
Large margin classification in infinite

neural networks

Youngmin Cho and Lawrence K. Saul

Department of Computer Science and Engineering

University of California, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0404

Abstract

We introduce a new family of positive-definite kernels for large margin classi-

fication in support vector machines (SVMs). These kernels mimic the computation

in large neural networks with one layer of hidden units. We also show how to de-

rive new kernels, by recursive composition, that may be viewed as mapping their

inputs through a series of nonlinear feature spaces. These recursively derived ker-

nels mimic the computation in deep networks with multiple hidden layers. We

evaluate SVMs with these kernels on problems designed to illustrate the advan-

tages of deep architectures. Comparing to previous benchmarks, we find that on

some problems, these SVMs yield state-of-the-art results, beating not only other

SVMs, but also deep belief nets.

Keywords: Kernel methods, neural networks, large margin classification.

1 Introduction

Kernel methods provide a powerful framework for pattern analysis and classification

(Boser et al., 1992; Cortes & Vapnik, 1995; Schölkopf & Smola, 2001). Intuitively, the

so-called “kernel trick” works by mapping inputs into a nonlinear, potentially infinite-

dimensional feature space, then applying classical linear methods in this space. The

mapping is induced by a kernel function that operates on pairs of inputs and computes

a generalized inner product. Typically, the kernel function measures some highly non-

linear or domain-specific notion of similarity.

This general approach has been particularly successful for problems in classifica-

tion, where kernel methods are most often used in conjunction with support vector ma-

chines (SVMs) (Boser et al., 1992; Cortes & Vapnik, 1995; Cristianini & Shawe-Taylor,

2000). SVMs have many elegant properties. Working in nonlinear feature space, SVMs

compute the hyperplane decision boundary that separates positively and negatively la-

beled examples by the largest possible margin. The required optimization can be for-

mulated as a convex problem in quadratic programming. Theoretical analyses of SVMs

have also succeeded in relating the margin of classification to their expected general-

ization error. These computational and statistical properties of SVMs account in large

part for their many empirical successes.

Notwithstanding these successes, however, recent work in machine learning has

highlighted various circumstances that appear to favor deep architectures, such as mul-

tilayer neural networks and deep belief networks, over shallow architectures such as

SVMs (Bengio & LeCun, 2007). Deep architectures learn complex mappings by trans-

forming their inputs through multiple layers of nonlinear processing (Hinton et al.,

2006). Researchers have advanced a number of different motivations for deep archi-

tectures: the wide range of functions that can be parameterized by composing weakly

nonlinear transformations, the appeal of hierarchical distributed representations, and the

potential for combining methods in unsupervised and supervised learning. Experiments

have also shown the benefits of deep learning in several interesting applications (Hinton

& Salakhutdinov, 2006; Ranzato et al., 2007; Collobert & Weston, 2008).

Many issues surround the ongoing debate over deep versus shallow architectures (Ben-

gio & LeCun, 2007; Bengio, 2009). Deep architectures are generally more difficult to

2

train than shallow ones. They involve highly nonlinear optimizations and many heuris-

tics for gradient-based learning. These challenges of deep learning explain the early and

continued appeal of SVMs. Unlike deep architectures, SVMs are trained by solving a

problem in convex optimization. On the other hand, SVMs are seemingly unequipped

to discover the rich internal representations of multilayer neural networks.

In this paper, we develop and explore a new connection between these two different

approaches to statistical learning. Specifically, we introduce a new family of positive-

definite kernels that mimic the computation in large neural networks with one or more

layers of hidden units. They mimic this computation in the following sense: given a

large neural network with Gaussian-distributed weights, and the multidimensional non-

linear outputs of such a neural network from inputs x and y, we derive a kernel function

k(x,y) that approximates the inner product computed directly between the outputs of

the neural network. Put another way, we show that the nonlinear feature spaces induced

by these kernels encode internal representations similar to those of single-layer or mul-

tilayer neural networks. Having introduced these kernels briefly in earlier work (Cho

& Saul, 2009), in this paper we provide a more complete description of their properties

and a fuller evaluation of their use in SVMs.

The organization of this paper is as follows. In section 2, we derive this new family

of kernels and contrast their properties with those of other popular kernels for SVMs.

In section 3, we evaluate SVMs with these kernels on several problems in binary and

multiway classification. Finally, in section 4, we conclude by summarizing our most

important contributions, reviewing related work, and suggesting directions for future

research.

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity

of vector inputs x,y ∈ <d. As shorthand, let Θ(z) = 1
2
(1 + sign(z)) denote the

Heaviside step function. We define the nth order arc-cosine kernel function via the

integral representation:

kn(x,y) = 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n. (1)

3

The kernel function in eq. (1) has interesting connections to neural computation (Williams,

1998) that we explore further in sections 2.2–2.3. However, we begin by elucidating its

basic properties.

2.1 Basic properties

We focus primarily on kernel functions in this family with non-negative integer values

of n ∈ {0, 1, 2, . . .}. For such values, we show how to evaluate the integral in eq. (1)

analytically in the appendix1. The final result is most easily expressed in terms of the

angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x

and y, but a complex, interesting dependence on the angle between them. In particular,

we can write:

kn(x,y) =
1

π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evalu-

ating the integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
for ∀n ∈ {0, 1, 2, . . .}. (4)

For n= 0, this expression reduces to the supplement of the angle between the inputs.

