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Recent advances in linear classification have shown that for applications such as document classification,
the training process can be extremely efficient. However, most of the existing training methods are designed
by assuming that data can be stored in the computer memory. These methods cannot be easily applied
to data larger than the memory capacity due to the random access to the disk. We propose and analyze
a block minimization framework for data larger than the memory size. At each step a block of data is
loaded from the disk and handled by certain learning methods. We investigate two implementations of the
proposed framework for primal and dual SVMs, respectively. Because data cannot fit in memory, many
design considerations are very different from those for traditional algorithms. We discuss and compare with
existing approaches which are able to handle data larger than memory. Experiments using data sets 20
times larger than the memory demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

Linear classification1 is useful in many applications, but training large-scale data re-
mains an important research issue. For example, a category of PASCAL Large Scale
Learning Challenge2 at ICML 2008 is designed to compare linear SVM implemen-
tations. The competition evaluates the running time after data have been loaded into
the memory, but many participants find that loading time costs more. Thus, some have
concerns about the evaluation.3 This result indicates a landscape shift in large-scale
linear classification because time spent on reading/writing between memory and disk
becomes the bottleneck. A more challenging situation for large linear classification is
to deal with data sets that cannot fit in memory. Existing training algorithms often

1By linear classification we mean that data remain in the input space and kernel methods are not used.
2http://largescale.first.fraunhofer.de/workshop
3http://hunch.net/?p=330
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Fig. 1: Data size versus training time by directly applying LIBLINEAR on a machine
with 1GB memory (the actual available memory is about 0.853GB). When data size is
larger than the memory capacity, the running time grows rapidly.

need to iteratively access data, so without enough memory, the training time will be
huge. To see how serious the situation is, Figure 1 presents the running time by ap-
plying an efficient linear classification package LIBLINEAR [Fan et al. 2008] to train
data with different scales on a computer with 1 GB memory. Clearly, the time grows
sharply when the data size is beyond the memory capacity.

We model the training time to contain two parts:

training time = time to run data in memory +

time to access data from disk.4
(1)

Traditional training algorithms, assuming that the second part is negligible, focus
on the first part by minimizing the number of CPU operations. Linear classification,
especially when applied to document classification, is in a situation that the second
part may be more significant. Recent advances on linear classification (e.g., Joachims
[2006], Bottou [2007], Hsieh et al. [2008], Shalev-Shwartz et al. [2011] and the recent
survey by Yuan et al. [2011]) have shown that training one million instances takes
only a few seconds (without counting the loading time). Therefore, some have said that
linear classification is essentially a solved problem if the memory is enough. However,
handling data beyond the memory capacity remains a challenging research issue.

According to Langford et al. [2009], existing approaches to handle large data can be
roughly categorized to two types. The first approach solves problems in distributed sys-
tems by parallelizing batch training algorithms (e.g., Chang et al. [2008] and Zhu et al.
[2009]). However, not only is writing programs on a distributed system difficult, but
also the data communication/synchronization may cause significant overheads. The
second approach considers online learning algorithms. Because data may be used only
once, this type of approaches can effectively handle the memory issue. However, even
with an online setting, an implementation over a distributed environment is still com-
plicated; see the discussion in Section 2.1 of Langford et al. [2009]. Moreover, existing
implementations (including those in large Internet companies) may lack important
functions such as evaluations by different criteria, parameter selection, or feature se-
lection.

In machine learning practice, Tong [2010] argues that keeping algorithms simple
and robust is crucial. Therefore, a simple system constructed according to users’ need is

4These two parts are not necessarily disjoint because we may run some data in memory and simultaneously
read other data from disk. For simplicity, here we assume they are disjoint.
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more favorable. This paper aims to construct large linear classifiers for ordinary users
who can access only a single machine rather than a distributed system. We consider
one assumption and one requirement:

— Assumption: Data cannot be stored in memory, but can be stored in the disk of one
computer. Moreover, sub-sampling data to fit in memory causes lower accuracy.

— Requirement: The method must be simple so that support for multi-class classifi-
cation, parameter selection and other functions can be easily done.

Our assumption holds only for certain data, because sub-sampling is useful in some
occasions. In particular, if informative instances are retained in the selected subset,
the resulting accuracy may be similar to that of using the full set. A study by Yu et al.
[2003] selects important instances by reading data from disk only once.

In this work, we discuss a simple and effective block minimization framework for
applications satisfying the above assumption. We focus on batch learning though ex-
tensions to online or incremental/decremental learning are straightforward. While
many existing online learning studies claim to handle data beyond the memory capac-
ity, most of them conduct simulations with enough memory and check the number of
passes to access data (e.g., Shalev-Shwartz et al. [2011] and Bottou [2007]). In contrast,
we conduct experiments in a real environment without enough memory. We show that
the proposed methods are competitive with a well-developed online learning package
Vowpal Wabbit [Langford et al. 2007].

An earlier linear-SVM study [Ferris and Munson 2003] has specifically addressed
the situation that data are stored in disk, but it assumes that the number of features
is much smaller than data points. Our approach allows a large number of features, a
situation often occurred for document data sets.

This paper is organized as follows. In Section 2, we consider SVM as our linear
classifier and propose a block minimization framework. Two implementations of the
proposed framework for primal and dual SVM problems are respectively described in
Sections 3 and 4. Techniques to minimize the training time modeled in Eq. (1) are
in Section 5. Section 6 discusses the implementation of cross validation, multi-class
classification, and incremental/decremental settings. Section 7 discusses related ap-
proaches for training linear classifiers when data are larger than memory capacity. We
show experiments in Section 8 and give conclusions in Section 9.

A preliminary version of this work appears in a conference paper [Yu et al. 2010].

2. BLOCK MINIMIZATION FOR LINEAR SVMS

We consider linear SVM in this work because it is one of the most used linear classi-
fiers. Given a training set {(xi, yi)}li=1, xi ∈ Rn, yi ∈ {−1,+1}, SVM solves the follow-
ing unconstrained optimization problem.5

min
w

1

2
w

T
w + C

l
∑

i=1

max(1− yiw
T
xi, 0), (2)

where C > 0 is a penalty parameter. This formulation considers L1 loss, though our
approach can be easily extended to L2 loss. Problem (2) is often referred to as the
primal form of SVM. One may instead solve its dual problem.

min
α

f(α) =
1

2
α

TQα− e
T
α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (3)

5The standard SVM comes with a bias term b. Here we do not consider this term for simplicity.
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ALGORITHM 1: A block minimization framework for linear SVM

1. Split {1, . . . , l} to B1, . . . , Bm and store data into m files accordingly.
2. Set initial α or w.
3. For k = 1, 2, . . . (outer iteration)

— For j = 1, . . . ,m (inner iteration)
3.1. Read xr, ∀r ∈ Bj from disk.
3.2. Conduct operations on {xr | r ∈ Bj}.
3.3. Update α or w.

where e = [1, . . . , 1]T and Qij = yiyjx
T
i xj .

