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ABSTRACT Despite many studies already published on large intelligent surfaces (LIS), there are still some

gaps in mathematical models in the face of possible scenarios. In this work, we evaluate the performance of

a single-input single-output (SISO) system in which an LIS acts as a controllable scatterer. We consider

that the direct link between the transmitting and receiving devices is non-existent due to a blockage.

Quantization phase errors at the LIS are considered since a high precision configuration of the reflection

phases is not always feasible. We derive exact closed-form expressions for the spectral efficiencies, outage

probabilities, and average symbol error rate (SER) of different modulations schemes. We assume a more

comprehensive scenario in which b bits are dedicated to the phase adjustment of the LIS’ elements. Based

on Monte Carlo simulations, we prove the excellent accuracy of our approach and investigate the behavior

of the power scaling law and the power required to reach a specific capacity, depending on the number of

reflecting elements. We show that an LIS with approximately fifty elements and four dedicated bits for phase

quantization outperforms the conventional system without LIS.

INDEX TERMS Large intelligent surface, outage probability, quantization phase errors, spectral efficiency,

symbol error rate.

I. INTRODUCTION

There is no doubt that quantization errors are inevitable when

using analog-to-digital converters (ADCs). These converters

bridge the analog and the digital worlds, and the lower is their

resolution, the more distortions they can cause to the con-

version process. Since the rounding quantization introduces

error in the signal estimation stage, Hou et al. [1] propose

a quantization error reduction scheme for detection based

on orthogonal lattices. On the other hand, Kotera et al. [2]

proves that an efficient nonlinear Viterbi-like algorithm, used

as the equalization scheme, can estimate both inter-symbol
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interference in multi-path channel and quantization error in

ADC and improve the bit error rate (BER) performance.

For large intelligent surfaces (LIS) assisted systems, little

is known about the impact of quantization errors. Also known

as reconfigurable intelligent surfaces (RIS), this technology

is a strong candidate to be integrated into the sixth generation

(6G) of cellular networks. It comes with the promise to satisfy

the requirements of reliability, low latency, and high data rates

for heterogeneous devices, which the fifth generation (5G)

was not able to fully meet [3]. Its structure consists of many

electromagnetic elements acting individually as scatterers,

capable of jointly reflecting the incident signal to the desired

direction [4], [5]. Among its advantages, we can mention

the ideally passive nature that does not require any dedicated
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energy source. By not amplifying the incident signal, an LIS

provides an inherently full-duplex transmission scheme with-

out introducing noise, unlike relays. It can also be easily

installed onto facades of buildings or walls of rooms thanks

to its lightweight and conformal geometry. Two strategies

are possible due to the smart adjustment of the phase shifts;

the reflected signals can add coherently or destructively at

the receiver. The first strategy improves the received signal

power, while the second one avoids interference of unwanted

signals or transmitters and increases the security of the com-

munication system [6].

There are several questions still open regarding

LIS-assisted communications systems. One of them is which

frequency band is more suitable for its deployments? In fact,

there are theoretical and proofs-of-concept works for all of

these frequency bands [7]–[19]. In [20], Emil Björnson points

out that it might still be too early to say in which frequency

band LIS will be most useful, despite listing some points that

deserve our attention. At lower frequencies, existing relaying

technology is rather competitive, and the propagation condi-

tions are quite good. However, LIS-assisted systems present

some potential advantages over traditional relaying tech-

niques such as full-duplex communications, reduced power

consumption, and hardware cost for low and high-frequency

bands (since there is no need for power amplifiers) [7], [9],

[11]–[13], [19]. According to several works [20]–[25], LIS

technology can do something new for mmWave frequencies

and above such as (i) adding extra propagation paths to sparse

channels, (ii) replacing the need for large antenna arrays since

they are complicated to build and (iii) working as relay since

conventional relays might not be available.

Most studies have focused on optimizing the reflection

coefficients (i.e., amplitude and phase) of each LIS element.

For example, Zhang et al. believes that LIS can play critical

roles in beyond 5G networks [26]. Assuming deterministic

flat-fading channels and, so with a low-rank multiple-output

multiple-input (MIMO) channel, the authors show that sim-

ply deploying multiple optimal LIS elements can guarantee

performance gains due to spatial multiplexing. Still consid-

ering multiple users, Han et al. elaborate on two algorithms

to jointly optimize the transmit beamforming at the BS and

the phase shifts at the LIS under the quality of service (QoS)

constraints [27]. From derived lower bounds of the transmit

power concerning the number of BS antennas, the number of

LIS elements, and the number of mobile users, they show that

the transmit power at the BS is significantly lower than that

of a communications system without LIS.

However, it is worth mentioning that the reflection

phases’ high precision configuration is unfeasible. In prac-

tice, the number of bits is limited, and as a consequence,

the phase quantization errors arise. Before proposing tech-

niques to reduce them, we first need to know them and

estimate their effects as closely as possible to reality.

In this work, we deviate a little from this idea and look

for more precise mathematical models under more practical

scenarios. In our previous work [28], we employed the central

limit theorem (CLT) to derive the bit error rate when there are

phase estimation errors. However, it is known that the CLT is

inaccurate when the number of elements in LIS is small, and

the approximation error can be significant in the high signal-

to-noise ratio (SNR) regime.

Following the same reasoning, Badiu and Coon [29] do a

preliminary analysis based on a limited number of imperfect

reflectors. They conclude that the LIS- assisted SISO system

is equivalent to a point-to-point communication over a Nak-

agami fading channel, and the performance measured from

the error probability is robust against the phase errors. Abey-

wickrama et al. [30] was the pioneering work to consider a

practical phase-shift model in which the amplitude is depen-

dent on the phase in the re?ection coefficient. From [30], sim-

ulation results unveil a substantial performance gain achieved

by the joint beamforming optimization when compared to the

conventional ideal model. On the other hand, Han et al. [31]

propose an optimal phase shift design that achieves approxi-

mately the ergodic capacity and demonstrates that a quantizer

with two bits is sufficient for a capacity degradation below

1 bit/s/Hz. Themulti-user multi-input single-output downlink

LIS-assisted system harvests power from the received signals

in [32]. Hu et al. show that small bit-resolution discrete phase

shifters are sufficient to tightly approximate the sum-rate

of an ideal case with continuous phase shifters. In [33],

Wang et al. consider a SISO LIS-assisted system and derive

exact expressions for outage probability and diversity order

without employing a CLT approach. However, they assume

that each element of the LIS has only a one-bit phase shifter.

Based on this one-bit assumption, they derive the outage

probability, which only works in high SNR regimes.

From the works mentioned above, we can see that

LIS-assisted wireless systems’ performance has mainly been

assessed in terms of symbol error rate (SER) lower-bounds,

with perfect or very limited phase generation (e.g., one-bit

resolution shifters), besides employing CLT to approximate

SNR distributions. In this article, we present an in-depth

investigation of SISO systems in the presence of quantization

errors, which are introduced by the LIS’ reflecting elements.

Our focus is to demonstrate a theoretical framework that

quantifies the performance based on an accurate approxi-

mation of the SNR distribution when the LIS’s reflecting

elements can only generate phases out of a discrete set.

Additionally, an analytic comparison between LIS-assisted

and non-assisted systems in terms of spectral efficiency,

average SNR, and required transmit power is carried out.

Therefore, this paper’s contribution can be summarized as

follows.

• Novel and exact analytical expressions for the proba-

bility density function (PDF) and cumulative density

function (CDF) of the instantaneous SNR are derived,

considering the number of reflecting elements, a discrete

set of possible phases, and assuming that the Source-RIS

and RIS-Destination links experience Rayleigh fading.

• Considering the composite channel between source and

destination as the double (cascaded) Rayleigh fading
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channel [34]–[37], we derive the average SNR for the

LIS-assisted wireless system.

• In order to study the outage performance, we derive a

closed-form expression for the outage probability, which

provides useful insights and can be employed as a design

tool.

• We provide a closed-form expression for the average

SER of some modulation schemes for the LIS-assisted

system. Additionally, a tight approximation for the aver-

age SER in the high-SNR regime is derived.

• Based on high-SNR SER approximation, we derive a

closed-form expression for the diversity order of the

LIS-assisted system, which shows that the diversity

order increases with the number of reflecting elements.

• Exact analytical expressions for the ergodic spectral

efficiency of the LIS-assisted system are also found.

Additionally, tight high-SNR and lower/upper bounds

approximations are derived for the spectral efficiency.

• We present an analysis of the power scaling law and

the power required to achieve specific capacities. These

results show that the transmit power can be reduced

proportionally to 1/N 2 without compromising the spec-

tral efficiency. This power reduction is paramount

to power-constrained devices such as the internet of

things (IoT) ones.

