
Large-Lexicon Attribute-Consistent

Text Recognition in Natural Images

Tatiana Novikova1, Olga Barinova1, Pushmeet Kohli2, Victor Lempitsky3

1Lomonosov Moscow State University, 2Microsoft Research Cambridge, 3Yandex

Abstract. This paper proposes a new model for the task of word recognition

in natural images that simultaneously models visual and lexicon consistency of

words in a single probabilistic model. Our approach combines local likelihood

and pairwise positional consistency priors with higher order priors that enforce

consistency of characters (lexicon) and their attributes (font and colour). Unlike

traditional stage-based methods, word recognition in our framework is performed

by estimating the maximum a posteriori (MAP) solution under the joint posterior

distribution of the model. MAP inference in our model is performed through the

use of weighted finite-state transducers (WFSTs). We show how the efficiency of

certain operations on WFSTs can be utilized to find the most likely word under

the model in an efficient manner. We evaluate our method on a range of challeng-

ing datasets (ICDAR’03, SVT, ICDAR’11). Experimental results demonstrate

that our method outperforms state-of-the-art methods for cropped word recog-

nition.

1 Introduction

Recent years have seen a surge of interest in the task of text understanding in “natural”

photographs. This has primarily been driven by the large number of potential applica-

tions including those concerned with mobile vision and robotics. In general, in contrast

to the understanding of text in scanned documents (which is a mature technology),

understanding text in natural photographs of man-made environments remains a hard

problem and a topic of an active research in the vision community [1], [2], [3], [4]. So

far, most of these efforts have been pointed at adapting low-level and mid-level com-

puter vision frameworks, e.g. morphological analysis [5], belief propagation in second-

order random fields [6], maximally stable regions [3], and pictorial structures [1]. Text,

however, possesses some natural higher-order structural properties (linearity, availabil-

ity of lexicons) that can disambiguate the recognition of even very complicated visual

instances and that are not fully exploited by existing frameworks.

Most previous papers on natural text recognition are organized as bottom-up pipelines

that perform character detection followed by character recognition. This delays the in-

corporation of language models (e.g. lexicon or n-grams) till the very last stage of the

pipeline and often such priors are enforced as post-processing, e.g. in a spell-checker

manner [7, 8]. Such an approach helps to recover from a moderate amount of errors, but

the accumulation of errors towards higher stages of the pipeline in more difficult cases

leads to incorrect results, as language priors come “too late” and are unable to “salvage”

the recognition process.



2 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

Fig. 1. The top row: Examples of difficult images that are correctly recognized by our model

without attribute reasoning. The second and the third rows: the words that are recognized by

our model once the word attribute variables are added. The bottom row: images that are not

recognized by our method.

In this paper, we present a text recognition (word reading) system that avoids the

use of a pipeline architecture and instead formulates the problem of word recognition

as the maximum a posteriori (MAP) inference in a unified probabilistic framework. Our

model enforces both the language consistency, and the consistency of the attributes of

letters that constitute a word. This unified treatment allows us to carry over the uncer-

tainty associated with character detection and recognition in a principled fashion while

enforcing structure and language constraints.

The MAP inference problem in our model requires potent optimization techniques,

and for that we resort to weighted finite-state transducers, which are one of the most

powerful frameworks that have been developed in the natural language/speech process-

ing community. WFSTs provide a common and natural representation for recognition

context, lexicons and grammars. Efficient algorithms for finding n-shortest paths, as

well as for the determinization and the combination of WFSTs have been proposed

in the literature [9, 10]. We utilize these as building blocks within the proposed infer-

ence procedure to ensure low computational cost even in the presence of very large

(language-scale) lexicon priors.

We apply our approach on the problem of cropped word recognition, also known as

word spotting (in the case of the small lexicon) and as robust reading (in the case of the

large lexicon). We evaluate the method on ICDAR 20031, SVT2, and the ICDAR 20113

image datasets/challenges, and in all cases observe a considerable improvement in the

recognition accuracy over the previously reported state-of-the-art.