Because data cannot fit in memory, the training method must avoid random accesses
of data. In Figure 1, LIBLINEAR randomly accesses one instance at a time, so frequent
moves of the disk head result in lengthy running time. A viable method must satisfy
the following conditions:

1. Each optimization step reads a contiguous chunk of training data.
2. The optimization procedure converges toward the optimum even though each step

uses only a subset of training data.
3. The number of optimization steps (iterations) should not be too large. Otherwise,

the same data point may be accessed from the disk too many times.

Obtaining a method having all these properties is not easy. We will propose block min-
imization methods to achieve them to a certain degree.

In unconstrained optimization, block minimization is a classical method (e.g., Bert-
sekas [1999, Chapter 2.7]). Each step of this method updates a block of variables, but,
to apply it here, we hope each block corresponds to a contiguous chunk of data. Let
{B1, . . . , Bm} be a partition of all data indices {1, . . . , l}. According to the memory ca-
pacity, we can decide the block size so that instances associated with Bj can fit in
memory. These m blocks, stored as m files, are loaded when needed. Then at each step,
we conduct some operations using one block of data, and update w or α according to if
the primal or the dual problem is considered. We assume that w or α can be stored in
memory. The block minimization framework is summarized in Algorithm 1. We refer to
the step of working on a single block as an inner iteration, while the m steps of going
over all blocks as an outer iteration. Algorithm 1 can be applied on both the primal
form (2) and the dual form (3), where two implementations are shown in Sections 3
and 4, respectively.

We discuss some implementation considerations for Algorithm 1. For convenience,
assume B1, . . . , Bm have a similar size |B| = l/m. The total cost of Algorithm 1 is

(Tm(|B|) + Td(|B|))×
l

|B| × #outer-iters, (4)

where

— Tm(|B|) is the cost of operations at each inner iteration, and
— Td(|B|) is the cost to read a block of data from disk. In general,

Td(B) = initial cost +O(|B|), (5)

where O(|B|) indicates the transfer time proportional to the data size.

The two terms Tm(|B|) and Td(|B|) respectively correspond to the two parts in Eq. (1)
for modeling the training time.

Many studies have applied block minimization to train SVM or other machine learn-
ing problems, but we are not aware of any work that considers this in the disk level.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 0, Publication date: 0.
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Currently, the major approach to train nonlinear SVM (i.e., SVM with nonlinear ker-
nels) has been block minimization, which is often called decomposition methods in the
SVM community. We discuss the difference between ours and existing studies in two
aspects:

— variable selection for each block, and
— block size.

Existing SVM packages assume data in memory, so they can use flexible ways to se-
lect each Bj . They do not restrict B1, . . . , Bm to be a split of {1, . . . , l}. Moreover, to
decide indices of one single Bj , they may access the whole set, an impossible situation
for us. We are more constrained here because data associated with each Bj must be
predetermined and stored in a contiguous chunk of the disk before running Algorithm
1.

Regarding the block size, we now go back to analyze Eq. (4). If data can fit in memory,
Td(|B|) = 0. Generally, we have

|B| ր implies Tm(|B|)ր and #outer-itersց .6 (6)

Tm(|B|) is more than linear to |B|; see, for example, the theoretical complexity analysis
by Boyd and Vandenberghe [2004, Chapter 11].7 Therefore, Tm(|B|) × l/|B| in Eq. (4)
is increasing along with |B|. In contrast, the #outer-iters may not decrease as quick.
Therefore, nearly all existing SVM packages use a small |B|. For example, |B| = 2 in
LIBSVM [Chang and Lin 2011] and 10 in SVMlight [Joachims 1998]. With Td(|B|) > 0,
the situation is now very different. At each outer iteration, the cost is

Tm(|B|)× l

|B| + Td(|B|)×
l

|B| . (7)

The second term is for reading l instances. Because Eq. (5) indicates that reading each
block of data takes some initial time, a smaller number of blocks is better. That is, the
second term in Eq. (7) is a decreasing function of |B|. While the first term is increasing
following the earlier discussion, as reading data from the disk is slow, the second term
is likely to dominate. Therefore, contrary to existing SVM software, in our case the
block size should not be too small. We will investigate this issue by experiments in
Section 8.

The remaining issue is to decide operations at each inner iteration. The second and
the third conditions mentioned earlier in this section should be considered. We discuss
two implementations in the next two sections.

3. SOLVING DUAL SVM BY LIBLINEAR FOR EACH BLOCK

A nice property of the SVM dual problem (3) is that each variable corresponds to a
training instance. Thus, we can easily devise an implementation of Algorithm 1 by
updating a block of variables at a time. Let B̄j = {1, . . . , l}\Bj and dB̄j

be the sub-vector

6 We are not aware of any theoretical result on the decrease of the number of outer iterations, but empirically
this is generally true. See, for example, Table 1 of Serafini and Zanni [2005].
7Most existing analyses consider inter-point methods, in which a sequence of linear systems must be solved.
Because solving a linear system is cubic to the number of variables, the overall complexity is at least as
large.
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ALGORITHM 2: An implementation of Algorithm 1 for solving dual SVM

We only show details of steps 3.2 and 3.3:
3.2 Exactly or approximately solve the sub-problem (8) to obtain d

∗

Bj
.

3.3 αBj
← αBj

+ d
∗

Bj

Update w by Eq. (11).

of d comprising di, i ∈ B̄j .
8 At each inner iteration we solve the following sub-problem.

min
dBj

f(α+ d) (8)

subject to dB̄j
= 0 and 0 ≤ αi + di ≤ C, ∀i ∈ Bj .

That is, we update αBj
using the solution of sub-problem (8), while fix αB̄j

. Then,

Algorithm 1 reduces to the standard block minimization procedure, so the convergence
to the optimal function value of problem (3) holds [Bertsekas 1999, Proposition 2.7.1].

