
Large Margin Hierarchical Classification

Ofer Dekel OFERD@CS.HUJI.AC.IL

Joseph Keshet JKESHET@CS.HUJI.AC.IL

Yoram Singer SINGER@CS.HUJI.AC.IL

School of Computer Science and Engineering, The Hebrew University, Jerusalem, 91904, Israel

Abstract
We present an algorithmic framework for su-
pervised classification learning where the set of
labels is organized in a predefined hierarchical
structure. This structure is encoded by a rooted
tree which induces a metric over the label set.
Our approach combines ideas from large mar-
gin kernel methods and Bayesian analysis. Fol-
lowing the large margin principle, we associate a
prototype with each label in the tree and formu-
late the learning task as an optimization problem
with varying margin constraints. In the spirit of
Bayesian methods, we impose similarity require-
ments between the prototypes corresponding to
adjacent labels in the hierarchy. We describe new
online and batch algorithms for solving the con-
strained optimization problem. We derive a worst
case loss-bound for the online algorithm and pro-
vide generalization analysis for its batch counter-
part. We demonstrate the merits of our approach
with a series of experiments on synthetic, text
and speech data.

1. Introduction

Multiclass categorization problems are concerned with the
task of assigning labels to instances where the possible la-
bels come from a predefined set. It is typically assumed that
the set of labels has no underlying structure and therefore
different classification mistakes are of the same severity.
However, in many natural machine learning problems the
set of labels is structured and different types of misclas-
sifications should be treated differently. In this paper we
focus on a particular type of structure over labels, namely
a hierarchical one. In hierarchical classification the set of
labels is arranged in a predefined hierarchy which takes the
form of a rooted tree. For instance, both the Yahoo! hierar-

Appearing in Proceedings of the 21
st International Conference

on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

chy and the open directory project (ODP) classify Internet
web-sites to categories which reside in a tree. The labels
in this tree entertain a special semantic, namely, if an inter-
nal vertex in the tree represents some topic then its children
will correspond to refinements of this topic. As an exam-
ple, the vertex in the Yahoo! hierarchy representing the
topic Sports, points to numerous sub-topics such as Cricket,
Curling, and Canoeing. Following the link to the sub-topic
Curling we find that it points to numerous sub-sub-topics
such as Equipment and Tournaments. Each of these topics,
as well as most of the topics in the Yahoo! hierarchy, is as-
sociated with a set of webpages. A second notable example
is speech phoneme classification. Short speech utterances
are typically divided into phonetic classes. Phonetic theory
of spoken speech embed the set of phonemes of western
languages in a phonetic hierarchy where the phonemes are
leaves of the tree and broad phonetic groups, such as vow-
els and consonants, are internal vertices. In this paper we
conduct experiments with these two hierarchical problems.

The problem of hierarchical classification, in particular hi-
erarchical document classification, has been tackled by nu-
merous researchers (see for instance (Koller & Sahami,
1997; McCallum et al., 1998; Weigend et al., 1999; Du-
mais & Chen, 2000)). Most previous work on hierarchical
classification decouples the problem into independent clas-
sification problems by assigning and training a classifier for
each internal vertex in the hierarchy. To accommodate the
semantics imposed by the hierarchical structure, some re-
searchers have imposed statistical similarity constraints be-
tween the probabilistic models for adjacent vertices in the
hierarchy (e.g. (McCallum et al., 1998)). In probabilistic
settings, statistical similarities can be enforced using tech-
niques such as back-off estimates (Katz, 1987) and shrink-
age (McCallum et al., 1998).

A significant amount of recent work on classification prob-
lems, both binary and multiclass, has been devoted to the
theory and application of large margin classifiers. See
for instance the book of Vapnik (1998) and the references
therein. In this paper, we describe, analyze, and apply a
large margin approach to hierarchical classification which

is in the spirit of statistical approaches. As in large margin
methods, we associate a vector in a high dimensional space
with each label in the hierarchy. We call this vector the pro-
totype of the label, and classify instances according to their
similarity to the various prototypes. We relax the require-
ments of correct classification to large margin constraints
and attempt to find prototypes that comply with these con-
straints. In the spirit of Bayesian methods, we impose sim-
ilarity requirements between the prototypes corresponding
to adjacent labels in the hierarchy. The result is an algo-
rithmic solution that may tolerate minor mistakes, such as
predicting a sibling of the correct label, but avoids gross
errors, such as predicting a vertex in a completely different
part of the tree.

