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ABSTRACT

Context. The Large Interferometer For Exoplanets (LIFE) initiative is developing the science and a technology road map for an ambi-
tious space mission featuring a space-based mid-infrared (MIR) nulling interferometer in order to detect the thermal emission of
hundreds of exoplanets and characterize their atmospheres.
Aims. In order to quantify the science potential of such a mission, in particular in the context of technical trade-offs, an instrument
simulator is required. In addition, signal extraction algorithms are needed to verify that exoplanet properties (e.g., angular separation
and spectral flux) contained in simulated exoplanet data sets can be accurately retrieved.
Methods. We present LIFESIM, a software tool developed for simulating observations of exoplanetary systems with an MIR space-
based nulling interferometer. It includes astrophysical noise sources (i.e., stellar leakage and thermal emission from local zodiacal and
exozodiacal dust) and offers the flexibility to include instrumental noise terms in the future. Here, we provide some first quantitative
limits on instrumental effects that would allow the measurements to remain in the fundamental noise limited regime. We demonstrate
updated signal extraction approaches to validating signal-to-noise ratio (S/N) estimates from the simulator. Monte Carlo simulations
are used to generate a mock survey of nearby terrestrial exoplanets and determine to which accuracy fundamental planet properties can
be retrieved.
Results. LIFESIM provides an accessible way to predict the expected S/N of future observations as a function of various key
instrument and target parameters. The S/Ns of the extracted spectra are photon noise dominated, as expected from our current sim-
ulations. Signals from multi-planet systems can be reliably extracted. From single-epoch observations in our mock survey of small
(R < 1.5 REarth) planets orbiting within the habitable zones of their stars, we find that typical uncertainties in the estimated effective
temperature of the exoplanets are .10%, for the exoplanet radius .20%, and for the separation from the host star .2%. Signal-to-
noise-ratio values obtained in the signal extraction process deviate by less than 10% from purely photon-counting statistics-based
S/Ns.
Conclusions. LIFESIM has been sufficiently well validated so that it can be shared with a broader community interested in quanti-
fying various exoplanet science cases that a future space-based MIR nulling interferometer could address. Reliable signal extraction
algorithms exist, and our results underline the power of the MIR wavelength range for deriving fundamental exoplanet properties from
single-epoch observations.

Key words. methods: data analysis – techniques: interferometric – techniques: high angular resolution – planets and satellites:
detection – planets and satellites: terrestrial planets – planets and satellites: fundamental parameters

? Equal contribution.
?? F.R.S.-FNRS Research Associate.
??? www.life-space-mission.com

Article published by EDP Sciences A22, page 1 of 21

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202141958
https://orcid.org/0000-0002-5476-2663
https://orcid.org/0000-0003-3829-7412
https://orcid.org/0000-0002-0215-4551
https://orcid.org/0000-0002-4006-6237
https://orcid.org/0000-0003-3499-2506
https://orcid.org/0000-0001-9250-1547
https://orcid.org/0000-0003-2769-0438
https://orcid.org/0000-0002-3286-7683
https://orcid.org/0000-0002-8115-8437
mailto:fdannert@phys.ethz.ch
www.life-space-mission.com
http://www.edpsciences.org


A&A 664, A22 (2022)

1. Introduction

Ever since the first detection of an exoplanet orbiting a solar-like
star (Mayor & Queloz 1995), thousands of exoplanets have been
detected from the ground and with dedicated space missions.
Ongoing and future space missions, such as the CHaracteriz-
ing ExOPlanet Satellite (CHEOPS; Benz et al. 2021), the James
Webb Space Telescope (JWST), and the Atmospheric Remote-
sensing Infrared Exoplanet Large-survey (ARIEL; Tinetti et al.
2018), will focus on characterizing a subset of the known exo-
planets and their atmospheres in greater detail. All of these
missions rely on investigating exoplanets that transit in front of
their host stars, but the vast majority of exoplanets do not transit.
Hence, the characterization space is limited and biased toward
close-in and large planets. In order to investigate the atmospheric
properties of hundreds of terrestrial exoplanets, including dozens
that are potentially habitable, optimized large-scale space mis-
sions that rely on a direct detection technique will be required.
This could be either a single aperture ultraviolet, optical or near-
infrared telescope to characterize exoplanets in reflected light
(e.g., the HabEx and LUVOIR concepts; Gaudi et al. 2020; The
LUVOIR Team 2019) or a mid-infrared (MIR) nulling interfer-
ometer to probe the thermal emission of exoplanets. In Quanz
et al. (2022), we introduce the Large Interferometer For Exo-
planets (LIFE) initiative, which aims at developing the science
objectives, requirements, and a concept (including a technol-
ogy development road map) for such a space-based MIR nulling
interferometer mission. Of significant importance in the current
phase of the LIFE initiative is the availability of a simulator
environment that, under well-defined assumptions, can assess the
performance of a certain interferometer architecture and instru-
ment concept in terms of scientific output. Similarly, a solid
understanding of how well a measured signal can be extracted
from the simulated data is crucial. The longer-term objective is
to develop and maintain a flexible framework that incorporates
the fundamental properties of various interferometer architec-
tures and includes all relevant noise sources (astrophysical and
instrumental). Such a framework can then be used for even more
sophisticated scientific simulations and trade-offs (e.g., prioriti-
zation of targets), but also to understand and quantify the impact
of technical trade-offs.

The structure of the paper is as follows: in Sect. 2 we give
a brief introduction to the basic principles of nulling interfer-
ometry needed to describe the measuring process of LIFE. We
describe the implementation of the measurement process into
the publicly available LIFEsim mission simulator and further
introduce the most dominant astrophysical noise terms, explain
how the signal-to-noise ratio (S/N) of a measurement can be
quantified, and provide simulations of an Earth-twin exoplanet
seen at a distance of 10 pc as a specific example. In Sect. 3 we
revisit the assumption of the photon-based S/N calculations and
present a signal extraction method that enables locating exo-
planets in the vicinity of their host stars and estimating their
fluxes. In Sect. 4, we investigate how accurately the physical
properties (such as position and flux and, from this, effective
temperature and radius) of simulated exoplanets can be extracted
based on single-epoch observations. We do this by reanalyzing
parts of the Monte Carlo simulations presented in Quanz et al.
(2022). We discuss the results and conclude in Sect. 5. Through-
out this work, we assume that the measurement is primarily
disturbed by astrophysical noise sources and not by noise emerg-
ing from instrumental effects. In Appendix A, we examine this
assumption by presenting estimates for the required instrument

stability using an explicit treatment of the instrumental
noise.

2. Signal simulation

2.1. Nulling interferometry

Bracewell (1978) was the first to propose nulling interferometry
as a method to detect and characterize exoplanets. The general
goal of a nulling interferometer is to enable measurements
of a faint source (i.e., an exoplanet) despite the presence of a
much brighter source close by. The simplest realization, a single
Bracewell interferometer, consists of two collector apertures
that are separated by a baseline b. By combining the collected
light coherently, the response of the instrument is a sinusoidal
fringe pattern with spacing λ/b projected onto the plane of the
sky, λ being the observing wavelength (e.g., Bracewell 1978;
Lay 2004). By adding a π-phase shift to the beam of one of the
collectors, the central minimum of the fringe pattern coincides
with the position of the star so that its signal is effectively
suppressed (i.e., “nulled”). Nulling the on-axis stellar light is
hence a way to optically separate the star light from other nearby
sources, such as exoplanets.

An interferometer has the advantage that it provides higher
“spatial resolution” than a single-aperture telescope with aper-
ture size D: the first positive transmission peak in the fringe
pattern is located at λ/2b, while the spatial resolution of a tele-
scope is ∝ λ/D. Furthermore, in the case of a free-flying space
interferometer, as foreseen for LIFE, the baselines are reconfig-
urable and generally much larger (up to hundreds of meters) than
the apertures of a single-dish telescope (i.e., b >> D).

In a static, monochromatic configuration, the single
Bracewell interferometer provides only limited coverage of the
uv-plane in the form of a single baseline. Increasing this cov-
erage will allow for the retrieval of more complex signals from
the measurements. One possible method for enhancing cover-
age without changing the configuration of the array itself can
be achieved by rotation of the array (cf. rotation synthesis;
Paresce & Crane 1997). By continuously rotating the interfer-
ometer around its line of sight, the projected fringe pattern will
also rotate, and while the on-axis star remains nulled, any planet
in its vicinity moves through the pattern of varying transmis-
sion and its signal is modulated. The uv-plane coverage can be
additionally increased by adding collector apertures to the array
and hence raising the number of baselines, or by performing
multi-wavelength observations.

Nonetheless, the single Bracewell interferometer is insuffi-
cient for the detection of Earth-like exoplanets (e.g., Angel &
Woolf 1997; Defrère et al. 2010)1. Furthermore, because the
transmission pattern is symmetric, an ambiguity of 180◦ exists
for the position angle of any detected exoplanet.

Driven by the ultimate goal to detect Earth-like exoplanets,
extensive studies of interferometer configurations consisting
of more than two apertures led to two major space mission
concepts in the early 2000s: the Darwin concept led by the
European Space Agency (Cockell et al. 2009) and NASA’s
Terrestrial Planet Finder-Interferometer (TPF-I; Lawson et al.
2007). LIFE leverages the heritage of these concepts by rooting
its design in analyses performed in the context of the Darwin
and TPF-I missions.

1 We refer the reader to Dandumont et al. (2020) for recent detec-
tion yield estimates for Bracewell interferometers with various aperture
sizes.
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Fig. 1. Assumed beam combination scheme of the LIFE array. Four
collector spacecraft are located on a 6:1 rectangle with the combiner
spacecraft located in the geometric center. The shorter distance between
the collectors, b, is called the nulling baseline, and the longer distance
is the imaging baseline, qb. The dual chopped Bracewell beam combi-
nation scheme, consisting of an interconnection of two single Bracewell
combiners, is shown. We note that the collector spacecraft and the inter-
ferometric outputs are numbered for the subsequent calculation and that
the spacecraft diameters are not to scale.

2.1.1. Beam combination in an X-array configuration

For LIFE we assume an X-array architecture. It consists of
four free-flying collector spacecraft, arranged in a rectangular
configuration (see Fig. 1) in a plane perpendicular to the line of
sight. Because the spacecraft are free-flying, the baselines can
be scaled depending on the desired spatial extent of the fringe
pattern. At the moment, the ratio between the length of the long
so-called imaging baseline and that of the short so-called nulling
baseline is chosen to be 6:1 (cf. Defrère et al. 2010). Com-
pared to smaller ratios, the 6:1 configuration is better suited for
advanced post-processing techniques aimed at removing a part
of the instrumental effects on the measurement called instabil-
ity noise (Lay 2006). Further investigations and trade-offs are
required to validate and confirm this choice for the LIFE mis-
sion. The fifth spacecraft, in which the beams are combined
coherently and the signal is detected, is located in the geomet-
ric center of the array. However, this beam combiner spacecraft
could either be located in the same plane as the collector space-
craft or, alternatively, it could fly several hundreds of meters
above this plane. This trade-off mostly affects stray light and
viewing zone considerations and while it is of no concern for the
following analyses, it does significantly affect the field of regard
of the mission (cf. Lay et al. 2007).