1 http://algoval.essex.ac.uk/icdar/Datasets.html
2 http://vision.ucsd.edu/ kai/grocr/
3 http://robustreading.opendfki.de/wiki/SceneText



Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 3

2 Related Work

As an exhaustive review of the literature concerned with text understanding in natural

photographs is not feasible due to space limitations, we focus on the most related works.

Character detection. Several approaches have been proposed for character recog-

nition that can to some extent handle the challenges introduced by natural photographs.

[3, 4, 11] use maximally-stable extremal regions (MSER) as character candidates and

achieve a high recall. We follow this line of work and use MSER as the primitives in

our probabilistic model. Alternative approaches (which could also be used within our

framework) include using connected components resulting from stroke transforms of

edge maps [5], or using sliding HOG-templates [1].

Probabilistic models. A number of probabilistic methods have been proposed for

character detection and identification in natural photos. Most of these models are sim-

ilar in spirit to part-based deformable models/pictorial structures [12] that are popular

in computer vision. These methods work by enforcing pairwise relations between ad-

jacent characters and use message-passing/dynamic programming for MAP inference.

Although they can easily incorporate the bi-gram prior, introducing more powerful lan-

guage priors (e.g. lexicons) is highly non-trivial.

Some approaches [13, 8] incorporate lexicon priors in a rather exhaustive manner,

with the resulting complexity scaling linearly with the size of the lexicons (although

sparsification heuristics within message passing can retain some of the efficiency). Oth-

ers (such as [14, 2]) incorporate lexicons by extending message-passing from linear

chains to tries encoding language lexicons. While such approaches scale sublinearly

with the size of the lexicon, tries for natural languages can still be very large. Passing

messages along all edges of a trie, as required by these methods can still be a slow

process (unless a restricted scenario such as word spotting [1, 2] with small lexicon is

considered).

Weighted Finite-State Transducers (WFST). WFSTs represent a popular frame-

work for working with natural languages. They provide a more compact representation

to large lexicons compared to tries [15]. The use of WFST for text recognition in nat-

ural photographs has, however, been limited. Beaufort and Mancas-Thillou [7] have

applied WFSTs to impose the language model as a postprocessing step after character

segmentation and recognition. The closest work to ours is the recent paper of Yamazoe

et al. [16]. Similarly to our work they combine two WFSTs: one to express the observed

set of connected components and their properties, and the other to express the lexicon

prior. Their approach, however, neither considers a joint energy/probabilistic model nor

does it have latent variables (attributes).

As WFST forms the backbone of our approach we review it in more detail in the next

sections. In the remainder of the paper, we establish the usefulness of latent variables,

demonstrate the manner in which they can be handled efficiently with the determiniza-

tion algorithms, and finally show that WFSTs can be used obtain excellent performance

that exceeds state-of-the-art word recognition performance on established benchmarks.



4 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

Fig. 2. The graphical model for word recognition. Here w is the result of the word recognition; a

is the attribute-tuple of the word. The nodes a1, . . . , at correspond to the attributes of the char-

acters; b1, . . . , bt correspond to the character locations; c1, . . . , ct denote character recognition

results (e.g. an alphanumeric symbol). The unary factors defined over ai’s and ci’s are omitted

for clarity. The shaded node I denotes the observed image. Please, see text for more details.

3 Probabilistic model for word recognition.

Probabilistic formulation. LetΣ denote the alphabet set composed of symbols αi; i ∈
{1, ..., k} (e.g. Latin letters and digits). Given a cropped image I ∈ I containing a

certain word that fills most of this image, we formulate the goal of word recognition

as the task of inferring this word w, while possessing the dictionary (the lexicon) L of

correct words. We now derive a model, so that the inference in such model accomplishes

the goal in a robust manner.

In the beginning, to simplify the exposition, let us assume that the length t of the

output word is known in advance and fixed. To determine which word is shown in the

image, we then have to infer character locations {b1, ..., bt} and character labels ci at

each of the bi ∈ {1, ..., t} locations. The summary of the visual information in the test

image I at location bi is used as a feature for character recognition. The set of all bi’s is

denoted by B.