Many hierarchical datasets contains a very large number of
examples. For instance, the file containing just the ODP
hierarchy itself, without the documents, is 250Mb long. To
cope with large amounts of data we devise an online algo-
rithm that is both memory efficient and simple to imple-
ment. Our algorithmic solution builds on the pioneering
work of Warmuth and colleagues. In particular, we gener-
alize and fuse ideas from (Crammer et al., 2003; Herbster,
2001; Kivinen & Warmuth, 1997). These papers discuss
online learning of large-margin classifiers. On each round,
the online hypothesis is updated such that it complies with
margin constraints imposed by the example observed on
this round. Along with the margin constraints, the update
is required to keep the new classifier fairly close to the pre-
vious one. We show that this idea can also be exploited
in our setting, resulting in a simple online update which
can be used in conjunction with kernel functions. Further-
more, using methods for converting online to batch learn-
ing (e.g. (Cesa-Bianchi et al., 2004)), we show that the on-
line algorithm can be used to devise a batch algorithm with
theoretical guarantees and good empirical performance.

The paper is organized as follows. In Sec. 2 we formally
describe the hierarchical classification problem and estab-
lish our notation. Sec. 3 constitutes the algorithmic core
of the paper. In this section we describe an online algo-
rithm, called online Hieron, for hierarchical classification
and prove a worst case bound on its performance. In Sec. 4
we describe a conversion of the online Hieron into a well
performing batch algorithm, the batch Hieron. In Sec. 5
we conclude the paper with a series of experiments on syn-
thetic data, a text corpus, and speech data.

2. Problem Setting

Let X ⊆ R
n be an instance domain and let Y be a set of

labels. In the hierarchical classification setting Y plays a
double role: first, as in traditional multiclass problems, it
encompasses the set of labels, namely each instance in X
is associated with a label v ∈ Y . Second, Y defines a set of

vertices arranged in a rooted tree T . We denote k = |Y|,
for concreteness we assume that Y = {0, . . . , k − 1} and
let 0 be the root of T .

For any pair of labels u, v ∈ Y , let γ(u, v) denote their dis-
tance in the tree. That is, γ(u, v) is defined to be the num-
ber of edges along the (unique) path from u to v in T . The
distance function γ(·, ·) is in fact a metric over Y since it
is a non-negative function, γ(v, v) = 0, γ(u, v) = γ(v, u)
and the triangle inequality always holds with equality. As
stated above, different classification errors incur different
levels of penalty, and in our model this penalty is defined
by the tree distance γ(u, v). We therefore say that the tree
induced error incurred by predicting the label v when the
correct label is u is γ(u, v).

We receive a training set S = {(xi, yi)}
m
i=1 of instance-

label pairs, where each xi ∈ X and each yi ∈ Y . Our
goal is to learn a classification function f : X → Y which
attains a small tree induced error. We focus on classifiers
that are of the following form: each label v ∈ Y has a
matching prototype W

v ∈ R
n, where W

0 is fixed to be
the zero vector and every other prototype can be any vector
in R

n. The classifier f makes its predictions according to
the following rule,

f(x) = argmax
v∈Y

W
v · x . (1)

The task of learning f is reduced to learning
W

1, . . . ,Wk−1.

For every label other than the tree root v ∈ {Y \ 0}, we
denote by A(v) the parent of v in the tree. Put another way,
A(v) is the vertex adjacent to v which is closer to the tree
root 0. We also define A(i)(v) to be the ith ancestor of v
(if such an ancestor exists). Formally, A(i)(v) is defined
recursively as follows,

A(0)(v) = v and A(i)(v) = A(A(i−1)(v)) .

For each label v ∈ Y , define P(v) to be the set of labels
along the path from 0 (the tree root) to v,

P(v) =
{

u ∈ Y : ∃i u = A(i)(v)
}

.

For technical reasons discussed shortly, we prefer not to
deal directly with the set of prototypes W

0, . . . ,Wk−1 but
rather with the difference between each prototype and the
prototype of its parent. Formally, define w

0 to be the zero
vector in R

n and for each label v ∈ Y \ 0, let wv = W
v −

W
A(v). Each prototype now decomposes to the sum

W
v =

∑

u∈P(v)

w
u . (2)

The classifier f can be defined in two equivalent ways:
by setting {Wv}v∈Y and using Eq. (1), or by setting

{wv}v∈Y and using Eq. (2) in conjunction with Eq. (1).
Throughout this paper, we often use {wv}v∈Y as a syn-
onym for the classification function f . As a design choice,
our algorithms require that adjacent vertices in the label
tree have similar prototypes. The benefit of represent-
ing each prototype {Wv}v∈Y as a sum of vectors from
{wv}v∈Y is that adjacent prototypes W

v and W
A(v) can

be kept close by simply keeping w
v = W

v − W
A(v)

small. Sec. 3 and Sec. 4 address the task of learning the
set {wv}v∈Y from labeled data.