• Based on the tight approximation of the instantaneous

SNR’ PDF, we can evaluate the system performance as

the number of bits and reflectors increases. We con-

clude that a LIS with approximately fifty elements and

four bits dedicated to phase quantization outperforms a

conventional SISO system’s performance without a LIS.

To the best of our knowledge, no similar results have

been found in the literature.

Several works in the literature [27], [31], [38]–[42] con-

sider cases where it is possible to position a LIS so that there

is a line-of-sight (LoS) link, at least, between the BS and the

LIS itself. However, we envision indoor environments where

there might not be LoS links at all. Therefore, we analyze

and compare the performance of an LIS-assisted system to a

conventional SISO one with no LoS link. Our results demon-

strate that a LIS equipped with enough reflecting elements

can improve a wireless system’s performance even though

there are no LoS links between any of the involved entities

(i.e., Source, Destination, and LIS).

The remainder of this article is organized as follows:

Section II presents the adopted model and the preliminary

assumptions. In Section III, we derive exact closed-form

expressions for some important performance metrics and

evaluate the quantization error effects. Section IV shows our

setup and the results obtained from simulations with that.

Finally, Section V summarizes the main conclusions.

Notations: Scalars are denoted by italic letters while

vectors and matrices, by bold-face lower-case and upper-

case letters, respectively. For a complex-valued vector x,

|x| denotes its Euclidean norm and diag(x) represents the

diagonal matrix. The distribution of a circularly symmetric

complex Gaussian (CSCG) random vector with mean fx and

covariance4 is denoted by CN (x, 4); and∼ stands for ‘‘dis-

tributed as’’. For any general vector x, xi denote its ith element

while E is the statistical expectation. Finally, Pr(.) represents

the probability of a specific event occurring.

II. SYSTEM MODEL

The system model of the adopted LIS-assisted communica-

tions scheme is typical of indoor environments and can be

seen in Figure 1. Here, the fading channels gn and hn between

the single-antenna source (S) and the n-th antenna (or reflect-

ing) element of the LIS, and the nth antenna element of the

LIS and the single-antenna destination (D), respectively, are

assumed to be independent, identical, slowly varying, flat,

and their envelopes follow Rayleigh distributions, i.e., gn ∼
CN (0, βg) and hn ∼ CN (0, βh). This assumption, used in

several previous works including [43]–[47] and references

therein, originates from the fact that even if the LoS links

between S and D, between S and the LIS, and between the

LIS and D are blocked, there still exist extensive number

of scatters. Also, the direct signal path between S and D

is neglected due to unfavorable propagation conditions that

might be caused by an obstacle, for example.

FIGURE 1. System model of the LIS-assisted wireless system.

The parameters βg and βh model the shadow and

geometric attenuation fading (i.e., the large-scale fading coef-

ficients), which are assumed to be independent over the ele-

ments of LIS and change very slowly over time. They are

constant over several coherence-time intervals [48], since the

distance between devices and LIS is much larger than the dis-

tance between the LIS’ elements. In this far-field regime [4],

the intelligent surface is better modeled as a scatterer and the

scaling law that governs the intensity of its electric field is

a function of the distances’ product, as proved in [49] and

shown later.

We assume that the LIS is a reflect-array composed of N

simple and re-configurable reflector elements connected to

a controller. Additionally, we assume that the phase-shifts

produced by the channels are estimated perfectly [15]. How-

ever, the desired phases cannot be accurately generated by

the LIS once it has a discrete set of phases. Practical LISs

have a limited number of phase shifts, i.e., a discrete set of

phase-shifts constrained by the number of quantization bits

(also known as phase resolution) of the LIS. The number of
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quantization bits is denoted by b. Therefore, the set of phase

shifts produced by each one of the elements of the LIS is

defined as

φn =
{

0,
2π

2b
,
4π

2b
, · · · ,

2π (2b − 1)

2b

}

. (1)

Therefore, we model the deviation from the correct/ideal

phase-shift as a phase-noise, δn, which is uniformly dis-

tributed in the range [−π/Q, π/Q], where Q = 2b is the

number of discrete phases the LIS can generate [50] dictated

by the hardware complexity and power consumption of LIS.

III. INTELLIGENT TRANSMISSION THROUGH LIS

In slowly varying flat fading channels, the signal received at

the destination after being reflected through an LIS composed

of N passive elements can be written as

y =
√
ρ

[

N
∑

n=1

gne
−jφnhn

]

s+ w, (2)

where ρ is the average SNR, φn is the adjustable phase-shift

produced by the nth LIS reflector, s is the modulation data

symbol with zero mean, E[|s|2] = 1, and w ∼ CN (0, 1) is

the additive white Gaussian noise (AWGN) term. Then, (2)

can be re-written in the matrix-form as

y =
√
ρhT8gs+ w, (3)

where g = [g1, · · · , gN ]T and h = [h1, · · · , hN ]T are the

channel coefficient vectors between the BS and the RIS and

between the RIS and the terminal, respectively, while 8 =
diag

([

e−jφ1 , · · · , e−jφN
])

is the diagonal matrix containing

the phase-shifts applied by the elements of the LIS.

It can be noticed that (3) is similar to the equa-

tion of conventional MIMO systems employing precod-

ing/beamforming for transmission. However, differently from

those systems, where precoding/beamforming is carried out

at the transmitter side, here it is carried out over the transmis-

sion medium (i.e., the environment) [15].

The complex channels can be written in polar represen-

tation (i.e., with magnitude and phase) as hn = αne
jθn and

gn = ξne
jψn , therefore, (2) can be re-written as

y =
√
ρ

[

N
∑

n=1

αnξne
j(θn+ψn−φn)

]

s+ w

=
√
ρ

[

N
∑

n=1

αnξne
jδn

]

s+ w, (4)

where the second line is obtained from the assumption that the

LIS only generates discrete phases and consequently, there

is a phase-noise, δn = θn + ψn − φn. The term inside the

square brackets represents the composite channel coefficient

and gives clues that the system diversity gain depends on the

number of LIS’ reflecting elements, N .

Considering the phase-noise, then the instantaneous SNR

at the destination is given by

γ = ρ

∣

∣

∣

∣

∣

N
∑

n=1

αnξne
jδn

∣

∣

∣

∣

∣

2

. (5)

Note that the instantaneous SNR is maximized when

δn = 0, i.e., the channels are correctly estimated, and the LIS

can accurately generate the phases induced by the channels

(meaning that Q → ∞) [51].

Lemma 1: From empirical comparisons between the

normalised histogram of the random variable given by

r =
√
ρ

∣

∣

∣

∣

∣

N
∑

n=1

αnξne
jδn

∣

∣

∣

∣

∣

=
√
ρ

∣

∣

∣

∣

∣

N
∑

n=1

|gn||hn|ejδn
∣

∣

∣

∣

∣

, (6)

and the theoretical PDF of a Gamma random variable, it is

possible to say that the PDF of r can be accurately approxi-

mated by the Gamma PDF with shape and scale parameters

given by κ and θ , respectively as

κ

=
−
(

E
[

γ 2
]

−5E[γ]2
)

+
√

E
[

γ 2
]2−34E

[

γ 2
]

E[γ]2+49E[γ]4

2
(

E
[

γ 2
]

− E [γ ]2
) >0,

(7)

θ

=

√

√

√

√

−
√

E
[

γ 2
]2+14E

[

γ 2
]

E[γ]2+E[γ]4+2E
[

γ 2
]

+2E[γ]2

6E [γ ]
>0,

(8)

where E [γ ] and E
[

γ 2
]

are given by (9) and (10), as shown

at the bottom of the next page, respectively.

Some examples of this comparison are shown in Section IV.

The parameters κ and θ are found following the rationale pre-

sented in Appendix A. Therefore, the PDF of γ can be found

following the standard transformation of random variables,

γ = r2, and is defined as

fγ (γ ) =
1

2Ŵ(κ)θκ
γ

(

κ−2
2

)

e−
√
γ

θ , γ ≥ 0. (11)

In its turn, the CDF of the SNR random variable, γ ,

is defined as

Fγ (γ ) =
∫ γ

0

fγ (x)dx = 1 −
Ŵ
(

κ,
√
γ

θ

)

Ŵ(κ)
, γ ≥ 0, (12)

where Ŵ(.) is the Euler gamma function while Ŵ(., .) is the

upper incomplete gamma function. The integral result is

obtained by directly applying (Eq. 2.33.10, [52]).

