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LARGE GROWTH FACrORS IN GAUSSIAN ELIMINATION
WITH PIVOTING*

NICHOLAS J. HIGHAM" AND DESMOND J. HIGHAM$

Abstract. The growth factor plays an important role in the error analysis of Gaussian elimination. It is
well known that when partial pivoting or complete pivoting is used the growth factor is usually small, but
it can be large. The examples of large growth usually quoted involve contrived matrices that are unlikely to
occur in practice. We present real and complex n n matrices arising from practical applications that, for any
pivoting strategy, yield growth factors bounded below by n/2 and n, respectively. These matrices enable us to
improve the known lower bounds on the largest possible growth factor in the case of complete pivoting. For
partial pivoting, we classify the set of real matrices for which the growth factor is 2"-1 Finally, we show that
large element growth does not necessarily lead to a large backward error in the solution of a particular linear
system, and we comment on the practical implications of this result.

Key words. Gaussian elimination, growth factor, partial pivoting, complete pivoting, backward error analysis,
stability

AMS(MOS) subject classifications, primary 65F05, 65G05

1. Introduction. In his famous backward error analysis, Wilkinson proved that if
the linear system Ax b, where A is n n, is solved in floating point arithmetic by
Gaussian elimination with partial pivoting or complete pivoting, then the computed
solution satisfies (see, for example, 27, p. 108 ])

(1.1a) (A+E)=b,

where

1. lb) Ell
Here, p(n) is a cubic polynomial in n, u is the unit roundoff, and o. is the growthfactor,
defined in terms of the quantities a o occurring during the elimination by

maxi,j,k 0,o,, p,,(.4) .
max,.s aol

As Wilkinson notes, the term p(n) arises from bounds in the analysis that are rarely
attained, and for practical purposes we can replace p(n) by n in (1.1b). Hence whether
or not the bound in (1.1b) compares favourably with the "ideal" bound
depends on the size of the growth factor.

Although the growth factor is one of the most well-known quantities in numerical
analysis, its behaviour when pivoting is used is not completely understood. Current
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knowledge, in the context of general, dense matrices, can be summarised as follows. For
clarity we will denote the growth factors for partial and complete pivoting by pv and
p c, respectively.

Partial lfivoting. (The pivot element is selected as the element of largest absolute
value in the active part ofthe pivot column.) The bound ov __< 2n- holds and is attained
for matrices An e Rn x n of the following form 28, p. 212 ]"

(1.2) A

0 0 0
-1 0 0
-1 -1 0
-1 -1 -1
-1 -1 -1 -1

and also forJn DA,,D, D diag (1, -1, 1, -1, ..., (-1)+ ) [26, p. 289]. Concerning
the size ofp in practice, Wilkinson [28, pp. 213-214 says: "It is our experience that
any substantial increase in size ofelements ofsuccessive Ar is extremely uncommon even
with partial pivoting... No example which has arisen naturally has in my experience
given an increase by a factor as large as 16." We are aware of no reports in the literature
of experiences contrary to these related by Wilkinson over two decades ago. The largest
growth factor that we have seen reported for a matrix not ofthe type (1.2) is p00 35.1,
occurring for a symmetric matrix with elements from the uniform distribution on
[- 1, 18 ]; an earlier "record" value is p0 23, occurring for a random matrix of Is,
0s and s 10, p. 1.21 ].

Complete lfivoting. (The pivot element is selected as the element oflargest absolute
value in the whole of the remaining square submatrix.) Wilkinson [26, pp. 282-285
has shown that with complete pivoting

lc < nl/2( 213 .n l/(n-1)) l/2 Cn l/2nl/41g n

and that this bound is not attainable. He states in 26, p. 285 that "no matrix has been
encountered in practice for which p/p was as large as 8," and in 28, p. 213 that
"no matrix has yet been discovered for which f(r) > r." (Pi (n + l)st pivot,
f(r) Pr.)

Cryer 7 defines

(1.3) g(n) sup p(A).
A. Rnxn

The following results are known:
g(2) 2 (trivial).
g(3) 2 4; Tornheim (see 7 ]) and Cohen 6 ].
g(4) 4; Cryer [7].
g(5) < 5.005; Cohen [6].