We must ensure that at each inner iteration, only one block of data is needed. With
the constraint dB̄j

= 0 in Eq. (8),

f(α+ d) =
1

2
d
T
Bj

QBjBj
dBj

+ (QBj ,:α− eBj
)TdBj

+ f(α), (9)

where QBj ,: is a sub-matrix of Q including elements Qri, r ∈ Bj , i = 1, . . . , l. Clearly,
QBj ,: in Eq. (9) involves all training data, a situation violating the requirement of Al-
gorithm 1. Fortunately, some (e.g., Zhang [2002] and Hsieh et al. [2008]) have proposed
a trick to conquer this difficulty. By initializing and maintaining

w ≡
l

∑

i=1

αiyixi, (10)

we have

Qr,:α− 1 = yrw
T
xr − 1, ∀r ∈ Bj .

Therefore, if w is available in memory, only instances associated with the block Bj are
needed. To maintain w, if d∗

Bj
is an optimal solution of sub-problem (8), we consider

Eq. (10) and use

w ← w +
∑

r∈Bj

d∗ryrxr. (11)

This operation again needs only the block Bj . The procedure is summarized in Algo-
rithm 2.

For solving the sub-problem (8), because all the information is available in the mem-
ory, any bound-constrained optimization method can be applied. We consider a dual co-
ordinate descent method (i.e., block minimization with a single element in each block)
by Hsieh et al. [2008]. It is implemented as one of the many solvers in the software
LIBLINEAR [Fan et al. 2008]. Then, Algorithm 2 becomes a two-level block minimiza-
tion method. The two-level setting had been used previously for SVM or other applica-
tions (e.g., Memisevic [2006], Pérez-Cruz et al. [2004] and Rüping [2000]), but we are
not aware of any work that associates the inner level with memory and the outer level
with disk.

8Following the use of dB̄j
to represent a sub-vector of d, we denote other sub-vectors in this paper by the

same way.
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Algorithm 2 converges if each sub-problem (8) is exactly solved. Practically we often
obtain an approximate solution by imposing a stopping criterion. We therefore must
address two issues:

1. The stopping criterion for solving the sub-problem must be satisfied after a finite
number of operations, so we can move on to the next sub-problem.

2. We need to prove the convergence.

Next, we show that these two issues can be resolved if we use LIBLINEAR to solve the
sub-problem. Let {αk} be the sequence generated by Algorithm 2, where k is the index
of outer iterations. Because each outer iteration contains m inner iterations, we can
further consider a sequence

{αk,j}∞,m+1

k=1,j=1
with α

k,1 = α
k and α

k,m+1 = α
k+1.

From α
k,j to α

k,j+1, LIBLINEAR coordinate-wisely updates variables in Bj to approxi-
mately solve the sub-problem (8).

If the coordinate descent updates satisfy certain conditions, we can prove the con-
vergence of {αk,j}:

THEOREM 3.1. If a coordinate descent method is applied to solve sub-problem (8)
and it possesses the following properties:

1. each αi, i ∈ Bj is updated at least once, and
2. the number of coordinate-descent updates tk,j for solving a sub-problem is uniformly

bounded (i.e., ∃T > 0 such that tk,j < T ∀k, j),

then {αk,j} generated by Algorithm 2 globally converges to an optimal solution α
∗. The

convergence rate is at least linear: there are 0 < µ < 1 and an iteration k0 such that

f(αk+1)− f(α∗) ≤ µ
(

f(αk)− f(α∗)
)

, ∀k ≥ k0. (12)

The proof is in Appendix A. With Theorem 3.1, the condition 2 mentioned in the begin-
ning of Section 2 holds. For condition 3 on the convergence speed, the theoretical linear
convergence shown in (12) is not very fast. However, for problems like document classi-
fication, some (e.g., Hsieh et al. [2008]) have shown that in practice a small number of
iterations is enough to get a reasonable model. Though Hsieh et al. [2008] differs from
us by restricting |B| = 1, we hope to enjoy the same property of not needing many it-
erations. Experiments in Section 8 confirm that for some document data this property
holds.

Next, we discuss various ways to fulfill the two properties in Theorem 3.1.

3.1. Loosely Solving the Sub-problem

A simple setting to satisfy Theorem 3.1’s two properties is to go through all variables
in Bj a fixed number of times. Then, not only is {tkj} uniformly bounded, but also
the finite termination for solving each sub-problem holds. A small number of passes
to go through Bj means that we loosely solve the sub-problem (8). The cost per block
is thus cheap, although the number of outer iterations may become large. Through
experiments in Section 8, we discuss how the number of passes affects the running
time. A special case is to go through all αi, i ∈ Bj only once. Then, Algorithm 2 becomes
a standard (one-level) coordinate descent method, though data are loaded by a block-
wise setting.

For each pass to go through data in one block, we can sequentially update variables
in Bj . However, as mentioned in Hsieh et al. [2008], using a random permutation of
Bj ’s elements as the order of updates usually leads to faster convergence in practice.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 0, Publication date: 0.
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3.2. Accurately Solving the Sub-problem

Alternatively, we can accurately solve the sub-problem. The cost per inner iteration is
higher, but the number of outer iterations may be reduced. Because an upper bound on
the number of iterations does not reveal how accurate the solution is, most optimiza-
tion software considers the gradient information for the stopping condition. We check
the setting in LIBLINEAR. Its gradient-based stopping condition (details shown in Ap-
pendix B) guarantees the finite termination in solving each sub-problem (8). Thus, the
procedure can move on to the next sub-problem without getting into an infinite loop.
Regarding the convergence, to use Theorem 3.1, we must show that {tk,j} is uniformly
bounded:

THEOREM 3.2. If coordinate descent steps with LIBLINEAR’s stopping condition are
used to solve sub-problem (8), then Algorithm 2 either terminates in a finite number of
outer iterations or

tk,j ≤ 2|Bj | ∀j after k is large enough.

Therefore, if LIBLINEAR’s dual coordinate descent implementation is used to solve sub-
problem (8), then Theorem 3.1 implies the convergence.