Each character ci has some associated attributes ai that characterize its appearance

such as shape, color, size, stroke width, style, font etc. In our model, we restrict the

attribute set to ai = {aci , a
o
i } where aci denotes the color of a character, aoi denotes

its position with respect to the text line. We will use C and A to denote the set of all

characters and attributes, i.e. C = (c1, ..., ct) and A = {a1, ..., at}.

Due to the typographic properties of the printed text, the values of attributes are

usually the same or very similar for all characters constituting a word. For example, in

most cases letters in a word have the same font, style and color. Moreover, the letters

are usually organized in a text line, which provides a constraint on the locations and



Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 5

sizes of the characters in an image. In order to capture such higher-order constraints we

introduce a variable a that represents the attributes of the word w as a whole.

Given an image I , the Maximum a Posteriori (MAP) estimate of the word depicted

in the image can be computed as:

{w∗,a∗} = argmax
w,a

P (w,a|I) = argmin
w,a

E(w,a, I) (1)

where the energy E is the negative log-posterior for the distribution P (w,a|I). The

joint posterior distribution P (w,a|I) of the word recognition result w and the word

attribute a factorizes as:

max
w,a

P (w,a|I) ∝ max
w,a,A,B,C

∏

i

φl(bi|ci, ai)ψb(B)ψa(a, A)ψw(w, C). (2)

where φl is the likelihood term, ψa is the attribute-consistency term, ψw corresponds to

the language prior, ψb is the location prior. The labelling of all characters C and their

attributes A are treated as latent variables.

In our model, the location prior ψb has the following form:

ψb(B) = ψstart(b1) ψend(bt)
∏

ij∈N

ψmid(bi, bj) (3)

where the term ψmid(bi, bj) encourages the locations of adjacent characters (i, j) ∈ N
to be consistent with each other, while the terms ψstart(b1) and ψend(bt) encourage the

locations of the first and the last characters to be close to the sides of the image (so that

the entire image is approximately spanned by the word).

The attribute consistency term encourages the attributes of individual characters to

be consistent with the attributes of the word a and, consequently, to be consistent with

each other. It further decomposes into:

ψa(a, A) =
∏

i

θc(a, ai)
∏

i

θo(a, ai) (4)

where θc characterizes the color consistency of individual characters with the color of

the word and θo characterizes the consistency of individual characters with the esti-

mated text line.

The word prior ψw(w, C) encourages the characters detected at different locations

to follow the language model. In our implementation it enforces the characters to form

a word from the lexicon L:

ψw(w, C) =

{

1, if C ∈ L

0, otherwise
(5)

The corresponding graphical model (simplified for clarity) is shown in Figure 2.

Energy function. The energy (negative log likelihood) of our model if formally

defined as:

E(w,a|I) =
∑

i

φ̃li(bi|ci, ai) +
∑

i

θ̃c(a, ai) +
∑

i

θ̃o(a, ai)

+ ψ̃start(b1) +
∑

ij∈N

ψ̃mid(bi, bj) + ψ̃end(bt) + ψ̃w(w, C), (6)



6 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

where φ̃l, θ̃c, θ̃o and ψ̃ are the negative logarithms of the potentials φl, θc, θo and ψ
respectively.

Likelihood term. We compute the likelihood term φl using a simple nearest neigh-

bour classifier with the shape descriptor similar to the one used in [3]. Let us denote the

result of nearest neighbour classification for a character at location bi by ĉi and denote

the distance from I(bi) to its nearest neighbour in the training set by d(I(bi), ĉi). Let

ν(c′, c′′) denote the negative logarithm of the probability that a symbol c′′ is classi-

fied as c′. We estimate ν(c′, c′′) by building a confusion matrix for nearest neighbour

classification on the training set of synthetic characters.