However, for n>0, the angular dependence is more complicated. The first few expres-

sions are:

J0(θ) = π − θ (5)

J1(θ) = sin θ + (π − θ) cos θ (6)

J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ). (7)

Higher-order expressions can be computed from eq. (4). We describe eq. (3) as an arc-

cosine kernel because for n=0, it takes the simple form k0(x,y) = 1− 1
π

cos−1 x·y
‖x‖‖y‖ .

We briefly consider the kernel function in eq. (1) for non-integer values of n. The

general form in eq. (3) still holds, but the function Jn(θ) does not have a simple analyt-

ical form. However, it remains possible to evaluate the integral in eq. (1) for the special
1Interestingly, this computation was also carried out earlier in different context (Price, 1958).

4

0

0.5

1

 θ

 J
n
 (θ) / J

n
(0)

0 π/4 π/2 3π/4 π

n = 0

n = 1

n = 2

n = −

1

4

Figure 1: Form of Jn(θ) in eq. (3) for arc-cosine kernels with different values of n.

The function Jn(θ) takes its maximum value at θ=0 and decays monotonically to zero

at θ=π for all values of n. However, note the different behaviors for small θ.

case where x = y. In the appendix, we show that:

kn(x,x) =
1

π
‖x‖2n Jn(0) where Jn(0) =

√
π 2n Γ

(
n+

1

2

)
. (8)

Note that this expression diverges as Jn(0) ∼ (n + 1
2
)−1 due to a non-integrable sin-

gularity. Thus the family of arc-cosine kernels is only defined for n > −1
2
; for smaller

values, the integral in eq. (1) is not defined. The magnitude of kn(x,x) also diverges for

fixed non-zero x as n→∞. Thus as n takes on increasingly positive or negative values

within its allowed range, the kernel function in eq. (1) maps inputs to larger and larger

vectors in feature space.

The arc-cosine kernel exhibits qualitatively different behavior for negative values

of n. For example, when n < 0, the kernel function performs an inversion, mapping

the origin in input space to infinity in feature space, with kn(x,x) ∼ ‖x‖2n. We are

not aware of other kernel functions with this property. Though Jn(θ) does not have

a simple analytical form for n < 0, it can be computed numerically; more details are

given in the appendix. Figure 1 compares the form of Jn(θ) for different settings of n.

For n < 0, note that Jn(θ) decays quickly away from its maximum value at θ = 0. This

decay serves to magnify small differences in angle between nearby inputs.

Finally, we verify that the arc-cosine kernels kn(x,y) are positive-definite. This

property follows immediately from the integral representation in eq. (1) by observing

that it defines a covariance function (i.e., the expected product of functions evaluated at

x and y).

5

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Figure 2 (left) whose weights Wij connect

the jth input unit to the ith output unit (i.e., W is of size m-by-d). The network maps

inputs x to outputs f(x) by applying an elementwise nonlinearity to the matrix-vector

product of the inputs and the weight matrix: f(x) = g(Wx). The nonlinearity is

described by the network’s so-called activation function. Here we consider the family

of piecewise-smooth activation functions:

gn(z) = Θ(z)zn (9)

illustrated in the right panel of Figure 2. For n = 0, the activation function is a step

function, and the network is an array of perceptrons. For n=1, the activation function is

a ramp function (or rectification nonlinearity (Hahnloser et al., 2003)), and the mapping

f(x) is piecewise linear. More generally, the nonlinear behavior of these networks is

induced by thresholding on weighted sums. We refer to networks with these activation

functions as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with the arc-

cosine kernel function in eq. (1). To see the connection, consider how inner products

are transformed by the mapping in single-layer threshold networks. As notation, let

the vector wi denote ith row of the weight matrix W. Then we can express the inner

product between different outputs of the network as:

f(x) · f(y) =
m∑
i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (10)

where m is the number of output units. The connection with the arc-cosine kernel

function emerges in the limit of very large networks (Neal, 1996; Williams, 1998).

Imagine that the network has an infinite number of output units, and that the weightsWij

are Gaussian distributed with zero mean and unit variance. In this limit, we see that

eq. (10) reduces to eq. (1) up to a trivial multiplicative factor:

lim
m→∞

[
2

m
f(x)·f(y)

]
= kn(x,y). (11)

Thus the arc-cosine kernel function in eq. (1) can be viewed as the inner product be-

tween feature vectors derived from the mapping of an infinite single-layer threshold

network.

6

f2 f3 fi

x1 x2 xj

. . .

. . .

f1 fm

xd

W

. . .

. . .
−1 0 1

0

0.5

1

Step (n=0)

−1 0 1

0

0.5

1

Ramp (n=1)

−1 0 1

0

0.5

1

Quarter−pipe (n=2)

−200 0 200

0

0.5

1

Spike (n < 0)

Figure 2: A single-layer threshold network (left) and nonlinear activation functions

(right) for different values of n in eq. (9): step (n = 0), ramp (n = 1), quarter-pipe

(n=2), and spike (n<0).