4. SOLVING PRIMAL SVM BY PEGASOS FOR EACH BLOCK

Instead of solving the dual problem, in this section we check if the framework in Algo-
rithm 1 can be used to solve the primal SVM. Because the primal variable w does not
correspond to data instances, we cannot use a standard block minimization setting to
have a sub-problem like (8). In contrast, existing stochastic gradient descent methods
possess a nice property that at each step only certain data points are used. In this
section, we study how a stochastic method Pegasos [Shalev-Shwartz et al. 2011] can
by used for implementing Algorithm 1.

Pegasos considers a scaled form of the primal SVM problem.

min
w

1

2lC
w

T
w +

1

l

l
∑

i=1

max(1− yiw
T
xi, 0).

At the tth update, Pegasos chooses a block of data B and updates the primal variable
w by a stochastic gradient descent step:

w̄ = w − ηt∇t, (13)

where ηt = lC/t is the learning rate, ∇t is the sub-gradient

∇t =
1

lC
w − 1

|B|
∑

i∈B+

yixi, (14)

and B+ ≡ {i ∈ B | yiwT
xi < 1}. Then, Pegasos obtains w by scaling w̄:

w ← min(1,

√
lC

‖w̄‖ )w̄. (15)

Clearly, we can directly consider Bj in Algorithm 1 as the set B in the above update.
Alternatively, we can conduct several Pegasos updates on a partition of Bj . Algorithm
3 gives details of the procedure. Here, we consider two settings for an inner iteration:

1. Using one Pegasos update on the whole block Bj .
2. Splitting Bj to |Bj | sets, where each one contains an element in Bj and then con-

ducting |Bj | Pegasos updates.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 0, Publication date: 0.
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ALGORITHM 3: An implementation of Algorithm 1 for solving primal SVM. Each inner itera-
tion is performed by Pegasos.

1. Split {1, . . . , l} to B1, . . . , Bm and store data into m files accordingly.
2. t = 0 and set initial w = 0.
3. For k = 1, 2, . . .

— For j = 1, . . . ,m
3.1. Find a partition of Bj : B1

j , . . . , B
r̄
j .

3.2. For r = 1, . . . , r̄
— Use Br

j as B to conduct the updates (13)-(15).
— t← t+ 1

Different from dual SVM, we should not solve the sub-problem of primal SVM accu-
rately. Otherwise, the model will converge to a solution that only learns on the set
Bj .

For the convergence, Pegasos is proved to converge if all instances {x1, . . . ,xl} are
used for updating the model at each step; see Shalev-Shwartz et al. [2011, Corollary 1].
It is also shown that the same convergence results hold in expectation if each update is
conducted on a subset chosen i.i.d. from the entire data set; see Shalev-Shwartz et al.
[2011, Lemma 3]. Although Algorithm 3 is a special case of Pegasos, it splits the data
into blocks Bj , ∀j and updates on a subset of Bj at a time. Therefore, we are not able
to apply their convergence proof. However, empirically we observe that Algorithm 3
converges without problems.

5. TECHNIQUES TO REDUCE THE TRAINING TIME

Many techniques have been proposed to make block minimization faster. However,
these techniques may not be suitable here as they are designed by assuming that all
data are in memory. Based on the complexity analysis in Eq. (7), in this section we
propose three techniques to speed up Algorithm 1. One technique effectively shortens
Td(|B|), while the other two aim at reducing the number of iterations.

5.1. Data Compression

The loading time Td(|B|) is a bottleneck of Algorithm 1 due to the slow disk access.
Except some initial cost, Eq. (5) indicates that Td(|B|) is proportional to the length of
data. Hence, we can consider a compression strategy to reduce the loading time of each
block. However, this strategy introduces two additional costs: the compression time in
the beginning of Algorithm 1 and the decompression time when a block is loaded. The
former is minor as we only do it once. For the latter, we must ensure that the loading
time saved is more than the decompression time. The balance between compression
speed and ratio has been well studied in the area of backup and networking tools
[Morse 2005]. We choose a widely used compression library zlib for our implementa-
tion.9 Experiments in Section 8 show that if the reading speed of the disk is slow, the
compression strategy effectively reduces the training time.

Because of using compression techniques, all blocks are stored in a binary format
instead of a plain text form.

5.2. Random Permutation of Sub-problems

In Algorithm 1, we sequentially work on blocks B1, B2, . . ., Bm. We can consider other
ways such as using a permutation of blocks. In LIBLINEAR’s coordinate descent imple-
mentation, the authors randomly permute all variables at each pass of going through

9http://www.zlib.net
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ALGORITHM 4: Splitting data into blocks

1. Decide m and create m empty files.
2. For i = 1, . . .

2.1. Convert xi to a binary format x̄i.
2.2. Randomly choose a number j ∈ {1, . . . ,m}.
2.3. Append x̄i into the end of the jth file.

data and report faster convergence. We adopt a permutation strategy here as the load-
ing time is similar regardless of the order of sub-problems.

5.3. Split of Data

An important step of Algorithm 1 is to split training data into m files. We need a careful
design as data cannot fit in memory. To begin, we find the size of data and decide the
value m based on the memory capacity. This step does not have to go through the whole
data set because the operating system provides information such as file sizes. Then,
we can sequentially read data instances and save them to m files. This approach is
simple and seems to work well in the first glance. However, data in the same class are
often stored together in the training set, so we may get a block of data with the same
label. This situation clearly causes slow convergence.10 Thus, for each instance being
read, we randomly decide which file it should be saved to. Algorithm 4 summarizes
our procedure. It goes through data only once.

6. OTHER FUNCTIONALITY

A learning system only able to solve an optimization problem (2) or (3) is not practi-
cally useful. Other functions such as multi-class classification or cross validation (for
parameter selection) are very important. We discuss how to implement these functions
based on the design in Section 2.

6.1. Multi-class Classification

Existing multi-class approaches either solve one single optimization problem (e.g.,
Crammer and Singer [2002]) or train several two-class problems (e.g., one-against-
one and one-against-the rest). For data beyond the memory capacity, we discuss how
to solve the optimization problem by Crammer and Singer [2002] and how to apply the
one-against-the rest strategy.

If data can fit in memory, the optimization problem by Crammer and Singer [2002]
can be solved by a dual coordinate descent method [Keerthi et al. 2008], which, avail-
able in LIBLINEAR, is an extension of the coordinate descent method by Hsieh et al.
[2008] for the standard SVM dual problem. For data larger than memory, because the
dual form of Crammer and Singer’s formulation still possesses the property that vari-
ables correspond to data instances, the block minimization framework in Algorithm 1
can still be applied. Then, for each block, the sub-problem can be solved by the method
of Keerthi et al. [2008].