The beam combination for such complex array configura-
tions need to be captured by a suitable formalism. The following
presents such a formalism, as described by Guyon et al. (2013).

To calculate the coherent beam combination, a nulling inter-
ferometer can be fully described by N apertures, each defined by
its respective position and radius (xk, yk, rk) in a two-dimensional
plane, where k ∈ [1, . . . ,N]. The complex field amplitude gener-
ated in the kth aperture by a point source with projected angular
offset (α, β) from the central line of sight is given by

Vk = rk ei2π(xkα+ykβ)/λ, (1)

where λ is the wavelength. The interferometric combinations can
then be represented by a matrix, U, which describes the linear
mapping from input amplitude vector, V, to the output amplitude
vector,

W = UV. (2)

Based on the heritage of the Darwin and TPF-I concepts,
for this work we assume that light picked up by the collector
spacecraft is merged using a dual chopped Bracewell combiner
(Lay 2004). The matrix

U =
1√
4



0 0
√

2
√

2√
2
√

2 0 0
1 −1 −ei π2 ei π2

1 −1 ei π2 −ei π2


(3)

describes a realizable (matrix is unitary, cf. Guyon et al. 2013)
and lossless (matrix is orthonormal, cf. Laugier et al. 2020)
implementation of this combiner.

The rows of this matrix reflect the two-stage approach of the
beam combination (Fig. 1). In a first stage, the collector apertures
are grouped and combined into two single Bracewell combiners.
The respective constructive outputs, denoted as Outputs 1 and 2,
are captured by the first two rows of the matrix U, which do not
induce any phase delays. The destructive outputs of the first stage
are expressed by the eiπ phase difference between entries one and
two or three and four in the last two rows of the combiner matrix.
In a second stage, these destructive outputs are combined again,
with one of the destructive outputs receiving an additional phase
shift of π

2 . This produces two complementary nulled outputs that
can be used to apply phase chopping to the final output, which
reduces the susceptibility of the measurement to instrumental
noise effects (Lay 2004). The outputs of this second combina-
tion stage are denoted as the destructive Outputs 3 and 4 and
are captured by the rows 3 and 4 in the matrix U. We note that
the analyses presented in this paper are solely based on these
destructive outputs.

2.1.2. Transmission and differential maps

The two-dimensional projected intensity transmission, Tm,
which describes the amount of signal originating from a point
in the sky at position (α, β) that transmits to the output, m, can
be expanded from Eq. (2) as a combination of the input beams,
Vk, as

Tm = |Wm|2 =
∣∣∣
∑

k

Um,kVk

∣∣∣2. (4)

In the following, the transmission map of one of the interfer-
ometric outputs is calculated analytically to illustrate the basic
principle. In a coordinate system that has its origin in the cen-
ter of the interferometer array, the aperture positions xk and yk
are given as ±L and ±qL, respectively, with L representing half
the nulling baseline b, and q being the ratio between the imaging
baseline and the nulling baseline. The transmission of Output 3
as a function of angular separation (α, β) is given by

T3 = |W3|2 =
∣∣∣
∑

k

U3,kVk

∣∣∣2 (5)

=
1
4

∣∣∣ ei2π(Lα+qLβ)/λ − ei2π(−Lα+qLβ)/λ (6)

−ei2π(−Lα−qLβ)/λ+iπ/2 + ei2π(Lα−qLβ)/λ+iπ/2
∣∣∣2 (7)

= 4 sin2
(

2πLα
λ

)
cos2

(
2πqLβ
λ
− π

4

)
. (8)

To apply phase chopping, Outputs 3 and 4 are subtracted
from each other. This yields the differential map
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Fig. 2. Transmission maps for the chopped dual Bracewell nulling interferometer. Left and middle: Tm of Outputs 3 and 4 calculated for a wavelength
λ = 10µm, a nulling baseline b = 12 m, and a 6:1 baseline ratio. These two outputs have destructive interference at their vertical center and are
used to create the differential map. The axes show the distance from the center in milliarcseconds. The white star indicates the position of the star in
the center of the map. Right: Differential map, Tdif , which is the difference between T3 and T4. The dashed red line shows the path of a hypothetical
planet at 100 mas through the differential map as the interferometer array describes a full rotation.

Tdif = T3 − T4 (9)

= 4 sin2
(

2πLα
λ

)
sin

(
4πqLβ
λ

)
. (10)

This map is antisymmetric with respect to its central point.
Thus, any point symmetric emission source (e.g., a homoge-
neous exozodiacal dust clouds disks) will not transmit through
the differential map and will only contribute to the statistical
shot noise (e.g., Defrère et al. 2010). An example of the two
destructive output transmission maps, T3 and T4, as well as the
differential map is shown in Fig. 2.

2.1.3. Signal modulation

To study the signal transmission of a potential planet, the differ-
ential map is examined in polar coordinates as shown in the top
panel of Fig. 3. Any (static) source at some angular separation θ
from the central star will move through this map on a horizontal
line as the telescope array is rotated by an angle φ. Thus, the nor-
malized signal generated by such a source over one array rotation
corresponds to the value of the differential map on a horizontal
line through the map at the corresponding radial distance. The
normalized signal transmission as a function of rotation angle
(i.e., the modulated signal) of that point source is shown in the
bottom panel of Fig. 3.

The modulation efficiency ξ indicates the part of the incom-
ing signal that can be used for signal extraction and corresponds
to the root-mean-square (rms) of the differential map upon a
complete array rotation (Lay 2004). The modulation efficiency
over a full array rotation as a function of θ is given by

ξ(θ) =

√
〈Tdif(θ, φ)2〉φ. (11)

Because the spatial extent of the fringe pattern depends on
the baseline configuration of the interferometer and the consid-
ered wavelength, this is also true for the modulation efficiency.
Figure 4 shows ξ(θ) for three different MIR wavelengths for the
baseline configuration used in Fig. 2. The curve for λ = 10µm,
which is based on the differential map shown in Figs. 2 and 3, has

Fig. 3. Modulation of the planet signal. Top: Differential map in polar
coordinates, normalized from −1 (blue) to 1 (yellow). The dashed red
line at 100 mas angular separation corresponds to the path of the planet
shown in the right panel of Fig. 2 for a full rotation of the array. Bottom:
Normalized signal transmission intensity of the planet as a function of
rotation angle.

its first peak and global maximum at 100 mas. For shorter wave-
lengths the pattern shrinks and the peak transmission is located
closer to the star; for longer wavelengths the pattern expands and
the peak transmission moves away from the star. The position of
the maximum of ξ(θ) can be calculated numerically as

θξmax = 0.59
λ

2L
= 0.59

λ

b
, (12)

which is slightly more than the separation corresponding to the
first maximum in the transmission maps at λ/2b.
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Fig. 4. Modulation efficiency, ξ(θ), as a function of angular separation
for the three wavelengths λ = 5µm, 10µm, and 20µm. The vertical red
line indicates an angular separation of 100 mas, which corresponds to
the separation of the planet shown in the right panel of Fig. 2.

2.2. Astrophysical sources

In the following we describe how various relevant astrophysical
sources and their photon flux are implemented in LIFESIM.

2.2.1. Host star and exopanets

To first order, thermal radiation emitted by an exoplanet and its
host star can be approximated as blackbody radiation. Because
we will base our S/N calculation on the principles of photon
statistics, we are interested in the received spectral photon flux
in units of [ph s−1 m−2 m−1],

Fλ(λ,T ) =
2c
λ4

1
ehc/λkBT − 1

πR2

d2 , (13)

where h is Planck’s constant, c is the speed of light, kB is the
Boltzmann constant, T and R are the effective temperature and
radius of either the planet or the star, and d is the distance from
the observer.

Throughout this paper the star is modeled as a blackbody
with effective temperature Ts and radius Rs. Limb darkening is
not taken into account, and thus the stellar brightness is dis-
tributed uniformly across the projected circular disk. Because
of the principle of geometric stellar leakage, as described fur-
ther below in Sect. 2.2.2, this is thought to be a conservative
approximation.

As one of the objectives of LIFE is the atmospheric char-
acterization of (terrestrial) exoplanets by measuring wavelength-
dependent absorption features in their emission spectra, model-
ing their emission with blackbody radiation is a simplification.
Therefore, LIFESIM has the option to either select a simple
blackbody model for the planet or to upload a simulated or
observed emission spectrum. In the following subsections we
make use of both options. When using a blackbody, we denote
the radius and the effective temperature of the exoplanets with
Rp and Tp. We use a simulated Earth’s spectrum for illustrative
purposes when calculating the expected S/N of an Earth-twin in
Sect. 2.4.

2.2.2. Stellar leakage

Even with a perfect nulling interferometer, photons from the
observed star “leak” through the instrument. If the central null
fringe is positioned on the center of the star, the stellar flux

is not completely suppressed because of the star’s finite size.
This phenomenon is described as geometric stellar leakage (e.g.,
Lay 2004). The photon noise contribution from geometric stel-
lar leakage is determined by applying the transmission maps to
the surface area of the star. As such, it depends on the surface
brightness and angular size of the star as well as on the baseline
configuration.

2.2.3. Local zodiacal dust

Our Solar System contains diffuse dust that is mostly located
near the ecliptic plane. The dust adds a radiation background to
any astronomical observation either coming from sunlight that is
scattered off the dust particles or as thermal radiation emitted by
the dust itself. As LIFE works in the MIR, we concentrate solely
on the thermal emission. The local zodiacal surface brightness
is described by a sky-position-dependent model developed for
the DARWINSIM science simulator (Den Hartog & Karlsson
2005). The parametrization, which is based on data from the
COsmic Background Explorer (COBE) mission (Kelsall et al.
1998), gives the spectral surface brightness

Iλ(λ, λrel, β) = τ

[
Bλ(λ,Teff) + A · Bλ(λ,T�)

( R�
1.5 AU

)2]

·



π/ arccos(cos(λrel) cos(β))

sin2(β) + 0.6 ·
(

λ

11µm

)−0.4

cos2(β)



1
2

,

(14)

where λ is the wavelength, λrel = λecl − λecl,� is the ecliptic lon-
gitude relative to the Sun, β is the ecliptic latitude, τ = 4 × 10−8

is the optical depth toward the ecliptic poles, Bλ(T ) is the Plank
function, Teff = 265 K is the effective temperature of the local
zodiacal dust cloud at 1 AU, T� = 5778 K is the effective tem-
perature of the Sun, A = 0.22 is the near-IR dust albedo, and R�
is the radius of the Sun. Since the local-zodiacal light received
by the interferometer is diffuse, it cannot be brought to interfere
destructively. Therefore, it is not possible to remove the local-
zodi emission by virtue of the rotating nulling interferometer.
Subsequently, the most effective way of minimizing the noise at
long wavelengths is to observe in directions where the local-zodi
emission is weak (see Appendix C).