Many researchers have noted the general connection between kernel machines and

one layer neural networks (Bengio & LeCun, 2007). Interestingly, the n=0 arc-cosine

kernel in eq. (1) can also be derived from an earlier result obtained in the context of

Gaussian processes. Specifically, Williams (1998) derived a covariance function for

Gaussian processes that mimic the computation in infinite neural networks with sig-

moidal activation functions. To derive this covariance function, he evaluated a similar

integral as eq. (1) for n = 0, but with two differences: first, the weights w were inte-

grated over a Gaussian distribution with a general covariance matrix; second, the activa-

tion function was an error function with range [−1, 1] as opposed to a step function with

range [0, 1]. Specializing to a covariance matrix that is a multiple of the identity matrix,

and taking the limit of very large variances, the result in Williams (1998) reduces to a

kernel function that mimics the computation in infinite neural networks with activation

functions Θ(x)−Θ(−x). The kernel function in this limit is expressed in terms of arc-

sine functions of normalized dot products between inputs. Using elementary identities,

our result for the n = 0 arc-cosine kernel follows as a simple corollary.

More generally, however, we are unaware of any previous theoretical or empirical

work on the general family of these kernels for degrees n > −1
2
. In this paper, we

focus on the use of these kernels for large margin classification. Viewing these kernels

as covariance functions for Gaussian processes, it also follows that ridge-regression

with arc-cosine kernels is equivalent to MAP estimation in neural networks with a

Gaussian prior. Thus our results also expand the family of neural networks whose

computations can be mimicked (or perhaps more tractably implemented) by Gaussian

processes (Neal, 1996; Williams, 1998).

7

2.3 Computation in multilayer threshold networks

A kernel function can be viewed as inducing a nonlinear mapping from inputs x to

feature vectors Φ(x). The kernel computes the inner product in the induced feature

space:

k(x,y) = Φ(x) ·Φ(y). (12)

In this section, we consider how to compose the nonlinear mappings induced by kernel

functions, an idea suggested in Schölkopf et al. (1996). Specifically, we show how to

derive new kernel functions

k(`)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
` times

(x))) ·Φ(Φ(...Φ︸ ︷︷ ︸
` times

(y))) (13)

which compute the inner product after ` successive applications of the nonlinear map-

ping Φ(·). Our motivation is the following: intuitively, if the base kernel function

k(x,y) = Φ(x) · Φ(y) models the computation in a single-layer network, then the

iterated mapping in eq. (13) should model the computation in a multilayer network.

We first examine the results of this procedure for widely used kernels. Here we find

that the iterated mapping in eq. (13) does not yield particularly interesting results. For

instance, consider the two-fold composition that maps x to Φ(Φ(x)). For homogeneous

polynomial kernels k(x,y) = (x · y)d, the composition yields:

Φ(Φ(x)) ·Φ(Φ(y)) = (Φ(x) ·Φ(y))d = (x · y)d
2

. (14)

The above result is not especially interesting: the kernel implied by this composition is

also polynomial, just of higher degree. Likewise, for RBF kernels k(x,y) = e−λ‖x−y‖2 ,

the composition yields e−2λ(1−k(x,y)). Though non-trivial, this does not represent a par-

ticularly interesting computation. Recall that RBF kernels mimic the computation of

soft vector quantizers, yielding k(x,y)� 1 when ‖x−y‖ is large compared to the

kernel width. It is hard to see how the iterated mapping Φ(Φ(x)) would generate a

qualitatively different representation than the original mapping Φ(x).

Next we consider the `-fold composition in eq. (13) for arc-cosine kernel functions.

We work out a simple example before stating the general formula. Consider the n= 0

arc-cosine kernel, for which k0(x,y) = 1− θ
π

, where θ is the angle between x and y.

8

For this kernel, it follows that:

Φ(Φ(x)) ·Φ(Φ(y)) = 1− 1

π
cos−1

(
Φ(x) ·Φ(y)

‖Φ(x)‖‖Φ(y))‖

)
(15)

= 1− 1

π
cos−1

(
k0(x,y)√

k0(x,x) k0(y,y)

)
(16)

= 1− 1

π
cos−1

(
1− θ

π

)
. (17)

More generally, we can work out a recursive formula for the `-fold composition in

eq. (13). The base case is given by eq. (3) for kernels of depth ` = 1 and degree n.

Substituting into eq. (3), we obtain the construction for kernels of greater depth:

k(`+1)
n (x,y) =

1

π

[
k(`)
n (x,x) k(`)

n (y,y)
]n/2

Jn
(
θ(`)
n

)
, (18)

where θ(`)
n is the angle between the images of x and y in the feature space induced by

the `-fold composition. In particular, we can write:

θ(`)
n = cos−1

 k
(`)
n (x,y)√

k
(`)
n (x,x) k

(`)
n (y,y)

 . (19)

The recursion in eq. (18) is simple to compute in practice. The resulting kernels mimic

the computations in large multilayer threshold networks where the weights are Gaussian

distributed with zero mean and unit variance. Above, for simplicity, we have assumed

that the arc-cosine kernels have the same degree n at every level (or layer) ` of the

recursion. We can also use kernels of different degrees at different layers. In the next

section, we experiment with SVMs whose kernel functions are constructed in these

ways.

3 Experiments

We evaluated SVMs with arc-cosine kernels on several medium-sized data sets. Our

experiments had three goals: first, to study arc-cosine kernels of different order and

depth; second, to understand their differences with more traditional RBF kernels; third,

to compare large margin classification with arc-cosine kernels to deep learning in mul-

tilayer neural nets. We followed the same experimental methodology as previous au-

thors (Larochelle et al., 2007) in an empirical study of SVMs, multilayer autoencoders,

9

and deep belief nets. SVMs were trained using libSVM (version 2.88) (Chang & Lin,

2001), a publicly available software package. For each SVM, we held out part of the

training data to choose the margin penalty parameter; after tuning this parameter on the

held-out data, we then retrained each SVM on all the training data. We experimented

on several different tasks in visual pattern recognition, which we present in their order

of difficulty. To illustrate certain interesting trends (or the absence of such trends), our

results compare test error rates obtained from a large number of different kernels. It

should be emphasized, however, that one does not know a priori which kernel should

be chosen for any given task. Therefore, for each data set, we also indicate which ker-

nel was selected by its performance on held-out training examples (before retraining

on all the training examples). The results from these properly selected kernels permit

meaningful comparisons to previous benchmarks.