3. An Online Algorithm

In this section we derive and analyze an efficient online
learning algorithm named online Hieron for the hierarchi-
cal classification problem. In online settings, learning takes
place in rounds. On round i, an instance, denoted xi, is pre-
sented to the learning algorithm. Hieron maintains a set of
prototypes which is constantly updated in accordance with
the quality of its predictions. We denote the set of proto-
types used to extend the prediction on round i by {wv

i }v∈Y .
Therefore, the prediction of Hieron for xi is,

ŷi = argmax
v∈Y

W
v
i · xi = argmax

v∈Y

∑

u∈P(v)

w
u
i · xi . (3)

Then, the correct label yi is revealed and the algorithm suf-
fers an instantaneous error. The error that we employ in this
paper is the tree induced error. Using the notation above,
the error on round i equals γ(yi, ŷi).

Our analysis, as well as the motivation for the online up-
date that we derive below, assumes that there exists a set of
prototypes {ωv}v∈Y such that for every instance-label pair
(xi, yi) and every r 6= yi it holds that,

∑

v∈P(yi)

ω
v · xi −

∑

u∈P(r)

ω
u · xi ≥

√

γ(yi, r) . (4)

y

y

Figure 1. An illustration of
the update: only the ver-
tices depicted using solid
lines are updated.

The above difference between
the projection onto the proto-
type corresponding to the cor-
rect label and any other proto-
type is a generalization of the
notion of margin employed by
multiclass problems (Weston
& Watkins, 1999). Put in-
formally, we require that the
margin between the correct
and each of the incorrect la-
bels be at least the square-root
of the tree-based distance be-
tween them. The goal of the
Hieron algorithm is to find a
set of prototypes which fulfills the margin requirement of
Eq. (4) while incurring a minimal tree-induced error until

such a set is found. However, the tree-induced error is a
combinatorial quantity and is thus difficult to minimize di-
rectly. We instead use a construction commonly used in
large margin classifiers and employ the the convex hinge-
loss function

` ({wv},x, y) =




∑

v∈P(ŷ)

w
v · x −

∑

v∈P(y)

w
v · x +

√

γ(y, ŷ)





+

, (5)

where [z]+ = max{z, 0}. In the sequel we show that
`2 ({wv},x, y) upper bounds γ(y, ŷ) and use this fact to
attain a bound on

∑m

i=1 γ(yi, ŷi).

The online Hieron algorithm belongs to the family of con-
servative online algorithms, which update their classifica-
tion rules only on rounds on which prediction mistakes are
made. Let us therefore assume that there was a prediction
mistake on round i. We would like to modify the set of vec-
tors {wv

i } so as to satisfy the margin constraints imposed
by the ith example. One possible approach is to simply find
a set of vectors that solves the constraints in Eq. (4) (Such a
set must exist since we assume that there exists a set {ωv

i }
which satisfies the margin requirements for all of the ex-
amples.) There are however two caveats in such a greedy
approach. The first is that by setting the new set of proto-
types to be an arbitrary solution to the constraints imposed
by the most recent example we are in danger of forgetting
what has been learned thus far. The second, rather techni-
cal, complicating factor is that there is no simple analytical
solution to Eq. (4). We therefore introduce a simple con-
strained optimization problem. The objective function of
this optimization problem ensures that the new set {wv

i+1}
is kept close to the current set while the constraints ensure
that the margin requirement for the pair (yi, ŷi) is fulfilled
by the new vectors. Formally, the new set of vectors is the
solution to the following problem,

min
{wv}

1

2

∑

v∈Y

‖wv − w
v
i ‖

2 (6)

s.t.
∑

v∈P(yi)

w
v · xi −

∑

u∈P(ŷi)

w
u · xi ≥

√

γ(yi, ŷi) .

First, note that any vector w
v corresponding to a vertex

v that does not belong to neither P(yi) nor P(ŷi) does
not change due to the objective function in Eq. (6), hence,
w

v
i+1 = w

v
i . Second, note that if v ∈ P(yi) ∩ P(ŷi) then

the contribution of the w
v cancels out. Thus, for this case

as well we get that w
v
i+1 = w

v
i . In summary, the vectors

that we need to actually update correspond to the vertices
in the set P(yi)∆P(ŷi) where ∆ designates the symmetric
difference of sets (see also Fig. 1).

To find the solution to Eq. (6) we introduce a Lagrange
multiplier αi, and formulate the optimization problem in

Algorithm 1 Online Hieron

Initialize: ∀v ∈ Y : w1
v = 0

for i = 1, 2, . . . m
• Receive an instance xi

• Predict: ŷi = arg maxv∈Y

∑

u∈P(v) w
u
i · xi

• Receive the correct label yi

• Suffer loss: ` ({wv
i },xi, yi) [see Eq. (5)]

• Update:

w
v
i+1 = w

v
i + αixi v ∈ P(yi)\P(ŷi)

w
v
i+1 = w

v
i − αixi v ∈ P(ŷi)\P(yi)

where
αi =

` ({wv
i },xi, yi)

γ(yi, ŷi) ‖xi‖2

the form of a Lagrangian. We set the derivative of the La-
grangian w.r.t. {wv} to zero and get,

w
v
i+1 = w

v
i + αixi v ∈ P(yi)\P(ŷi)

w
v
i+1 = w

v
i − αixi v ∈ P(ŷi)\P(yi) . (7)

Since at the optimum the constraint of Eq. (6) is binding
we get that,

∑

v∈P(yi)

(wv
i +αixi)·xi =

∑

v∈P(ŷi)

(wv
i −αixi)·xi+

√

γ(yi, ŷi).