From (9), it is clear that the diversity gain of the

LIS-assisted system can be calculated as

GLIS = βgβhA1, (13)

which can be improved by increasing the number of LIS’

reflecting elements, N , and/or the number of quantization

levels, Q.
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Remark 1: When Q → ∞, i.e., the LIS is able to generate

any phase-shift, the phase-noise is zero, δn = 0,∀n, and
consequently, (9) and (10) can be simplified to (14) and (15),

as shown at the bottom of the next page, respectively, and

whose derivations are presented in Appendix B.

A. EXACT ERGODIC SPECTRAL EFFICIENCY

The ergodic spectral efficiency of the LIS-assisted system is

defined as

C = E
[

log2 (1 + γ )
]

=
∫ ∞

0

log2 (1 + γ ) fγ (γ )dγ, (16)

whose exact closed-form expression obtained through an

integral solver [53] is given by (17), as shown at the bottom

of the next page. Here, pFq (a1, · · · , ap; b1, · · · , bq; z
)

is

the generalized hypergeometric function [54] and 9(n)(z) is

the nth derivative of the digamma function, also known as the

polygamma function [55].

Remark 2: In high SNR regime, the ergodic spectral effi-

ciency in (17) can be approximated as in (18), as shown at

the bottom of the next page.

Remark 3: When ρ → ∞, then (17) becomes

lim
ρ→∞

C =
4 log(θ)

log(4)
. (19)

Remark 4: In high SNR and large N regimes, the ergodic

spectral efficiency can be approximated as

Chigh-SNR, N≈
2

θ2(κ − 1)(κ − 2) log(4)
+
4(log(θ )+ψ (0)(κ))

log(4)
.

(20)

The proofs for Remarks 2, 3 and 4 are presented in Appen-

dices C, D and E, respectively.

Remark 5: For large N , the ergodic spectral efficiency can

be approximated as

CN ≈
2

log(4)

[

1

θ2(κ − 1)(κ − 2)
+ 2ψ (0)(κ)

]

. (21)

This remark is obtained after comparing (19) and (20). This

way, we obtain the improvement achieved by increasing the

value of N because (19) corresponds to the case where the

SNR goes to infinity and (20) corresponds to the case when

both SNR and N go to infinity.

Other alternative to find the expectation in (16) is using the

PDF of the random variable given by Cinst. = log2(1 + γ ),

i.e., the instantaneous spectral efficiency, which can be found

after applying standard transformation of random variables

to (11) giving rise to

fCinst. (c) =
log (2)

Ŵ(κ)θκ
2c−1(2c − 1)

(

κ−2
2

)

e−
√
2c−1
θ , c ≥ 0.

(22)

Then, the CDF of the instantaneous spectral capacity random

variable is expressed by

FCinst. (c) =
∫ c

0

fCinst. (x) dx = 1 −
Ŵ
(

κ,
√
2c−1
θ

)

Ŵ(κ)
, (23)

whose integral is also found by directly applying

(Eq. 2.33.10, [52]).

B. UPPER AND LOWER-BOUNDS FOR THE ERGODIC

SPECTRAL EFFICIENCY

As it can be seen, (17) is quite complex. Therefore, here we

aim at finding simpler but yet tight bounds for the ergodic

spectral efficiency of the LIS-assisted system. According to

Jensen’s inequality [48], it holds that

E
[

log2 (1 + γ )
]

≤ log2 (1 + E [γ ]) . (24)

Then, by using E [γ ], which is given by (9), a possible

upper-bound for the ergodic capacity of the LIS-assisted

system can be given by (25), as shown at the bottom of the

next page. As it is tight for high SNR scenarios, it can be

assumed as a good approximation. Additionally, it is seen that

the ergodic spectral efficiency is an increasing function of ρ,

N andQ. By looking at (25), we see thatQ can be canceled out

due to the fact that sin(π/Q) ≈ π/Q when Q is large enough

(e.g., Q ≥ 16). Therefore, when Q is sufficiently large,

further increasing the number of quantization levels, Q, does

not have any noticeable impact on the systems’ performance.

This is also evidenced by the results shown in Figures 5 and 6.

Instead, whenQ is large enough, the upper-performance limit

improvement poses a better than the linear relationship with

N , which is better seen in (28), as shown at the bottom of page

7.

On the other hand, again according to Jensen’s inequal-

ity [48], it holds that

E
[

log2 (1 + γ )
]

≥ log2

(

1 +
[

E

[

1

γ

]]−1
)

. (26)

E[γ]=E

[

r2
]

= ρβgβhA1 = ρβgβhN

[

1 +
1

16
(N − 1)Q2 sin2

(

π

Q

)]

. (9)

E

[

γ 2
]

=E

[

r4
]

=
(

ρβgβh
)2
A2 =

(

ρβgβh
)2 N

256






512(N+1)+
32(N−1)Q2

π2
+
(N−1)Q2

[

π sin2
(

π
Q

)(

(N−2)Q
(

π(N−3)Q sin2
(

π
Q

)

+16 sin
(

2π
Q

))

+16π(4N+1)
)

−32 cos
(

4π
Q

)]

π2







.

(10)
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Consequently, by using a tight approximation of E [1/γ ]

(see Appendix F), a lower-bound for the ergodic capacity of

the LIS-assisted system can be derived and given as (27), as

shown at the bottom of the page.

Like the SNR, the spectral efficiency is also maximized

when Q → ∞, meaning that the LIS has infinite phase-shift

precision and can generate any phase-shift. In this case,

the maximum ergodic spectral efficiency with the upper and

lower bounds are given by (28) and (29), as shown at the

bottom of the next page, respectively.

C. IMPACT OF BIT QUANTIZATION IN THE SPECTRAL

EFFICIENCY

In practical communication systems, the set of phase-shifts is

limited by the number of quantization bits of the LIS, influ-

encing the achieved spectral efficiency directly. Therefore,

in this section, we propose a criterion for selecting the number

of quantization levels Q = 2b so that the ergodic spectral

efficiency is optimized up to a specific spectral degradation

in bits/s/Hz. In order to quantify this degradation, we define

the error ǫ brought about by a limited number of phase-shifts

as

Cmax.
upper − Cupper ≤ ǫ. (30)

Remark 6: From (30), we see that when the number of

LIS elements tends to ∞, then the ergodic spectral efficiency

degradation, ǫ, becomes

lim
N→∞

ǫ = log2

(

π2

Q2 sin2 (π/Q)

)

bits/s/Hz. (31)

Remark 7: From (30), we see that when ρ → ∞, then the

ergodic spectral efficiency degradation, ǫ, is given by

lim
ρ→∞

ǫ = log2

(

16 + (N − 1)π2

16 + (N − 1)Q2 sin2 (π/Q)

)

bits/s/Hz.

(32)

Proposition 1: In order to guarantee an suitable ergodic

spectral efficiency degradation of ǫ bits/s/Hz compared to an

LIS with full-resolution phase-shift, the number of quantiza-

tion levels, Q, of the LIS should satisfy

Q sin(π/Q)≥

√

16
(

2−ǫ−1
)

Nρβgβh(N − 1)
+
16
(

2−ǫ−1
)

N − 1
+ π22−ǫ .

(33)

Remark 8: From (33), we see that when N → ∞, the num-

ber of quantization levels, Q, should satisfy

lim
N→∞

Q sin (π/Q) ≥
√
2−ǫπ. (34)

lim
Q→∞

E [γ ] = ρβgβhN

[

1 +
(N − 1)π2

16

]

. (14)

lim
Q→∞

E

[

γ 2
]

=
(

ρβgβh
)2 N

256

[

256 + 768N + π4(N − 3)(N − 2)(N − 1) + 48π2(2N − 1)(N − 1)
]

. (15)

C =
2 2F3

(

1, 1; 2, 3
2

− κ
2
, 2 − κ

2
; − 1

4θ2

)

θ2(κ − 1)(κ − 2) log(4)
−

2π sec
(

πκ
2

)

1F2

(

κ
2

+ 1
2
; 3
2
, κ
2

+ 3
2
; − 1

4θ2

)

(κ + 1)θκ+1Ŵ(κ) log(4)

+
2π csc

(

πκ
2

)

1F2

(

κ
2
; 1
2
, κ
2

+ 1; − 1
4θ2

)

κθκŴ(κ) log(4)
+

4(log(θ) + ψ (0)(κ))

log(4)
. (17)

Chigh-SNR ≈
2

θ2(κ − 1)(κ − 2) log(4)
−

2π sec
(

πκ
2

)

(κ + 1)θκ+1Ŵ(κ) log(4)
+

2π csc
(

πκ
2

)

κθκŴ(κ) log(4)
+

4(log(θ) + ψ (0)(κ))

log(4)
. (18)

C ≤ Cupper = log2

(

1 + Nρβgβh

[

1 +
1

16
(N − 1)Q2 sin2

(

π

Q

)])

. (25)

C ≥ Clower

≈ log2

(

1 +
E [γ ]3

E
[

γ 2
]

)

= log2






1+

256N 2ρβgβh

(

1
16
(N − 1)Q2 sin2

(

π
Q

)

+1
)3

32(N−1)Q2

π2 +
(N−1)Q2

(

π sin2
(

π
Q

)(

(N−2)Q
(

π (N−3)Q sin2
(

π
Q

)

+16 sin
(

2π
Q

))

+16π(4N+1)
)

−32 cos
(

4π
Q

))

π2 + 512(N + 1)






. (27)
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Remark 9: From (33) we see that when ǫ → ∞, then the

number of quantization levels, Q, should satisfy

lim
ǫ→∞

Q sin (π/Q) ≤ π. (35)

After analyzing Remark 9, we notice that the first term

in (35) is equal toπ onlywhenQ → ∞. Therefore, in order to

have no degradation at all, an infinite number of quantization

levels is necessary, which demonstrates the correctness of

Remark 9.