The likelihood term φ̃li in our model does not depend on the attributes of the char-

acter and takes the form:

φ̃l(bi|ci, ai) =Wi [κrecd(I(bi), ĉi) + κconf (1− ν(ci, ĉi))] , (7)

where κrec and κconf are parameters of the energy function, and Wi is the normal-

ized width of the i-th character which is multiplied in the likelihood term to overcome

bias towards shorter words. Note that there is a certain asymmetry between the nearest

neighbour and other characters, which is introduced to allow for the efficient minimiza-

tion discussed in section 4.

Prior terms. The prior terms for enforcing the attribute consistency have the fol-

lowing form:

θ̃c(a, ai) =Wiκrgb

[

(ri − r)2 + (gi − g)2 + (bi − b)2
]

(8)

θ̃o(a, ai) =Wiκtxl × d2txl

(

xti, y
t
i , x

b
i , y

b
i ,atxl

)

where ri, gi, bi is the mean color of the i-th character, {r, g, b} is the mean color of the

whole word, dtxl is the distance from the top and bottom points of the i-th character to

the lines that bound the word (as computed in [4]), and κrgb and κtxl are parameters of

the energy function.

In our implementation the pairwise terms ψ̃mid(bi, bj) take a form:

ψ̃mid(bi, bj) =

{

Wijκdist, if Wij < Dmax

+∞, otherwise
(9)

where Wij is the normalized distance between the i-th and the j-th characters, thus

ensuring that the consecutive characters are sufficiently close spatially. The potentials

ψ̃start and ψ̃end have similar step-function form that guarantees that the positions of the

first and last letters in the word are sufficiently close to the borders of the word bounding

box. The constant κdist is a parameter of the energy function.

4 Inference using weighted finite state transducers

To perform inference in the model described in the previous section, we rely on classi-

cal language-related tools, namely weighted finite-state transducers (WFST) to express

different parts of our model. We then use existing efficient implementations [17] to

simplify, to determinize, and to compose these objects so that the parts of the model are



Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 7

(a)- detected characters

(b)- initial transducer

Fig. 3. Constructing the initial transducer from sampled characters. (a) – a sample image with

the sampled locations superimposed, (b) - the initial transducer. The nodes of the transducer are

color-coded and correspond to detected characters. All characters that can be consecutive in the

word are connected with transitions in the initial transducer. ǫ denotes the empty character.

mapped into a single WFST. We finally find the lowest-weight sequence of the resulting

WFST that delivers the approximate MAP solution of (2).

In general, a weighted finite-state transducer (WFST) is based on a directed multi-

graph, where each vertex corresponds to a state, and each arc is assigned a weight w,

an input character ci from the alphabet AI and an output character co from the alphabet

AO (the notation (ci : co /w) is used further on). In this way, every path in the graph

defines an input sequence of characters, an output sequence of characters, and a weight.

One of the vertices of WFST is designated as a start vertex and a subset of vertices are

designated as end vertices, thus defining a set of valid paths going from the start to one

of the ends.

In this way, a WFST determines an input language LI and an output language LO,

defined as sets of character sequences corresponding to valid paths. Each valid path is

said to accept its input sequence LI and to transduce it to the output LO. A WFST

is called deterministic, if for each input-output sequence pairs there exists at most one

valid path that performs the correspondent transduction. Each non-deterministic WFST

A can be transformed to a deterministic WFST B with the same input and output lan-

guages i. e. for each transduction LI into LO that is possible in A, the output B has a

single valid path with the same weight as the lowest-weight valid path performing this

transduction in A. Such a transformation is called determinization, and a lot of research

effort has gone into the development of efficient determinization algorithms that can

keep the run-time and the size of the output WFST small.



8 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

Expressing the model via WFSTs. To perform the MAP inference in (2), we rely

on the discretization process that samples likely values for the variables. Thus, we sam-

ple a large pool of the likely candidate character locations b̂1, b̂2, . . . , b̂N and the candi-

date word attribute values â1, â2, . . . , âK (we discuss the sampling method below). For

each candidate location b̂i, based on the local appearance, the most likely character ĉi
and the most likely character attribute value âi are estimated.