Rearranging terms in the above equation and using the def-
inition of the loss from Eq. (5) we get that,

αi ‖xi‖
2 |P(yi)∆P(ŷi)| = ` ({wv

i }, xi, yi) .

Finally, noting that the cardinality of P(yi)∆P(ŷi) is equal
to γ(yi, ŷi) we get that,

αi =
` ({wv

i },xi, yi)

γ(yi, ŷi) ‖xi‖2
(8)

The pseudo code of the online learning algorithm is given
in Algorithm 1. The following theorem implies that the
cumulative loss suffered by online Hieron is bounded as
long as there exists a hierarchical classifier which fulfills
the margin requirements on all of the examples.

Theorem 1. Let {(xi, yi)}
m
i=1 be a sequence of examples

where xi ∈ X ⊆ R
n and yi ∈ Y . Assume there exists a

set {ωv : ∀v ∈ Y} that satisfies Eq. (4) for all 1 ≤ i ≤ m.
Then, the following bound holds,

m
∑

i=1

`2 ({wv
i },xi, yi) ≤

∑

v∈Y

‖ωv‖2 γmax R2

where for all i, ‖xi‖ ≤ R and γ(yi, ŷi) ≤ γmax.

Proof. As a technical tool, we denote by ω̄ the concate-
nation of the vectors in {ωv}, ω̄ =

(

ω
0, . . . ,ωk−1

)

and

similarly w̄i =
(

w
0
i , . . . ,w

k−1
i

)

for i ≥ 1. We denote by
δi the difference between the squared distance w̄i from ω̄

and the squared distance of w̄i+1 from ω̄,

δi = ‖w̄i − ω̄‖2 − ‖w̄i+1 − ω̄‖2 .

We now derive upper and lower bounds on
∑m

i=1 δi. First,
note that by summing over i we obtain,

m
∑

i=1

δi =

m
∑

i=1

‖w̄i − ω̄‖2 − ‖w̄i+1 − ω̄‖2

= ‖w̄1 − ω̄‖2 − ‖w̄m − ω̄‖2 ≤ ‖w̄1 − ω̄‖2 .

Our initialization sets w̄1 = 0 and thus we get,

m
∑

i=1

δi ≤ ‖ω̄‖2 =
∑

v∈Y

‖ωv‖2 . (9)

This provides the upper bound on
∑

i δi. We next derive
a lower bound on each δi. The minimizer of the problem
defined by Eq. (6) is obtained by projecting {wv

i } onto the
linear constraint corresponding to our margin requirement.
The result is a new set {wv

i+1} which in the above notation
can be written as the vector w̄i+1. A well known result (see
for instance (Censor & Zenios, 1997), Thm. 2.4.1) states
that this vector satisfies the following inequality,

‖w̄i − ω̄‖2 − ‖w̄i+1 − ω̄‖2 ≥ ‖w̄i − w̄i+1‖
2 .

Hence, we get that δi ≥ ‖w̄i − w̄i+1‖
2. We can now

take into account that w
v
i is updated if and only if v ∈

P(yi)∆P(ŷi) to get that,

‖w̄i − w̄i+1‖
2 =

∑

v∈Y

‖wv
i − w

v
i+1‖

2

=
∑

v∈P(yi)∆P(ŷi)

‖wv
i − w

v
i+1‖

2 .

Plugging Eq. (7) into the above, we get
∑

v∈P(yi)∆P(ŷi)

‖wv
i − w

v
i+1‖

2 =
∑

v∈P(yi)∆P(ŷi)

α2
i ‖xi‖

2

= |P(yi)∆P(ŷi)| α2
i ‖xi‖

2

= γ(yi, ŷi) α2
i ‖xi‖

2 .

We now use the definition of αi from Eq. (8) to obtain the
lower bound,

δi ≥
`2 ({wv

i },xi, yi)

γ(yi, ŷi)‖xi‖2
.

Using the assumptions ‖xi‖ ≤ R and γ(yi, ŷi) ≤ γmax we
can further bound δi by,

δi ≥
`2 ({wv

i },xi, yi)

γmax R2
.

Now, summing over all i and comparing the lower bound
given above with the upper bound of Eq. (9) we get,

∑m

t=1 `2 ({wv
i },xi, yi)

γmax R2
≤

m
∑

t=1

δi ≤
∑

v∈Y

‖ωv‖2 .