To apply the one-against-the rest approach for a K-class problem, we must train K
classifiers, where each one separates a class from the rest. If we sequentially train
K models, the disk accessing time is K times more. An implementation to save the
disk access time is to train K models together. We split each block Bj to B1

j , . . . , B
K
j

according to the class information. Then, we solve K sub-problems simultaneously.
That is, we use Bt

j as positive data and Bj \ Bt
j as negative data to update vectors w

t

10Note that this is also an issue with online/stochastic gradient methods if they split data and randomly
select a file at a time to work on.
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ALGORITHM 5: An block minimization framework for the one-against-the rest multi-class
approach. We assume the K class labels are 1, . . . ,K.

1. Split {1, . . . , l} to B1, . . . , Bm, and store data into m files accordingly.
2. Set initial α1, . . . ,αK and w

1, . . . ,wK , where K is the number of classes.
3. For k = 1, 2, . . . (outer iteration)

— For j = 1, . . . ,m (inner iteration)
3.1. Read xr, ∀r ∈ Bj from disk.
3.2. For t = 1, . . . ,K

— Use Bt
j ≡ {xr | r ∈ Bj and yr = t} as positive data and Bj \B

t
j as negative

data.
— Conduct certain training operations, and update α

t and w
t.

and α
t. The details are in Algorithm 5. The one-against-one approach is less suitable

as it needs K(K − 1)/2 vectors to store w, which may be memory consuming. For one-
against-the rest and the approach in Crammer and Singer [2002], they both need only
K vectors.

6.2. Cross Validation

Assume we conduct v-fold cross validation. Due to the use of m blocks, a straightfor-
ward implementation is to split m blocks to v groups. Each time one group of blocks
is used for validation, while all the remaining groups are for training. Similar to the
situation in multi-class classification, the loading time is v times more than training
a single model. To save the disk accessing time, a more sophisticated implementation
is to train v models together. For example, if v = 3, we split each block Bj to three
parts B1

j , B
2
j , and B3

j . Then ∪mj=1(B
1
j ∪ B2

j ) is the training set to validate ∪mj=1B
3
j . We

maintain three vectors w
1,w2, and w

3. Each time when Bj is loaded, we solve three
sub-problems to update w vectors. This implementation effectively saves the data load-
ing time, but the memory must be enough to store v vectors w

1, . . . ,wv. The overall
procedure is similar to Algorithm 5 for multi-class classification.

6.3. Incremental/ Decremental Setting

Many practical applications retrain a model after collecting enough new data. Our
approach can be extended to this scenario. We make a reasonable assumption that
each time several blocks are added or removed. Using LIBLINEAR to solve the dual
form as an example, to possibly save the number of iterations, we can reuse the vector

w obtained earlier. Algorithm 2 maintains w =
∑l

i=1
yiαixi, so the new initial w can

be

w ← w +
∑

i:xi being added

yiαixi −
∑

i:xi being removed

yiαixi. (16)

For data being added, αi is simply set to zero, but for data being removed, their cor-
responding αi are not available. To use Eq. (16), we must store α. That is, before and
after solving each sub-problem, Algorithm 2 reads and saves α from/to disk.

If we solve the primal problem by Pegasos for each block, Algorithm 3 can be directly
applied for incremental or decremental settings.

7. RELATED APPROACHES FOR LARGE-SCALE DATA

In this section, we discuss related approaches for training linear classifiers when data
cannot fit in the memory. The comparisons between these approaches and our block
minimization framework are in Section 8.3.
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Table I: Data statistics: We assume a sparse storage. Each non-zero feature value
needs 12 bytes (4 bytes for the feature index and 8 bytes for the value). However,
this 12-byte structure consumes 16 bytes on a 64-bit machine due to data structure
alignment.

Data set l n #nonzeros Memory (Bytes)
yahoo-korea 460,554 3,052,939 156,436,656 2,502,986,496
kddcup10 19,264,093 29,890,095 566,345,790 9,061,532,640
webspam 350,000 16,609,143 1,304,697,446 20,875,159,136
epsilon 500,000 2,000 1,000,000,000 16,000,000,000

7.1. Data Sub-sampling

In many cases, sub-sampling training data does not downgrade the prediction accuracy
much. Therefore, by using only a portion of the training data to fit in the memory,
we can employ standard training techniques. This approach usually works well when
the data quality is good. However, in some situations, using the full training set may
still be necessary. In Section 8.3, we demonstrate the relationship between testing
performance and sub-sampling size.

7.2. Aggregating Models Trained on Subsets of Data

Bagging [Breiman 1996] is a classical classification method. In the training phase, a
bagging method randomly draws m subsets of samples from the entire data set. Then,
it trains m models w1, . . . ,wm on these subsets. In the testing phase, the prediction
of a testing instance is based on the decisions from the m models. If each subset can
be stored in memory, then training is efficient. Similar to the block generation in our
framework, this method needs to get subsets in the beginning.

Although a bagging method is scalable to large data sets and may achieve an ac-
curate model (e.g., Zinkevich et al. [2010] and Chakrabarti et al. [2008]), its solution
is not the same as the model from solving problem (2). In Section 8.3, we compare
the proposed block optimization framework with a bagging method, which averages m
models trained on Bj , ∀j.

7.3. Online Learning Approaches

Online methods can easily deal with large-scale data. An online learning algorithm
loads several data points at a time, so it avoids storing the whole data in the memory.
In the following, we discuss an online learning package Vowpal Wabbit [Langford et al.
2007].

Vowpal Wabbit minimizes an un-regularized problem and supports several loss func-
tions. Here we consider L1 loss. For any instance x, it updates the weight vector w by
a sub-gradient descent direction. Vowpal Wabbit supports the setting to pass over data
several times. During the first pass, it saves the data points into a cache file. This is
similar to our data compression strategy discussed in Section 5.1. In Section 8.3, we
compare Vowpal Wabbit with the proposed block optimization framework.

8. EXPERIMENTS

In this section, we first conduct experiments to analyze the performance of the pro-
posed block minimization framework. Then, we investigate several implementation
issues discussed in Section 5. Finally, we compare the proposed method with other
approaches that can handle data beyond the memory capacity.
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Table II: Number of blocks and initial time to split and compress data into blocks. Time
is in seconds.

