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We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric

theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small

constants in moduli stabilization and understanding the huge hierarchy between the Planck and electro-

weak scales.

DOI: 10.1103/PhysRevLett.102.121602 PACS numbers: 11.30.Pb, 11.25.Wx, 11.30.Ly, 12.60.Jv

Introduction.—One of the major puzzles in contempo-
rary physics is the existence of large hierarchies in nature,
such as the ratio between the Planck and electroweak
scales MP=mW � 1017. Some of the most promising ex-
planations of such hierarchies rely on dimensional trans-

mutation. Here the dynamical scale� ¼ MPe
�a=g2 (with g

and a denoting the gauge coupling and a constant, respec-
tively) can be naturally much smaller than the fundamental
scale. However, if one is to embed this mechanism in a
more fundamental framework, one often encounters the
problem that there has to be a hierarchically small quantity
right from the start. Concretely, if one is to make use of the
dynamical scale in string theory, one has first to fix the
modulus that determines the coupling strength. This in turn
often requires the introduction of a small constant. One
faces then the well-known ‘‘chicken-or-egg problem.’’

Motivated by results obtained in the framework of string
theory model building, we present here a potential resolu-
tion of the problem. We shall show that, if the superpoten-
tial in a supersymmetric theory exhibits an approximate
Uð1ÞR symmetry, it generically acquires a suppressed vac-
uum expectation value (VEV). Such accidental Uð1ÞR
symmetries, which get broken at higher orders, are natu-
rally present in string compactifications. They arise as
remnants from exact, discrete R symmetries. Such symme-
tries allow us to control the VEV of the (perturbative)
superpotential and, in particular, to avoid deep anti–de
Sitter vacua. We will discuss the role of the resulting
hierarchically small superpotential VEVs in the context
of moduli stabilization in string theory, for giving a plau-
sible explanation of the huge hierarchy between MP and
mW , and for providing, in the context of a class of prom-
ising string models [1], a solution to the � problem of the
minimal supersymmetric standard model (MSSM).

Supersymmetric Minkowski vacua as a consequence of a
Uð1ÞR symmetry.—Consider a superpotential of the form

W ¼ X
cn1���nM�

n1
1 � � ��nM

M : (1)

Here and in the following we work in Planck units; i.e., we
set MP ¼ 1 unless stated differently. Assume that W has
an exact R symmetry, under which W has R charge 2,

W ! e2i�W ; (2)

and the fields transform as

�j ! �0
j ¼ eirj��j (3)

such that each monomial in (1) has total R charge 2.
Let h�ii denote a field configuration which solves the

F-term equations,

Fi ¼ @W
@�i

¼ 0 at �j ¼ h�ji 8 i; j: (4)

Consider now an infinitesimal Uð1ÞR transformation,

W ð�iÞ ! W ð�0
iÞ ¼ W ð�iÞ þ

X
j

@W
@�j

��j: (5)

At�j ¼ h�ji the superpotential goes into itself, which can
only be consistent with (2) if W ¼ 0 at �j ¼ h�ji. This
proves that, if the F equations are satisfied, W vanishes.
A few comments are in order. First, this statement holds

regardless of whether the configuration h�ii preserves
Uð1ÞR or breaks it spontaneously. Second, in the context
of supergravity, the statements above imply that the DiW
vanish for �i ¼ h�ii; i.e., also the supergravity F terms
vanish and one obtains a supersymmetric Minkowski vac-
uum. Third, our findings are related to an observation by
Nelson and Seiberg made in [2], where it is stated that, in
order to have a theory without supersymmetric ground
state, the superpotential has to exhibit a continuous R
symmetry. The statements do, however, not tell us whether
or not a theory with a superpotential exhibiting a continu-
ous R symmetry has a supersymmetric ground state or not.
Our findings and [2] imply that, if there is a continuous R
symmetry, there are two options: (i) there is a supersym-
metric ground state with W ¼ 0 [with Uð1ÞR spontane-
ously broken or unbroken]; (ii) there is no supersymmetric
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ground state, and in the ground state Uð1ÞR is spontane-
ously broken [2].