Multiplying both sides of the inequality above by γmax R2

gives the desired bound.

The loss bound of Thm. 1 can be straightforwardly trans-
lated into a bound on the tree-induced error as follows.
Note that whenever a prediction error occurs (yi 6= ŷi),
then

∑

v∈P(ŷi)
w

v
i · xi ≥

∑

v∈P(yi)
w

v
i · xi. Thus, the

hinge-loss defined by Eq. (5) is greater than
√

γ(yi, ŷi).
Since we suffer a loss only on rounds were prediction er-
rors were made, we get the following corollary.

Corollary 1. Under the conditions of Thm. 1 the following
bound on the cumulative tree-induced error holds,

m
∑

t=1

γ(yi, ŷi) ≤
∑

v∈Y

‖ωv‖2 γmax R2 . (10)

To conclude the algorithmic part of the paper, we note that
Mercer kernels can be easily incorporated into our algo-
rithm. First, rewrite the update as w

v
i+1 = w

v
i + αv

i xi

where,

αv
i =







αi v ∈ P(yi)\P(ŷi)
−αi v ∈ P(ŷi)\P(yi)

0 otherwise
.

Using this notation, the resulting hierarchical classifier can
be rewritten as,

f(x) = argmax
v∈Y

∑

u∈P(v)

w
u
i · xi (11)

= argmax
v∈Y

∑

u∈P(v)

m
∑

i=1

αu
i xi · x . (12)

We can replace the inner-products in Eq. (12) with a gen-
eral kernel operator K(·, ·) that satisfies Mercer’s condi-
tions (Vapnik, 1998). It remains to show that αv

i can be
computed based on kernel operations whenever αv

i 6= 0.
To see this, note that we can rewrite αi from Eq. (8) as
αi = [βi]+ /ηi where

βi =
∑

v∈P(ŷi)

∑

j<i

αv
j K(xj ,xi) −

∑

v∈P(yi)

∑

j<i

αv
j K(xj ,xi) + γ(yi, ŷi) ,

and ηi = γ(yi, ŷi)K(xi,xi).

4. Batch Learning and Generalization

In the previous section we presented an online algorithm
for hierarchical multiclass learning. However, many com-
mon hierarchical multiclass tasks fit more naturally in the
batch learning setting, where the entire training set S =
{(xi, yi)}

m
i=1 is available to the learning algorithm in ad-

vance. As before, the performance of a classifier f on a
given example (x, y) is evaluated with respect to the tree-
induced error γ(y, f(x)). In contrast to online learning,
where no assumptions are made on the distribution of ex-
amples, we now assume that the examples are indepen-
dently sampled from a distribution D over X × Y . Our
goal is to use S to obtain a hierarchical classifier f which
attains a low expected tree-induced error, E [γ(y, f(x))],
where expectation is taken over the random selection of ex-
amples from D.

Perhaps the simplest idea is to use the online Hieron algo-
rithm of Sec. 3 as a batch algorithm by applying it to the
training set S in an arbitrary order and defining f to be the
last classifier obtained by this process. The resulting clas-
sifier is the one defined by the vector set {wv

m+1}v∈Y . In
practice, this idea works reasonably well, as demonstrated
by our experiments (Sec. 5). However, a variation of this
idea yields a significantly better classifier with an accompa-
nying generalization bound. First, we slightly modify the
online algorithm by selecting ŷi to be the label which max-
imizes Eq. (5) instead of selecting ŷi according to Eq. (3).
In other words, the modified algorithm predicts the label
which causes it to suffer the greatest loss. This modifica-
tion is possible since in the batch setting yi is available to us
before ŷi is generated. It can be easily verified that Thm. 1
and its proof still hold after this modification. S is pre-
sented to the modified online algorithm, which generates
the set of vectors {wv

i }i,v . Now, for every v ∈ Y define

w
v =

1

m + 1

m+1
∑

i=1

w
v
i , (13)

and let f be the multiclass classifier defined by {wv}v∈Y

with the standard prediction rule in Eq. (3). We have set
the prototype for label v to be the average over all proto-
types generated by the online algorithm for label v. We
name this approach the batch Hieron algorithm. For a gen-
eral discussion on taking the average online hypothesis see
(Cesa-Bianchi et al., 2004).