3.1 Handwritten digit recognition

We first evaluated SVMs with arc-cosine kernels on the MNIST data set of 28 × 28

grayscale handwritten digits (LeCun & Cortes, 1998). The MNIST data set has 60000

training examples and 10000 test examples of the digits [0-9]; examples are shown in

Figure 3 (left). We used libSVM to train 45 SVMs, one on each pair of different digit

classes, and labeled test examples by summing the votes from all 45 classifiers. For

each SVM, we held out the last (roughly) 1000 training examples of each digit class to

choose the margin-penalty parameter. The SVMs were trained and tested on deskewed

28x28 grayscale images.

We experimented with arc-cosine kernels of degree n = 0, 1 and 2, corresponding

to threshold networks with “step”, “ramp”, and “quarter-pipe” activation functions. We

also experimented with the multilayer kernels described in section 2.3, composed from

one to six levels of recursion. Figure 3 shows the test set error rates from arc-cosine

kernels of varying degrees (n) and numbers of layers (`). We experimented first with

multilayer kernels that used the same base kernel in each layer. In this case, we ob-

served that the performance generally improved with increasing number of layers (up

to ` = 6) for the ramp (n = 1) kernel, but generally worsened2 for the step (n = 0)

2Also, though not shown in the figure, the quarter-pipe kernel gave essentially random results, with

roughly 90% error rates, when composed with itself three or more times.

10

1

2

3

4

SVM−Poly

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
 Quarter−pipe (n=2)

(`)

(*)1.66

1.54

1.67

1.38
1.64

1.52

 Mixed−degree kernels

 Same−degree kernels

Figure 3: Left: examples from the MNIST data set. Right: classification error rates on

the test set from SVMs with multilayer arc-cosine kernels. The figure shows results for

kernels of varying degrees (n) and numbers of layers (`). In one set of experiments,

the multi-layer kernels were constructed by composing arc-cosine kernels of the same

degree. In another set of experiments, only arc-cosine kernels of degree n = 1 were

used at higher layers; the figure indicates the degree used at the first layer. The asterisk

indicates the configuration that performed best on held-out training examples; precise

error rates for some mixed-degree kernels are displayed for better comparison. The best

comparable result is 1.22% from SVMs using polynomial kernels of degree 9 (Decoste

& Schölkopf, 2002). See text for details.

and quarter-pipe (n = 2) kernels. These results led us to hypothesize that only n = 1

arc-cosine kernels preserve sufficient information about the magnitude of their inputs

to work effectively in composition with other kernels. Recall from section 2.1 that only

the n= 1 arc-cosine kernel preserves the norm of its inputs: the n= 0 kernel maps in-

puts to the unit hypersphere in feature space, while higher-order (n>1) kernels distort

input magnitudes in the same way as polynomial kernels.

We tested this hypothesis by experimenting with “mixed-degree” multilayer kernels

which used arc-cosine kernels of degree n=1 at all higher levels (`>1) of the recursion

in eqs. (18–19). Figure 3 shows these sets of results in a darker shade of gray. In

these experiments, we used arc-cosine kernels of different degrees at the first layer

of nonlinearity, but only the ramp (n = 1) kernel at successive layers. The best of

these kernels yielded a test error rate of 1.38%, comparable to many other results from

SVMs (LeCun & Cortes, 1998) on deslanted MNIST digits, though not matching the

best previous result of 1.22% (Decoste & Schölkopf, 2002). These results also reveal

11

−0.5 0 0.5 1 1.5 2
1

1.5

2

2.5

3

 n

Test error rate (%)

(n,1,1,1,1,1) kernel
(1,1,1,1,1, n) kernel

Figure 4: Classification error rates on the MNIST data set using six-layer arc-cosine

kernels with fractional degrees. The SVMs in these experiments used mixed-degree

kernels in which the kernel in the first or final layer had the continuously varying de-

gree n shown on the x-axis. The other layers used arc-cosine kernels of degree n=1.

that multilayer kernels yield different results than their single layer counterparts. (With

increasing depth, there is also a slight but suggestive trend toward improved results.)

Though SVMs are inherently shallow architectures, this variability is reminiscent of

experience with multilayer neural nets. We explore the effects of multilayer kernels

further in sections 3.2–3.3, experimenting on problems that were specifically designed

to illustrate the advantages of deep architectures.

We also experimented briefly with fractional and negative values of the degree n

in multilayer arc-cosine kernels. The kernel functions in these experiments had to be

computed numerically, as described in the appendix. Figure 4 shows the test error rates

from SVMs in which we continuously varied the degree of the arc-cosine kernel used

in the first or final layer. (The other layers used arc-cosine kernels of degree n = 1.)

The best results in these experiments were obtained by using kernels with fractional

degrees; however, the improvements were relatively modest. In subsequent sections,

we only report results using arc-cosine kernels of degree n∈{0, 1, 2}.

