
This implies that s(1) = 0, and ‖s‖2 = 2�δd/2�. Indeed, we find it preferable to
fix its length to avoid sampling sparse keys that would be subtentially weaker.

Sampling of e. We wish to sample errors e with variance σ in a way that ensures
e(1) = 0. We set:

e =
σ2d/2∑

i=0

T ai − T bi ,

where the ai’s and bi’s’ are independant uniform exponents modulo d. One note
that this distribution is invariant by permutation over {1, T, . . . , T d−1}: we have
preserved the symmetries of the ring. Note that this procedure would get rather
slow for large σ, yet we won’t exceed σ ≤ 8 in our parameter choices.

Remark 6. The above procedure would not be adapted for composite degree d,
as more care is required to construct a lift as done in Sect. E.1. Yet, while we
will make use of circulant ring Rd with composite degree d = pq, we will never
directly construct ciphertexts over that ring. Indeed, the ciphertext in Rd will
be publicly constructed by tensoring two ciphertexts from Rp and Rq, and are
therefore no easier to decrypt than the original ciphertexts over Rp and Rq.

F Optimizations

In this section, we present some optimization of the scheme for practice. Our
implementation does include the optimizations from Sects. F.1, F.2 and F.3. We
left out the optimization from Sect. F.4, which requires substential modifications
to our code base.

Large FHE Gates from Tensored Homomorphic Accumulator 245

F.1 Accelerating ExtExpInner

Factoring Galois-KeySwitch Sequences. We note that it is possible to factor some
operations when chaining ExtExpMultAddα and ExtExpMultAddα′

, by applying
Galoisαβ′

rather than Galoisα followed by Galoisβ (together with the appropriate
Key Switches), cf. Fig. 2.

Furthermore, if y ∈ Z
�
d contains repeated values, it is possible to re-index

the inner product to make equal values contiguous, and skip useless Galois1

operations. Those tricks also decrease the final error E by constant factors.
Pushing this trick to its limits, if is large enough, one could re-index the

inner product so that the αβ′ all belong to a small9 subset Z
∗
d, allowing to

decrease the size of the key material. In combination with the following opti-
mization, this should lead to reduce the overall key-size by a significant factor.

Fig. 2. Optimized ExtExpInner (external inner product in exponent) overview

Decreasing LWE Dimension. In our theoretical scheme, the homomorphic inner
product in exponent operation is done over vectors of length = p + 1 where p
is the dimension of the secret in the LWE scheme.

In practice, we remark that this dimension is quite larger than needed for
security, given the amount of noise and the modulus pq of those ciphertexts.
We therefore proceed with an extra LWE key-switch just the combination of
the LWE ciphertexts. In practice it allows to decrease the dimension by a factor
between 2 and 3, which accelerates the ExtExpInner operations by the same fac-
tor. As a small added bonus, it also slightly decreases the error in the ciphertexts
outputted by this function.
9 Of size roughly d/� + 2 assuming the public vector y ∈ Z

�
d is uniformly random.

246 G. Bonnoron et al.

F.2 Heuristic Error Propagation

Our theoretical analysis of the scheme used sub-gaussian analysis [21] to provide
bounds on error propagation that are already significantly better than worst-
case bounds. Yet those bounds are asymptotic, without explicit constants, and
for some operations may not be perfectly tight. As in previous work [12,15],
when it comes to choose practical parameters, we rely on a tighter but heuristic
analysis of error propagation, essentially treating all random variables as inde-
pendent gaussians. More precisely, considering that the critical random variable
for correctness is obtained as the sum of many random variables, we only com-
pute its variance as the sum of the variance of its terms, and treat this final result
as Gaussian in accordance with the central limit theorem (which is formally not
applicable due to potential dependencies).

Linear Operations. For the linear operations Add, Mult and Galois operations,
we use the same Eqs. (3), (8) as in our sub-gaussian analysis, since it is tight in
this case, but apply it to the standard deviation of each variable rather than the
sub-gaussianity parameter.

Modulus Switching. For our analysis, we needed to randomize the rounding
step to ensure sub-gaussianity without resorting to the randomness of the input
ciphertext. Instead, in practice we use deterministic rounding and account for the
randomness of the input ciphertext. Treating the rounding errors as independent
uniform random variables in the interval [−1/2, 1/2] allows to heuristically improve
the error bound (4) down to

ModSwitch : RdLWEt|Q
s (m; E) → RdLWEt|Q′

s

(

m;

√
Q′2

Q2
E2 +

‖s‖2
12

)

(12)

Key Switching, External Multiplication and Inner Product in the Exponent. We
first note that, according to Remark 2, the bounds given by (5) and (6) must
be amended to account for the use of a Gadget matrix in base B rather than
in base 2. Additionally, we note that this bound accounts for the worst output
of G−1. Instead, we treat the output of G−1 as a uniform random vectors with
coordinates uniform in the integer interval IB = {− ⌊

B−1
2

⌋
, . . . ,

⌈
B−1
2

⌉}. Each
such coordinate has variance VB = 1

B

∑
i∈IB

i2 ≈ B2/12.
For our heuristic analysis, we therefore amend (5) to

KeySwitch : RdLWEt|Q
s (m; E) → RdLWE

t|Q
s′

(
m;