Summing up, these results can be used to select the pre-

cision necessary for an LIS-assisted system to achieve a

pre-defined and acceptable degradation in its ergodic spectral

efficiency.

D. OUTAGE PROBABILITY

Based on the knowledge of the approximate PDF of the

instantaneous spectral efficiency given by (22), it is possible

to find its CDF and derive analytical expressions for the

outage probability. The outage probability is defined as the

probability that the achieved instantaneous spectral efficiency

falls below a given threshold Cout. and can be written as

Pout. = Pr{Cinst. < Cout.}

=
∫ Cout.

0

fCinst. (x) dx

= 1 −
Ŵ

(

κ,

√
2Cout.−1
θ

)

Ŵ(κ)
, (36)

whose proof is provided in Appendix G. From (36), it is

possible to observe that, for a fixed outage capacity, Cout. the

outage probability, Pout., decreases as N and/or Q increases,

i.e., the outage performance improves by addingmore reflect-

ing elements and/or increasing the number of quantization

bits to the LIS. Conversely, for a constant N , the outage

performance decreases as Cout. increases.

Besides that way, the outage probability can also be defined

with regard to the instantaneous SNR. In this case,it is the

probability that the instantaneous SNR falls below a given

SNR threshold γout.. So, the outage probability is given by

Pout. = Pr{γ < γout.}

=
∫ γout.

0

fγ (x) dx

=
1

θκ/2



1 −
Ŵ
(

κ,
√
γout.
θ

)

Ŵ(κ)



 , (37)

and found by using (94) in Appendix G. It can also be

expressed as

Pout. =
γ
κ
2

κθ
3κ
2

1F1

(

κ, κ + 1,−
√
γ

θ

)

. (38)

Remark 10: In high SNR regime, the outage probability

can be approximated as

P
high-SNR
out. =

γ
κ
2

κθ
3κ
2

. (39)

The proofs of (38) and (39) are provided in Appendix H.

E. AVERAGE SYMBOL ERROR RATE

According to [56], the average SER is defined as the expec-

tation of conditional error probability, Pe|γ , given the dis-

tribution of the SNR, γ . For a wide variety of modulation

schemes, Pe|γ is defined as Pe|γ = aQ
(√

bγ
)

, where a and

b are constant modulation dependent parameters and Q is

the Gaussian Q-function defined as
∫∞
x e−t

2/2/
√
2πdt [56].

Therefore, the average SER is derived as

E

[

aQ
(

√

bγ
)]

= a

∫ ∞

0

Q
(

√

bγ
)

fγ (γ )dγ, (40)

and can be analytically expressed by (41), as shown at the

bottom of the next page, whose proof is provided in

Appendix I. Note that, a and b are constants that depend

on the modulation scheme. For instance, the average SER of

the binary phase shift keying (BPSK) modulation is obtained

when a = 1 and b = 2, while that for the M -ary Pulse

Amplitude Modulation (M -PAM), a = 2(M − 1)/M and

b = 6/(M2 − 1). In the same way, a = b = 2 are applied for

the average SER of the quadrature phase shift keying (QPSK)

modulation. Finally, a = 2 and b = 2 sin2 (π/M ) for M -ary

phase shift keying (M-PSK) modulation, while a = 4(1 −
1/

√
M ) and b = 3/(M−1) for the average SER of theM -ary

quadrature amplitude modulation (M-QAM), whenM > 4.

Cmax.
upper = lim

Q→∞
Cupper

= lim
Q→∞

log2

(

1 + Nρβgβh

[

1 +
1

16
(N − 1)Q2 sin2

(

π

Q

)])

= log2

(

1 + Nρβgβh

[

1 +
(N − 1)π2

16

])

. (28)

Cmax.
lower = lim

Q→∞
Clower

= log2

(

1 +
N 2ρβgβh

(

π2(N − 1) + 16
)3

16
(

(N − 1)
(

π4
(

N 2 − 5N + 6
)

+ 48π2(2N − 1) + 256
)

+ 512(N + 1)
)

)

. (29)
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Remark 11: In high SNR regime, the average SER can be

approximated as

Phigh-SNRe ≈a2− κ
2 −1b− κ

2 θ−κ





1

Ŵ
(

κ
2

+ 1
) −

κ
√
2bθŴ

(

κ+3
2

)



,

(42)

whose proof is provided in Appendix J.

After analyzing (42), it is possible to observe that the first

term inside the parentheses is the dominant one. Otherwise,

the average SER would be a negative number since a, b, and

θ are values greater than zero. This direct insight results in

the following remark.

Remark 12: The average SER decreases when κ and/or b

increases and when a and/or θ decreases.

As shown in Section IV, this remark demonstrates that

the average SER decreases as the transmission power, ρ,

the number of reflecting elements, N , and/or the number of

quantization levels, Q, increase. On the other hand, the aver-

age SER increases as the modulation order increases.

F. DIVERSITY ORDER

The diversity order is a fundamental parameter of diversity-

based systems. It measures the number of independent paths

over which the data is received. The diversity order, D, is for-

mally defined as the negative slope of the average SER versus

the average SNR curve in a log-log scale and calculated

as by [57]

D = lim
ρ−∞

−
logPe

log ρ
. (43)

From the definition above, we can see that the diversity order

is a high-SNR concept.

Remark 13: The diversity order of the LIS-assisted system

is obtained as

D =
5A2

1 +
√

49A4
1 − 34A2

1A2 + A2
2 − A2

4
(

A2 − A2
1

) . (44)

The parameters and proof of (44) are detailed in Appendix K.

From them, we realize that the diversity order increases

with N .

Remark 14: Despite both source and destination being

equipped with a single antenna, the achievable diversity

order grows with the number of LIS reflecting elements.

It is worth noting that each reflecting element modifies the

incident waves’ phases to add at the destination coherently.

A direct SISO path between source and destination would

only allow for a unitary diversity order, once diversity gains

can only be obtained by employing multiple antennas at

transmission and/or receiving sides. However, LIS employ-

ment provides a substantial diversity order to the communi-

cation system just by adding passive reflecting elements with

adjustable phases to the system.

G. POWER-SCALING LAW

This subsection analyses the power-scaling law of the ergodic

spectral efficiency regarding the number of reflecting ele-

ments in an LIS-assisted system in which N → ∞.

If N grows without limit and we consider that the transmit

power, ρ, can be scaled down with N 2 according ρ = P/N 2

and P is fixed, then (25) and (28) become, respectively

Cupper = log2



1+N
P

N 2
βgβh



1+
(N − 1)Q2 sin2

(

π
Q

)

16









→
PβgβhQ

2 sin2
(

π
Q

)

16
,N → ∞ (45)

and

Cmax.
upper = log2

(

1 + N
P

N 2
βgβh

[

1 +
(N − 1)π2

16

])

→
Pβgβhπ

2

16
,N → ∞. (46)

These results confirm that with many reflecting elements

and perfect channel information, the transmit power can be

reduced proportionally to 1/N 2 without compromising the

spectral efficiency.

Remark 15: From (25) and (45), it is possible to see that if

we decrease the transmit power proportionally to 1/Nα , with

α > 2, then the SNR goes to zero as N → ∞. When α < 2,

the SNR grows without bound as N → ∞. This means that

1/N 2 (i.e., α = 2) is the fastest rate at which we can decrease

the transmit power and still maintain a fixed rate.

The Remark 15 shows that as N grows without bound,

the transmit power can be reduced proportionally to

1/N 2. The transmit power reduction is significant mainly

to power-constrained devices such as the Internet of

Things (IoT) devices [58], [59].