Compared to the original COBE data, the DARWINSIM
model overestimates the flux from the zodiacal dust in the 6–
20µm range and for a line of sight with a relative latitude of
more than 90◦ from the Sun by 10–20%. For wavelengths below
6µm the difference increases to a factor of two to three at 3µm.
However, at these wavelengths the photon noise contribution by
the zodiacal dust is several orders of magnitude lower than the
photon noise from the stellar leakage as we will show below in
Sect. 2.3.

2.2.4. Exozodiacal dust

Exozodiacal dust clouds (“exozodis” for short) are the equivalent
to the local zodiacal dust in other stellar systems. Even if the
dust density is as low as in the Solar System, integrated over the
full field-of-view the MIR radiation emitted by the dust is two
to three orders of magnitude higher than that of an Earth-like
planet (e.g., Defrère et al. 2010) and can thus significantly affect
the integration time required to detect (terrestrial) exoplanets.

The exozodiacal dust distribution and its surface brightness
are simulated according to the model described by Kennedy et al.
(2015). It assumes a dust distribution in exoplanetary systems
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similar to the one in the Solar System, except for a global scal-
ing factor z, the number of “zodis2.” The model assumes that the
dust emission is optically thin and the dimensionless, face-on
surface density, Σ(r), is approximated by a power law distribu-
tion. The emission is modeled as blackbody radiation with the
temperature-radius profile of the disk following the equilibrium
temperature

T (r) = 278.3 K · L
1
4
s r−

1
2 , (15)

where r is given in AU and Ls in solar luminosities. The spectral
surface brightness of the disk as seen face-on is then given by

Iλ(λ, r) = Σ(r) Bλ(λ,T (r)). (16)

Due to the high temperature and surface density close to the star,
much of the emitted radiation originates from the central regions.

It is important to note that the given definition of the zodi
level z is coupled to the surface density and not to the spectral
flux or the total luminosity of the disk. For constant z, the total
emitted radiation at a given wavelength, as well as the luminosity
of the disk, scale with the surface area of the disk and thus with
the stellar luminosity Ldisk ∝ r2

0 ∝ Ls. For high-luminosity stars,
which are expected to have larger exozodi disks in this model,
the total emitted flux by the disk is thus also larger than for low-
luminosity stars.

At the moment, the exozodi dust disks are assumed to be
homogeneous and symmetric around the star and always viewed
face-on. Therefore, they only contribute to the shot noise (see
Sect. 2.3 below). The influence of asymmetric or clumpy exo-
zodiacal disks viewed at an inclination i > 0◦ is investigated in
Defrère et al. (2010) and Defrère et al. (2012) and we discuss
these points and their potential impact on exoplanet detection
yield in Quanz et al. (2022).

2.3. Signal-to-noise ratio calculations

2.3.1. Astrophysical noise sources

The astrophysical sources located within the field-of-view of the
collector apertures create a scene that is described by the surface
brightness I(θ, λ). It depends on the position θ within the field-
of-view and on the wavelength, and is here assumed to be time-
independent.

When the photons emitted by the different sources reach the
interferometer, they are detected in one of the interferometric
outputs. The signal (S m) collected by output m, described by the
transmission map (Tm) after some integration time is given by
the integral of the total surface brightness (I(θ, λ)) superimposed
with the transmission map over the complete field-of-view,

S m(λ) =

∫
Tm(θ, λ) I(θ, λ) t A η dΩ, (17)

with t the integration time, A the total collecting area, and η a
detection efficiency factor combining multiple effects. The effi-
ciency factor, η, and the size of the field-of-view are generally
also wavelength-dependent. In this work, η is the product of the
quantum efficiency of the detector ηQE and the overall instru-
ment throughput ηt. Until a more concrete instrument design
is available, it is assumed that both parameters are wavelength-
independent. As motivated in more detail in Quanz et al. (2022),

2 A probability distribution for z was derived by the HOSTS survey
carried out at the Large Binocular Telescope (LBTI; Ertel et al. 2020).

we chose ηQE = 0.7 and ηt = 0.05 as default values. The effec-
tive field-of-view is assumed to be FoV = λ/D in diameter as we
assume the light will be coupled into single-mode fibers.

The spectral signal generated by a single planet, approxi-
mated as a point source at location θp, is thus given by

S p,m(λ) = Tm(θp, λ) Fp(λ) t A η, (18)

where Fp(λ) is the planet flux. Over a full array rotation, the
quadratic mean of the modulated signal S p = S 3,p−S 4,p detected
from the planet is given by
√
〈S 2

p(λ)〉 = ξ(λ, θp) Fp(λ) t A η, (19)

where ξ(λ, θ) is the wavelength-dependent modulation efficiency
at angular separation θ from the star (see Eq. (11)).

If only rotationally symmetric sources, such as the central
star, the local zodiacal background or a homogeneous, face-on
exozodiacal dust cloud are considered, the detected signal does
not depend on the rotation angle of the array. If the source is
only point-symmetric, such as a smooth exozodiacal disk with
some inclination i > 0◦, the signal per output varies with rota-
tion angle, but is always equal for the two destructive Outputs 3
and 4. Thus, point-symmetric sources do not contribute to the
modulated signal.

However, as Mugnier et al. (2006) pointed out, the linear
combination of detected signals is an incoherent combination,
since it is performed numerically after detection (i.e., in post
processing). Removing the contribution of symmetrically dis-
tributed sources by incoherent combination is therefore only
effective for the signal part of the data, but the sources still
contribute to the statistical noise. Hence, the S/N per spec-
tral wavelength bin, denoted as S/Nλ and defined as the ratio
between detected exoplanet photons and detected photons from
the various noise terms, is calculated as

S/Nλ =

∫ √
〈S 2

p(λ)〉 dλ
√

2
∫

(S sym,3(λ) +
√
〈S 2

p,3(λ)〉) dλ

, (20)

where S sym,3 is the contribution from symmetric background
sources to the signal in Output 3 and S p,3 is the signal of
the planet only3. The integral runs over the wavelength range
covered by the wavelength bin.

Following Lay (2004), for a measurement across several
wavelength bins and under the assumption that the noise is
uncorrelated between the bins, the integrated S/N over the full
wavelength range, or summed over all wavelength bins, is given
by

S/Ntot =

√∑

λ

S/N2
λ ∝

√
t A η, (21)

which scales, as expected, with the square root of integration
time, area and detection efficiency.

In LIFESIM, each noise term from the different sources is
calculated individually to avoid numerical discretization errors,
as the angular extents of the sources have different scales. For
3 For the computation it does not matter whether we use Output 3 or
Output 4 in the denominator. The factor 2 in front of the integral ensures
that the contributions from both outputs are considered.
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the local and exozodiacal dust, the transmission map as well as
the surface brightness distribution are calculated and integrated
over a two-dimensional artificial image covering the full field-
of-view defined by the instrumental parameters. For the stellar
leakage, it is only integrated over the solid angle covered by the
stellar disk, but with much higher resolution. The planet signal
transmission efficiency is calculated analytically using Eq. (18).
All terms are calculated for each predefined wavelength bin, with
varying angular extent of the field-of-view and possibly varying
bin width, and are then combined to an integrated S/N as given
in Eq. (21).

The calculated S/N depends strongly on the baseline of the
array. The mean modulated planet signal (Eq. (19)) scales with
the modulation efficiency, which in turn depends on the base-
line as demonstrated in Sect. 2.1.3. For the contribution from
background sources, the amount of stellar leakage contribution
depends on the broadness of the central null. This broadness of
the null in the transmission map is also governed by the base-
line configuration. Thus, maximizing the S/N by changing the
length of the baselines poses a trade-off between the amount
of planetary signal received over the amount of stellar leakage
affecting the measurement. Ideally, to reduce the integration time
required for detection, the baselines of the interferometer should
thus be chosen such that the S/N across the full wavelength
range is high for projected separations that are of major interest.
For instance, maximizing the chances of detecting an Earth-like
planet orbiting within the habitable zone (HZ) around nearby
stars can be achieved by maximizing the S/N across the projected
HZ. As discussed in Quanz et al. (2022), for LIFE it is currently
assumed that the baselines can indeed be reconfigured depending
on the target star where the minimum and maximum separation
between two spacecraft is 10 m and 600 m, respectively.

2.3.2. Instrumental noise terms

Instrument perturbations such as intensity variations and optical
path difference (OPD) errors can degrade the null and lead to
additional stellar leakage as well as instability noise (Lay 2004;
Defrere 2009). Similarly, detector noise (e.g., dark current) and
thermal background noise from the instrument can also deteri-
orate the measurement. In the current version of LIFESIM, it
is assumed that the instrument will be designed such that photon
shot noise will dominate over these additional instrumental noise
sources. Appendix A presents a preliminary analysis of the afore-
mentioned instrumental effects and constrains the maximum
level of allowed perturbations to operate in this fundamental
noise limited regime.

2.4. A simple case study: Earth-twin at 10 pc

We applied the above described S/N calculation to the exam-
ple of an Earth-like planet located around a Sun-like star at
10 pc, with the aim to illustrate the effects of the different noise
sources on the S/N and their wavelength dependence. Instrument
parameters and properties of the simulated sources are given in
Table 1.

Figure 5 (top panel) shows the total fluxes received from the
different sources as well as the “leakage” terms (i.e., the part
of the flux that is not nulled). These leakage terms contribute
to the shot noise. It can be seen that at short wavelengths the
stellar leakage dominates strongly, while for longer wavelengths
the emission from the local zodiacal dust contributes most to the
shot noise.

Table 1. Instrumental parameters and properties of the simulated
sources for the S/N calculation of an Earth-like planet at 10 pc.

Parameter Value Description

D 2 m Aperture diameter
t 200 000 s Integration time
ηQE 0.7 Quantum efficiency
ηt 0.05 Instrument throughput
FoV λ/D Field-of-view (∼ 1′′@λ = 10µm)

4−18.5µm Wavelength range
R 20 Spectral resolution (λ/∆λ) (a)

b 15 m Nulling baseline (b)

r 6 : 1 Array baseline ratio
d 10 pc Target distance
θp 100 mas Planet–star separation
Rp 1 R⊕ Planet radius
Tp,0 285 K Planet surface temperature (c)

Rs 1 R� Stellar radius
Ts 5778 K Stellar effective temperature
λrel, β 135◦, 45◦ Ecliptic coordinates
z 3 Level of exozodi emission (d)

Notes. The table corresponds to Fig. 5. (a)Spectral resolution is assumed
to be constant across the full wavelength range, such that the bin width,
∆λ, increases for larger wavelengths. For the parameters listed here, this
results in 31 spectral bins. (b)The baseline is set according to Eq. (12)
evaluated at 15µm. (c)In Fig. 5, instead of assuming blackbody emission
for the planet, we used the radiative transfer atmospheric model code
petitRADTRANS to compute an MIR emission spectrum corresponding
to an average cloud-free modern Earth spectrum (Konrad et al. 2022)
(d)This value corresponds to the median of the best-fit nominal model
derived from the HOSTS survey (Ertel et al. 2020).