In our analysis below, we use Eq. (13) to define the clas-
sifier generated by the batch Hieron algorithm. However,
an equivalent definition can be given which is much easier
to implement in practice. As stated in the previous section,
each vector w

v
i can be represented in dual form by

w
v
i =

i
∑

j=1

αv
jxj . (14)

As a result, each of the vectors in {wv}v∈Y can also be
represented in dual form by

w
v =

1

m + 1

m+1
∑

i=1

(m + 2 − i) αv
i xi . (15)

Therefore, the output of the batch Hieron becomes

f(x) = argmax
v∈Y

∑

u∈P(v)

m+1
∑

i=1

(m + 2 − i) αu
i xi · x

Theorem 2. Let S = {(xi, yi)}
m
i=1 be a training set sam-

pled i.i.d from the distribution D. Let {wv}v∈Y be the vec-
tors obtained by applying batch Hieron to S, and let f de-
note the classifier they define. Assume there exist {ωv}v∈Y

that define a classifier f? which attains zero loss on S. Fur-
thermore, assume that R, B and γmax are constants such
that ‖x‖ ≤ R for all x ∈ X , ‖ωv‖ ≤ B for all v ∈ Y ,
γ(·, ·) is bounded by γmax. Then with probability of at least
1 − δ,

E(x,y)∼D [γ(y, f(x))] ≤
L + λ

m + 1
+ λ

√

2 log(1/δ)

m
,

where L =
∑m

i=1 `2({wv
i },xi, yi) and λ = kB2R2γmax.

Proof. For any example (x, y) it holds that γ(y, f(x)) ≤
`2({wv},x, y), as discussed in the previous section. Using
this fact, it suffices to prove a bound on E

[

`2({wv},x, y)
]

to prove the theorem. By definition, `2 ({wv},x, y) equals





∑

v∈P(f(x))

w
v · x −

∑

v∈P(y)

w
v · x +

√

γ(y, f(x))





2

+

.

By construction, w
v = 1

m+1

∑m+1
i=1 w

v
i . Therefore this

loss can be rewritten as




1

m + 1

m+1
∑

i=1





∑

v∈P(f(x))

w
v
i −

∑

v∈P(y)

w
v
i



 · x + C





2

+

,

where C =
√

γ(y, f(x)). Using the convexity of the func-
tion g(a) = [a+C]2+ together with Jensen’s inequality, we
can upper bound the above by

1

m + 1

m+1
∑

i=1





∑

v∈P(f(x))

w
v
i · x −

∑

v∈P(y)

w
v
i · x + C





2

+

.

Let `max({w
v},x, y) denote the maximum of Eq. (5) over

all ŷ ∈ Y . We now use `max to bound each of the sum-
mands in the expression above and obtain the bound,

`2({wv},x, y) ≤
1

m + 1

m+1
∑

i=1

`2max({w
v
i },x, y) .

Taking expectations on both sides of this inequality, we get

E
[

`2 ({wv},x, y)
]

≤
1

m+1

m+1
∑

i=1

E
[

`2max ({wv
i },x, y)

]

.

(16)

Recall that the modified online Hieron suffers a loss
of `max({w

v
i },xi, yi) on round i. As a direct conse-

quence of Azuma’s large deviation bound (see for in-
stance Thm. 1 in (Cesa-Bianchi et al., 2004)), the sum
∑m

i=1 E
[

`2max({w
v
i },x, y)

]

is bounded above with prob-
ability of at least 1 − δ by,

L + mλ

√

2 log(1/δ)

m
,

As previously stated, Thm. 1 also holds for the modified
online update. It can therefore be used to obtain the bound
`2max({w

v
m+1},x, y) ≤ λ and to conclude that,

m+1
∑

i=1

E
[

`2max({w
v
i },x, y)

]

≤ L + λ + mλ

√

2 log(1/δ)

m
.

Dividing both sides of the above inequality by m + 1,
we have obtained an upper bound on the right hand
side of Eq. (16), which gives us the desired bound on
E

[

`2({wv},x, y)
]

.

Thm. 2 is a data dependent error bound as it depends on L.
We would like to note in passing that a data independent
bound on E[γ(y, f(x))] can also be obtained by combining
Thm. 2 with Thm. 1. As stated above, Thm. 1 holds for
the modified version of the online Hieron described above.
The data independent bound is derived by replacing L in
Thm. 2 with its upper bound given in Thm. 1.

5. Experiments

We begin this section with a comparison of the online and
batch variants of Hieron with standard multiclass classifiers
which are oblivious to the hierarchical structure of the la-
bel set. We conducted experiments with a synthetic dataset,
a dataset of web homepages taken from the Open Direc-
tory Project (ODP/DMOZ), and a data set of phonemes ex-
tracted from continuous natural speech. The synthetic data
was generated as follows: we constructed a symmetric tri-
nary tree of depth 4 and used it as the hierarchical struc-
ture. This tree contains 121 vertices which are the labels
of our multiclass problem. We then set w

0, . . . ,w120 to
be some orthonormal set in R

121, and defined the 121 label
prototypes to be W

v =
∑

u∈P(v) w
u. We generated 100

train instances and 50 test instances for each label. Each
example was generated by setting (x, y) = (Wy + η, y),
where η is a vector of Gaussian noise generated by ran-
domly drawing each of its coordinates from a Gaussian dis-
tribution with expectation 0 and variance 0.16. This dataset

Table 1. Online Hieron results.