Let us first consider a fixed word-level candidate attribute value â. We then create

the WFST that transduces the sequence from the input alphabet {1, 2, . . . , N} into the

output alpha-numerical alphabet. The graph for such a WFST is created in the following

way (Figure 3). For each candidate character location, we create a head vertex Hi and

a tail vertex Ti. We then connect the head and the tail vertices with the arc:

Hi → Ti :
(

i : ĉi /Wiκrecd(I(b̂i), ĉi) + θ̃c(â, âi) + θ̃o(â, âi)
)

, (10)

where index i is the input character of the WFST, ĉi is the output character, and the

last parameter is the transduction weight. Note that one can introduce multiple arcs

Hi → Ti corresponding to different characters that fit the appearance at the location

b̂i with some high likelihood. However, to reduce the computational complexity, we

introduce only a single arc Hi → Ti corresponding to the most likely character at this

stage, while the alternative characters are introduced at the later stage.

We then further detect all pairs of candidate locations (b̂i, b̂j), which are sufficiently

close to each other (Wij < Dmax). We then connect the tail Ti and the head Hj with

the arc that accepts and produces empty characters (denoted with ǫ):

Ti → Hj :
(

ǫ : ǫ /ψ̃mid(b̂i, b̂j)
)

. (11)

We finally introduce the special start vertex S and the end vertex T . We introduce

the set of arcs connecting S to the head vertices of the candidate locations situated

near the left side of the bounding box with the parameters
(

ǫ : ǫ /ψ̃start(b̂1)
)

, and sim-

ilarly connect the tail vertices of the locations near the right side to the T vertex with

arcs having the parameters
(

ǫ : ǫ /ψ̃end(b̂t)
)

. The resulting WFST denoted as T ′(â)

transforms the sequences of candidate locations into sequences of characters, with each

such transformation being assigned a weight that is equal (upto an additive constant) to

log
(

∏

i φl(b̂i|ĉi, âi)ψb(b)
)

.

“Determinizing out” the attribute variable. We handle the optimization over the

attribute variable â by creating a separate WFSTs T ′(â1), T
′(â2), . . . , T

′(âK) for ev-

ery candidate attribute value. We then combine all these WFSTs into a single WFST by

merging their start and end vertices. An example of a transducer at this step is shown in

Figure 4 (a). A further simplification/discretization step is applied to the WFST, a large

number (2000 in our experiments) of valid paths with the lowest weight are found, and

the part of the WFST that does not participate in those paths is discarded. The resulting

WFST can still be non-deterministic (as the same transformation can be performed by

multiple paths corresponding to different âi). Therefore, the determinization algorithm

is applied producing an equivalent deterministic WFST. Essentially, such determiniza-

tion “minimizes out” the word-level attribute variable a. We observe that the size of the



Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 9

WFST is reduced dramatically in the determinization process. An example of WFST

created after deteminization is shown in Figure 4 (b).

Reintroducing non-optimal characters. To handle the errors arising from adding

only the most likely characters for each location b̂i into the initial set of WFSTs, we

modify the determinized WFST in the following way. Consider a head-tail transition

(an arc) a with the parameters (i : ci /wi). For each such arc, we add several parallel

arcs corresponding to different possible substitutions ci with parameters (i : ci /w
ci
i ).

The weight wci
i is set to wi + Wiκconf (1− ν(ci, ĉi)) so that the potential (7) is cor-

rectly implemented for all characters. The asymmetry of this potential w.r.t. the nearest

neighbour and its independence from the attribute variable allows us to perform the

determinization and to minimize out the attribute variable on a significantly smaller

transducer. The transducer obtained after introducing the non-optimal characters is de-

noted as Tlikelihood. This transducer is usually very large, so we show just a small part of

it in Figure 4 (b) in the balloon.