3.2 Shape classification

We experimented next on two data sets for binary classification that were designed to

illustrate the advantages of deep architectures (Larochelle et al., 2007). The examples

in these data sets are also 28 × 28 grayscale pixel images. In the first data set, known

as rectangles-image, each image contains an occluding rectangle, and the task is to

12

22

24

26

DBN−3

SVM−RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter−pipe (n=2)

(`)

22.36

Figure 5: Left: examples from the rectangles-image data set. Right: classification error

rates on the test set. SVMs with arc-cosine kernels have error rates from 22.36–25.64%.

Results are shown for kernels of varying degrees (n) and numbers of layers (`). The best

previous results are 24.04% for SVMs with RBF kernels and 22.50% for deep belief

nets (Larochelle et al., 2007). The error rate from the configuration that performed best

on held-out set is displayed; the error bars correspond to 95% confidence intervals. See

text for details.

determine whether the width of the rectangle exceeds its height; examples are shown in

Figure 5 (left). In the second data set, known as convex, each image contains a white

region, and the task is to determine whether the white region is convex; examples are

shown in Figure 6 (left). The rectangles-image data set has 12000 training examples,

while the convex data set has 8000 training examples; both data sets have 50000 test

examples. We held out the last 2000 training examples of each data set to select the

margin-penalty parameters of SVMs.

The classes in these tasks involve abstract, shape-based features that cannot be com-

puted directly from raw pixel inputs, but rather seem to require many layers of process-

ing. The positive and negative examples also exhibit tremendous variability, making

these problems difficult for template-based approaches (e.g., SVMs with RBF kernels).

In previous benchmarks on binary classification (Larochelle et al., 2007), these prob-

lems exhibited the biggest performance gap between deep architectures (e.g., deep be-

lief nets) and traditional SVMs. We experimented to see whether this gap could be

reduced or even reversed by the use of arc-cosine kernels.

Figures 5 and 6 show the test set error rates from SVMs with mixed-degree, mul-

tilayer arc-cosine kernels. For these experiments, we used arc-cosine kernels of de-

gree n=1 in all but the first layer. The figures also show the best previous results

from SVMs with RBF kernels and three-layer deep belief nets (Larochelle et al., 2007).

13

17

19

21

DBN−3
SVM−RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter−pipe (n=2)

(`)

17.42

Figure 6: Left: examples from the convex data set. Right: classification error rates

on the test set. SVMs with arc-cosine kernels have error rates from 17.15–20.51%.

Results are shown for kernels of varying degrees (n) and numbers of layers (`). The

best previous results are 19.13% for SVMs with RBF kernels and 18.63% for deep belief

nets (Larochelle et al., 2007). The error rate from the configuration that performed best

on held-out set is displayed; the error bars correspond to 95% confidence intervals. See

text for details.

Overall, the figures show that many SVMs with arc-cosine kernels outperform SVMs

with RBF kernels, and a certain number also outperform deep belief nets. The results

on the rectangles-image data set show that the n = 0 kernel seems particularly well

suited to this task. The results on the convex data set show a pronounced trend in which

increasing numbers of layers leads to lower error rates.

Beyond these improvements in performance, we also note that SVMs with arc-

cosine kernels are quite straightforward to train. Unlike SVMs with RBF kernels, they

do not require tuning a kernel width parameter, and unlike deep belief nets, they do

not require solving a difficult nonlinear optimization or searching over many possible

architectures. Thus, as a purely practical matter, SVMs with arc-cosine kernels are very

well suited for medium-sized problems in binary classification.

We were curious if SVMs with arc-cosine kernels were discovering sparse solutions

to the above problems. To investigate this possibility, we compared the numbers of

support vectors used by SVMs with arc-cosine and RBF kernels. The best SVMs with

arc-cosine kernels used 9600 support vectors for the rectangles-image data set and 5094

support vectors for the convex data set. These numbers are slightly lower (by several

hundred) than the numbers for RBF kernels; however, they still represent a sizable

fraction of the training examples for these data sets.

14

3.3 Noisy handwritten digit recognition

We experimented last on two challenging data sets in multiway classification. Like the

data sets in the previous section, these data sets were also designed to illustrate the ad-

vantages of deep architectures (Larochelle et al., 2007). They were created by adding

different types of background noise to the MNIST images of handwritten digits. Specif-

ically, the mnist-back-rand data set was generated by filling image backgrounds with

white noise, while the mnist-back-image data set was generated by filling image back-

grounds with random image patches; examples are shown in Figures 7 and 8. Each data

set contains 12000 training examples and 50000 test examples. We initially held out the

last 2000 training examples of each data set to select the margin-penalty parameters of

SVMs.

The right panels of Figures 7 and 8 show the test set error rates of SVMs with mul-

tilayer arc-cosine kernels. For these experiments, we again used arc-cosine kernels of

degree n=1 kernels in all but the first layer. Though we observed that arc-cosine ker-

nels with more layers often led to better performance, the trend was not as pronounced

as in previous sections. Moreover, on these data sets, SVMs with arc-cosine kernels

performed slightly worse than the best SVMs with RBF kernels and significantly worse

than the best deep belief nets.