In the bottom panel of Fig. 5, we show the detected signal
from the planet (averaged over each spectral bin) as well as the
shot noise and the S/N for the parameters listed in Table 1. Inte-
grating over the full wavelength range gives a S/N ≈ 9.7. The
maximum S/N per bin of ≈3 is reached around 11µm. For wave-
lengths shorter than 8µm the S/N decreases rapidly, due to a
decrease in planet signal and the increasing shot noise due to
stellar leakage.

3. Signal extraction

The approach and the simulated spectrum presented in the pre-
vious section are based on photon counting statistics. It was
implicitly assumed that the signal extraction can be performed
with sufficient accuracy.

In practice, data processing and signal extraction algorithms
will be of great importance, in particular if a mission like LIFE
features an initial search phase4: in addition to separating the
planetary signal from the various noise sources, it will be cru-
cial to accurately derive physical characteristics of the exoplanet
(e.g., radius, effective temperature and separation from the host
star) from single-epoch data in order to identify and rank-order
the most interesting objects for in-depth follow-up observations
during the characterization phase. For both the Darwin and the
TPF-I missions, multiple signal analysis algorithms were pro-
posed. Draper et al. (2006) presented an algorithm that was

4 The baseline mission scenario features a 2.5 yr search phase for
detecting previously unknown exoplanets, followed by a 2.5–3.5 yr
characterization phase (Quanz et al. 2022).
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Fig. 5. Simulated spectra for the observation of an Earth-twin. Top:
comparison of the various input signals in our example of an Earth-
like planet at 10 pc. The solid lines indicate the total flux received from
the respective sources: planet (red), star (black), exozodiacal dust (gray),
and local zodiacal dust (blue). The dotted lines with the same color code
indicate the fraction of the flux that contributes to the shot noise. Bot-
tom: detected planet signal (red line) and total shot noise (dashed blue
line) averaged over each wavelength bin and for an integration time of
200 000 s (values refer to the y axis on the left). The resulting spec-
tral S/N is shown as the black line and is calculated as described in
Sect. 2.3 (values refer to the y axis on the right). Integrated over the full
wavelength range, one obtains a S/N ≈ 9.7.

based on an advanced correlation process. For Darwin, Mugnier
et al. (2006) and Thiébaut & Mugnier (2005) presented a sig-
nal extraction scheme based on the maximum-likelihood method
(MLM). While in the meantime significant progress has been
made in many areas of data post-processing, especially thanks
to machine-learning-based approaches, the before-mentioned
methods still offer a straight-forward framework to deal with the
unique characteristics of nulling interferometry with respect to
the modulation of the planet signal.

In the following subsections, the MLM will be described,
modified, and applied to simulated LIFE data. The goal is to find
a metric to quantify the robustness of an exoplanet detection and
compare the extracted S/N to that from the photon statistics used
in the previous section. Additionally, the signal extraction for
multi-planet systems will be investigated. Furthermore, we will
revisit the Monte Carlo simulations presented in Quanz et al.
(2022) and quantify how accurately we can expect exoplanet
properties to be determined from single-epoch data during the
search phase.

3.1. Maximum-likelihood method

As described in Sect. 2.3, the signal measurement with a nulling
interferometer can be described as a noisy time series. Follow-
ing Mugnier et al. (2006) and Thiébaut & Mugnier (2005), it is
modeled as

At,λ = Fp,λ Tt,λ(θp) + nt,λ, (22)

where At,λ is the recorded amplitude at time t and for effective
wavelength λ, Tt,λ(θp) is the response of the instrument (i.e., the
value of the differential map Tdif) at the location of the planet
θp as a function of time and wavelength, Fp,λ is the discretized
planet flux and nt,λ denotes the noise, which is assumed to be
spectrally independent normal noise and whose variance σ2(t, λ)
can be estimated from the data. In a first step and as a simplifi-
cation, only the case with one (detectable) planet per system is
considered to derive the signal analysis; afterward, the approach
will be extended to multiple planets.

The MLM enables estimating the planet position θp and
spectral flux Fp(λ) from the modulated signal by searching
(θ̂p, F̂p) that maximize the likelihood L(θp, Fp). Maximizing
the likelihood is equivalent to minimizing the negative log-
likelihood or cost function

J(θp, Fp) =
∑

t,λ

|A(t, λ) − Fp(λ) T (t, λ, θp)|2
σ2(t, λ)

, (23)

which measures the discrepancy between the data A and the
model of the data for the estimated set of parameters (θp, Fp),
based on the differential map T . Fp denotes the set of flux values
at all measured wavelengths. It has been shown in the previ-
ously mentioned papers that for a given planet position θp, the
optimal spectral flux is obtained by maximizing J (as defined in
Eq. (B.5)) with respect to all F(λ):

∂J(θp, Fp)
∂F(λ)

= 0 ∀λ. (24)

To ensure the result is physical, a positivity constraint has to
be introduced on the estimated flux. The most likely planet
position is then found by globally maximizing the cost func-
tion over a grid by inserting the optimized flux values back
into the cost function. The estimation of the planet position and
the wavelength-dependent flux can be further improved if an
agreement of the estimated parameters with a priori informa-
tion is enforced (Thiébaut & Mugnier 2005). This can be done
by introducing a regularization term Jprior, which estimates the
roughness of a sampled planet spectral flux:

Jprior(θp, Fp) = µ
∑

λ

(
∂mFp(λ)
∂λm

)2

, (25)

where µ is a parameter that allows the relative weight of reg-
ularization to be tuned. The mth order derivative is computed
by finite differences (Thiébaut & Mugnier 2005). To smooth
the estimated flux, only second order derivatives are taken into
account (m = 2). The calculation of the optimal flux values and
the cost function with and without regularization is further out-
lined in Appendix A. In accordance with the previous works, we
denote by J′ the cost function that is optimized with respect to
the fluxes, and by J′′ the cost function that has an additional pos-
itivity constraint on the flux. The cost functions can be computed
on a grid of possible initial planet positions spanning the full or
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Fig. 6. Cross-correlation of the modulated signal of a noiseless point
source located at [−100, 0] mas with the transmission map. Left: cross-
correlation at a single wavelength. The resulting image can be under-
stood as the demodulated signal function of such a point source at
the considered wavelength. The image is antisymmetric with respect
to the image center. Right: combined cross-correlation across the full
wavelength range considered for the ideal point source. Considering a
broader wavelength range reduces the side lobes and allows for a better
location of the point source.

only a part of the field-of-view. The most likely planet position
θ̂p is then the location of the maximum of J′′(θp) on the grid.

It is noted here that the cost function is closely related to
the cross correlation of an ideal modulated signal generated by
a noiseless point source with the template functions (the trans-
mission maps). The cross correlation across a two-dimensional
grid gives the demodulated signal function of the interferometer
(Defrère et al. 2010). This is shown in Fig. 6 for a single wave-
length and for the combination of multiple wavelength bins by
addition of the maps.

3.2. Detection criterion

To create a link between the outcome of the maximum likelihood
signal extraction method and a quantitative detection criterion
we further investigate the noise propagation and the probability
of false alarm (PFA) in the following. As introduced in Sect. 2.3,
and following the definition of Mugnier et al. (2009), the S/N of
the estimated planet signal at a single wavelength is given by

S/Nλ(θp) = S/N[F̂p(θ, λ)] =̂
F̂p(θ, λ)

σ(F̂p(θ, λ))
, (26)

withσ(F̂p(θ)) the standard deviation of the estimated flux. Given
the high photon flux values of the astrophysical sources intro-
duced in Sect. 2.2 (cf. Fig. 5), the noise in a measurement can be
approximated by a normal distribution. To get an estimated value
for the integrated S/N, the individual wavelength bins could be
combined naively by

S/Ntot =

√∑
S/Nλ

2 =

√∑(
F̂λ/σ̂λ

)2
, (27)

as is done to calculate the integrated S/N from the predicted pho-
ton noise in Sect. 2.3. However, this does not take into account
the random nature of the measurement; in reality, even repeat-
ing the exact same observations will result in a slightly different
estimated S/N.

Flasseur et al. (2020) presents a method that allows us to
derive a detection criterion combining measurements at mul-
tiple wavelengths with uncorrelated noise on the basis of the
cost function for direct imaging methods. With some modifica-
tions, this approach can also be applied to nulling interferometry.
We note that the dominant and normally distributed background
noise in the modulated signal propagates as a linear combination
to the S/Nλ maps. This means that in the absence of point sources
the distribution of S/Nλ values over a large enough field-of-view
also follows a normal distribution. Thus, the random values of
the combined cost function J′ map are expected to follow a χ2

distribution p(J′) = χ2
L with L degrees of freedom, where L is

the number of wavelength bins (Flasseur et al. 2020). For the
simulated measurements presented above, a spectral resolution
of R = 20 and a wavelength range from 4µm to 18.5µm is used
(unless otherwise noted), which results in L = 31 wavelength
bins (with varying bin widths).

Figure 7 (top left) shows the cost function J′ calculated for a
simulated measurement without any point sources. The nonuni-
formity of the image is a result of the statistical fluctuations of
the background noise. The bottom panel in Fig. 7 shows the
corresponding distribution of the J′ values in a histogram. The
simulated data follow the χ2 distribution with L = 31 degrees of
freedom very closely. Following the derivation by Flasseur et al.
(2020), the PFA in a data set containing no point sources but
only background noise is given by PFA = p(χ2

L > η), where η is
the detection threshold, which has to be determined. To obtain
a PFA corresponding to a 5-σ confidence level, one needs to
solve

FL(η) =
γ(L/2, η/2)

Γ(L/2)
= Φ(5) (28)

for η. Here, FL is the cumulative distribution function of the χ2
L

distribution, which can be expressed in terms of the lower incom-
plete gamma function γ and the gamma function Γ, and Φ is the
cumulative distribution function of the standard normal distribu-
tion. Solving Eq. (28) for η gives a detection threshold for J′ of
η ≈ 87. If the J′ value of the most likely planet position is greater
than η it can be considered a detection.

Using J′ as a detection criterion is, however, unsatisfactory
as explained above, and J′′ – with positivity constraint on the
flux – is better suited. At a single wavelength, and without any
point sources being present, J′′λ follows a χ2 distribution with
one degree of freedom – the distribution of squares of normally
distributed values – with a threshold at 0 due to the positivity
constraint on the estimated flux values:

p(J′′λ ) =
1
2
δ0(J′′λ ) +

1
2
χ2

1(J′′λ ). (29)

The probability distribution of the sum of L-independent values
following the above distribution is given by

p(J′′) =
1
2L δ0(J′′) +

L−1∑

λ=0

L!
2Lλ!(L − λ)!

χ2
L−λ(J′′). (30)

In Fig. 7, the bottom panel shows as a blue histogram the distri-
bution of the J′′ values found in the map on the top-right panel.
It follows the expected distribution from Eq. (29).

Thus, similar to Eq. (28), a detection criterion J′′ > η can be
defined by finding η such that

1
2L +

L−1∑

λ=0

L!
2Lλ!(L − λ)!