Adding the language prior. The main benefit of applying the WFST framework to

the text recognition problem is the ease of introducing language priors. In this work,

we focus on the more challenging lexicon priors, but the N-gram-based priors or the

combination of multiple priors can be added as well. To add the lexicon priorψw(w, C),
we consider a standard lexicon finite-state transducer that accepts only the words from

the lexicon corpus L [9] and apply the identity transformation to them (i.e. the WFST

can be regarded as an acceptor). This WFST can also be unweighed, i.e. all transitions

can be assigned a zero weight so that all words in the lexicon are assigned the same

probability.

The transducer Tlikelihood can then be composed [9] with the language-prior acceptor

Tprior. The result of the composition is a new transducer that transforms the sequences of

candidate locations into words from the lexicon. To get the MAP-solution, one simply

needs to find the shortest valid path in the composed transducer that accepts the optimal

location sequence and produces the optimal word. The resulting transducer after the

composition with the lexicon and the shortest path computation is shown in Figure 4

(c).

5 Experiments

Implementation details. As discussed earlier, our method needs to sample a large num-

ber of candidate locations and attributes for inference. For sampling these candidate

assignments we follow the approach of [3] and use the MSER region detector to find

location candidates (we use the implementation [18] with default parameters that pro-

vide sufficient recall). The appearance descriptor for the location region (MSER) is

then computed using a 4x4 grid superimposed over its bounding box. Within each cell

an 8-dimensional histogram of boundary orientations is computed and histograms for

multiple cells are concatenated. Again, following [3] we create a large synthetic dataset

of characters using Windows fonts resulting in 450 exemplars of each character. The

dataset of the descriptors computed for such images is then used inside the nearest-

neighbor classifier.



10 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

To sample attribute hypotheses, we sample 2 or 3 characters that are sufficiently

close to each other and use this set for the estimation of mean color of the word and the

textline parameters. The color of a word is estimated as a pixel-wise mean of the colors

of all sampled characters. For the estimation of textline parameters we use the same

strategy as suggested in [4]. If the slope of the textline is far from being horizontal

(> atan0.4), we discard the sequence and sample a different set of characters. This

procedure is repeated until the total number of sampled word attributes is 100. For the

inference in all experiments (and for the visualization in Figure 4 and Figure 3 we use

the OpenFST library [17].

For all our experiments, the output character alphabet included the 26 Latin let-

ters (case insensitive) as well as 10 digits. For the ICDAR’2011 experiments case-

disambiguation is required, and we handled it in a post-hoc manner. Thus, we trained 26

linear SVMs, each one distinguishing uppercase English letter from the same lowercase

letter. The SVMs are trained on a set of characters from Windows fonts. In most cases

printed words either contain only lowercase/uppercase letters or have the first letter in

the upper case followed by a tail of lowercase letters. To distinguish between these three

classes of word layout, we computed the SVM margins for all letters in the word. We

used the mean margin of all letters except for the first one to estimate the case of the tail.

If the tail of the word is uppercase, we assumed that the first letter is also uppercase.

Otherwise we estimate the case of the first letter based on the output of a corresponding

SVM.

Parameter validation. In all reported experiments we used the same set of param-

eters, obtained by validation on the training part of ICDAR 2011 dataset. For valida-

tion we used the English lexicon from the OCRopus open source document analysis

and OCR system [19] augmented with the list of words from the ICDAR 2011 train

dataset (about 90 thousand words in total). We performed validation in two steps: first

we performed validation of our model without word attributes and obtained the set of

parameters κrec, κconf , κdist. After that we fixed these parameters and found optimal

values of κrgb and κtxl.

Word spotting scenario. In the first experiment we evaluate cropped word recog-

nition on ICDAR 2003 and SVT datasets in the word spotting scenario (small lexicon)

following the experimental protocol of [1] and [2]. For ICDAR 2003 the lexicon that

contains all words that appear in the dataset (1065 words in total) is constructed. The

SVT dataset provides a lexicon of 50 words for each image separately. Following the

protocol used in [1] and [2] we ignore all words that contain non-alphanumeric charac-

ters as well as words with 2 or fewer characters.

In Table 1, we compare the results of our method to the methods from [1] and [2].