√
E2 + σ2dnKVB

)
. (13)

Similarly, (6) is heuristically changed to

ExtMult : RdLWEt|Q
s (Tm; E) × RdGSW

t|Q
s (Tm′

; E′)

→ RdLWEt|Q
s

(
Tm+m′

;
√

E2 + E′2dKVB

)
. (14)

Large FHE Gates from Tensored Homomorphic Accumulator 247

Note that assuming independence decreased the factor d2 to a factor d. Sim-
ilarly, a factor 42 can be decreased to 2, ignoring the potential dependences
discussed in Remark 5. The trick described in Sect. F.1 further decreases this 2
factor to .

In conclusion, the accumulated error in the error propagation of the whole
ExtExpInner operation (10) is now heuristically given by:

ExtExpInner :
�⊕

i=1

RdGSW
t|Q
s (T xi ; E′) → RdLWEt|Q

s

(
T 〈x,y〉;

√
dK�V (σ2 + E′2)

)
.

(15)

Tensoring. Looking only at the variance of individual coefficient, one may save
the factor

√
2λ in the error propagation of ExpCRT, namely, (9) becomes:

ExpCRT : RpLWEt|Q′
sp

(Xmp ; Ep) × RqLWEt|Q′
sq

(Y mq ; Eq)

→ RpqLWEt|Q′
s

(
Zm;

√
E2

p + E2
q + t2E2

pE2
q

)
. (16)

We could successfully confirm all these heuristic equations by measuring the
actual errors in our implementation.

F.3 Amortising FunExpExtract

The costly steps of the FunExpExtract algorithm consist in computing

c(pq) �→ Tr∗
Rpq/Rp

(f · G−T (c(pq)) · S)

where f represent the function F to extract, S is a Key-Switching Key (See Fig. 1
and Algorithm 7). We note here that the most expensive part of the computation
G−T (c(pq)) · S can be re-used for up to several different f ’s.

This amortization allows to extend our technique so that not only the input
of the function is large, but also its output.

F.4 Accelerating FunExpExtract

As mentioned above, the practical cost of the FunExpExtract step as described
in Sect. 4 is prohibitive. The costly steps consist in the computation of

Tr∗
Rpq/Rp

(f · G−T (x ⊗ y) · S)

where f represent the function F to extract, x, y are the ciphertexts outputted by
ExtExpInner, and S is a Key-Switching Key. Naively, even using precomputations
of f and S, this operation would require 4K + 1 FFT’s in dimension pq: one
forward FFT for each component of G−1(c), and one FFT backward.10 We here
show how to get completly rid of those large FFT’s, requiring only small FFT’s
(dimension p and q) and a few additions of vectors of dimension pq.
10 This is assuming the FFT can handle numbers of bit-size Θ(log(n)). In practice more

FFT at double precision will be needed to avoid numerical errors.

248 G. Bonnoron et al.

FFT of Pure Tensors. To tackle these costly FFT operations, one should first
note that FFT and ⊗ can be commuted. Indeed, one may first rewrite x ⊗ y =
(x⊗1)·(1⊗y), and note that the FFT coefficients of x⊗1 ∈ Rpq are easily derived
from the FFT coefficients of x ∈ Rp by simply repeating the coefficients q times
(and similarly for 1⊗ y). This remark allows us to decrease the naive cost of the
FFT operation over pure tensors from Θ(pq log pq) to Θ(pq + p log p + q log q).

The CRT-Gadget. To provide an asymptotic improvement for gadget inversion
of pure tensors, we need to rely on a different Gadget matrix construction, based
on the Chinese-Remainder Theorem. We describe it over the integers Z, yet it
naturally extends coefficient-wise to any ring Rd.

Consider a modulus Q such that we can write Q =
∏K

i=1 qi where the qi are
small coprime integers. Consider the CRT isomorphism μ : r ∈ ZQ �→ (r mod
q1, . . . , r mod qK), and let g ∈ Z

K
Q be the vector of the Bezout coefficients, i.e.,

the coefficients such that μ−1(x) = xTg mod Q. This gadget also permits to
efficiently find small pre-images. Indeed, define: g−T (x) = (x1, . . . xK) ∈ Z

K

where xi is the representative of x mod qi in the range (−qi/2, qi/2].

Gadget Inversion of Pure Tensors (in FFT Format). This new gadget has the
advantage that gadget inversion is somewhat homomorphic. Let us write � for
the coefficient-wise product of vectors. While in general we have g−T (xy) �=
g−T (x) � g−T (y), it nevertheless holds that

(g−T (x) � g−T (y))g = xy mod Q.

It also hold that g−T (x)�g−T (y) is rather small, namely, its i-th coefficient has
absolute value less than q2i /4. This will allow us, at the cost of increased error
propagation, to swap the gadget-inversion and the tensoring.