FL−λ(η) = Φ(5), (31)
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Fig. 7. Effect of the positivity constraint of the cost function. Top: differ-
ent versions of the cost function, J, for a simulated observation without
any point sources. L = 31 wavelength bins are used. Top left: J′ with-
out positivity constraint on the flux. The image is point-symmetric with
respect to the image center. Top right: J′′ with a positivity constraint on
the planet flux. Compared to the left image, the strict point symmetry
is lifted and the mean value is lower. Bottom: probability distribution of
the cost function maps shown above. The gray histogram shows the J′
values obtained from the panel on the top left. The solid red line shows
the probability density function of a χ2 distribution with L = 31 degrees
of freedom. The blue histogram shows the J′′ values obtained from the
panel on the top right. The solid orange line shows the theoretically
expected distribution of the J′′ values given in Eq. (30). The dashed
vertical lines indicate the detection criteria of η = 87 and η = 65 as
derived by Eq. (28) and Eq. (31), respectively.

with the left-hand side being the cumulative distribution function
of the probability distribution defined in Eq. (30).

Solving Eq. (31) with L = 31 for η gives a detection threshold
of η ≈ 65 for the cost function with positivity constraint. A value
of η = 65 in the cost map J′′ thus corresponds to a 5σ detection.

The detection measure presented here does not include spec-
tral regularization. While a regularization term improves the
contrast of the detection maps (see Fig. B.1), it adds an inter-
dependence between the wavelength bins. Thus, the estimated
signal, as well as the noise terms in the individual wavelength
bins, are no longer mutually independent. Because the deriva-
tion of the detection criterion was based on the assumption of
uncorrelated noise, it cannot be applied directly in the case of
regularization. However, it was already pointed out by Mugnier
et al. (2006), and is also indicated by the example presented in
Fig. B.1, that regularization is mostly needed for the detection of
planets with a low underlying S/N . 5.

4. Signal analysis

4.1. Single planet: Earth-twin at 10 pc

We applied the signal extraction method to the case study exam-
ple of an Earth-twin planet orbiting a Sun-like star at 10 pc (see
Table 1). We compared the S/N of the extracted signal to predic-
tions based on photon statistics and determined the position of
the signal. We simulated the planet at 100 mas projected angu-
lar separation from the star. We remind the reader that for an
assumed integration time of 55 h one obtains a predicted inte-
grated S/Npred = 9.7. The top panel of Fig. 8 shows the noisy
time series resulting from the simulation. The maximum likeli-
hood analysis was performed on a grid out to 200 mas angular
separation from the central star, with a resolution of ∼0.5 mas.
The middle panel of Fig. 8 shows the cost function map J′′
without regularization (µ = 0) for a single simulated measure-
ment. The relatively high S/N allows for a clear detection of
the planet in the upper right corner. The detection criterion as
derived in Sect. 3.2 is fulfilled and the planet location is esti-
mated correctly within the resolution provided by the grid. The
estimated extracted spectral flux of the located planet is shown in
the bottom panel in Fig. 8. The extracted spectrum agrees with
the underlying true spectrum within the expected uncertainties.

Estimates for the location and the spectrum have been
extracted from the simulated data, but we still need to quan-
tify the S/N and compare it to the expected value. Applying
Eq. (27) results in S/Nest = 10.45, compared to the predicted
S/Npred = 9.7. The discrepancy is due to the statistical nature of
the simulated data as mentioned previously. If the simulation is
repeated, the outcome is slightly different as would be the case
for a real measurement. To better estimate the performance of the
signal extraction process in general, and the S/N estimation in
particular, the simulated measurement was repeated 1000 times
with the same setup. For each run the planet position and spectral
flux were estimated from the simulated data.

The top panel in Fig. 9 shows the distribution of the estimated
angular separation of the planets. The average of the estimated
angular separation is 99.7± 1.5 mas. The azimuthal position was
extracted correctly for all simulated planets within the resolu-
tion of the grid (±1◦). While the extracted spectra are all noisy
and are qualitatively similar to the example shown in the bot-
tom panel of Fig. 8, the bottom panel of Fig. 9 shows the mean
and the standard deviation of the extracted flux values per wave-
length bin over the N = 1000 simulations in comparison with the
input spectrum. Apart from the short wavelength range, where
the low flux and high noise levels result in large uncertainties, the
extracted mean spectrum agrees very well with the input data.

4.2. Multi-planet systems

As most exoplanetary systems are expected to contain multi-
ple planets, it is important that extraction algorithms can deal
with multiple objects. The modulation signal recorded with a
nulling interferometer is a superposition of the signals from dif-
ferent sources within the field-of-view. The most straightforward
approach to differentiate individual planets is to find their posi-
tions and the estimated fluxes one after another. To do so, the
most likely planet position, in absolute terms, is accepted as
a detection provided it fulfills the detection criterion described
above, and the spectral flux is estimated for that planet. The esti-
mated planet signal is subtracted from the data and the process
is repeated until no other significant signal remains in the data.

We applied the signal extraction process outlined above to a
simulated 3-planet system. All planets have a radius Rp = 1 R⊕
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Fig. 8. Extraction of spectrum from noisy observation. Top: noisy time
series signal from simulated data for an Earth-like planet around a Sun-
like star at 10 pc (in blue). The underlying noiseless planet signal is
indicated by the red curve. Middle: detection map for simulated data of
the Earth-like planet. The photon-noise-based S/N is 9.7 (cf. Sect. 2.4).
The planet is correctly found in the upper right of the map. Bottom:
spectral flux of the Earth-like planet as estimated from the simulated
data (red data points with 1σ error bars). The blue line shows the true
flux of the simulated planet, and the blue shaded region indicates ±1σ
based on the photon statistics.

and are located around a Sun-like star at 10 pc. Their semima-
jor axes, ap, were set at 0.8, 1.0, and 1.2 AU, respectively. All
planets were assumed to radiate as black bodies with an equi-
librium temperature of 276 K scaled by the inverse square root

Fig. 9. Robustness of the single planet extraction. Top: distribution of
the estimated angular separation from the host star of 1000 simulated
Earth-twins. The underlying true value is θ = 100 mas, and the average
estimated value is 99.7±1.5 mas. The spacing of the bars corresponds to
the angular resolution of the grid on which the analysis was performed.
Bottom: mean (red dots) with standard deviation (red error bars) of the
distribution of the estimated flux values over 1000 simulations of the
same artificial planet. The blue line shows the true spectrum, with the
blue shaded region enclosing ±1σ based on the photon statistics.

of the semimajor axis, Tp ∝ 1/√ap. The system is seen face-on,
such that all planets appear at their respective maximum angu-
lar separation. The azimuthal position of the planets was chosen
randomly. The system was assumed to harbor an exozodi disk
with z = 3. For an integration time of 55 h the predicted S/Ns of
the three planets are 15.8, 10.4, and 6.9, respectively.

Figure 10 shows the three detection maps for the iterative
signal extraction process applied to the simulated data. In the
left panel, the highest values for the cost function indicate the
correct position of the planet closest to the host star, which has
the highest expected S/N. In addition to the side lobes of the first
planet, the positions of the other planets, as well as their side
lobes, are also visible. However, because the cost values of these
features are similar, it is unclear which signal corresponds to a
true source and which does not. The subtraction of the highest
S/N signal removes also its side lobes and the second planet can
be identified by the strongest remaining peak. Removing the sec-
ond signal allows the third source to be detected. After the third
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Fig. 10. Cost function detection map for the iterative detection of three simulated planets (indicated by the white arrows). The simulation parameters
are given in Sect. 4.2. The left image shows the detection map calculated from the full simulated data. Subtracting the estimated signal contribution
of the source detected in the first map and recalculating the detection map results in the second image, and after repeating this the third one.
Removing a detected source from the data also removes the side lobes created by the source, thus allowing for a clear iterative detection.

source, no further point source is found above the detection crite-
rion. Extracting the signal of the three planets leads to estimated
S/N values of 16.0, 10.1, and 7.1, respectively. To test the robust-
ness of the extraction process with respect to the planet position
we again iterated the signal extraction for multiplanetary systems
over distinct realizations of the noise. We find that the angular
separation and the position angle of the planet is retrieved accu-
rately within the given uncertainties. These uncertainties scale
in accordance to the respective photon noise S/Ns, meaning that
the innermost planet is extracted to the highest precision.

We fitted the extracted spectra of the three planets with
a blackbody spectrum to estimate their radii and effective
temperatures as this will also be done as one of the first steps
for any planet candidates detected with LIFE. Figure 11 shows
the estimated values along with 1σ confidence contours derived
from the uncertainties in the extracted flux values. The true
values are indicated by crosses. The uncertainty in the esti-
mated temperatures and radii increases with decreasing S/N,
from about σT ≈ 20 K and σR ≈ 0.15 R⊕ for the brightest planet
to σT ≈ 35 K and σR ≈ 0.4 R⊕ for the faintest. As the spec-
tral shape of an emitting blackbody depends more strongly on
the temperature than on its size, the relative uncertainty in the
derived temperature is much smaller than the relative uncertainty
in the radius.

4.3. Rocky, habitable zone exoplanets from LIFE search
phase

In the previous sections, we investigate how well the signal of
individual exoplanets can be extracted and their basic proper-
ties, such as effective temperature, radius and position, can be
estimated. We now turn to a larger sample of objects covering
a broader range of properties and different noise characteristics
(e.g., spectral type of host star and exozodi level). The extraction
algorithm is applied to a subset of simulated exoplanet popula-
tion that was used for the detection yield estimation in Paper I
(Quanz et al. 2022). Specifically, we focus on the rocky, HZ

Fig. 11. Temperature and radius estimates for the three simulated planets
with Rp = 1 R⊕ and varying temperatures. The true values are indicated
by crosses and the estimated values by dots with corresponding 1σ con-
fidence ellipses. The values are estimated by fitting a blackbody curve to
the estimated spectra of the point sources, whose locations are inferred
from the detection maps shown in Fig. 10.

planets5 that are detectable in a 2.5 yr search phase with four D =
2 m apertures and investigate in detail how well their properties
can be determined from single-epoch observations, assuming the
planets radiate as black bodies at their respective equilibrium
temperature. From the 500 Monte Carlo runs that we carried out
in Quanz et al. (2022) in order to estimate the expected detection
yield of the LIFE mission, we randomly selected 100 runs. These

5 Defined as planets with radii Rp in the range 0.5 R⊕ ≤ Rp ≤ 1.5 R⊕
orbiting within the spectral-type-dependent empirical HZ of their host
star. For a Sun-like star, the empirical HZ corresponds to an insolation
range of 0.32 S ⊕ ≤ S p ≤ 1.76 S ⊕, where S ⊕ corresponds to the present-
day insolation level of the Earth.
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Fig. 12. Distribution of properties of detectable rocky, HZ planets from
the detection yield estimates presented in Quanz et al. (2022) normal-
ized over 100 Monte Carlo runs. From top to bottom: Predicted S/N
(based on photon noise), effective temperature, radius, and projected
angular separation.

runs contained approximately 4400 rocky, HZ planets with pre-
dicted S/N ≥ 7, which is considered the detection threshold in
Paper I. Figure 12 shows the distribution of the predicted S/N
of these planets (based on photon noise statistics), their temper-
ature, radius, and their projected angular separation from their
host star. The median of the S/N distribution is ≈13.3, thus nearly
twice the detection threshold. While, on average, the planet radii
are >1.0 R⊕, the mean temperature of the detected planets is only
Tp ≈ 235K, which is less than Earth’s effective temperature.