Our method performs 20% better on ICDAR 2003 and 14% better on SVT datasets

than the closest competitor. Figure 1 shows examples of image from the ICDAR 2003

dataset.

In order to measure the contribution of different components of our system we per-

form additional experiments on ICDAR 2003, in which we evaluate two simplified vari-

ants of the method. In the first variant we remove the terms θ̃c and θ̃o that enforce

attribute consistency. As seen in Table 1 including attribute consistency results in the

significant increase in accuracy. In the second variant we consider the energy without



Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 11

Table 1. Comparison of variants of our method with [1] and [2] in word spotting scenario on

ICDAR’2003.

ICDAR SVT

Wang et al. [1] 59% 59%

Wang et al. [2] 62% 57%

Ours, full model 82.8% 72.9%

Ours w/o attribute consistency, w/o alternative

character recognition

60% -

Ours w/o attribute consistency 80.7% -

Ours, full model, large lexicon 78.5% -

the terms θ̃c and θ̃o, and use only the most likely result of character recognition for

each detected character. A substantial drop in performance suggests the importance of

keeping multiple hypothesis for each character.

For comparison we measure the performance of our method with OCRopus lexicon

augmented with the list of words from ICDAR 2003. The result of this experiment is

also shown in Table 1. 90 times increase in the size of lexicon results in just about 4%

decrease in accuracy. For comparison, in [2] increasing the size lexicon about 20 times

(from 50 to 1065 words) led to a 14% performance decrease.

We have measured the running time of different components of our method. The

method for sampling candidate characters and their attributes was implemented in MAT-

LAB. The results for ICDAR 2003 dataset are summarized in Table 2. The suggested

WFST-based inference is computationally efficient; in practice, the overall time is dom-

inated by the nearest-neighbor classifier (not shown in the table) that can be optimized

or replaced with e.g. Random Forest-based character recognition [20].

Table 2. Average running time of different components of our method (per word) for the different

modules within the proposed inference procedure.

Sampling the attributes 0.11 sec

Determinization 0.27 sec

Adding alternatives for character recognition 0.26 sec

Composition with lexicon (about 90000 words) and shortest path computation 0.68 sec

Composition with lexicon (about 1000 words) and shortest path computation 0.21 sec

Robust reading scenario. The Robust Reading Competition was held at the In-

ternational Conference on Document Analysis and Recognition in 2011. One of the

challenges that it dealt with was the task of cropped word recognition. The target of this

task was to recognize cropped word images of scene text. Cropping was done based on

ground-truth word bounding boxes in order to evaluate recognition performance inde-

pendently from text localization accuracy.

The lexicon used in the competition was not published but it is guaranteed to contain

all words from the dataset. We used the English lexicon from the OCRopus open source

document analysis and OCR system [19] that contains about 90 thousand words, which



12 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

is likely to be at least as large as the lexicon used in the challenge4. In order to place

our method on the same footing as the other entries of the contest we added the words

from the ICDAR 2011 dataset to this lexicon.

Table 3 shows the recognition rate for all methods. The results of the entries of the

Robust Reading Competition are reproduced from [21]. Our method shows a very con-

siderable 14% improvement over the winning entry of the Robust Reading Competition.

We also report the case-insensitive recognition rate. The gap between case-sensitive

and case-insensitive recognition rates shows that the improvement of case recognition

would result in further improvement of the recognition performance (although some

instances in the dataset are inherently ambiguous or even erroneously annotated w.r.t.

the letter case).

Table 3. Recognition rates of the entries of ICDAR 2011 Robust Reading Competition and our

method for the ICDAR 2011 dataset.

ICDAR 2011

TH-OCR System 41.2%

KAIST AIPR System 35.6%

Neumann’s Method 33.11%

Our method (case sensitive) 56.4%

Our method (case insensitive) 66.7%

6 Discussion

We have proposed a novel method for text recognition that simultaneously models vi-

sual and lexicon consistency in a single probabilistic model. Unlike traditional stage-

based methods, character and words recognition in our model is performed by esti-

mating the MAP solution under a joint posterior distribution of the model. We have

exploited the structure of our model to significantly speed-up MAP inference using

weighted finite state transducers.