On this problem, it is not too surprising that SVMs fare much worse than deep belief

nets. Both arc-cosine and RBF kernels are rotationally invariant, and such kernels are

not well-equipped to deal with large numbers of noisy and/or irrelevant features (Ng,

2004). Presumably, deep belief nets perform better because they can learn to directly

suppress noisy pixels. Though SVMs perform poorly on these tasks, more recently

we have obtained positive results using arc-cosine kernels in a different kernel-based

architecture (Cho & Saul, 2009). These positive results were obtained by combining

ideas from kernel PCA (Schölkopf et al., 1998), discriminative feature selection, and

large margin nearest neighbor classification (Weinberger & Saul, 2009). The rotational

invariance of arc-cosine kernel could also be explicitly broken by integrating in eq. (1)

over a multivariate Gaussian distribution with a general (non-identity) covariance ma-

trix. By choosing the covariance matrix appropriately (or perhaps by learning it), we

could potentially tune arc-cosine kernels to suppress irrelevant features in the inputs.

It is less clear why SVMs with arc-cosine kernels perform worse on these data sets

15

8

12

16

20

DBN−3

SVM−RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
 Quarter−pipe (n=2)

(`)

16.3

Figure 7: Left: examples from the mnist-back-rand data set. Right: classification error

rates on the test set. SVMs with arc-cosine kernels have error rates from 16.14–21.27%.

Results are shown for kernels of varying degrees (n) and numbers of layers (`). The

best previous results are 14.58% for SVMs with RBF kernels and 6.73% for deep belief

nets (Larochelle et al., 2007). The error rate from the configuration that performed best

on held-out set is displayed; the error bars correspond to 95% confidence intervals. See

text for details.

than SVMs with RBF kernels. Our results in multiway classification were obtained by

a naive combination of binary SVM classifiers, which may be a confounding effect. We

also examined the SVM error rates on the 45 sub-tasks of one-against-one classifica-

tion. Here we observed that on average, the SVMs with arc-cosine kernels performed

slightly worse (from 0.06–0.67%) than the SVMs with RBF kernels, but not as much

as the differences in Figures 7 and 8 might suggest. In future work, we may explore

arc-cosine kernels in a more principled framework for multiclass SVMs (Crammer &

Singer, 2001).

4 Conclusion

In this paper, we have explored a new family of positive-definite kernels for large margin

classification in SVMs. The feature spaces induced by these kernels mimic the internal

representations stored by the hidden layers of large neural networks. Evaluating these

kernels in SVMs, we found that on certain problems they led to state-of-the-art results.

Interestingly, they also exhibited trends that seemed to reflect the benefits of learning in

deep architectures.

16

16

20

24

28

DBN−3

SVM−RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
 Quarter−pipe (n=2)

(`)

23.58

Figure 8: Left: examples from the mnist-back-image data set. Right: classification error

rates on the test set. SVMs with arc-cosine kernels have error rates from 23.03–27.58%.

Results are shown for kernels of varying degrees (n) and numbers of layers (`). The best

previous results are 22.61% for SVMs with RBF kernels and 16.31% for deep belief

nets (Larochelle et al., 2007). The error rate from the configuration that performed best

on held-out set is displayed; the error bars correspond to 95% confidence intervals. See

text for details.

Our approach in this paper builds on several lines of related work by previous au-

thors. Computation in infinite neural networks was first studied in the context of Gaus-

sian processes (Neal, 1996). In later work, Williams (1998) derived analytical forms

for kernel functions that mimicked the computation in large networks. In networks with

sigmoidal activation functions, these earlier results reduce as a special case to eq. (1)

for the arc-cosine kernel of degree n = 0 as shown in section 2.2. Our contribution

to this line of work has been to enlarge the family of kernels which can be computed

analytically. In particular, we have derived kernels to mimic the computation in large

networks with ramp (n=1), quarter-pipe (n=2), and higher-order activation functions.

Exploring the use of these kernels for large margin classification, we often found that

the best results were obtained by arc-cosine kernels with n>0.

More recently, other researchers have explored connections between kernel ma-

chines and neural computation. Bengio et al. (2006) showed how to formulate the

training of multilayer neural networks as a problem in convex optimization; though the

problem involves an infinite number of variables, corresponding to all possible hidden

units, finite solutions are obtained by regularizing the weights at the output layer and

incrementally inserting one hidden unit at a time. Related ideas were also previously

17

considered by Lee et al. (1996) and Zhang (2003). Rahimi & Recht (2009) studied net-

works that pass inputs through a large bank of arbitrary randomized nonlinearities, then

compute weighted sums of the resulting features; these networks can be designed to

mimic the computation in kernel machines, while scaling much better to large data sets.

For the most part, these previous studies have exploited the connection between kernel

machines and neural networks with one layer of hidden units. Our contribution to this

line of work has been to develop a more direct connection between kernel machines

and multilayer neural networks. This connection was explored through the recursive

construction of multilayer kernels in section 2.3.

Our work was also motivated by the ongoing debate over deep versus shallow ar-

chitectures (Bengio & LeCun, 2007). Motivated by similar issues, Weston et al. (2008)

suggested that kernel methods could play a useful role in deep learning; specifically,

these authors showed that shallow architectures for nonlinear embedding could be used

to define auxiliary tasks for the hidden layers of deep architectures. Our results suggest

another way that kernel methods may play a useful role in deep learning—by mimicking

directly the computation in large, multilayer neural networks.

It remains to be understood why certain problems are better suited for arc-cosine

kernels than others. We do not have definitive answers to this question. Perhaps the

n = 0 arc-cosine kernel works well on the rectangles-image data set (see Figure 5)

because it normalizes for brightness, only considering the angle between two images.