Tornheim (see [7 ]) has shown that O,(H,)

_
n for any n n Hadamard matrix

Hn. H, is a Hadamard matrix if each his {- 1, } and the rows of H, are mutually
orthogonal. Hadamard matrices exist only for certain n; a necessary condition for their
existence if n > 2 is that n is a multiple of four. For more about Hadamard matrices see
[14, Chap. 14] and [25].
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Cryer [7 conjectured that for real matrices p(A) -< n, with equality if and only if
A is a Hadamard matrix. This conjecture is known to be false for complex matrices
because Tornheim has constructed a 3 3 complex matrix A for which I(A) > 3
(see [7]).

As the summary above indicates, most of what is known about the growth factor
had been discovered by the early 1970s. Recently, Trefethen 23 has drawn attention
to the shortcomings of our knowledge about the growth factor and asked, as one of his
three mysteries, "Why is the growth ofdements during elimination [with partial pivoting]
negligible in practice?" Trefethen and Schreiber 24 have proposed a statistical analysis
to explain why the growth factor is usually small for partial pivoting.

In this work we take a different approach from that of Trefethen and Schreiber.
Instead of trying to explain small growth we pursue examples of large growth, and we
investigate the implications of a large growth factor for numerical stability.

In 2 we present several families of real matrices for which # c is bounded below
by approximately n/2, and one family of complex matrices for which a c >_ n. Thus we
obtain new lower bounds for g(n) valid for all n. We also classify the real matrices for
which 2n-, finding this to be a much richer class than might at first be thought.

In 3 we reappraise the role of the growth factor in the backward error analysis of
Gaussian elimination. We demonstrate that when solving linear systems by Gaussian
elimination with partial pivoting large growth does not always induce a large backward
error---there are certain, special right-hand sides for which the growth has no detrimental
effect on the solution. We discuss the practical implications of this property for linear
equation solvers.

2. Matrices with a large growth factor. We begin with a result that shows how to
obtain a lower bound for the growth factor in Gaussian elimination. The bound applies
whatever strategy is used for interchanging rows and columns, but we will be concerned
only with partial and complete pivoting.

THEOREM 2.1. Let ACn" be nonsingular, and set ct=maxi,j lal, /-
maxi,j I(A-l)il, and 0 (a)-l. Then 0 <= n, andfor any permutation matrices P and
Q such that PAQ has an LUfactorisation, the growthfactor p for Gaussian elimination
without pivoting on PAQ satisfies n O.

Proof The inequality 0 < n follows from -_ a(A -)ji 1. Consider an LU
factorisation PAQ LU computed by Gaussian elimination. We have

lul erU-el lerU-’Z-e lerah-erel
(A-)0.[ for some i,j

(k)Hence maxi,j,k ]ai2 -- ]Unn - and the result follows, r-1

Remarks. (1) 0 -1 aft satisfies r(A)/n 2

_
0 -1 <= too(A), where the condition

numberK (A) A IIa- Clearly, A has to be very well-conditioned for the theorem
to provide a lower bound 0 near the maximum of n.

(2) In the case of partial pivoting Q 1, and the proof of Theorem 2.1 shows that
we can take fl max2 I(A-)21, which leads to a lower bound 0 potentially larger than
the one in the theorem.

(3) The relation u; (A-)i2 is used also in [4], with the aim of investigating
cases where Unn is small.
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To illustrate the theorem, consider a Hadamard matrix H. We have HH= nI,
and so H n-Hr,. Since h01 1, the theorem gives p

_
n. As a special case we

obtain p(H,)

_
n, as in [7] (this derivation is essentially the same as the one in [7 ]).

We present six further matrices to which the theorem can profitably be applied:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

pnQ= 2n/ sin2n/ i) i,j=l 4

F= (Aj)n= 2mi,j=l

cos( (i-1)(J-m 1)Tr), <i_<m+1___

sin m + 2

_
-< n

n r,s

C1 and C2 are examples of Vandermonde-like matrices C(al, ix2, On)
T,. (ctj) based on the Chebyshev polynomials Tk. For further details ofVandermonde-

like matrices and their applications see [16].) For C the points aj cos ((j 1)r/
(n 1)) are the extrema of T,_ 1, and for C2 the points aj cos ((j 1/2)r/n) are the
zeros of T,. The Chebyshev polynomials satisfy orthogonality conditions over both these
sets of points 15, pp. 472-473 ]. Using these orthogonality properties, we can show that

CIDCI
(n-1._.___)D_ D=diag (1/2, 1, 1/2)

and

C2C n diag (1, 1/2, 1/2,..., 1/2).
Hence C]-1 (2/(n 1))DCID, and Theorem 2.1 yields O,,(C1) - (n 1)/2. It is not
hard to show that for partial pivoting u,, n 1, and so o(C) - n 1. Similarly,
C n-Cf diag (1, 2, 2, 2), and Theorem 2.1 gives o,,(C_) >- n/2.