Experimental results demonstrate that our approach achieves substantially superior

results compared to traditional methods. We have also shown that different parts of

our model, such as attribute consistency, contribute significantly to the text detection

performance.

References

1. Wang, K., Belongie, S.: Word spotting in the wild. In: European Conference on Computer

Vision (ECCV). (2010)

2. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: IEEE Interna-

tional Conference on Computer Vision (ICCV). (2011)

4 Note that apart from the language corpus, we have not used any component of the OCRopus

system.



Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 13

3. Neumann, L., Matas, J.: A method for text localization and recognition in real-world im-

ages. In: Proceedings of the 10th Asian conference on Computer vision - Volume Part III.

ACCV’10 (2011)

4. Neumann, L., Matas, J.: Text localization in real-world images using efficiently pruned

exhaustive search. In: ICDAR. (2011)

5. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width trans-

form. In: CVPR. (2010)

6. Yuille, A.L.: Detecting and reading text in natural scenes. In: CVPR, IEEE (2004) 366–373

7. Beaufort, R., Mancas-Thillou, C.: A weighted finite-state framework for correcting errors

in natural scene ocr. In: Proceedings of the Ninth International Conference on Document

Analysis and Recognition - Volume 02. (2007)

8. Smith, D.L., Field, J., Learned-Miller, E.G.: Enforcing similarity constraints with integer

programming for better scene text recognition. In: CVPR, IEEE (2011)

9. Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recognition.

Computer Speech & Language 16 (2002) 69–88

10. Povey, D., Hannemann, M., Boulianne, G., Burget, L., Ghoshal, A., Janda, M., Karafit, M.,

Kombrink, S., Motlcek, P., Qian, Y., Riedhammer, K., Vesel, K., Vu, N.T.: Generating exact

lattices in the WFST framework. In: ICASSP. (2012)

11. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: CVPR. (2012)

12. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In:

CVPR (1). (2004) 261–268

13. Weinman, J.J., Learned-Miller, E., Hanson, A.R.: Scene text recognition using similarity and

a lexicon with sparse belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009)

14. Jacobs, C.E., Simard, P.Y., Viola, P.A., Rinker, J.: Text recognition of low-resolution docu-

ment images. In: ICDAR. (2005) 695–699

15. Ciura, M., Deorowicz, S.: How to squeeze a lexicon. Softw., Pract. Exper. 31 (2001) 1077–

1090

16. Yamazoe, T., Etoh, M., Yoshimura, T., Tsujino, K.: Hypothesis preservation approach to

scene text recognition with weighted finite-state transducer. In: ICDAR. (2011)

17. Allauzen, C., Riley, M.: OpenFst: a general and efficient weighted finite-state transducer

library. http://www.openfst.org/twiki/bin/view/FST/WebHome (2010)

18. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algo-

rithms. http://www.vlfeat.org/ (2008)

19. : The OCRopus open source document analysis and OCR system.

(http://code.google.com/p/ocropus/)

20. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural

Computation 9 (1997) 1545–1588

21. Shahab, A., Shafait, F., Dengel, A.: ICDAR 2011 robust reading competition challenge 2:

Reading text in scene images. In: ICDAR. (2011)



14 Tatiana Novikova, Olga Barinova, Pushmeet Kohli, Victor Lempitsky

(a)- transducer after sampling word attributes

(b)- transducer after determinization, reintroducing non-optimal characters is shown in a balloon

(c)- transducer after composition with lexicon and shortest path computation

Fig. 4. Components of the method for the example from Figure 3. Each branch in the trasnducer

(a) corresponds to one sampled value of word attributes. After determinization for each input

sequence only one valid path is kept, corresponding to the best value of the word attributes.

After the composition with the lexicon only the valid paths that correspond to the words from a

given lexicon are kept. The final answer is determied by the lowest-weight path (shown) in the

combined transducer.