IV. SIMULATION RESULTS

This section presents numerical results to validate the derived

expressions against Monte Carlo simulations obtained from

106 realizations. The setup in Figure 2 shows the geometric

placement adopted for the BS, LIS and UE, where rg and rh
are the distances between source (i.e., the BS) and LIS, and

between LIS and destination (i.e., the UE), respectively. Both

of them are set to 25 m.

Pe = E

[

aQ
(

√

bγ
)]

= a2− κ
2 −1b− κ

2 θ−κ





2F2

(

κ
2

+ 1
2
, κ
2
; 1
2
, κ
2

+ 1; 1
2bθ2

)

Ŵ
(

κ
2

+ 1
) −

κ 2F2

(

κ
2

+ 1
2
, κ
2

+ 1; 3
2
, κ
2

+ 3
2
; 1
2bθ2

)

√
2bθŴ

(

κ+3
2

)



 .

(41)
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FIGURE 2. Adopted simulation setup.

We assume that the large-scale fading coefficients aremod-

eled as βg = zg/(rg)
ν and βh = zh/(rh)

ν , in which zg and

zh are log-normal random variables with standard deviation

σshadow, while rg is the distance between the source and the

LIS and rh is the distance between the LIS and the destina-

tion. ν is the path-loss exponent. For all simulation results,

we adopt the typical suburban area parameters σshadow =
8 dB and ν = 3.67.

FIGURE 3. Comparison of the approximated PDF for the instantaneous
sum-capacity.

Figure 3 presents some comparisons of the normalized

histogram of the random variable given by the instantaneous

SNR (see (5)) against the theoretical PDF given by (11).

As can be noticed, even for a small number of reflecting

elements and quantization bits, the approximation is quite

tight.

Figure 4 shows the Kullback-Leibler Divergence [60]

between the approximated SNR PDF and the real distribution

of the SNR random variable over the variation of the number

of quantization bits and for several values of LIS elements,N .

In general, this is the most known technique to evaluate an

approximation in statistics. As can be seen, from b = 2

bits onward, the divergence remains constant regardless of

the number of elements. Additionally, the figure also shows

that as the number of elements increases, the divergence

decreases. These results reveal that only the number of LIS

reflecting elements can take the approximated PDF closer

to the real one and that the number of quantization bits has

a minimal impact on it. It is aligned to the theory since an

inspection of (6) reveals that only the number of reflecting

elements impact the summation in that equation.

FIGURE 4. Kullback-Leibler divergence between the approximated SNR
PDF and the real distribution.

From Figure 5, which shows the spectral efficiency as a

function of N for b ∈ {1, 4, 10}, we can see that the accuracy
of the approximation becomes better not only as N increases

but also when more bits are dedicated to phase quantization.

For comparison, we also present the simulated capacity curve

of a SISO system without the assistance of an LIS. When

b = 1, the aid provided by an LIS becomes advantageous for

N > 80. Otherwise, When b > 1, an LIS with N > 50 is

enough for the LIS-assisted system’s behavior to outperform

that of the system without an LIS.

We also verify the performance degradation when b varies.

As shown in Figure 6, the spectral efficiency decreases

when b is small. This is evident, especially for b = 1 and

b = 2. Therefore, the performance difference between the

spectral efficiency obtained when using perfect phase shifts

and quantized phase shifts decreases as b increases. More-

over, the degradation also tends to decrease as more reflective
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FIGURE 5. Spectral efficiency as a function of N for (a) b = 1 (b) b = 4 (c) b = 10.

FIGURE 6. Spectral efficiency as a function of b for different values of N .

elements are added to the LIS. That is, for an LIS with many

elements, a few bits (as few as 4 bits) are sufficient for

quantization with negligible performance degradation, which

is in accordance (28).

Regarding the distance between the source (i.e., the BS)

and the LIS, we compare the schemes’ spectral efficiencies

with N = 25, 50, 100, 250, 500. Figure 7 shows the results

obtained for b = 8. We can see that the performance

deteriorates as the distance increases. This phenomenon was

expected since the LIS is composed of only passive elements

and there is no direct path between the source and the user.

However, as alreadymentioned, it improves when the number

of elements on LIS increases.

In its turn, Figure 8 shows how the spectral efficiency

behaves as ρ = P/Nα varies for α = 3/2, 2, 5/2. We con-

sider P = 100 [dB] and b ∈ {1, 2, 4, 8, 10}. As expected

FIGURE 7. Spectral efficiency as a function of the distance between
source and LIS, considering b = 8.

and stated in Remark 15, for α = 2 and as N increases,

the capacity becomes constant no matter the number of

reflecting elements. However, when α = 3/2, the capacity

grows logarithmically fast with N when N → ∞ and tends

to 0 when α = 5/2 and N → ∞. These results confirm

that the transmit power can be reduced proportionally to N .

We can also see that, although the capacity increases with the

number of quantization bits, b, the performances for b = 4,

b = 8, and b = 10 are very close.

Figure 9 shows the required transmit power by the source

needed to achieve fixed capacities of 1 and 2 bits/s/Hz,

respectively. As expected and predicted by Remark 15,

the transmit power can be reduced by approximately 6 [dB]

by doubling the number of reflecting elements for both

fixed capacities. We can also confirm that, in general,
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FIGURE 8. Power scaling law for different α values.

FIGURE 9. Required power for C = 1 bit/s/Hz and C = 2 bits/s/Hz.

the LIS-assisted system outperforms the SISO system with-

out LIS when N is approximately greater than 80, regardless

of the number of quantization bits.

Figure 10 compares the average SNR as a function of the

transmitted power obtained from the simulations, (9), and

the SISO system without LIS. We consider ρ = 50 dB,

N ∈ {25, 100, 200} and b ∈ {1, 4, 8}. As can be confirmed,

the relationship between the two parameters is linear, i.e.,

between the average SNR and the transmitted power. Addi-

tionally, we can notice that, for a given ρ, the average SNR

improves as N increases. It is also worth mentioning that

the LIS-assisted system outperforms the conventional one the

FIGURE 10. Average SNR in function of transmission power for b = 1,
b = 4 and b = 8.

higher the number of reflecting elements N is. Moreover,

the influence of the number of quantization bits is insignif-

icant, as long as b > 1.

Figures 11 and 12 show the symbol error rate behavior for

BPSK and QPSK, and 16-QAM, and 64-QAM modulation

schemes considering N = 25, respectively. As expected,

the modulations present a decreasing level of robustness as

the number of symbols increases. The most important thing

to note here is the gap between the curves for 1, 2, and 4 bits.

It gets to be almost 5 dB when the SNR is high. Although this

gap exists, it is less pronounced when more bits are dedicated

FIGURE 11. Symbol Error Rate for BPSK and QPSK modulations for
N = 25.
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FIGURE 12. Symbol Error Rate for 16-QAM and 64-QAM modulations for
N = 25.

to phase quantization, and b = 4 is enough to guarantee a

good performance.

For computational simplicity, in Figure 13, we present

the simulated and analytical outage probabilities only for

N = 100. We notice that the probability of achieving higher

capacities increases with the number of quantization bits,

b. Moreover, when considering different b values, we can

confirm the previous insight; b = 4 is enough for a good

phase quantization.

FIGURE 13. Outage probability for N = 100 and b ∈ {1, 2, 4, 8, 10}.

Finally, Figure 14 shows the outage probability as we

vary the number of quantization bits. For this simulation,

FIGURE 14. Outage probability versus number of quantization bits, b, for
different values of N .

we assume ρ equal to 80 [dB] and the capacity of 1 bit/s/Hz.

By analyzing the results, it is possible to notice that the

outage probability decreases as the number of quantization

bits, b, increases and asymptotically approaches the lower

bound given by an optimal LIS with perfect phase shifts, i.e.,

an infinite number of bits used to represent the phases. For

all the three setups, N = 2, 4, and 8, the outage probability

reaches its largest value when b = 2.WhenN = 2, the outage

probability approaches the perfect phase bound as long as

b > 3. We also notice that the gap between the curves gets

larger as N increases. However, it reduces as the number of

quantization bits, b, increases. Therefore, we conclude that

the phase quantization errors do not significantly impact the

outage probability performance as long as the number of bits

is made large enough, which is an encouraging finding for the

deployment of LIS-assisted systems.

V. CONCLUSION AND FUTURE WORK

In this article, we have done an in-depth analysis of a prac-

tical LIS-assisted SISO system. Since quantization errors are

unavoidable, we have evaluated the influence of bits number

dedicated to the phase quantization on spectral efficiency,

symbol error rate, and outage probability. We have compared

such a system performance with the conventional one without

LIS through accurate closed-form expressions derived for

each of these metrics. We have extended our analysis to

power scaling law and the power required to achieve specific

capacity. Not only is the influence of b verified, but also that

of the number of LIS elements.