Likewise, perhaps the improvement from multilayer kernels on the convex data set (see

Figure 6) shows that this problem indeed requires a hierarchical solution, just as its

creators intended. We hope to improve our understanding of these effects as we obtain

more experience with arc-cosine kernels on a greater variety of data sets.

Encouraged especially by the results in section 3.2, we are pursuing several direc-

tions for future research. We are currently exploring the use of arc-cosine kernels in

other types of kernel machines besides SVMs, including architectures for unsupervised

and semi-supervised learning (Cho & Saul, 2009). We also believe that methods for

multiple kernel learning (Lanckriet et al., 2004; Rakotomamonjy et al., 2008; Bach,

2009) may be useful for combining arc-cosine kernels of different degrees and depth.

We hope that researchers in Gaussian processes will explore arc-cosine kernels and

use them to further develop the connections to computation in multilayer neural net-

18

works (Neal, 1996). Finally, an open question is how to incorporate prior knowledge,

such as the invariances modeled by convolutional neural networks (LeCun et al., 1989;

Ranzato et al., 2007), into the types of kernels studied in this paper. These issues and

others are left for future work.

Acknowledgments

This work was supported by award number 0957560 from the National Science Founda-

tion. The authors are tremendously grateful to the reviewers, whose many knowledge-

able comments and thoughtful suggestions helped to improve all parts of the paper. The

authors also benefited from many personal discussions at a Gatsby Unit Workshop on

Deep Learning.

A Derivation of kernel function

In this appendix, we show how to evaluate the multidimensional integral in eq. (1)

for the arc-cosine kernel. We begin by reducing it to a one-dimensional integral. Let θ

denote the angle between the inputs x and y. Without loss of generality, we can take the

w1-axis to align with the input x and the w1w2-plane to contain the input y. Integrating

out the orthogonal coordinates of the weight vector w, we obtain the result in eq. (3)

where Jn(θ) is the remaining integral:

Jn(θ) =

∫
dw1 dw2 e

− 1
2
(w2

1+w2
2) Θ(w1) Θ(w1 cos θ+w2 sin θ)wn1 (w1 cos θ+w2 sin θ)n.

(20)

Changing variables to u = w1 and v = w1 cos θ+w2 sin θ, we simplify the domain of

integration to the first quadrant of the uv-plane:

Jn(θ) =
1

sin θ

∫ ∞
0

du

∫ ∞
0

dv e−(u2+v2−2uv cos θ)/(2 sin2 θ) unvn. (21)

The prefactor of (sin θ)−1 in eq. (21) is due to the Jacobian. We reduce the two dimen-

sional integral in eq. (21) to a one dimensional integral by adopting polar coordinates:

u=r cosφ and v=r sinφ. The integral over the radius coordinate r is straightforward,

yielding:

Jn(θ) = n! (sin θ)2n+1

∫ π
2

0

dφ
sinn 2φ

(1− cos θ sin 2φ)n+1
. (22)

19

Finally, to convert this integral into a more standard form, we make the simple change

of variables ψ = 2φ− π
2
. The resulting integral is given by:

Jn(θ) = n! (sin θ)2n+1

∫ π
2

0

dψ
cosn ψ

(1− cos θ cosψ)n+1
. (23)

Note the dependence of this final one-dimensional integral on the degree n of the arc-

cosine kernel function. As we show next, this integral can be evaluated analytically for

all n ∈ {0, 1, 2, . . .}.

We first evaluate eq. (23) for the special case n = 0. The following result can be

derived by contour integration in the complex plane (Carrier et al., 2005):∫ ξ

0

dψ

1− cos θ cosψ
=

1

sin θ
tan−1

(
sin θ sin ξ

cos ξ − cos θ

)
, (24)

The integral in eq. (24) can also be verified directly by differentiating the right hand

side. Evaluating the above result at ξ= π
2

gives:∫ π/2

0

dψ

1− cos θ cosψ
=

π − θ
sin θ

. (25)

Substituting eq. (25) into our expression for the angular part of the kernel function in

eq. (23), we recover our earlier claim that J0(θ) = π − θ. Related integrals for the

special case n = 0 can also be found in earlier work (Williams, 1998; Watkin et al.,

1993).

Next we show how to evaluate the integrals in eq. (23) for higher order kernel func-

tions. For integer n>0, the required integrals can be obtained by the method of differ-

entiating under the integral sign. In particular, we note that:∫ π
2

0

dψ
cosn ψ

(1− cos θ cosψ)n+1
=

1

n!

∂n

∂(cos θ)n

∫ π/2

0

dψ

1− cos θ cosψ
. (26)

Substituting eq. (26) into eq. (23), then appealing to the previous result in eq. (25), we

recover the expression for Jn(θ) as stated in eq. (4).

Finally, we consider the general case where the degree n of the arc-cosine kernel is

real-valued. For real-valued n, the required integral in eq. (23) does not have a simple

analytical form. However, we can evaluate the original representation in eq. (1) for the

special case of equal inputs x = y. In this case, without loss of generality, we can again

take the w1-axis to align with the input x. Integrating out the orthogonal coordinates of

20

the weight vector w, we obtain:

kn(x,x) =

√
2

π
‖x‖2n

∫ ∞
0

dw1 e
− 1

2
w2

1 w2n
1 =

2n√
π

Γ

(
n+

1

2

)
‖x‖2n. (27)

The gamma function on the right hand side of eq. (27) diverges as its argument ap-

proaches zero; thus kn(x,x) diverges as n → −1
2

for all inputs x. This divergence

shows that the integral representation of the arc-cosine kernel in eq. (1) is only defined

for n > −1
2
.