Our signal extraction method was applied to each planet
individually and the detection maps were calculated without reg-
ularization of the estimated spectra. The detection criterion as
derived in Sect. 3.2 was applied. We find that ≈1.5% of the sim-
ulated planets do not fulfill the detection criterion. For a few
additional planets the position was extracted incorrectly. Overall,
about 98% of the planets were detected at a separation deviating
≤15% from the true value and with an error in position angle
≤10◦.

For the detected planets, the temperature and radius were
estimated by fitting a blackbody spectrum to the extracted flux.
Additionally, the S/N was estimated from the extracted flux as
described in Sect. 4.1. Because each of the estimated parameters

has a broad distribution among the simulated planets, the relative
deviation of the estimated values from the underlying true values
is analyzed. The results of the parameter extraction are presented
in Fig. 13. The corner plot shows the distribution of the predicted
S/N and the ratios between the estimated and the true values of
the planetary parameters (i.e., temperature, radius, and separa-
tion) as well as the ratio between the estimated and the purely
photon-statistic-based S/Ns. From the first column it is evident
that the estimation of all parameters improves with increasing
S/N of the planet, as the statistical distribution of the estimates
becomes narrower. Overall, the S/N is slightly underestimated,
even for relatively high S/N values > 25. This can be explained
by an overestimated noise variance from the simulated data, as
it is calculated as the variance of the full data including possible
planet signals.

The deviation of the estimates of the temperature and the
radius from the true values are approximately symmetric in terms
of over- or underestimation. Across the full sample, the tem-
perature is estimated to Test/Ttrue = 1.01+0.08

−0.06 and the radius to
Rest/Rtrue = 0.97 ± 0.18. As expected, the estimate of the tem-
perature and the radius are highly correlated as both parameters
are positively correlated with the total emitted radiation of the
planet. The separation is estimated to θest/θtrue = 0.99 ± 0.01.

5. Discussion and conclusions

We have investigated the signal extraction process for simu-
lated interferometric measurements to study the detectability
of potential exoplanets and the ability to characterize them.
We implemented a maximum-likelihood algorithm previously
proposed for the Darwin mission and applied it to simulated
data. This yields three important results: (a) this method can
be successfully applied to multi-planet systems, (b) the signal
extraction method is able to reproduce S/N estimates that are in
agreement with expectations from photon noise statistics, and (c)
planetary properties inferred by the signal extraction are of high
accuracy. These results are especially interesting in the context
of Quanz et al. (2022), since this publication predicts the exo-
planet yield of the LIFE mission based on a synthetic planet
population without considering the impact of signal extraction.
Our results indicate that an inclusion of the signal extraction in
these simulations would not fundamentally alter the results.

Yet, under certain conditions the signal extraction is espe-
cially demanding. In the low-S/N regime, we have qualitatively
shown how spectral regularization can help to disentangle the
planet signal from the background noise. However, as spectral
regularization relies on a priori assumptions about the planet
spectrum, it is not free of bias and adds a degree of freedom
to the analysis. To apply regularization to a large set of simu-
lated planets, a detection criterion that depends on the amount
of enforced spectral regularization would have to be defined.
Additionally, it has to be investigated how the regularization
quantitatively affects the estimated planet spectrum.

To further assess potential limitations when dealing with
multi-planet systems, studies with more diverse planet properties
or very small projected angular separations could be envisaged.
Potential improvements when dealing with several signals were
already presented by Thiébaut & Mugnier (2005). These authors
discussed an extrapolation of the MLM to estimate the planet
positions and spectra for multiple planets at once, which avoids
error propagation from the estimation of the first detected planet
to the other ones. This generalized approach is computation-
ally more expensive; a simplified option estimates the planet
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Fig. 13. Corner plot showing the predicted S/N based on photon statistics (cf. top panel in Fig. 12) and the estimated values for S/N, temperature,
radius, and angular separation relative to the true values based on the signal analysis of ≈4400 rocky, HZ planets. We note that the discretization of
the values for the estimated angular separation corresponds to the resolution of the spatial grid on which the analysis was performed. At the top of
each column the mean and the standard deviation of the distributions are given.

positions one after the other but recomputes the optimal flux of
all detected planets at each iteration.

Furthermore, the ability to correctly extract multi-planet sys-
tems is also governed by the effective angular resolution of
the array. Therefore, a study of diverse multi-planet extractions
would be able to provide minimum requirements for the angu-
lar resolution. Since the angular resolution has been shown to
be a dominant factor in the design of nulling interferometers
(Lay 2005), such a study will become vital in the ongoing
development of LIFE.

Going forward, one could easily imagine that new
approaches involving modern machine-learning-based signal
extraction algorithms should be tested and their performance
compared. While already being explored in other fields
(e.g., Cuoco et al. 2020; Gebhard et al. 2019, 2020), nulling

interferometry has not yet been a focus point of these efforts.
This will be particularly important as soon as systematic noise
terms can be simulated in a realistic way.

An additional factor degrading the quality of the measure-
ment can be the occurrence of instrumental noise. Within the
LIFE project, the current working assumption is that the instru-
mental noise can be neglected based on its contribution being
significantly smaller than the fundamental noise. We show that
this assumption places strict requirements on the instrumen-
tal stability and prompts continued technical developments, for
example in the fields of low dark current detectors or highly
precise OPD control techniques.

Similarly, signal extraction has been shown to play an inte-
gral role in the prediction of instrumental noise (Lay 2004).
Certain steps in the signal retrieval, for example the explicit
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fitting and removal of systematic noise, can significantly relax
technical requirements (Lay 2006). As LIFESIM progresses to
include the simulation of instrumental noise, the removal of such
noise should be considered with the methods presented here.

In future work, we aim to shift from the fundamental noise
limited regime into a regime in which some instrumental noise
is retained in the signal. A prerequisite for this is that the instru-
mental noise is well understood, tracked, and considered in the
interpretation of the measurements. Defrère et al. (2010) offers a
list of techniques targeted at facilitating this treatment of instru-
mental noise. The goal of this future work will be to achieve the
scientific output postulated by the LIFE mission with technology
closer to contemporary and near-future instrumentation.

In summary, we present a publicly available6 tool for sim-
ulating the exoplanet search phase of the LIFE mission called
LIFESIM7. Using the presented planetary signal extraction
methods, we have shown that the synthetic exoplanet popula-
tion used for the mission yield evaluation in Quanz et al. (2022)
can be retrieved. We have demonstrated the precise extrac-
tion of planetary radius and temperature, which is of special
interest since they are fundamentally important parameters for
characterizing the (atmospheric) properties of exoplanets and
for categorizing and prioritizing objects for potential in-depth
follow-up investigations. We remind the reader that these two
parameters are much more difficult to derive from reflected light
measurements as there is a degeneracy between planet size and
geometric albedo and no immediate information about the effec-
tive temperature can be obtained. These results illustrate the high
quality of information one can expect from single-epoch obser-
vations with LIFE and how this information will complement the
results from future reflected light missions.
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Appendix A: Fundamental noise limit

Section 2.3.2 states that for the analysis presented in this paper
a measurement dominated by photon noise originating from the
astrophysical sources is assumed. In the following, this state will
be referred to as the fundamental noise limited regime. Consid-
ering the technical complexity of nulling interferometers, it is
important to substantiate this assumption and offer proof that it
is well founded. The aim of this appendix is the implementation
of an instrumental noise model and the subsequent prediction of
the maximum levels of perturbations to the instrument that allow
the system to stay in the fundamental noise dominated regime.

Appendix A.1. Assumptions

The term fundamental noise limited is readily used in literature
as well as in the LIFE paper series. Under the goal of producing
quantitative results, this must be translated into a more tangi-
ble constraint. The perfect instrument will only be subject to the
photon noise by the astrophysical noise sources σfund

8. Perturb-
ing the instrument will give rise to two additional types of noise
terms. First and foremost, a systematic perturbation (e.g., a varia-
tion in the amplitude response of one of the interferometric arms)
of the instrument will introduce a systematic noise term σs,inst
arising from an additional photon rate introduced by the pertur-
bations. These additional photons can resemble a signal as would
be produced by a target exoplanet. Second, additional photon
noise sources such as a detector dark current or thermal emission
within the instrument can be considered. Moreover, the system-
atic perturbations of the central destructive fringe will average to
a mean reduction in the effective null-depth. This will increase
the overall amount of photons received from the target star and
subsequently also increase the photon noise. We collect all addi-
tional photon noise sources into the instrumental photon noise
term σp,inst and define the instrumental noise term

σinst =

√
σ2

s,inst + σ2
p,inst.

The fundamental noise limited case is then interpreted as the
measurement being dominated by the photon noise arising in
the perfect instrument over the instrumental noise. Therefore, we
define the fundamental noise limited case as

σfund ≥ σinst, (A.1)

where the fundamental noise contribution is larger that the
instrumental noise contribution. Semantically, it could also be
argued that the fundamental noise being a multiple of the instru-
mental noise could be required. Therefore, we also present the
case of a five-times larger fundamental noise in the following.

For the array and instrument configuration, we mirrored the
setup described in Sect. 2.1 and Table 1. This includes the sim-
ulation of phase chopping, which is assumed to be facilitated by
subtracting two simultaneous realizations of phase-inverted out-
puts. This simplifies the calculation of instrumental noise terms
as, contrary to Lay (2004), we do not have to include errors at
the chopping frequency. All astrophysical sources were simu-
lated according to the models described in Sect. 2.2. If not stated
otherwise, this appendix analyzes an observation of an Earth-
twin around a Sun-like star located at a distance of 10 pc with a
z = 3 exozodi level (cf. Table 1).

8 Square root of the number of photons contributing to photon noise
per unit time.

In the following simulations, we assume a non-perfect instru-
ment affected by perturbations. Systematic perturbations are
assumed to affect the amplitude response A, the phase response φ
and the polarization rotation θ of each of the four interferometric
arms as well as the position x and y of the collector spacecraft.

These dynamic perturbations follow a perturbation spectrum
centered around values for the configuration of the ideal instru-
ment9. In this work, we omit any constant static offsets from
the ideal instrument configuration (e.g. a constant amplitude
response offset in one of the arms). This omission is based on
static offsets being more easily calibrated and removed compared
to dynamic perturbations. Due to a lack of reliable empirical
data, we stay agnostic to how these perturbations are generated
and assume the general noise profiles listed in Table A.1. Apart
from the aforementioned general systematic perturbations, we
examine two more sources of perturbation in an effort to illus-
trate the allowed magnitude of the remaining perturbation terms.
We consider the detector dark current ID and the thermal back-
ground seen by a detector in an environment of temperature T .
We assume a detector with physical pixel dimensions of the
JWST Mid-Infrared Instrument (MIRI) detectors (25µm pixel
pitch; see Rieke et al. 2015) and a spectral sampling of 2.2 pixels
per wavelength channel.