Data set Tree induced Multiclass
error error

Synthetic data (tree) 0.83 44.5
Synthetic data (flat) 1.35 51.1
DMOZ (tree) 3.62 75.9
DMOZ (flat) 4.10 75.4
Phonemes (tree) 1.64 40.0
Phonemes (flat) 1.72 39.7

is referred to as synthetic in the figures and tables appearing
in this section.

The second dataset is a set of 8576 Internet homepages col-
lected from the World Wide Web. We used the Open Di-
rectory Project (ODP/DMOZ) to construct the label hier-
archy. DMOZ is a comprehensive human-edited directory
of the web which defines a huge hierarchical structure over
thousands of webpage topics. We extracted a subset of 316
vertices from the hierarchy, arranged in a tree of maximal
depth 8. The top level topics are Arts, Shopping, Sports
and Computers. An example of a typical path in our hierar-
chy is: Top → Computers → Hardware → Peripherals →
Printers → Supplies → Laser Toner. Most of the internal
nodes and all of the leaves in the hierarchy point to WWW
documents. We used a bag-of-words variant to represent
each document and used 4-fold cross validation to evaluate
the performance of the algorithms on this dataset.

The last dataset used in our experiments is a corpus of con-
tinuous natural speech for the task of phoneme classifi-
cation. It has been previously established that phonemes
form an acoustic hierarchy (Deller et al., 1987; Rabiner &
Schafer, 1978). For instance, the phoneme /b/ (as in be)
is acoustically closer to the phoneme /d/ (as in dad), than
for instance to the phoneme /ow/ (as in oat). In general,
stop consonants are acoustically similar to each other and
rather dissimilar to vowels. The data we used is a subset
of the TIMIT acoustic-phonetic dataset, which is a phonet-
ically transcribed corpus of high quality continuous speech
spoken by North American speakers (Lemel et al., 1986).
Mel-frequency cepstrum coefficients (MFCC) along with
their first and the second derivatives were extracted from
the speech in a standard way, based on the ETSI standard
for distributed speech recognition (ETSI, 2000) and each
feature vector was generated from 5 adjacent MFCC vec-
tors (with overlap). The TIMIT corpus is divided into a
training set and a test set in such a way that no speakers
from the training set appear in the test set (speaker inde-
pendent). We randomly selected 2000 training instances
and 500 test instances per each of the 40 phonemes.

We trained and tested the online and batch versions of Hi-
eron on all three datasets. To demonstrate the benefits of

Table 2. Batch Hieron results.

Data set Tree induced err. Multiclass err.
Last Batch Last Batch

Synthetic data (tree) 0.04 0.05 4.1 5.0
Synthetic data (flat) 0.14 0.11 10.8 8.6
Synthetic data (greedy) 0.57 0.52 37.4 34.9
DMOZ (tree) 3.12 2.60 69.8 62.6
DMOZ (flat) 3.56 2.89 70.2 61.6
DMOZ (greedy) 3.86 3.14 81.8 74.3
Phonemes (tree) 1.88 1.30 48.0 40.6
Phonemes (flat) 2.01 1.41 48.8 41.8
Phonemes (greedy) 3.22 2.48 73.9 58.2

exploiting the label hierarchy, we also trained and eval-
uated standard multiclass predictors which ignore the hi-
erarchical structure. These classifiers were trained using
Hieron but with a ”flattened” version of the label hierar-
chy. The (normalized) cumulative tree-induced error and
the percentage of multiclass errors for each experiment are
summarized in Table 1 (online experiments) and Table 2
(batch experiments). Rows marked by tree refer to the per-
formance of the Hieron algorithm, while rows marked by
flat refer to the performance of the classifier trained with-
out knowledge of the hierarchy. The results clearly indi-
cate that exploiting the hierarchical structure is beneficial
in achieving low tree-induced errors. In all experiments,
both online and batch, Hieron achieved lower tree-induced
error than its ”flattened” counterpart. Furthermore, in many
cases the multiclass error of Hieron is also lower than the
error of the corresponding multiclass predictor, although
the latter was explicitly trained to minimize the error. This
behavior exemplifies that employing a hierarchical label
structure may prove useful even when the goal is not nec-
essarily the minimization of some tree-based error.

The last examination of results further demonstrates that
Hieron tends to tolerate small tree-induced errors while
avoiding large ones. In Fig. 2 we depict the differences
between the error rate of batch Hieron and the error rate of
a standard multiclass predictor. Each bar corresponds to a
different value of γ(y, ŷ), starting from the left with a value
of 1 and ending on the right with the largest possible value
of γ(y, ŷ). It is clear from the figure that Hieron tends to
make ”small” errors by predicting the parent or a sibling
of the correct vertex. On the other hand Hieron seldom
chooses a vertex which is in an entirely different part of the
tree, thus avoiding large tree induced errors. Examining the
results for the DMOZ dataset, we see that for γ(y, ŷ) < 6
the frequency of errors of Hieron is greater than that of the
multiclass predictor while Hieron beats its multiclass coun-
terpart for γ(y, ŷ) ≥ 6. In the phoneme classification task,
Hieron seldom extends a prediction ŷ such that γ(y, ŷ) = 9
while the errors of the multiclass predictor are uniformly
distributed.