Though the arc-cosine kernel does not have a simple form for real-valued n, the in-

termediate results in eqs. (3) and (23) remain generally valid. Thus, for non-integer n,

the integral representation in eq. (1) can still be reduced to a one-dimensional integral

for Jn(θ), where θ is the angle between the inputs x and y. For θ > 0, it is straightfor-

ward to evaluate the integral for Jn(θ) in eq. (23) by numerical methods. This was done

for the experiments in section 3.1.

References

Bach, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learn-

ing. In Koller, D., Schuurmans, D., Bengio, Y., & Bottou, L. (Eds.), Advances in

Neural Information Processing Systems 21, (pp. 105–112)., Cambridge, MA. MIT

Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in

Machine Learning, to appear.

Bengio, Y. & LeCun, Y. (2007). Scaling learning algorithms towards AI. MIT Press.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., & Marcotte, P. (2006). Convex

neural networks. In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Advances in Neural

Information Processing Systems 18, (pp. 123–130)., Cambridge, MA. MIT Press.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. In Proceedings of the Fifth Annual ACM Workshop on Computa-

tional Learning Theory, (pp. 144–152). ACM Press.

21

Carrier, G. F., Krook, M., & Pearson, C. E. (2005). Functions of a Complex Variable:

Theory and Technique. Society for Industrial and Applied Mathematics.

Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Cho, Y. & Saul, L. K. (2009). Kernel methods for deep learning. In Bengio, Y., Schu-

urmans, D., Lafferty, J., Williams, C., & Culotta, A. (Eds.), Advances in Neural

Information Processing Systems 22, (pp. 342–350)., Cambridge, MA. MIT Press.

Collobert, R. & Weston, J. (2008). A unified architecture for natural language pro-

cessing: deep neural networks with multitask learning. In Proceedings of the 25th

International Conference on Machine Learning (ICML-08), (pp. 160–167).

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20,

273–297.

Crammer, K. & Singer, Y. (2001). On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2, 265–292.

Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods. Cambridge University Press.

Decoste, D. & Schölkopf, B. (2002). Training invariant support vector machines. Ma-

chine Learning, 46(1-3), 161–190.

Hahnloser, R. H. R., Seung, H. S., & Slotine, J. J. (2003). Permitted and forbidden sets

in symmetric threshold-linear networks. Neural Computation, 15(3), 621–638.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18(7), 1527–1554.

Hinton, G. E. & Salakhutdinov, R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504–507.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004). Learn-

ing the kernel matrix with semidefinite programming. Journal of Machine Learning

Research, 5, 27–72.

22

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empir-

ical evaluation of deep architectures on problems with many factors of variation. In

Proceedings of the 24th International Conference on Machine Learning (ICML-07),

(pp. 473–480).

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1(4), 541–551.

LeCun, Y. & Cortes, C. (1998). The MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist/.

Lee, W. S., Bartlett, P., & Williamson, R. (1996). Efficient agnostic learning of neural

networks with bounded fan-in. IEEE Transactions on Information Theory, 42(6),

2118–2132.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer-Verlag New

York, Inc.

Ng, A. Y. (2004). Feature selection, l1 vs. l2 regularization, and rotational invariance. In

Proceedings of the 21st International Conference on Machine Learning (ICML-04),

(pp. 78–85).

Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IRE

Transactions on Information Theory, 4(2), 69–72.

Rahimi, A. & Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing

minimization with randomization in learning. In Koller, D., Schuurmans, D., Bengio,

Y., & Bottou, L. (Eds.), Advances in Neural Information Processing Systems 21, (pp.

1313–1320)., Cambridge, MA. MIT Press.

Rakotomamonjy, A., Bach, F. R., Canu, S., & Grandvalet, Y. (2008). SimpleMKL.

Journal of Machine Learning Research, 9, 2491–2521.

Ranzato, M. A., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007). Unsupervised learn-

ing of invariant feature hierarchies with applications to object recognition. In Pro-

23

ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR-07), (pp. 1–8).

Schölkopf, B., Smola, A., & Müller, K. (1998). Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319.

Schölkopf, B. & Smola, A. J. (2001). Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond (Adaptive Computation and Ma-

chine Learning). The MIT Press.

Schölkopf, B., Smola, A. J., & Müller, K.-R. (1996). Nonlinear component analysis as a

kernel eigenvalue problem. Technical Report 44, Max-Planck-Institut für biologische

Kybernetik.

Watkin, T. H. L., Rau, A., & Biehl, M. (1993). The statistical mechanics of learning a

rule. Reviews of Modern Physics, 65(2), 499–556.

Weinberger, K. Q. & Saul, L. K. (2009). Distance metric learning for large margin

nearest neighbor classification. Journal of Machine Learning Research, 10, 207–

244.

Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised em-

bedding. In Proceedings of the 25th International Conference on Machine Learning

(ICML-08), (pp. 1168–1175).

Williams, C. K. I. (1998). Computation with infinite neural networks. Neural Compu-

tation, 10(5), 1203–1216.

Zhang, T. (2003). Sequential greedy approximation for certain convex optimization

problems. IEEE Transactions on Information Theory, 49(3), 682–691.

24