In this Letter we focus on case (i). If theUð1Þ that acts on
the scalar components of the superfields gets spontane-
ously broken at �i ¼ h�ii (which is the case if, for in-
stance, all h�ii are nontrivial), it follows then from
Goldstone’s theorem that there is a massless mode, the
so-called R axion.

Small constants from approximate Uð1ÞR symmetries.—
Let us now study what happens if the R symmetry is
‘‘slightly’’ broken, i.e., by higher order terms. We can write

the superpotential as

W ð�iÞ ¼ W 0ð�iÞ þ
X
j

W jð�iÞ; (6)

where W 0ð�iÞ consists of monomials up to order N � 1
which preserve the R symmetry while the W jð�iÞ are

monomials of order � N which break the R symmetry.
This means that the superpotential transforms under Uð1ÞR
as

W ð�iÞ ! e2i�W 0ð�iÞ þ
X
j

ei�RjW jð�iÞ ’ W ð�iÞ þ i�ð2W 0ð�iÞ þ
X
j

RjW jð�iÞÞ (7)

with Rj � 2, and

W ð�iÞ ! W ðei�ri�iÞ ’ W ð�iÞ þ i�
X
j

@W
@�j

rj�j:

(8)

Combining these two expressions and assuming that the F
terms vanish in our vacuum, @W@�i

¼ 0, we see that

hW ð�iÞi ¼ � 1

2

X
j

ðRj � 2ÞhW jð�iÞi: (9)

This means that in the case of an approximate Uð1ÞR
symmetry one obtains suppressed superpotential VEVs,
written symbolically as

hW i � h�i�N: (10)

In many situations there is a mild hierarchy between the
fundamental scale and a typical VEV, h�i=MP < 1. This
is, for instance, the case in string models where a Uð1Þ
factor appears ‘‘anomalous’’, and where the one-loop
Fayet-Iliopoulos term forces some VEVs to be roughly
1 order of magnitude smaller than MP [3]. According to
the above discussion, the suppression of hW i gets then
enhanced by the Nth power of this mild hierarchy, simi-
larly to the Froggatt-Nielsen picture [4].

Further, we have seen that there might be a Goldstone
mode �. With explicit Uð1ÞR breaking, it will generically
receive a mass, m� � h�i�N�2. (The ‘‘�2’’ comes from

the second derivative.) In supergravity theories, hW i sets
the gravitino mass,

m3=2 ’ hW i: (11)

This leads then to the expectation that there is a mode
whose (supersymmetric) mass scales like m3=2,

m� �m3=2

h�i2 : (12)

Let us comment that, if one is to include supergravity

effects, W � 0 does not necessarily imply anti–de Sitter
solutions (see, e.g., the discussion in [5], section 4).
Explicit string theory realization.—One of the central

themes of string theory is the issue of moduli stabiliza-
tion, which is closely connected to the question of super-
symmetry breaking. In the traditional approach, super-
symmetry is broken by dimensional transmutation [6],
e.g., by gaugino condensation [7]. However, for this ele-
gant mechanism to work, one needs first to fix the gauge
coupling, whose strength is given by the VEVof the dilaton
S or another modulus in string theory. This can be achieved
in various ways: for instance, in the race-track scheme [8]
one has two competing nonperturbative superpotentials
which provide a nontrivial minimum of the dilaton poten-
tial. The drawback of this mechanism is that it only works
if one has two rather large ‘‘hidden’’ gauge groups with
rather special matter contents. A somewhat more economic
scheme is that of Kähler stabilization [9,10] where one
needs only one hidden sector. However, in the relevant
regime where dilaton stabilization may be achieved, the
theory is not calculable. More recently, an alternative has
been studied (with the most prominent example being that
of KKLT [11]) where the superpotential is of the form