We can conclude that the system’s performance improves

as the numbers of LIS elements and bits increase. With

approximately fifty reflecting elements and four dedicated

bits for phase quantization, the LIS-assisted system outper-

forms the conventional system performance without a LIS.
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Our study assumed that (i) there is no direct link between

S and D, and (ii) the intermediate channels (i.e., S to LIS

and LIS to D) are independent, flat, and Rayleigh distributed.

As future work, we intend to relax those assumptions and

study the performance of LIS-assisted systems with discrete

phase sets in correlated fading channels with the presence and

absence of direct links between the involved entities (i.e., S,

LIS, and D).

APPENDIX A

Tofind the parameters κ and θ for the approximated PDF of λ,

we first need to define the following Lemmas.

Lemma 2:

∣

∣

∣

∣

∣

N
∑

n=1

zne
jθn

∣

∣

∣

∣

∣

2

=
N
∑

n=1

z2n + 2

N
∑

m=1

N
∑

n=m+1

zmzn cos(θm − θn).

(47)

Proof: This identity is straightforwardly found by

expanding the summation terms on its left side.

Lemma 3: If X ∼ CN (0M , σ
2
X IM ), then Y = |X | is a

Rayleigh random variable with PDF given by

fY (y) =
2y

σ 2
X

e
− y2

σ2
X , y ≥ 0. (48)

Proof: The proof for this Lemma is given in [61].

Lemma 4: If Y is a Rayleigh random variable with PDF

defined by (48), then, its 4 first moments are given by

E [Y ] =
∫ ∞

0

yfY (y)dy =
σX

√
π

2
, (49)

E

[

Y 2
]

=
∫ ∞

0

y2fY (y)dy = σ 2
X , (50)

E

[

Y 3
]

=
∫ ∞

0

y3fY (y)dy =
3σ 3

X

√
π

4
, (51)

E

[

Y 4
]

=
∫ ∞

0

y4fY (y)dy = 2σ 4
X . (52)

Lemma 5: If X is a uniform random variable with PDF

given by

fX (x) =

{ a

2π
, −

π

a
≤ x ≤

π

a
,

0, otherwise,
(53)

then Y = −X has the same PDF as X, which was defined

in (53).

Proof: This can be straightforwardly proved by noticing

that the PDF of X is symmetrical around 0.

Lemma 6: If θm and θn are independent and identi-

cally distributed uniform random variables with PDF given

by (53), then Y = θm + θn has the following PDF

fY (y) =



















a

2π

(

1 +
a

2π
y
)

, −
2π

a
≤ y ≤ 0,

a

2π

(

1 −
a

2π
y
)

, 0 < y ≤
2π

a
,

0, otherwise.

(54)

Proof: From the theory, we know that the sum of two

random variables equals the convolution of fθm (θm) and fθn (θn)

is

fY (y) =
∫ ∞

−∞
fθm (y− θn)fθn (θn)dθn. (55)

Therefore, fY (y) is defined as

fY (y) =































∫ π
a +y

− π
a

a2

4π2
dθn, −

2π

a
≤ y < 0,

∫ π
a

− π
a +y

βg

4π2
dθn, 0 ≤ y ≤

2π

a
,

0, otherwise,

(56)

which concludes the proof.

Lemma 7: If the PDF of the sum of two independent and

identically distributed uniform random variables is given

by (54), then

E [cos(θm − θn)] =
a2 sin2(π

a
)

π2
. (57)

Proof: By using Lemma 5, we can rewrite (57) as

E [cos(θm + θn)], then applying Lemma 6 we have

E [cos(θm + θn)] = E [cos(y)]

=
∫ 0

− 2π
a

cos(y)
a

2π

(

1 +
a

2π
y
)

dy

+
∫ 0

− 2π
a

cos(y)
a

2π

(

1 −
a

2π
y
)

dy. (58)

Solving the two integrals in (58) concludes the proof.

Lemma 8: If the PDF of the sum of two independent and

identically distributed uniform random variables is given

by (54), then

E

[

cos2(θm − θn)
]

=
8π2 + a2 − a2 cos2( 4π

a
)

16π2
. (59)

Proof: By using Lemma 5 we can rewrite (57) as

E
[

cos2(θm + θn)
]

, then applying Lemma 6 we have

E

[

cos2(θm + θn)
]

= E

[

cos2(y)
]

=
∫ 0

− 2π
a

cos2(y)
a

2π

(

1 +
a

2π
y
)

dy

+
∫ 0

− 2π
a

cos2(y)
a

2π

(

1 −
a

2π
y
)

dy.

(60)

Solving the two integrals in (60) concludes the proof.

Lemma 9: If X is a uniform random variable with PDF

given by (53), then the PDF of Y = 2X is given by

fY (y) =
a

4π
,−

2π

a
≤ y ≤

2π

a
. (61)

Proof: This is proved by using the standard transforma-

tion of random variables.
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Lemma 10: If θl , θm and θn are independent and identi-

cally distributed uniform random variables with PDF given

by (53), then Y = 2θl − (θm + θn) has the following PDF

fY (y) =



























































a

2π
+

a2y

4π2
+

a3y2

32π3
, −

4π

a
≤ y ≤ −

2π

a
,

a

4π
−

a3y2

32π3
, −

2π

a
< y ≤ 0,

a

4π
−

a3y2

32π3
, 0 < y ≤

2π

a
,

a

2π
−

a2y

4π2
+

a3y2

32π3
,

2π

a
< y ≤

4π

a
,

0, otherwise.

(62)

Proof: We start by remembering that we know the

PDF of W = 2θl and of Z = θm + θn, which are given

by (61) and (54), respectively. Next by applying Lemma 5,

we can re-write Y as Y = Z + W , which is the sum of two

independent random variables. Therefore, the PDF of Y is the

convolution between the PDFs ofW and Z , which is defined

as

fY (y) =
∫ ∞

−∞
fW (y− z)fZ (z)dz. (63)

Therefore, fY (y) is defined as

fY (y)

=































































































































∫ 2π
a +y

− 2π
a

a2

8π2

(

1 +
a

2π
z
)

dz,

−
4π

a
≤ y < −

2π

a
,

∫ 2π
a +y

0

a2

8π2

(

1−
a

2π
z
)

dz+
∫ π

a

− π
a +y

a2

8π2

(

1+
a

2π
z
)

dz,

−
2π

a
≤ y < 0,

∫ 0

− 2π
a +y

a2

8π2

(

1+
a

2π
z
)

dz+
∫ π

a

− π
a +y

a2

8π2

(

1−
a

2π
z
)

dz,

0 ≤ y <
2π

a
,

∫ 2π
a

− 2π
a +y

a2

8π2

(

1 −
a

2π
z
)

dz,

2π

a
≤ y ≤

4π

a
,

0, otherwise,

(64)

which concludes the proof.

Lemma 11: If the PDF of the sum of three independent

random variables, Y = 2θl − (θm + θn), is given by (62),

then

E [cos(2θl − (θm + θn))] =
a3 cos(π

a
) sin3(π

a
)

π3
. (65)

Proof: By using Lemma 10 we have

E [cos(2θl − (θm + θn))]

= E [cos(y)]

=
∫ − 2π

a

− 4π
a

cos(y)

[

a

2π
+

a2y

4π2
+

a3y2

32π3

]

dy

+
∫ 2π

a

− 2π
a

cos(y)

[

a

4π
−

a3y2

32π3

]

dy

+
∫ 4π

a

2π
a

cos(y)

[

a

2π
−

a2y

4π2
+

a3y2

32π3

]

dy. (66)

Solving the three integrals in (66) concludes the proof.

Lemma 12: If θl , θm, and θn are independent and identi-

cally distributed uniform random variables with PDF given

by (53), then

E[cos(θl − θm) cos(θl − θn)]=
a2 sin2(π

a
)
[

2π+a sin( 2π
a
)
]

4π3
.

(67)

Proof: We start by applying the trigonometric identity

cos(a) cos(b) = cos(a−b)+cos(a+b)
2

to (68), which then can be

re-written as

E [cos(θl − θm) cos(θl − θn)] =
1

2
E [cos(θn − θm)]

+
1

2
E [cos(2θl − θn − θm)] .

(68)

Next, by applying Lemmas 7 and 11 to (68), we conclude

the proof.

A. APPROXIMATED PDF OF THE INSTANTANEOUS SNR

Let the random variable Z = r , where r is defined in (6),

therefore, the PDF of Z can be accurately approximated by a

Gamma distribution with parameters κ and θ , defined by (7)

and (8), respectively. This is empirically proven by comparing

the normalized histogram of Z against the theoretical PDF of

a Gamma random variable, Y , with the parameters defined

earlier.