Data set #Blocks Initial time
yahoo-korea 5 228
kddcup10 40 842
webspam 40 1,594
epsilon 30 1,237

We consider two document data sets yahoo-korea and webspam, an artificial data set
epsilon, and an education data set kddcup10 from a data mining challenge.11 Table I
summarizes the data statistics. All data sets except yahoo-korea are publicly available
at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Except kddcup10, we randomly split each data set to 4/5 for training and 1/5 for
testing, and all feature vectors are instance-wisely scaled to unit-length (i.e., ‖xi‖ =
1, ∀i). For epsilon, each feature of the training set is normalized to have mean zero and
variance one, and the testing set is modified according to the same scaling factors. This
feature-wise scaling is conducted before the instance-wise scaling. For the kddcup10
data set, we directly use the same training and testing split in Yu et al. [2011] without
any further scaling.

We conduct experiments on a 64-bit machine with 1GB RAM. Due to the space con-
sumed by the operating system, the available memory that we can use is 0.853GB. The
reading speed of the disk is 102.36 MB/sec.12 Our methods are implemented in C/C++
with double precision.

8.1. Comparison of Sub-problem Solvers

In this section, we compare various settings introduced in Sections 3–4 for operations
on a block of data. The value C in problem (2) is set to one.

— BLOCK-L-N : Algorithm 2 with LIBLINEAR to solve each sub-problem. LIBLINEAR
goes through each block of data N rounds, where we consider N = 1, 10, and 20.

— BLOCK-L-D: Algorithm 2 with LIBLINEAR to solve each sub-problem. LIBLINEAR’s
default stopping condition is adopted.

— BLOCK-P-B: Algorithm 3 with r̄ = 1. That is, we apply one Pegasos update on each
block.

— BLOCK-P-I: Algorithm 3 with r̄ = |Bj |. That is, we apply |Bj | Pegasos updates,
each of which uses an individual data instance.

We do not include any standard linear classifier for comparison because Yu et al. [2010]
have shown that these classifiers suffer from severe disk swapping.

We make sure that no other jobs are running on the same machine and report wall
clock time in all experiments. We include all data loading time and the initial time to
split and compress data into blocks. Table II lists the number of blocks and the initial
time.

We are interested in both how fast these methods reduce the objective function value
in Eq. (2) and how quickly they obtain a reasonable model. Figures 2 and 3 respectively
present two results:

11We use a preprocessed version of the second data set bridge to algebra 2008 2009 in KDD Cup 2010.
12The reading speed of the disk is given by the program hdparm under the Linux environment.
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(a) yahoo-korea (b) webspam

(c) epsilon (d) kddcup10

Fig. 2: This figure shows the relative function value difference to the minimum. Time
(in seconds) is log-scaled. The blue dotted vertical line indicates time spent by Algo-
rithm 1-based methods for the initial split of data to blocks.

1. Training time versus the relative difference to the optimal function value

∣

∣

∣

∣

fP (w)− fP (w∗)

fP (w∗)

∣

∣

∣

∣

,

where fP is the primal objective function in Eq. (2) and w
∗ is the optimal solution.

Since w
∗ is not really available, we spend enough training time to get a reference

solution.
2. Training time versus the difference to the best testing accuracy

(acc∗ − acc(w))× 100%,

where acc(w) is the testing accuracy using the model w and acc∗ is the final testing
accuracy.
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(a) yahoo-korea (b) webspam

(c) epsilon (d) kddcup10

Fig. 3: This figure shows the accuracy difference to the best testing accuracy. Time (in
seconds) is log-scaled. The blue dotted vertical line indicates time spent by Algorithm
1-based methods for the initial split of data to blocks.

From Figure 2, BLOCK-L-∗ methods (using LIBLINEAR) are faster than BLOCK-
P-∗ methods (using Pegasos) in most cases. One of the possible reasons is that for
BLOCK-P-∗, the information of each block is underutilized. In particular, BLOCK-P-B
suffers from very slow convergence because for each block this method conducts only
one very simple update. However, it may not be always needed to use the block of
data in an exhaustive way. For example, in Figures 2a and 2d, BLOCK-L-1 (for each
block LIBLINEAR goes through all data only once) is slightly faster than BLOCK-L-D
(for each block LIBLINEAR is run with the default stopping condition). Nevertheless,
as reading each block from the disk is expensive, in general we should make proper
efforts to use it.

The numbers of instances and features in kddcup10 are very large. In such a situa-
tion, all the methods converge slowly; see Figure 2d. To store both w and α, BLOCK-
L-∗methods requires 400MB memory. However, BLOCK-P-∗ only need 160MB to store
the model w. Because of using less memory, BLOCK-P-I is more likely to store w in
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Fig. 4: Effectiveness of two implemen-
tation techniques: raw: no random as-
signment in the initial data splitting.
perm: a random order of blocks at each
outer iteration. BLOCK-L-D is used to
train the data set webspam.

Fig. 5: Convergence speed of using dif-
ferent m (number of blocks). BLOCK-
L-D is used to train the data set web-
spam.

a higher level of the memory hierarchy such as L2 cache. Therefore, it is competitive
with BLOCK-L-∗ in this case. This result also indicates that when determining the
number of blocks in Algorithms 1, both l (size of α) and n (size of w) need to be taken
into consideration.

Regarding testing accuracy, if we consider a 0.5% difference to the best testing ac-
curacy is satisfactory, all BLOCK-∗ methods except BLOCK-P-B take about only four
outer iterations to achieve reasonable accuracy values. Therefore, we do not need to
read the training set many times.

8.2. Investigation of Some Implementation Issues

We investigate the usefulness of implementation techniques proposed in Section 5.

8.2.1. Initial Data Splitting and Random Permutation of Sub-problems. Section 5.3 proposes
randomly assigning data to blocks in the beginning of Algorithm 1. It also suggests
that a random order of B1, . . . , Bm at each outer iteration is useful. Figure 4 presents
the result of running BLOCK-L-D on webspam. We assume the worst situation that
data of the same class are grouped together in the input file. If data are not randomly
split to blocks, clearly the convergence is very slow. Further, the random permutation
of blocks at each outer iteration slightly improves the training time.