W ¼ cþ Ae�aS: (13)

The first term c is a constant and the second term reflects
hidden sector strong dynamics; i.e., S is related to the
gauge coupling, ReS / 1=g2, and a is related to the
�-function of the hidden gauge group. In the KKLT setup,
the constant comes from fluxes. The minimum of the scalar
potential for S occurs at a point where

jaSAe�aSj � jcj: (14)

The VEV of W , i.e., the gravitino mass, is of the same
order. In order to have MSSM superpartner masses at the
TeV scale, the gravitino mass cannot exceed Oð100Þ TeV,
hence

jcj & 10�12 (15)
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in Planck units. The small scale in this setting is therefore
not explained by dimensional transmutation but originates
from the smallness of the constant c. KKLT and others
argue that, due to the large number of vacua, some of them
might have such c by accident.

In what follows, we will exploit the observation of the
previous section that small VEVs of the (perturbative)
superpotential can be explained by an approximate Uð1ÞR
symmetry. We will use this in order to discuss moduli
stabilization in the context of the heterotic string. We focus
on orbifold compactifications [12] since they possess many
(and well-understood) discrete symmetries, which, as it
turns out, imply approximate Uð1ÞR symmetries of the
superpotentials describing the effective field theories de-
rived from these constructions. As we shall see, super-

potential VEVs of the order 10�Oð10Þ can naturally be
obtained. Orbifold compactifications allow us to embed
the MSSM into string theory [1,13,14].

In our calculations we focus on the models of the
‘‘heterotic MiniLandscape’’ [1,15]. These models exhibit
the standard model gauge group and the chiral matter
content of the MSSM. They are based on the Z6-II orbifold
with three factorizable tori (see [13,16] for details). The
discrete symmetry of the geometry leads to a large number
of discrete symmetries governing the couplings of the
effective field theory [17,18] (cf. also [13,16,19]). Apart
from various bosonic discrete symmetries, one has a

½Z6 � Z3 � Z2�R (16)

symmetry; other orbifolds have similar discrete symme-
tries. Further, in almost all of the MiniLandscape models
there is, at one-loop, a Fayet-Iliopoulos (FI) D term,

VD � g2
�X

i

qij�ij2 þ �

�
2
; (17)

where the qi denote the charges under the so-called
‘‘anomalous Uð1Þ.’’ It turns out that, in all models with
nonvanishing FI term, � is of order 0.1 (see [13] for an
explicit example). The first step of our analysis is to
identify a set of standard model singlets �i with the
following properties: giving VEVs to the �i allows us to
cancel the FI term; there is no other field that is singlet
under the gauge symmetries left unbroken by the�i VEVs.
These properties ensure that the h�ii can be consistent with
a vanishing D-term potential and that the F-terms of all
other massless modes vanish, implying that it is sufficient
to derive the superpotential terms involving only the �i

fields. A crucial property of these superpotentials is that
they exhibit accidental Uð1ÞR symmetries that get only
broken at rather high orders N. As discussed, this can be
regarded as a consequence of high-power discrete R sym-
metries [Eq. (16)]. N depends on the chosen �i configu-
ration; as a general rule we find that the more �i fields are
considered, the lower N values emerge. For instance, in a
model where only seven fields are considered, we obtain

N ¼ 26, on the other hand, in the model 1 of [1] with 23
fields switched on, Uð1ÞR gets broken at order 9.
Given nontrivial solutions to the F-term equations,