S is the symmetric, orthogonal eigenveetor matrix for the second difference matrix
(the tridiagonal matrix with typical row (-1, 2, -1)) [22, p. 457 ]. Theorem 2.1 gives
0,(S)

_
( n + 1) / 2. Another application in which S and C2 appear is the analysis oftime

series 1, 6.5 ].
Q is symmetric and orthogonal [19] and Theorem 2.1 yields o,,(Q) - (2n + 1)/4.
The matrix F, of even order n 2m, arises in the derivation of approximations to

linear operators for periodic functions. Hamming 15, pp. 522-524 shows that

F- =-nZFrdiag(d)’ di= {1/2’1 otherwise.i=1,m,

Hence Theorem 2.1 yields o,(F)

_
n/ 2.
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Finally, V is a complex Vandermonde matrix based on the roots of unity. It occurs
in Fast Fourier Transform theory 22, pp. 292, 448 ]. VnV hi, so V-l n -l Vu and
Theorem 2.1 gives pn(V)

_
n.

These matrices are not isolated examples: for each, the lower bound 0 for p is
insensitive to small perturbations of the matrix. To see this, note that for A-IEll <
(say), in the notation of Theorem 2.1,

O(A + E)-l= a(A + E)#(A + E)<=(or(A)+ a(E))((A + O( Eliot))

0(A)-l(1 + O( Ell o)).
Regarding the perturbation E as the backward error in a computed LU factorisation, it
follows also that, as long as E is not too large, the computed growth factors will satisfy
the theoretical lower bounds to within roundoff.

It is natural to ask what are the actual growth factors p and p for the matrices
above. In numerical tests we found # and # generally to be bigger than the lower
bounds, but appreciably less than n, except in the case of V in (2.6) for which numerical
evidence suggests that p(V) p,(V) n.

All the above matrices are natural, noncontrived ones that arise in practical appli-
cations. For n 50 (say), for both partial and complete pivoting, each of the matrices
produces growth factors which exceed the generally accepted "maximum values in prac-
tice", such as the value 16 mentioned by Wilkinson in 28 ]. It is rather surprising that
the growth factor properties ofthese examples have not previously been recognised. One
possible explanation is that since each ofthe matrices is either an orthogonal or a diagonal
scaling of an orthogonal matrix, Gaussian elimination may rarely have been applied to
these matrices. (The growth factor properties ofC and C2 were discovered incidentally
when making a numerical comparison between Gaussian elimination with partial pivoting
and a fast O(n 2) algorithm [16].)

These examples provide new lower bounds for the maximum growth factor with
complete pivoting. Specifically, we have, for g(n) in (1.3),

n+l
g(n) > oc,,(S)> for all n.

2

N. I. M. Gould (private communication) has suggested a way to obtain slightly sharper
bounds: it is easy to show that

0() 0 -and so, taking A S, g(2n)

_
a(B)

_
O(B) 2O(S) n + l, which improves on the

lower bound (2n / 1)/2. (Of course, for n such that a Hadamard matrix H exists,
g(n)

_
n is a better bound; and for n _-< 5 see the results quoted in 1.) Further-

more, defining

g(n) sup ,o (A),
AeCnxn

we have
Cg(n)p,,(V)n.

The growth factors discussed above are relatively mild in the context of partial
pivoting, since O(n)growth falls significantly short ofthe potential O(2). To investigate
larger growth factors we have to make specific use of the properties of partial pivoting.
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The following result shows that Wilkinson’s example in which 0P 2 n- is attained is
just one from a nontrivial class of matrices with this property.

THEOREM 2.2. All real n n matrices A for which OP(A) 2- are oftheform
T oa]A=DM
0

whereD diag (+ 1),M is unit lower triangular with mo for > j, T is a nonsingular
upper triangular matrix oforder n 1, d (1, 2, 4, 2 ) r, and 0 is a scalar such
that 0 a, maxi,j ao[.