In order to approximate Z as a Gamma random vari-

able, Y , we have to find the parameters shape and scale

(i.e., κ and θ ) based on statistical information of Z . Therefore,

we approximate Z as a Gamma random variable, Y , by using

two different moments of Y and then assuming that E
[

Y 2
]

=
E
[

Z2
]

and E
[

Y 4
]

= E
[

Z4
]

.

Those two moments of the Gamma distribution Y are

defined as

E

[

Y 2
]

= κ(κ + 1)θ2, (69)

and

E

[

Y 4
]

= κ(κ + 1)(κ + 2)(κ + 3)θ4. (70)

Based on (69), the assumption that E
[

Y 2
]

= E
[

Z2
]

and

then isolating θ we find

θ =

√

E
[

Z2
]

κ(κ + 1)
. (71)
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Next, plugging (71) back into (70) and assuming that

E
[

Y 4
]

= E
[

Z4
]

, we find κ as

(

E

[

Z4
]

−E

[

Z2
]2
)

κ2+
(

E

[

Z4
]

−5E
[

Z2
]2
)

κ−6E
[

Z2
]2

=0,

(72)

which is a quadratic equation with the following two roots

κ0

=
−
(

E
[

Z4
]

−5E
[

Z2
]2
)

+
√

E
[

Z4
]2−34E

[

Z4
]

E
[

Z2
]2+49E

[

Z2
]4

2
(

E
[

Z4
]

−E
[

Z2
]2
) ,

(73)

κ1

=
−
(

E
[

Z4
]

−5E
[

Z2
]2
)

−
√

E
[

Z4
]2−34E

[

Z4
]

E
[

Z2
]2+49E

[

Z2
]4

2
(

E
[

Z4
]

−E
[

Z2
]2
) ,

(74)

where out of the two roots, only is useful, i.e., only one root

has a positive value. Since κ ought to be a real and positive

number, we assume that the value within the square root is a

positive one. Next, assuming that 5E
[

Z2
]2 ≥ E

[

Z4
]

, then

only κ0 results in a positive value.

Next, in order to find the moment E
[

Z2
]

, we first expand

E
[

Z2
]

as

E

[

Z2
]

= E [γ ]

=E



ρ

∣

∣

∣

∣

∣

N
∑

n=1

|hn||gn|ejδn
∣

∣

∣

∣

∣

2




= E



ρ

N
∑

n=1

d2n + 2ρ

N
∑

m=1

N
∑

n=m+1

dmdn cos(δm − δn)



,

(75)

where dk = |hk ||gk | and the last line is found by applying

Lemma 2. Thus, using the fact that |hn|, |gn|, and δn, ∀n are

mutually independent random variables and that hm and hn,

and gm and gn, ∀m, n are identically distributed, then (75),

can be re-written as

E

[

Z2
]

= ρ
N
∑

n=1

E

[

|hn|2
]

E

[

|gn|2
]

+ 2ρ

N
∑

m=1

N
∑

n=m+1

E [|hm|]2 E [|gm|]2 E [cos(δm−δn)].

(76)

Then, by applying Lemmas 4 and 7 to (76), we find (9).

Next, in order to find the moment E
[

Z4
]

, we initially

expand it as

E

[

Z4
]

= E

[

γ 2
]

= E





(

N
∑

l=1

d2l

)2




+ 4

N
∑

l=1

N
∑

m=1

N
∑

n=m+1

E

[

d2l dmdn cos(δm − δn)
]

+ 4E











N
∑

m=1

N
∑

n=m+1

dmdn cos(δm − δn)





2





,

(77)

where dk = |hk ||gk |. The first term of (77) can be expressed

as

E





(

N
∑

l=1

d2l

)2


 = E





N
∑

n=1

d4n +
N
∑

m=1

N
∑

n=1,n6=m
d2md

2
n





= NE

[

|gm|4
]

E

[

|hm|4
]

+N (N − 1)E
[

|gm|2
]2

E

[

|hm|2
]2

= N (N + 3)
(

βgβh
)2
, (78)

where the last line of (78) is found by applying Lemma 4.

Next, the second term of (77) can be expressed as (79), as

shown at the bottom of the next page, where the last line is

found by applying Lemmas 4 and 7. Then, the third term

of (77) can be expressed as (80), as shown at the bottom

of the next page, where the last line is found after applying

Lemmas 4, 7, 8, and 12. Finally, after plugging (78), (79), and

(80) back into (77) and several simplifications, we find (10).

The proof is concluded by replacing Equations (9) and (10)

into the definitions of κ and θ , given by (73) and (71),

respectively.

APPENDIX B

For the derivation of Remark 1, we need to define the follow-

ing Lemma.

Lemma 13:

lim
x→0

sin (x)

x
= 1. (81)

Proof: We prove Lemma 13 by applying L’Hôpital’s

rule to (81) as shown next

lim
x→0

∂ sin(x)
∂x
∂x
∂x

= lim
x→0

cos(x) = 1. (82)

Lemma 14:

lim
x→∞

(

x sin
(a

x

))n
= an,∀a, n ∈ R. (83)

Proof: We start by re-writing (83) as
(

lim
x→∞

a

a

sin
(

a
x

)

1
x

)n

=

(

lim
x→∞

a
sin
(

a
x

)

a
x

)n

, (84)

where we also used the power rule of limits to re-write it.

Next, we apply the following change of variables θ = a
x
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to (84), resulting in

(

lim
θ→0

a
sin (θ)

θ

)n

= an
(

lim
θ→0

sin (θ)

θ

)n

, (85)

where we used the constant multiple rule of limits to find the

last part. Next, by using Lemma 13, we conclude the proof.

A. DERIVATION OF REMARK 1

The results (14) and (15) are found after expand-

ing (9) and (10), using Lemma 14 and the fact that

limx→∞ cos(1/x) = 1.

APPENDIX C

For the proof of (18) we should notice that when limρ→∞ θ =
∞ then, consequently, limρ→∞ − 1

4θ2
= 0. Therefore,

lim
ρ→∞ 2F3

(

1, 1; 2,
3

2
−
κ

2
, 2 −

κ

2
; −

1

4θ2

)

= 1. (86)

lim
ρ→∞ 1F2

(

κ

2
+

1

2
;
3

2
,
κ

2
+

3

2
; −

1

4θ2

)

= 1. (87)

lim
ρ→∞ 1F2

(

κ

2
;
1

2
,
κ

2
+ 1; −

1

4θ2

)

= 1. (88)

Hence, in high SNR regime (17) can be tightly approxi-

mated as (18), which concludes the proof.

APPENDIX D

The proof of (19) is straightforwardly found by noticing that

the first three terms of (18) tend to 0 when ρ → ∞, since

θ → ∞ when ρ → ∞, which concludes this proof.

APPENDIX E

In high SNR regime, as N → ∞ and κ → ∞, Ŵ(κ) grows

even faster. Therefore,

lim
N→∞

2π sec
(

πκ
2

)

(κ + 1)θκ+1Ŵ(κ) log(4)
= 0. (89)

lim
N→∞

2π csc
(

πκ
2

)

κθκŴ(κ) log(4)
= 0. (90)

4

N
∑

l=1

N
∑

m=1

N
∑

n=m+1

E

[

d2l dmdn cos(δm − δn)
]

= 4

N
∑

m=1

N
∑

n=1,n6=m
E

[

d3mdn cos(δm − δn)
]

+ 4

N
∑

l=1

N
∑

m=1,m6=l

N
∑

n=m+1,n6=l
E

[

d2l dmdn cos(δm − δn)
]

= 4N (N − 1)E
[

|gm|3
]

E

[

|hm|3
]

E [|gm|]E [|hm|]E [cos(δl − δm)]

+ 2N (N − 1)(N − 2)E
[

|gl |2
]

E

[

|hl |2
]

E [|gm|]E [|hm|]E [|gn|]E [|hn|] cos(δm − δn)

=
1

16
N (N − 1)(2N + 5)

(

βgβh
)2
Q2 sin2

(

π

Q

)

. (79)

4E











N
∑

m=1

N
∑

n=m+1

dmdn cos(δm − δn)





2






= 4

N
∑

j=1

N
∑

l=j+1

N
∑

m=1

N
∑

n=m+1

E
[

djdldmdn cos(δj − δl) cos(δm − δn)
]

= 4

N
∑

j=1

N
∑

l=j+1

N
∑

m=1,m=j

N
∑

n=m+1,n=l
E

[

d2j d
2
l cos

2(δj − δl)
]

+ 8

N
∑

l=1

N
∑

m=1,m6=l

N
∑

n=m+1,n6=l
E

[

d2l dmdn cos(δl − δm) cos(δl − δn)
]

+ 4

N
∑

j=1

N
∑

l=1,l 6=j 6=m6=n

N
∑

m=1,l 6=j 6=m6=n

N
∑

n=1,l 6=j 6=m 6=n
E
[

djdldmdn cos(δj − δl) cos(δm − δn)
]

=
N (N−1)

(

βgβh
)2
{

Q2
[

π (N−2) sin2
(

π
Q

)(

π
(

(N−3)Q2 sin2
(

π
Q

)

+32
)

+16Q sin
(

2π
Q

))

−32 cos
(

4π
Q

)]

+32
(

Q2+8π2
)

}

256π2
. (80)
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These two terms tend to 0 faster than the other two terms,

concluding the proof.