Appendix A.2. Methods

The simulations are largely based on the approach presented in
Lay (2004). This paper was published in the context of the TPF-
I mission and offers a comprehensive framework for estimating
the instrumental noise for nulling interferometers. The following
paragraphs will sparsely trace the calculations performed in Lay
(2004) to highlight fundamental properties.

First, the overall interferometric response is decomposed into
a sum of responses of the individual baselines:

N =
∑

j

∑

k

A jAk

[
cos(φ j − φk)Bsym, jk − i sin(φ j − φk)Basym, jk

]
.

(A.2)

Here, N is the detected photon rate, An and φn are the amplitude
and phase responses of the n interferometric arms and B(a)sym,nm
is the Fourier transform of the (anti)symmetric sky brightness
distribution under the baseline from the nth to the mth collector
spacecraft. Equation (A.2) reflects an intrinsic symmetry prop-
erty of nulling interferometers: baselines with π-multiple phase
difference respond to symmetric (with respect to the line of
sight) source while baselines with π/2-multiple phase differ-
ences respond to antisymmetric sources. The sensitivity of the
photon rate against perturbations of the instrument (here in phase
δφn and relative amplitude δan = δAn/An) is captured in a second
order Taylor expansion,

δN ≈
∑

j

[
∂N
∂A j

A jδa j +
∂N
∂φ j

δφ j

]

+
∑

j

∑

k

[
1
2

∂2N
∂A j∂Ak

A jAkδa jδak

+
∂2N

∂A j∂φk
A jδa jδφk +

1
2

∂2N
∂φ j∂φk

δφ jδφk

]
. (A.3)

The partial derivatives in this equation represent the sensitivity
that the photon rate exhibits against a perturbation of respective
9 We note the lack of DC components in the perturbation spectra.
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Table A.1. Parameters of the instrument perturbations at a reference wavelength of 10µm.

Perturbation Shape Cutoff rms Wavelength Dependence
Amplitude δA pink noise, no DC 10 kHz 0.1 % λ−1.5

Phase δφ pink noise, no DC 10 kHz 0.001 rad λ−1

Polarization δθ pink noise, no DC 10 kHz 0.001 rada none
Collector Position δx, δy white noise 0.64 mHz 1 cm none

Notes. Values taken from Lay (2004). (a)Decreased by an order of magnitude due to a typing error in the original publication (Dèfrere 2021, private
communication).

kind and order. We note the appearance of second order terms as
well as amplitude-phase cross terms.
At this point in the calculation, the symmetry of the sources
is used to simplify the expressions and arrive at the sensitivity
to the perturbations. This will be demonstrated using the sen-
sitivity to stellar leakage. In first approximation, the brightness
distribution of the stellar disk is centrally symmetric, leading to
B∗,asym,nm = 0. This reduces Eq. (A.2) to

N∗ =
∑

j

∑

k

A jAk cos(φ j − φk)B∗, jk.

Now the sensitivity of the photon rate toward, for example, first
order amplitude perturbations is given by

C∗A j
= A j

∂N∗
∂A j

= 2A j

∑

k

Ak cos(φ j − φk)B∗, jk.

Here, C∗A j
is called the first order stellar leakage sensitivity coef-

ficient, and all remaining sensitivity coefficients in Eq. (A.3) can
be determined in the same fashion.

In a final step, the photon rates N and δN are cross-correlated
with planetary template functions, which represents the signal
extraction process. The photon noise of the instrument then cor-
responds to the square root of the mean photon rate and is
therefore given by

σp =
√

N + 〈δN〉,
where 〈〉 denotes the ensemble average over all perturbed states
of the system. In this description, we identify the following cor-
respondences to the variables defined in the previous Sect. A.1:
N = σ2

fundtint and 〈δN〉 = σ2
p,insttint where tint is the integration

time.
The systematic noise is accessed via

σs,inst =
√
〈δN2〉.

Up to second order, the method of phase chopping is able
to remove all systematic noise contributions except for one first
order phase (δφn) and one amplitude-phase cross term (δanδφm).
We remind the reader that the order of the term is not connected to
its impact but refers to the proportionality between the perturba-
tion and the photon rate in Eq. (A.3). Identifying the perturbation
with the noise spectra given in Table A.1 enables the calculation
of the required noise sources. We refer the reader to Lay (2004)
for the full details of the methods described in this section.

Appendix A.3. Results

The signal and noise contributions using the assumptions laid
out above for every wavelength channel defined in the LIFE
baseline scenario are shown in Fig. A.1. For the comparison

of the fundamental noise sources in Panel a), we reconfirm the
behavior described in Sect. 2.4: the short-wavelength end of the
spectrum is dominated by the stellar leakage term, while the
long-wavelength end of the spectrum is dominated by the local-
zodiacal dust emission, which cannot be suppressed by nulling
due to its incoherent nature. For the first and second order sys-
tematic noise terms shown in Panel b) we stress again that the use
of phase chopping removes all systematic noise terms except for
the first order phase deviations and the second order amplitude-
phase deviation cross terms. This removal helps to relax the
technical requirements imposed by the systematic noise. We
reproduce the finding of Lay (2004) that the second order term
is generally larger than the first order term. Panel b) also shows
that the instrumental noise is either white or increases toward
shorter wavelengths. This is driven by the perturbation scaling
with wavelength described in Table A.1 and by the increased
amount of stellar light emitted in this regime.

Panel c) of Fig. A.1 presents the impact of the additional
noise sources on the S/N. Here, we assume a detector envi-
ronment temperature of T = 11 K and a dark current of ID =
10−4 e− px−1 s−1. As expected, the largest relative S/N reduction
is induced toward the shorter wavelength end of the spectrum
where the systematic noise is most dominant.

In the fundamental noise limit, the condition in Eq. (A.1)
must be valid for all wavelength bins. The relative trends of
instrumental and fundamental noise in Fig. A.1 indicate that this
condition should be tested toward the shorter wavelength end
of the spectrum. We therefore select three discrete wavelength
bins below 10µm for evaluation10. For completeness, we list the
numerical values for the relative signal and noise contribution in
this shortest-wavelength bin in Table A.2.

To infer the acceptable systematic noise levels, we ran the
simulations over a grid of pink noise amplitude and phase per-
turbations with varying root-mean-squared (rms) values11. The
rms is specified at a reference wavelength of 10µm and scaled
according to Table A.1. Phase errors were converted to OPD
errors to allow for a better comparison with literature. The ratio
of instrumental to fundamental noise on this grid is shown in
Fig. A.2.

Firstly, the figure confirms that certain regions allow for a
trade-off between the OPD error rms and the amplitude error
rms, where increasing one allows for a reduction of the other.
Outside of these regions, there exist hard upper limits for the
maximally allowed rms error for both amplitude and OPD. It
will be vital for the design of the instrument to stay clear of
these limits, since they imply that, if reached in one perturba-
tion rms, any improvement to the other perturbation rms does

10 Bins at 4.1µm, 6.1µm, and 10.1µm, with widths ∆λb = 0.2µm,
∆λb = 0.3µm, and ∆λb = 0.5µm.
11 We remind the reader that the use of phase chopping removes most
of the coupling to other sources of perturbation.
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Fig. A.1. Wavelength dependence of noise contributions for observations of an Earth-twin located at 10 pc with LIFE in the baseline scenario.
Panel a): Division of the fundamental noise into its individual sources. Panel b): Instrumental noise sources split into systematic noise sources
(green) and additional photon noise sources arising from instrumental effects. Panel c): Planet signal, fundamental noise, and instrumental noise
contributions. A S/N using only fundamental noise (orange bars) represents the fundamental noise limited case used in the LIFE paper series. The
green bars show the full S/N, which additionally considers the instrumental noise as well as the fundamental noise.

Table A.2. Values for the signal and noise contributions for the LIFE
baseline case with perturbations as defined in Table A.1 for the shortest-
wavelength bin of λb = 4.1µm.

Source Photon Rate (s−1)
Planet Signal 1.1 · 10−4

Fundamental Noise 5.8 · 10−2

Stellar geometric leakage 5.7 · 10−2

Local zodi leakage 5.0 · 10−4

Exozodi leakage 9.1 · 10−3

Instrumental systematic noise 3.0 · 10−1

First order phase 6.0 · 10−2

Second order amplitude-phase 2.9 · 10−1

Instrumental photon noise 1.8 · 10−2

Stellar null-floor leakage 1.0 · 10−2

Polarization angle 2.2 · 10−3

Detector thermal background 1.1 · 10−3

Detector dark current 1.5 · 10−2

S/N, one rotation (56 h)a 4.5

Notes. (a)Calculated by integrating over all wavelength bins for the
specified integration time and can be compared to the value computed
in Fig. 5 (S/N≈9.7), where the same observing example was used but
without including instrumental noise terms.

not improve instrument performance. Additionally, we can
reconfirm that the requirements are much less strict in the
longer-wavelength regime.
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Fig. A.2. Ratio of fundamental noise to instrumental noise on a grid
of amplitude and phase perturbations for the shortest-wavelength bin at
λb = 4.1µm with width ∆λb = 0.2µm. The perturbations are assumed
to be pink noise with the specified reference rms at 10µm, and the phase
perturbation is converted to an OPD. The contours indicate where the
fundamental noise dominates the systematic noise by a factor of one,
five, or ten, respectively, for the λb = 4.1µm case (in red) and for com-
parison the λb = 6.1µm (in orange) and λb = 10.1µm (in cyan) cases.
The crosses indicate the reference levels specified by Table A.1.

This grid can serve as a rough predictor for the maximally
acceptable noise levels: acceptable and too high levels of noise
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are divided by the contour tracing a ratio of one between the
fundamental and systematic noise. Within the presented frame-
work, this produces sets of allowable noise levels shown in Table
A.3. These values can only be seen as rough predictors, since
we are not presenting a complete instrument model and addi-
tional noise sources not considered in the present analysis could
further increase the noise requirements.

Table A.3. Approximate predictions for the maximum allowed pertur-
bation rms to stay in the fundamental noise dominated case.

σfund = xσinst x = 1 x = 5
OPD error rms Relative amplitude error rms

(nm) (in %)
0.75 0 . . .
0.50 0.02 . . .
0.16 0.08 0
0.10 0.13 0.02
0.05 0.24 0.05
0.01 0.62 0.12

0 0.67 0.14

Notes. rms perturbations values are given relative to the reference
wavelength of 10µm. Presented values are for an observation of an
Earth-twin at 10 pc with LIFE configured in the baseline scenario in
the λb = 4.1µm wavelength bin, i.e., the given values follow the con-
tours in Fig. A.2. The asymptotic upper limits are indicated by the bold
text.

A similar analysis can be done for the instrumental photon
noise sources. As representative terms for thermal background
emission and white shot noise term we analyzed the thermal
emission as seen by the detector and a dark current term for the
detector.
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Fig. A.3. Ratio of fundamental noise to instrumental noise on a grid of
the detector environment temperature and the detector dark current for
the shortest-wavelength bin at λb = 4.1µm with width ∆λb = 0.2µm.
The temperature induces blackbody thermal emission that is propagated
directly into the detector. The dark current is assumed to be constant
with temperature. The instrument is configured according to the ref-
erence state in Table A.1. The contours indicate where the fundamental
noise dominates the systematic noise by a factor of one or five. The cross
indicates the reference levels of T = 11 K and ID = 10−4 e− px−1 s−1

used in Fig. A.1.