Proof. Gaussian elimination with partial pivoting applied to a matrix A gives a
factorisation B PA LU, where P is a permutation matrix. It is easy to show that
u01 - 2 i- maxrz brl, with equality for s only ifthere is equality for 1, 2, ..-,

s 1. Thus 0 2 "- implies that the last column of U has the form ODd, and also that
b, maxi,j b0[. By considering the final column ofB, and imposing the requirement

that 1/01 - 1, it is easy to show that the unit lower triangular matrix L must have the
form L DMD. It follows that at each stage of the reduction every multiplier is ___1;
hence no interchanges are performed, that is, P 1. The only requirement on T is that
it be nonsingular, for if t, 0 then the ith elimination stage would be skipped because
of a zero pivot column, and no growth would be produced on that stage, ffl

In the case n 5, the general form ofA is

A=D

t t2 t3 t4 t9
-t --tl2 -t- t22 --t3 -I-/23 --t4-l-/24 19
--tll --t12 t22 -’/13 t23 q- t33 --tl4-/24 -1- t34 t9
--tl --/12 --/22 --t3 t23 t33 --t4--/24-- t34-1-/44 19
--tl --tE--t2 --t3--t23--t33 --t4--tE4--t34--t44 19

We mention that it is straightforward to extend Theorem 2.2 to complex matrices.
As well as being of theoretical interest, the matrices given in this section are useful

test matrices for linear equation solvers. Note that K(A) can be bounded above and
below by multiples ofK (T), so T can be used to vary the condition ofA. By varying
the elements m0 (i > j) and the vector d in Theorem 2.2 we can construct matrices for
whichp achieves any desired value between and 2-. Indeed in practice it is expedient
to modifyM in Theorem 2.2 so that m01 < for > j, to ensure that rounding errors
do not affect the pivot sequence (and hence the computed growth factor).

3. Implications of a large growth factor. If the growth factor p n is large then in the
backward error result (1.1) the bound for Eli is large. Whether or not Ell itself is
large when p is large depends on the sharpness of the bound. Since the bound is inde-
pendent of b, and E clearly is not, we might suspect that the bound can be weak; in this
section we will show that this is indeed the case.

We need to make use of an elementwise form of backward error analysis. Let A
R . From 8 the computed solution $ from Gaussian elimination (assuming, without
loss of generality, no interchanges) satisfies

(3.1a) (A +F).= b,

where

(3.1b) IFI (2+)1/-51 I1, "y=nu/(1-nu),

and where A /:r is the computed LU factorisation and FI (I JSj I).
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As our use ofthe notation E in (1.1) and F in (3.1) suggests, the backward error for
solution ofAx b is not uniquely defined: G satisfying (A + G) b can be replaced
by G + H for any H whose rows are orthogonal to . However, it is well known that of
the infinitely many backward error matrices there is a unique one of minimal
Frobenius norm,

(3.2) G= I111=

where the residual r b A, and IIGIle (,g.)/2 (see [9, p. 171] for a proof and
discussion, albeit in a different context). Of course, for the minimal Frobenius norm
backward error matrix G to be an appropriate one to consider, A should be reasonably
well-scaled.

Our aim is to obtain an informative bound for the minimal backward error 1(71.
To do this we write r b A F, from (3.1a), and invoke the bound (3.1b),
obtaining

Irl- IFI I1 _(2 /)ILI 10111.
Hence

(3.3) IGI Irl I1 r ,(2+,) r1111"’’’--------ILl 1011111

Our observation is that any large growth, which necessarily takes the form of large
elements of when partial pivoting is used, will not fully affect the backward error for
a particular if

Ill01 I111 << 011i111.
Since al - 2- max ai], large growth can occur only toward the (n, n) position
of; consequently any , bounded by (say)

I1- 1111(,2-,2 -2, ,2-n) r

can be shown to satisfy III 01 I111 - 211h I111 no matter how large 011
For example, for anyA, consider the use ofpartial pivoting for the particular system

Ax b with x e. Assume x x satisfies IIxll - 2-/n; this will certainly be
the case if, making use of(1.1), xoo(A)4n-p(n)nu < 1. Then

ILl It3111 ILl 101 le-xl Zmax lale/ ILl 1011xl,

where e (1, 1, 1)r, and thus

ILl 1011111_ Ilall / n2- llailoollSxll-211hlloo.
Hence, using (3.3), we have

IlGlloo- 2-r(2 +-r) IlAllo(l + 0(2-")),

which is an ideal backward error result, containing no growth factor term.
To illustrate the analysis we describe some numerical experiments performed using

Gaussian elimination with partial pivoting and the perturbation B A + 0.1eer of
Wilkinson’s extreme growth matrix An in 1.2 ). This perturbation ofthe (n, n) element
has the effect of causing rounding errors to be committed in the computation of the
LU factorisation. Note that element growth occurs only in the last column of Bn dur-
ing Gaussian elimination with partial pivoting. For several n we solved five different
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linear systems B,,x b, and computed the backward error for the LU factorisation,
B,, LII/IIn I1 (note that this is unique for a given norm), and the minimal

backward error in the Frobenius norm for each system solved, Ilrll/( Bn IIFIIII). For
four of the linear systems, we selected x or b as vectors suggested by the analysis; for the
final system we used a random b with elements from the uniform distribution on [0, ].