Last hypothesis Batch Hieron
Sy

nt
he

tic
da

ta

1 2 3 4 5 6 7 8

−0.02

−0.01

0

0.01

0.02

1 2 3 4 5 6 7 8

−0.02

−0.01

0

0.01

0.02

D
M

O
Z

1 2 3 4 5 6 7 8 9 10 11 12 13
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Ph
on

em
es

1 2 3 4 5 6 7 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure 2. The distribution of the tree induced-error for each
dataset used in the experiments. Each bar corresponds to the dif-
ference between the error of Hieron minus the error of a multiclass
predictor.

We conclude the experiments with a comparison of Hieron
with a common construction of hierarchical classifiers (see
for instance (Koller & Sahami, 1997)), where separate clas-
sifiers are learned and applied at each internal vertex of the
hierarchy independently. To compare the two approaches,
we learned a multiclass predictor at each internal vertex of
the tree hierarchy. Each such classifier routes an input in-
stance to one of its children. Formally, for each internal
vertex v of T we trained a classifier fv using the training
set Sv = {(xi, ui)|ui ∈ P(yi), v = A(ui), (xi, yi) ∈ S}.
Given a test instance x, its predicted label is the leaf ŷ such
that for each u ∈ P(ŷ) and its parent v we have fv(x) = u.
In other words, to cast a prediction we start with the root
vertex and move towards one of the leaves by progress-
ing from a vertex v to fv(x). We refer to this hierarchi-
cal classification model in Table 2 simply as greedy. In
all of the experiments, batch Hieron clearly outperforms
greedy. This experiment underscores the usefulness of our
approach which makes global decisions in contrast to the
local decisions of the greedy construction. Indeed, any sin-
gle prediction error at any of the vertices along the path to
the correct label will impose a global prediction error.

References

Censor, Y., & Zenios, S. (1997). Parallel optimization:
Theory, algorithms, and applications. Oxford Univer-

sity Press, New York, NY, USA.

Cesa-Bianchi, N., Conconi, A., & C.Gentile (2004). On
the generalization ability of on-line learning algorithms.
IEEE Transactions on Information Theory. (to appear).

Crammer, K., Dekel, O., Shalev-Shwartz, S., & Singer, Y.
(2003). Online passive aggressive algorithms. Advances
in Neural Information Processing Systems 16.

Deller, J., Proakis, J., & Hansen, J. (1987). Discrete-time
processing of speech signals. Prentice-Hall.

Dumais, S. T., & Chen, H. (2000). Hierarchical classifi-
cation of Web content. Proceedings of SIGIR-00 (pp.
256–263).

ETSI (2000). ETSI Standard, ETSI ES 201 108.

Herbster, M. (2001). Learning additive models online with
fast evaluating kernels. Proceedings of the Fourteenth
Annual Conference on Computational Learning Theory
(pp. 444–460).

Katz, S. (1987). Estimation of probabilities from sparse-
data for the language model component of a speech rec-
ognizer. IEEE Transactions on Acoustics, Speech and
Signal Processing (ASSP), 35, 400–40.

Kivinen, J., & Warmuth, M. K. (1997). Exponentiated gra-
dient versus gradient descent for linear predictors. Infor-
mation and Computation, 132, 1–64.

Koller, D., & Sahami, M. (1997). Hierarchically classify-
ing docuemnts using very few words. Machine Learn-
ing: Proceedings of the Fourteenth International Con-
ference (pp. 171–178).

Lemel, L., Kassel, R., & Seneff, S. (1986). Speech
database development: Design and analysis Report no.
SAIC-86/1546). Proc. DARPA Speech Recognition
Workshop.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., & Ng,
A. Y. (1998). Improving text classification by shrinkage
in a hierarchy of classes. Proceedings of ICML-98 (pp.
359–367).

Rabiner, L. R., & Schafer, R. W. (1978). Digital processing
of speech signals. Prentice-Hall.

Vapnik, V. N. (1998). Statistical learning theory. Wiley.

Weigend, A. S., Wiener, E. D., & Pedersen, J. O. (1999).
Exploiting hierarchy in text categorization. Information
Retrieval, 1, 193–216.

Weston, J., & Watkins, C. (1999). Support vector machines
for multi-class pattern recognition. Proceedings of the
Seventh European Symposium on Artificial Neural Net-
works.