Figure A.3 shows an expected behavior. Since both noise
sources are independent of each other, there exists an absolute
upper limit for the acceptable level of both terms (see Table A.4).

We note that while meeting the requirement for the ther-
mal background temperature of the detector does not appear too
challenging, the requirements on the dark current seem to be
at least one order of magnitude more stringent than what has
been achieved so far for both Si:As IBC detector arrays and MIR
MCT devices (e.g., Rieke et al. 2015; Cabrera et al. 2019; Roellig
et al. 2020; Gáspár et al. 2020). The challenges related to MIR
detector technology (and availability) has already been discussed
in LIFE paper I (Quanz et al. 2022). An interesting alternative
approach could be using kinetic inductance detectors or transi-
tion edge sensor detectors, which may also be applicable for the
LIFE wavelength range (e.g., Perido et al. 2020; Nagler et al.
2021).

Table A.4. Approximate predictions for the asymptotic upper limits in
detector thermal background and detector dark current perturbation to
stay in the fundamental noise dominated case.

np = xns x = 1 x = 5
Thermal background temperature (K) 15.1 13.4

Detector dark current (e− s−1 px−1) 4.6 · 10−3 7.5 · 10−5

Notes. Presented values are for an observation of an Earth-twin at 10
pc with LIFE configured in the baseline scenario in the λb = 4.1µm
wavelength bin, i.e., the given values correspond to the limits in Fig.
A.3.

The acceptable perturbation levels will depend on the config-
uration of the observed system. First and foremost, the properties
of the star and exozodiacal disk will influence both, the amount
of fundamental noise received and how the amount of systematic
noise scales with a given level of perturbation. Apart from this
there are additional, subtler effects that change the noise levels.
Prominent examples are the scaling of the array baseline with the
host star luminosity (see Sect. 2.3.1), relative shifts in main emis-
sion wavelength between the astrophysical objects and scaling of
absolute flux with the target distance.

A full study of all the aforementioned effects is vital, but out
of the scope of this paper. Nevertheless, a simulation varying
only the stellar type and the distance was performed to confirm
low impact on the acceptable noise levels and find an order-of-
magnitude estimate for the relative change.

To simulate the observation around a different stellar type,
an Earth-twin was placed around HD 23297912, an M0.5V-type
star at 10 pc distance. For this target as well as for an Earth-twin
system at 5 pc distance, the ratio of fundamental to instrumental
noise over amplitude and OPD perturbations is shown in Fig.
A.4.

It is apparent that the change in system configuration under-
taken here changes the acceptable perturbation levels by less
than one order of magnitude. Away from the amplitude and
phase limits (toward the center of Fig. A.4), the acceptable lev-
els show almost no change. This can be taken as validation for
the approach of this appendix to retrieve order-of-magnitude
estimates using only a single representative Earth-twin target.
However, it must also be a reminder that this will propagate sys-

12 Effective temperature Teff = 4047 K, effective radius Reff = 0.57 R�,
luminosity L = 0.079 L� (Gaia Collaboration et al. 2016, 2018), planet
separation scaled to a = 0.31 according to a planetary equilibrium
temperature of Teq = 265 K.
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Fig. A.4. Impact of the target system configuration on the ratio of fun-
damental noise to instrumental noise on a grid of amplitude and phase
perturbations for the shortest-wavelength bin at λb = 4.1µm with width
∆λb = 0.2µm. The system parameters assumed for the M-star target are
given in the text. The contours indicate where the fundamental noise
dominates the systematic noise by a factor of one, five, or ten, respec-
tively. The cross indicates the 4µm reference level specified by Table
A.1.

tematic biases into the sample of detectable planets, making an
analysis of the full sample a top priority for future work.

An additional interesting property found here is that decreas-
ing the distance to the target increases the strictness of the
OPD error requirement while decreasing the strictness of the
amplitude error requirement. The same effect can be seen when
moving to hotter host stars.

Appendix A.4. Discussion

In Table A.3 and Table A.4, we present an estimate for the maxi-
mum allowed noise level to stay in the fundamental noise limited
regime. We cross-validated the simulations that produce these
results with those of Lay (2004). While the maximum allowed
noise levels can confidently be used as an order-of-magnitude
approximation, we briefly discuss the most prominent factors
that will influence these values as work on LIFE continues to
progress.

First, in Fig. A.4 we demonstrate three different configu-
rations of the target systems that do not produce significantly
different requirements toward instrument perturbations. How-
ever, the LIFE mission aims at observing a much more diverse
sample than what is represented in Fig. A.4. Therefore, in order
to gain an understanding about the requirements to remain in the
fundamental noise limited regime for every target, we will apply
the presented simulation to the full synthetic planetary sample
described in Quanz et al. (2022) in future work.

Secondly, the presented analysis assumes a specific type
of beam combination (double Bracewell). The LIFE initiative
is still in the process of evaluating other combiner techniques
(Hansen et al. 2022). An adoption of a significantly different
technique would certainly also change the requirements on max-
imum allowed perturbations and the types of perturbations that
dominate the noise.

Thirdly, the assumptions about the perturbations themselves
are not directly based on real data or a detailed instrument model.
On the one hand, an approach more strongly based onexperi-

ments could inform a more detailed model for the shape of the
perturbation spectra. As is shown in Defrère et al. (2010) the
shape can significantly influence the requirements for maximal
perturbations. On the other hand, it would enable the connection
of requirements as presented in this report to a component level
breakdown. This would enable an evaluation of the feasibility of
reaching the required levels of perturbation.

Meeting these requirements for amplitude and especially
OPD error described in Table A.3 will be a considerable chal-
lenge. For comparison, currently planned lab experiments in the
context of the LIFE mission (Gheorghe et al. 2020) plan to
achieve similar amplitude mismatch. The planned OPD error,
however, is one order of magnitude larger compared to what is
presented in this work. Based on these experiments, it will be
difficult to predict whether the requirements in Table A.3 are
achievable in the mid-term future. In turn, this raises the question
if it is strictly required to operate the instrument in the funda-
mental noise limited regime over the whole wavelength range to
accomplish the science goals proposed for the LIFE mission.

Allowing for more OPD and amplitude perturbation will
increase the instrumental noise at short wavelengths. However,
these wavelength bands are routinely dominated by stellar geo-
metric leakage (fundamental noise) and offer very little signal
at least for temperate exoplanets (see Fig. 5). Accordingly, for
those targets, wavelengths below 6µm do not contribute to the
bulk detection nor the atmospheric retrieval (cf. Konrad et al.
2022). We therefore expect that allowing for appropriately larger
perturbations will not significantly alter the results presented in
this paper and in Quanz et al. (2022).

Appendix B: Implementation of the maximum
likelihood method

We describe the implementation of the MLM for the setting
described in Sect. 2.3, with symmetrical noise sources that
contribute by shot noise only. The time dependence of the trans-
mission map originates only from the rotation of the array,
such that T (t, λ, θp) = T (φ(t), λ, θp). The ideal modulation pro-
files for all possible planet positions θp are already contained
in the transmission map shown earlier in Fig. 3 as horizon-
tal lines. Additionally, the noise variance is time-independent:
σ2(t, λ) = σ2(λ) and can be estimated from the recorded data
A(t, λ).

For simplicity, here J labels the total cost function including
the regularization term. To enforce smoothness on the spectrum,
the second order derivative m = 2 is used. The discretized cost
function is given by

J(θ, F) =
∑

λ

[∑

t

−2Fλ

∑

t

At,λ Tt,λ

σ2
λ

+ F2
λ

∑

t

T 2
t,λ

σ2
λ

+ µ

(
Fλ+1 − 2Fλ + Fλ−1

(∆λ)2

)2 ] , (B.1)

where the dependence of A and T on the considered position θp
is omitted in the notation on the right-hand side. To switch to
matrix notation, the following parameters are defined:

c := {cλ} ; where cλ =
∑

t

At,λ Tt,λ/σ
2
λ (B.2)

B := diag{Bλ} ; where Bλ =
∑

t

T 2
t,λ/σ

2
λ (B.3)
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Fig. B.1. Different versions of the cost function, J, which is calculated on a grid up to 100 mas angular separation from the star. An artificial planet
with a photon-based S/N∼ 5 is located in the lower right at 67 mas from the center. Left: J′ without positivity constraint on the flux. The image is
symmetric, and the contrast is low such that the planet position cannot be inferred. Middle: J′′ with a simple positivity constraint on the planet flux.
The spatial degeneracy is removed, and the most likely planet position in the lower right indicates the correct planet position. Two side lobes with
similar cost values to the true planet position are visible. Right: Cost function Jreg with a positivity constraint on the flux and spectral regularization.
The overall contrast is enhanced, and the side lobes are suppressed compared with the un-regularized cost function.
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, (B.4)

where c corresponds to the un-regularized flux estimate vector,
and D is the second order derivation matrix, which is symmetric.
Equation (B.1) can then be rewritten in matrix notation as

J(θ, F) = −2F · c + FᵀBF + µ ‖DF‖2. (B.5)

The condition for minimizing the cost function with respect to
the flux, Eq. (24), then directly returns the optimized flux vector
as

F̂ = (B + µD2)−1c, (B.6)

which now also includes the regularization enforced by D. If the
optimized flux is inserted back into Eq. (B.5), we get the cost
function J′(θ) = J(θ, F̂), which is optimized with respect to the
flux:

J′(θ, F̂) = −cᵀ(B + µD2)−1c = −F̂ · c, (B.7)

where only c depends on the recorded data. As with the un-
regularized cost function in Sect. 3.1, a positivity constraint can
be applied on the regularized estimated flux:

J′′(θ) = J[θ, F̂pos(θ)] = −F̂pos · c. (B.8)

The computation of the likelihood maps can be performed on
any grid of possible planet positions and does not necessarily
have to cover the whole field-of-view of the telescope.

In Fig. B.1 we show a concrete example for how the different
cost functions behave.

Appendix C: Local zodiacal emission

Figure 5 indicates that the local-zodiacal thermal emission is the
dominant astrophysical noise source in LIFE’s long-wavelength
regime. Figure C.1 depicts a visual representation this emission
according to Formula (14). It shows that with respect to local-
zodi leakage it is generally favorable to observe targets at high
ecliptic latitudes and longitudes close to the anti-Sun direction.
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Fig. C.1. Surface brightness distribution of the local zodiacal dust cloud
for wavelengths of 5µm, 10µm, and 20µm (from top to bottom). The
flux is given in MJy sr−1 to allow for a comparison with the DARWIN-
SIM technical report (Den Hartog & Karlsson 2005) and other models
for the local zodiacal dust, e.g., the one used for sensitivity predictions
for the MIRI instrument on board the JWST (Glasse et al. 2015). We
note the different color scale for each wavelength.
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