APPENDIX F

Here we outline the derivation of Clower in (27). We start by

applying the Taylor series expansion of 1/γ around E [γ ]

[52], the term E [1/γ ] in (26) can be approximated as [62]

E

[

1

γ

]

≈
1

E [γ ]
+

var (γ )

E [γ ]3
=

E
[

γ 2
]

E [γ ]3
. (91)

After replacing E [γ ] and E
[

γ 2
]

in (91) via (9) and (10),

respectively, and then by substituting the resultant expression

into (26), Clower can be approximated as shown in the second

part of (27).

APPENDIX G

Here we describe the derivation of the outage probability

given by (36). Using the PDF of the instantaneous capacity

given by (22), the outage probability can be written as

Pout. = Pr{Cinst. < Cout.}

=
log (2)

Ŵ(κ)θκ

∫ Cout.

0

2u−1(2u − 1)

(

κ−2
2

)

e−
√
2u−1
θ du.

(92)

Next, using the following change of variable x = 2u − 1,

then (92) becomes

Pout. =
1

2Ŵ(κ)θκ

∫ 2Cout.−1

0

x

(

κ−2
2

)

e−
√
x
θ dx. (93)

Finally, using (2.33.10) from [52]

∫

xme−βx
n

dx = −
Ŵ
(

m+1
n
, βxn

)

nβ
m+1
n

, (94)

we find a solution for the integral in (93), which concludes

the proof.

APPENDIX H

For the proofs of (38) and (39), we first to define the following

Lemmas.

Lemma 15: According to (Eq. 8.2.5, [54])

1 −
Ŵ(a, b)

Ŵ(a)
=
γ (a, b)

Ŵ(a)
, (95)

where γ (a, b) is the lower incomplete gamma function.

Lemma 16: According to (Eq. 8.5.1, [54])

γ (a, b) = a−1ba 1F1 (a, a+ 1,−b) . (96)

Lemma 17: According to (07.20.03.0001.01) of [63]

1F1 (a, b, 0) = 1. (97)

Therefore, applying Lemmas 15 and 16, defined above,

to (37) we end up with (38), which concludes the proof. Now,

(39) is found by applying Lemma 17 to (38) and remembering

that limρ→∞ θ = ∞, then limρ→∞ 1/θ = 0.

APPENDIX I

In this Appendix, we derive the average symbol error rate

expression given by (41), but first, we need to establish some

Lemmas.

Lemma 18:

Q(x) =
1

2

[

1 − erf

(

x
√
2

)]

. (98)

This relation is given by (Eq. B.111, [64]).

Lemma 19:

∫ ∞

0

xme−βx
n

dx =
Ŵ
(

m+1
n

)

nβ
m+1
n

. (99)

This relation is given by (Eq. 3.326.2, [52]).

Lemma 20: If erf(.) is the Gauss error function, and a, b,

and c > 0, then the integral
∫∞
0 erf (ax) xbe−cxdx is given

by (100). The integral in (100) is found by using an integral

solver [65].
∫ ∞

0

erf (ax) xbe−cxdx = c−b−1Ŵ(b+ 1)

+
ca−b−2Ŵ

(

b+3
2

)

2F2

(

b
2

+ 1, b
2

+ 3
2
; 3
2
, b
2

+ 2; c2

4a2

)

√
π (b+ 2)

−
a−b−1Ŵ

(

b
2

+ 1
)

2F2

(

b
2

+ 1
2
, b
2

+ 1; 1
2
, b
2

+ 3
2
; c2

4a2

)

√
π(b+ 1)

.

(100)

A. PROOF OF THE AVERAGE SYMBOL ERROR RATE

By using the fact that γ = r2 (see (6)), the expectation of the

conditional symbol error probability given the distribution of

the SNR can be written as

Pe = E

[

aQ
(

√

bγ
)]

= E

[

aQ
(√

br
)]

=
∫ ∞

0

Pe|γ (x)fR(x)dx, (101)

where fR(r) is the PDF of the Gamma distribution, which

tightly approximates the exact PDF of the random variable, r .

By plugging Pe|γ = aQ
(√

bγ
)

and the Gamma PDF back

into (101), the average SER is rewritten as

Pe =
a

Ŵ(κ)θκ

∫ ∞

0

Q
(√

bx
)

xκ−1e−x/θdx. (102)

By using Lemma 18, (102) can be equivalently rewritten as

Pe =
a

Ŵ(κ)θκ

[∫ ∞

0

xκ−1e−x/θdx

−
∫ ∞

0

erf

(

√

b

2
x

)

xκ−1e−x/θdx

]

. (103)

The first integral inside the square brackets of (103) is

found by applying Lemma 19 to it, which results in
∫ ∞

0

xκ−1e−x/θdx = Ŵ(κ)θκ . (104)
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The second integral inside the square brackets of (103) is

found by applying Lemma 20 to it, which results in

∫ ∞

0

erf

(

√

b

2
x

)

xκ−1e−x/θdx

= θκŴ(κ)−
2κ/2b− κ

2Ŵ
(

κ+1
2

)

2F2

(

κ
2

+ 1
2
, κ
2
; 1
2
, κ
2

+ 1; 1
2bθ2

)

√
πκ

+
2
κ
2+

1
2 b− κ

2−
1
2Ŵ
(

κ
2
+1
)

2F2

(

κ
2
+ 1

2
, κ
2
+1; 3

2
, κ
2
+ 3

2
; 1
2bθ2

)

√
πθ(κ + 1)

.

(105)

Finally, by substituting (104) and (105) back into (103),

we conclude the proof.

APPENDIX J

For the proof of (42) we should notice that when limρ→∞ θ =
∞ then, consequently, limρ→∞

1
2θ2

= 0. Therefore,

lim
ρ→∞ 2F2

(

κ

2
+

1

2
,
κ

2
;
1

2
,
κ

2
+ 1;

1

2bθ2

)

= 1. (106)

lim
ρ→∞ 2F2

(

κ

2
+

1

2
,
κ

2
+ 1;

3

2
,
κ

2
+

3

2
;

1

2bθ2

)

= 1. (107)

Hence, in high SNR regime (41) can be tightly approximated

as (42), which concludes the proof.

APPENDIX K

In order to derive the diversity order, we first need to rewrite

(9) and (10) as

E [γ ] = ρβgβhA1, (108)

and

E

[

γ 2
]

=
(

ρβgβh
)2
A2, (109)

respectively, where A1 and A2 do not depend on the average

SNR, ρ. By plugging these two equation back into (7) and (8),

we find

κ =
5A2

1 +
√

49A4
1 − 34A2

1A2 + A2
2 − A2

2
(

A2 − A2
1

) > 0, (110)

which also does not depend on the average SNR, and

θ = ρ
1
2

√

√

√

√

√

βgβh

(

2A2
1 −

√

A4
1 + 14A2

1A2 + A2
2 + 2A2

)

6A1

= ρ
1
2 θ ′ > 0, (111)

which depends on the average SNR. Therefore, in high-SNR

regime, (42) can be written as

P
high-SNR
e ≈ B1ρ

− κ
2 − B2ρ

− (κ+1)
2 , (112)

where

B1 =
a2− (κ+2)

2 b− κ
2 θ

′−κ

Ŵ
(

κ
2

+ 1
) , (113)

and

B2 =
κa2− (κ+3)

2 b− (κ+1)
2 θ

′−(κ+1)

Ŵ
(

κ+3
2

) . (114)

Note that B1 and B2 do not depend on the average SNR,

i.e., they are independent from it. Furthermore, from (112),

we realise that the terms ρ− κ
2 and ρ− (κ+1)

2 contribute with

diversity order of κ
2

and (κ+1)
2

, respectively. Therefore,

the diversity order is calculated as

D = min

(

κ

2
,
(κ + 1)

2

)

. (115)

Since κ > 0, then (115) is simplified as

D =
κ

2
. (116)

The proof is concluded after plugging (110) into (116).
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