8.2.2. Block Size. In Figure 5, we present the training speed of BLOCK-L-D by using
various block sizes (equivalently, numbers of blocks). The training time of using m = 40
blocks is smaller than that of m = 400 or 1, 000. This result is consistent with the
discussion in Section 2. When the number of blocks is smaller (i.e., larger block size),
from Eq. (6), the cost of operations on each block increases. However, as we read fewer
files, the total time is shorter. Furthermore, the initial time for data splitting is longer
as m increases. Therefore, contrary to traditional SVM software which uses a small
block size, now for each inner iteration we should consider a large block. In Figure 5,
we do not check m = 20 because the memory is not enough to store a block of data.

8.2.3. Data Compression. We check if compressing each block of data saves time. By
running 10 outer iterations of BLOCK-L-D on the training set of webspam with m =
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40, the implementation takes 3,230 seconds with compression, while 4,660 seconds
without compression. Thus, the compression technique is very useful in this case.

The data loading time depends heavily on the disk reading speed. For a fast disk,
compressing data may even slow down the training process.

8.3. Comparison of Existing Methods for Large-scale Data

In Section 7, we discussed existing approaches for training large-scale data. In this
section, we first show that the sub-sampling strategy may downgrade the performance
on the data sets we used. Then, we compare the proposed block minimization methods
with other approaches for large-scale data.

To compare with the method of random sub-sampling, we shuffle each data set and
train problem (2) by LIBLINEAR on subsets with different sizes. Figure 6 presents the
performance of models trained on subsets of data. Results show that for our four data
sets, using only a portion of data that can fit in memory may fail to obtain a model
as good as using the entire data. In this situation, a method that considers the whole
data set is still useful.

Next, we compare the following approaches which are able to train data larger than
memory:

— BLOCK-L-10: This is the most stable one among all settings in Section 8.1 for the
block minimization method.

— AvgBlock: A bagging approach introduced in Section 7.2. We average the models
trained by LIBLINEAR with the default stopping condition on each block of data
Bj , j = 1, . . . ,m. Although AvgBlock can be trained on a distributed system with
multiple machines, here, we run it on a single computer.

— Vowpal Wabbit: An online method mentioned in Section 7.3. The package (latest ver-
sion 5.1) is available at https://github.com/JohnLangford/vowpal_wabbit/wiki.
We use the default parameters.

For BLOCK-L-10 and AvgBlock, we use the same block splits as in Section 8.1 and
select the parameter C in problem (2) by five-fold cross validation on the training set.
Note that Vowpal Wabbit considers an un-regularized problem, so these methods may
give slightly different final testing accuracy values.

Similar to methods under the block minimization framework, Vowpal Wabbit com-
presses data samples and stores them into a cache file. The time to generate the cache
file is included in the training time measurements. Because Vowpal Wabbit has a dif-
ferent implementation of compression, its initial time is different from that of the block
minimization methods.

In yahoo-korea and kddcup10, data samples are sorted based on some pattens. Vow-
pal Wabbit faces a slow convergence problem on these data sets. In contrast, block min-
imization methods solve this problem by implementing the random split algorithm in
Section 5.3. Because Vowpal Wabbit does not support this functionality, in the experi-
ments, we randomly shuffle each of these two data sets and run Vowpal Wabbit on the
permuted data. The time to shuffle data is not included in Vowpal Wabbit’s training
time. We also would like to note that Vowpal Wabbit considers two tricks to speed up
the training process. First, it uses single floating point arithmetic, although this de-
cision may cause numerical inaccuracy. Second, it uses two threads for training. One
is for loading data samples from the compressed file and the other is for updating the
model.

We are interested in both whether BLOCK-L-10 and Vowpal Wabbit can obtain a
reasonable model quickly and how fast their final convergence is. Therefore, we show
in Table III both the results after running the first and the tenth outer iterations. To
show more details, we demonstrate the testing performance along the training time in
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Table III: Training time and testing accuracy after the first and the tenth outer itera-
tions. Time is in seconds. For each method, time for its initialization is included. For
example, initially BLOCK-L-10 and AvgBlock must split data to files.

yahoo-korea kddcup10 webspam epsilon
C = 4 C = 0.1 C = 64 C = 1

method #iter acc. time acc. time acc. time acc. time

BLOCK-L-10
1 85.97 259 88.49 862 99.32 1,944 89.12 1,802

10 87.29 456 89.89 3,153 99.51 4,475 89.78 3,773

Vowpal Wabbit
1 82.05 139 87.05 492 96.86 1,321 88.04 1,136

10 85.97 345 86.54 1,891 98.30 1,979 89.50 1,758
AvgBlock 1 86.08 628 89.64 6,809 98.40 4,722 88.83 1,999

Fig. 6: Data size versus difference to the best testing accuracy. The marker on each
curve indicates the size of the subset that can fit in memory. Results show that training
only sub-sampled data may not be enough to achieve the best testing performance.

Figure 7. We omit AvgBlock in Figure 7, because it cannot be conducted in an iterative
manner.

The results indicate that BLOCK-L-10 efficiently obtains a reasonably good model by
using only one outer iteration. After 10 iterations, BLOCK-L-10 achieves an accuracy
value almost the same as that of the final model. Vowpal Wabbit takes less training
time per iteration; however, because of solving an un-regularized problem instead of
problem (2), it sometimes converges to a model with lower testing accuracy. On some
data sets such as kddcup10, AvgBlock achieves similar accuracy values to BLOCK-L-10.
However, on other data sets, BLOCK-L-10 is slightly better because it solves problem
(2) using all the training data. The training time of AvgBlock, if divided by m, is very
competitive. Thus, AvgBlock is potentially useful on a distributed environment.
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(a) yahoo-korea (b) webspam

(c) epsilon (d) kddcup10

Fig. 7: This figure compares BLOCK-L-10 and Vowpal Wabbit by showing testing accu-
racy versus training time. Time (in seconds) is log-scaled. The blue dotted vertical line
indicates time spent by BLOCK-L-10 for the initial split of data to blocks.

9. DISCUSSION AND CONCLUSIONS

The proposed block minimization framework can be extended in several directions.
For examples, recently, Chang and Roth [2011] propose an algorithm based on the
block minimization framework. At each step, their method updates the model using
data consisting of a new data block loaded from disk and a block of samples cached in
memory from previous steps. Because of using more informative data points at each
step, the convergence is faster. Another possible extension is to combine the proposed
framework with some data reduction techniques. For example, the hashing technique
by Li and König [2010] can approximate the original data using a smaller number of
features, so at each step we are able to include more instances in a block.