�i

@W
@�i

¼ 0; with �i � 0; (18)

one can use complexified gauge transformations to ensure
vanishing D terms as well [20]. Although D-term con-
straints do not fix the scale of the h�ii in general, the
requirement to cancel the FI term introduces the scaleffiffiffi
�

p � 0:3 into the problem. We search for solutions of
VD ¼ VF ¼ 0 in the regime j�ij< 1, and find that they
exist. We explicitly verify that for such solutions the super-
potential is hierarchically small, hW i � h�iN , where h�i
denotes the typical size of a VEV. A very important prop-
erty of many of these configurations is that all fields
acquire (supersymmetric) masses. Hereby, typically only
one field has a mass of the order m� [see Eq. (12)] while

the others are much heavier. We have also checked that
these features are robust under supergravity corrections.
Altogether, we find that in the models under considera-

tion one obtains isolated supersymmetric field configura-
tions with j�ij< 1 where the VEV of the perturbative
superpotential hW i is hierarchically small.
Before discussing applications, let us compare our find-

ings to other recent results [21]. There, using the stringy
selection rules, so-called ‘‘maximal vacua’’ were con-
structed in which the superpotential vanishes term by
term (and to all orders). In our approach, each superpoten-
tial term composed out of �i fields acquires a nontrivial
VEV, but to the order at which the accidental Uð1ÞR is
exact, all terms cancel nontrivially. At higher orders, a
nontrivial VEVof W gets induced.
Let us now briefly sketch how this can be used in order to

stabilize the dilaton, whose VEV determines the gauge
coupling. After integrating out the �i fields, one is left
with a superpotential of the form (13),

W eff ¼ cþ Ae�aS; (19)

where c ¼ hW i ¼ 10�Oð10Þ, and Ae�aS describes some
nonperturbative dynamics, such as gaugino condensation
[7,22–24]. As we have discussed before in Eq. (14), this
superpotential leads to a nontrivial minimum for the dila-
ton. In the MiniLandscape models, realistic gauge cou-
plings are correlated with favorable sizes of the
dynamical scale, Ae�aS=M2

P � TeV [25]. Hence, for typi-

cal expectation values hW i ¼ 10�Oð10Þ one obtains rea-
sonable gauge couplings. The fixing of the T moduli and
other issues such as ‘‘uplifting’’ will be studied elsewhere.
Another application of our findings concerns the � term

of the MSSM. In [26] it has been proposed that in models
in which the field combination huhd (with hu and hd
denoting the up-type and down-type Higgs fields, respec-
tively) is completely neutral with respect to all symmetries,
there is an interesting relation between the Higgs mass
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coefficient � and hW i,
�� hW i: (20)

The heterotic MiniLandscape [15] contains many models
in which the Higgs pair (and only the Higgs pair) has this
property. Apart from the above property, such models
exhibit ‘‘gauge-top unification’’; i.e., the top Yukawa cou-
pling is of the order of the gauge coupling, as well as many
other desirable properties. In a concrete example, the
benchmark model 1A of [1], it was found that solving
the F-term equations for the superpotential up to order 6
always leads to hW i ¼ 0. We have now obtained a better
understanding of this fact: there is a Uð1ÞR symmetry that
holds up to order 11, explaining this property. It is amazing
to see that these models, constructed in order to reproduce
the MSSM spectrum and gauge interactions, exhibit so
many appealing properties automatically.

Conclusions.—We have shown that approximate Uð1ÞR
symmetries can explain the appearance of hierarchically
small constants. We find that at configurations where the
F-term equations are solved, the superpotential goes like
hW i � h�iN with h�i denoting a typical expectation value
andN being the order at whichUð1ÞR gets broken. We have
analyzed various heterotic orbifold models and found that
there, due to the presence of high-power discrete R sym-
metries, approximate Uð1ÞRs are generic. We have explic-
itly solved the F-term equations in several models, thus
obtaining points in field space in which the F- and D-term
potentials vanish, and confirmed that, for j�ij< 1, the
superpotential is hierarchically small. We have argued
that such suppressed superpotential expectation values
can be the origin for the appearance of large hierarchies
in nature: they fix the scale of the gravitino mass, which in
schemes with low-energy supersymmetry sets the weak
scale, and can be used to stabilize the string theory moduli
at realistic values.
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