More precisely, we define

g−T
⊗ (x, y) = (g−T (x)i ⊗ g−T (y)i)i=1...k,

and note that it is a proper gadget inversion: g−T
⊗ (x, y)g = x ⊗ y mod Q, and

the coefficients of g−T
⊗ (x, y)i are less than q2i /4.

For inputs (x, y) ∈ Rp × Rq One may compute g−T
⊗ (x, y) in FFT format in

time Θ(Kpq+Kp log p+Kq log q), that is in time linear in the size of the output.
Indeed, one may compute each (g−T (x)i,g−T (y)i), convert them to FFT format,
and then only perform the tensoring step using the remark above. In comparison,
the naive algorithm would have cost Θ(Kpq log pq): asymptotically, our new
trick improves the complexity by a logarithmic factor Θ(log pq). The impact in
practice may quite substantial also considering the large hidden constants in
FFT operations.

Tracing Down in the FFT Domain. At last, we note that the trace operation
Tr∗

Rpq/Rp
can also be performed directly in the FFT domain in time Θ(pq) by

summing the appropriate FFT coefficients. The allows to replace the final large
backward FFT (in dimension pq) by a cheap backward FFT in dimension p. The
cost of this step decreases form Θ(pq log pq) down to Θ(pq + p log p).

Large FHE Gates from Tensored Homomorphic Accumulator 249

References

1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178.
ACM Press (2009)

2. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

3. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 25

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, Palm Springs, CA, USA,
22–25 October 2011, pp. 97–106. IEEE Computer Society Press (2011)

5. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, Cambridge,
MA, USA, 8–10 January 2012, pp. 309–325. ACM (2012)

7. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 25

8. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

9. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: 18th ACM STOC, Berkeley, CA, USA,
28–30 May 1986, pp. 1–5. ACM Press (1986)

10. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014, Princeton, NJ, USA, 12–14 January 2014, pp. 1–12. ACM
(2014)

11. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

12. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 24

13. Biasse, J.-F., Ruiz, L.: FHEW with efficient multibit bootstrapping. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 119–135.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 7

14. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
528–558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 19

https://crypto.stanford.edu/craig/
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-662-49896-5_19

250 G. Bonnoron et al.

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 1

16. Riordan, J., Shannon, C.E.: The number of two-terminal series-parallel networks.
Stud. Appl. Math. 21(1–4), 83–93 (1942)

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. Cryptology ePrint Archive, Report
2017/104 (2017). http://eprint.iacr.org/2017/104

20. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Improving TFHE: faster
packed homomorphic operations and efficient circuit bootstrapping. Cryptology
ePrint Archive, Report 2017/430 (2017). http://eprint.iacr.org/2017/430

21. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
In: Eldar, Y., Kutyniok, G. (eds.) Compressed Sensing, Theory and Applications,
pp. 210–268. Cambridge University Press, Cambridge (2012)

22. Rivasplata, O.: Subgaussian Random Variables: An Expository Note (2012).
https://sites.ualberta.ca/∼omarr/publications/subgaussians.pdf

23. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

24. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, Baltimore, MA, USA,
22–24 May 2005, pp. 84–93. ACM Press (2005)

26. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

27. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homo-
morphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 19–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32928-9 2

28. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/240 (2012). http://
eprint.iacr.org/2012/240

29. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and
Platform Adaptation”

30. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/
2015/046

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-13190-5_1
http://eprint.iacr.org/2017/104
http://eprint.iacr.org/2017/430
https://sites.ualberta.ca/~omarr/publications/subgaussians.pdf
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-32928-9_2
https://doi.org/10.1007/978-3-642-32928-9_2
http://eprint.iacr.org/2012/240
http://eprint.iacr.org/2012/240
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046

Large FHE Gates from Tensored Homomorphic Accumulator 251

31. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part II. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 4

32. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-LWE
revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 6

33. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M., Buchmann,
J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 3

34. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

35. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

36. Peikert, C.: How (not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9 22

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-642-30057-8_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22

	Large FHE Gates from Tensored Homomorphic Accumulator
	1 Introduction
	2 Preliminaries
	2.1 Subgaussian Random Variables
	2.2 Rings
	2.3 Gadgets
	2.4 Circulant LWE and Reduction to Ring-LWE

	3 Encryption Schemes
	3.1 LWE Encryption
	3.2 CLWE and CGSW Encryption Schemes

	4 Homomorphic Operations
	4.1 Known Building Blocks
	4.2 New Building Blocks
	4.3 Evaluating Inner Products in Exponents

	5 Joining the Building Blocks
	6 Implementation
	6.1 Implementation Details
	6.2 Parameters
	6.3 Performances

	A Proofs for Section 2 (Preliminaries)
	B Proofs for Section 3 (Encryption Schemes)
	C Proofs for Section 4 (Homomorphic Operations)
	D Proofs for Section 5 (Joining the Building Blocks)
	E More Details on Circulant LWE
	E.1 Circulant LWE and Reduction to Ring-LWE
	E.2 Simpler Error Distribution in CLWE for Practice

	F Optimizations
	F.1 Accelerating ExtExpInner
	F.2 Heuristic Error Propagation
	F.3 Amortising FunExpExtract
	F.4 Accelerating FunExpExtract

	References