The discussion in Section 6 shows that implementing cross validation or multi-class
classification may require extra memory space and some modifications of Algorithm
1. Thus, constructing a complete disk-level learning tool is certainly more complicated
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than implementing Algorithm 1. These challenges should be addressed in future re-
search.

In summary, we propose and analyze a block minimization method for large linear
classification when data cannot fit in memory. Experiments show that the proposed
method can effectively handle data 20 times larger than the memory size.

Our code is available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html
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A. PROOF OF THEOREM 3.1

If each sub-problem involves a finite number of coordinate descent updates, then Algo-
rithm 1 can be regarded as a coordinate descent method. We apply Theorem 2.1 of Luo
and Tseng [1992] to obtain the convergence results. The theorem requires that prob-
lem (3) satisfies certain conditions and in the coordinate descent method there is an
integer t such that every αi is iterated at least once every t successive updates (called
almost cyclic rule in Luo and Tseng [1992]). Following the same analysis in the proof of
Hsieh et al. [2008, Theorem 1], problem (3) satisfies the required conditions. Moreover,
the two properties on tj,k imply the almost cyclic rule. Hence, both global and linear
convergence results are obtained.

B. PROOF OF THEOREM 3.2

To begin, we discuss the stopping condition of LIBLINEAR. Each run of LIBLINEAR to
solve a sub-problem generates {αk,j,v | v = 1, . . . , tk,j + 1} with

α
k,j = α

k,j,1 and α
k,j+1 = α

k,j,tk,j+1.

We further let ij,v denote the index of the variable being updated by α
k,j,v+1 = α

k,j,v +
d∗eij,v , where d∗ is the optimal solution of

min
d

f(αk,j,v + deij,v ) subject to 0 ≤ αk,j,v
ij,v

+ d ≤ C, (17)

and eij,v is an indicator vector for the (ij,v)th element. All tk,j updates can be fur-
ther separated to several rounds, where each one goes through all elements in Bj .
LIBLINEAR checks the following stopping condition in the end of each round:

max
v∈a round

∇P
ij,v

f(αk,j,v)− min
v∈a round

∇P
ij,v

f(αk,j,v) ≤ ǫ, (18)

where ǫ is a tolerance and ∇P f(α) is the projected gradient:

∇P
i f(α) =







∇if(α) if 0 < αi < C,

max(0,∇if(α)) if αi = C,

min(0,∇if(α)) if αi = 0.

(19)

The reason that LIBLINEAR considers Eq. (18) is that from the optimality condition,
α

∗ is optimal if and only if ∇P f(α∗) = 0.
Next we prove the theorem by showing that for all j = 1, . . . ,m there exists kj such

that

∀k ≥ kj , tk,j ≤ 2|Bj |. (20)
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Suppose that (20) does not hold. We can find a j and a sub-sequence R ⊂ {1, 2, . . .} such
that

tk,j > 2|Bj |, ∀k ∈ R. (21)

Since {αk,j | k ∈ R} are in a compact set, we further consider a sub-sequence M ⊂ R
such that {αk,j | k ∈M} converges to a limit point ᾱ.

Let σ ≡ mini Qii. Following the explanation in Hsieh et al. [2008, Theorem 1], we
only need to analyze indices with Qii > 0. Therefore, σ > 0. Lemma 2 of Hsieh et al.
[2008] shows that

f(αk,j,v)− f(αk,j,v+1) ≥ σ

2
‖αk,j,v −α

k,j,v+1‖2, ∀v = 1, . . . , 2|Bj |. (22)

The sequence {f(αk) | k = 1, . . .} is decreasing and bounded below as the feasible
region is compact. Hence

lim
k→∞

f(αk,j,v)− f(αk,j,v+1) = 0, ∀v = 1, . . . , 2|Bj |. (23)

Using (23) and taking the limit on both sides of (22), we have

lim
k∈M,k→∞

α
k,j,2|Bj |+1 = lim

k∈M,k→∞
α

k,j,2|Bj | = · · ·

= lim
k∈M,k→∞

α
k,j,1 = ᾱ.

(24)

From the continuity of ∇f(α) and (24), we have

lim
k∈M,k→∞

∇f(αk,j,v) = ∇f(ᾱ), ∀v = 1, . . . , 2|Bj |.

Hence there are ǫ and k̄ such that ∀k ∈M with k ≥ k̄

|∇if(α
k,j,v)| ≤ ǫ

4
if ∇if(ᾱ) = 0, (25)

∇if(α
k,j,v) ≥ 3ǫ

4
if ∇if(ᾱ) > 0, (26)

∇if(α
k,j,v) ≤ −3ǫ

4
if ∇if(ᾱ) < 0, (27)

for any i ∈ Bj , v ≤ 2|Bj |.
When we update α

k,j,v to α
k,j,v+1 by changing the ith element (i.e., i = ij,v) in the

first round, the optimality condition for (17) implies that one of the following three
situations occurs:

∇if(α
k,j,v+1) = 0, (28)

∇if(α
k,j,v+1) > 0 and αk,j,v+1

i = 0, (29)

∇if(α
k,j,v+1) < 0 and αk,j,v+1

i = C. (30)

From (25)-(27), we have that

i satisfies







(28)

(29)

(30)

⇒







∇if(ᾱ) = 0

∇if(ᾱ) ≥ 0

∇if(ᾱ) ≤ 0

. (31)

In the second round, assume αi is changed at the v′th update. From (31) and (25)-(27),
we have

|∇if(α
k,j,v′

)| ≤ ǫ

4
, (32)
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or

∇if(α
k,j,v′

) ≥ − ǫ

4
and αk,j,v′

i = 0, (33)

or

∇if(α
k,j,v′

) ≤ ǫ

4
and αk,j,v′

i = C. (34)

Using (32)-(34), the projected gradient defined in (19) satisfies

|∇P
i (α

k,j,v′

)| ≤ ǫ

4
.

This result holds for all i ∈ Bj . Therefore,

max
v∈2nd round

∇P
ij,v

(αk,j,v)− min
v∈2nd round

∇P
ij,v

(αk,j,v)

≤ ǫ

4
− (− ǫ

4
) =

ǫ

2
< ǫ.

Thus, (18) is valid in the second round. Then tk,j = 2|Bj | violates (21). Hence (20) holds
and the theorem is obtained.
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