The computations were performed using the WATFOR-77 Fortran 77 compiler on
a PC-AT compatible machine. Solutions were computed in single precision (IEEE stan-
dard, u 1.19 10-7), using LINPACK’s SGEFA/SGESL. The residuals r and Bn
L were computed in double precision. The results are displayed in Table 3.1.

The backward errors for the LU factorisation are seen to be somewhat smaller than
the large growth factor might lead us to expect, though still "alarmingly" large, except
for n 10. For x el the backward errors are all identically zero and x; in this
example the errors in the LU factorisation are nullified in the substitutions. The backward
errors are also perfectly acceptable for b e. Here the explanation is that x
(B-1 )n u so that u,,,,x,, 1; thus the large elements in the last column of vanish
in the product I1 I1 in (3.3). The backward errors for b el, b e, and the random
b, all reflect the large backward error in the LU factorisation, as we would expect: the
nonnegligiblex components pick out the large last column of in the product 1 I1.

To summarise, we have shown the following" When a linear systemAx b is solved
by Gaussian elimination with partial pivoting, the backward error for the computed
solution, b -all/(llA IIF 11112), can, in certain special cases, be substantially smaller
than the backward error for the LU factorisation, A LOllF A F, ifthe latter is large.
Thus, strictly, the growth factor, or any other quantity appearing in a measure or bound
ofA LU, is an unreliable indicator of the stability of a particular solution . We do
not clairfi that this result is new, nor do we think that it will surprise anyone who has
worked in backward error analysis. Examples of references that allude to the result in
some way are [11, p. 73] and [20]. However we are not aware of a published analysis
like the one above, and we feel that the result deserves to be better known.

It is important to stress that large growth is indeed very uncommon with partial
pivoting (see the quotation from 28 in 1), and that when it does occur there is a high
probability that it will adversely affect the stability ofthe computed solution .. Neverthe-
less, the result above has implications for how one uses a linear equation solver.

For example, consider the use of threshold versions of partial pivoting (including
no pivoting at all); here large growth factors are much more common, and it is standard
practice to monitor stability by estimating the error in the factorisation, A LO 5 ],
[11 ]-[ 13 ]. If the estimate is large then a popular course of action is to carry out a

TABLE 3.1
Results.

(u 1.19 10-7)

10
20
3O
40
5O
60

4.7E2
4.8E5
4,9E8

5.0E 11
5.1E14
5.2E 17

3.0E-6
1.7E-3
4.5E-3
3.4E-3
2.7E-3
5.7E-2

2=el b en b e b e b random

0.0 1.5E-8 3.1E-6 4.4E-6 2.3E-6
0.0 5.5E-9 1.2E-3 1.6E-3 2.4E-4
0.0 1.5E- 11 3.2E-3 4.5E-3 1.1 E-
0.0 1.1E-14 2.4E-3 3.4E-3 3.7E-2
0.0 1.1E-17 1.9E-3 2.7E-3 4.4E-2
0.0 1.5E-19 1.6E-3 2.3E-3 8.9E-2
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refactorisation with a different pivot sequence. Our view is that if just a single system
involving A must be solved, it is worthwhile to proceed with the substitutions and to
base refactorisation decisions on the easily computed actual backward error (3.2) rather
than on (estimates of) A L0, which may be misleading, as we have shown. For
example, having computed : we might form r b A. (in single precision), evaluate
the backward error IIGIIF Ilrll2/11112, and test whether IIGIIF - /IIAIIF, where/i is an
appropriate tolerance (depending on the unit roundoff, at least). Even if is unacceptable,
the substitutions need not have been wasted, for we may be able to achieve stability
through the use of a few steps of iterative refinement 2 ], 3 ], 17 ], 21 ].

A more general way to express these views is that it is better to use a posteriori
estimates that reflect the actual rounding errors encountered, rather than error estimates
based on a priori analysis, such as (1.1). For a discussion of this philosophy we can do
no better than refer the reader to Wilkinson’s eloquent exposition in 29 ].
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