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Abstract—Medical images usually exhibit large intra-class
variation and inter-class ambiguity in the feature space, which
could affect classification accuracy. To tackle this issue, we
propose a new Large Margin Local Estimate (LMLE) classifica-
tion model with sub-categorization based sparse representation.
We first sub-categorize the reference sets of different classes
into multiple clusters, to reduce feature variation within each
subcategory compared to the entire reference set. Local estimates
are generated for the test image using sparse representation
with reference subcategories as the dictionaries. The similarity
between the test image and each class is then computed by
fusing the distances with the local estimates in a learning-based
large margin aggregation construct to alleviate the problem of
inter-class ambiguity. The derived similarities are finally used
to determine the class label. We demonstrate that our LMLE
model is generally applicable to different imaging modalities,
and applied it to three tasks: interstitial lung disease (ILD)
classification on high-resolution computed tomography (HRCT)
images, phenotype binary classification and continuous regression
on brain magnetic resonance (MR) imaging. Our experimental
results show statistically significant performance improvements
over existing popular classifiers.

Index Terms—Medical image classification, sparse representa-
tion, sub-categorization, large margin fusion.
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I. INTRODUCTION

Many medical imaging problems involve image classifica-
tion as a major component. For example, in lesion detection,
image classification is typically performed to differentiate
the lesion from normal tissues. Similar processing is also
applicable to segmentation tasks, by classifying different types
of tissues to obtain the object boundaries. Image classification
can also be the ultimate goal of medical imaging analysis
to distinguish between different disease types or biomarkers
based on images of various modalities.

One of the main challenges of image classification is the
large intra-class variation and inter-class ambiguity. Desirably,
images of the same class would have similar appearances
and images of different classes would show different visual
characteristics. With these properties, images would be easily
and effectively classified. However, in real life, images of the
same class can exhibit quite disparate features due to a class
containing multiple types of visual patterns [1], especially in
the presence of inter-subject variability. Images of different
classes could also be difficult to distinguish due to low contrast
between different tissues and structures. This confusion is
commonly seen in medical imaging and can cause difficulties
in image classification.

The pipeline of image classification typically comprises two
stages: feature extraction and classification. Current research in
feature extraction mainly focus on enhancing the descriptive-
ness and discriminative power of features by designing new
feature descriptors [2]–[7], incorporating dictionary learning
techniques [8]–[12], performing optimized feature selection
[13]–[15], and conducting automated feature learning [16]–
[20]. Given the intrinsic problems of inter-subject variability
and low contrast between structures in medical imaging, even
with the advanced feature extraction methods, there are often
considerable intra-class variation and inter-class ambiguity.
Therefore, in our study, we have focused on the second stage
and designed an effective feature classification scheme to
accommodate this feature space complexity.

A. Related Work

Classifiers are essential in medical image classification,
to determine the class label of test images based on prior
knowledge gathered from the training data. The most widely
used classifiers are typically monolithic, meaning one classifier
is used to classify all images. A set of binary classifiers of the
same type trained in one-versus-all or one-versus-one manners
for multi-class classification is also considered monolithic.
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Monolithic classifiers are often built on parametric models to
represent the feature space separation. Popular choices used
in medical imaging include the linear discriminant analysis
(LDA) [21], [22] and support vector machine (SVM) [2],
[3], [9], [13], [16], [17], [22], [23]. These classifiers can
be very effective in generating clear feature space separation
with highly descriptive and discriminative feature descriptors.
Misclassification would however occur in cases with large
intra-class variation and inter-class ambiguity.

An alternative to the monolithic classifiers is the data driven
non-parametric model, which makes predictions based on the
similarities between the test and reference images and does not
rely on the parametric modeling of feature space separation.
In particular, the k-nearest neighbor (kNN) classifier has been
widely applied in medical imaging applications [21], [22],
[24]–[27]. The classification performance of kNN is heavily
dependent on the distance metric. Learning-based algorithms
have thus been proposed to improve the discriminative power
of distance metrics [28]–[33]. Distance metric learning has
also been incorporated to bridge the semantic gap in bag-of-
words representations [34]. Among these approaches, the large
margin nearest neighbor (LMNN) [33] model has been suc-
cessful in the general imaging domain. It learns a Mahalanobis
distance metric with large margin constraints that the k-nearest
neighbors from the correct class would be more similar to
the test image in a linearly transformed feature space than
those from the wrong classes. The learned distance metric
thus produces superior classification performance over the
standard kNN classifier. However, since the distance metric is
monolithic and parametric, its effectiveness could be restricted
by the feature space complexity.

Besides the learning-based distance metrics, the sparse
representation classifier [35] can be considered as another
enhanced kNN model with a different way of choosing the
k-nearest neighbors. While kNN selects the nearest neighbors
by similarity ranking using a distance metric, the sparse rep-
resentation classifier finds the nearest neighbors by computing
a weighted linear combination of the reference dictionary
with sparse representation. Classification is then performed
based on the distances between the test image and its sparse
representations of various classes. Such sparse representation
classification has become increasingly popular in the medical
imaging domain [11], [36], [37]. Spatial information [38], [39]
and multi-modality data [39]–[43] are often incorporated as
additional constraints to improve the classification accuracy.
Note that we focus our review on sparse representation classi-
fiers with sparsity constraints on the combination of reference
data, rather than sparse selection of feature variables.

It is commonly acknowledged that the effectiveness of
sparse representation classifier is highly dependent on the
quality of the reference data [35]. With large intra-class
variation and inter-class ambiguity, the reference images of
the wrong class could exhibit similar feature to the correct
class. In such cases, it would be more likely to obtain close
sparse representation for the wrong class than good feature
space separation. This issue can be remedied by adapting
the reference dictionary to the test images. For example, the
locally-constrained linear coding (LLC) algorithm [44] has

been adopted in many imaging applications including medical
imaging [45]. Rather than using the entire set of reference im-
ages, sparse representation is computed with reference images
that are locally similar to the test image. In previous work
[6], the reference dictionary is non-linearly rescaled based on
the feature distance between the test and reference images. In
latter work [39], additional constraints are added so that the
reference images that are more similar to the test image would
have higher weights in the sparse representation. While these
approaches demonstrate higher performance over the standard
sparse representation classifier, these adaptation schemes can
be heuristic.

Different classifiers often provide similar overall classifica-
tion accuracies but different performance for individual data
samples. Ensemble learning, such as bagging and boosting,
is thus an intuitive option to fuse the classification outputs
from different weak classifiers to obtain more accurate results.
The weak classifiers can be of any type, including SVM [14],
decision tree [5], [15], [22], [46]–[48], and logistic regression
[21]. Sparse representation classifiers have also been integrated
into the boosting model as weak classifiers based on random
subsets of reference images [37], [49]. The combination of
weak classifiers is normally based on a predefined weighting
scheme, such as the majority voting or averaging of probabili-
ties in bagging [5], [14], [15], [22], [47], [48], or choosing the
best performing weak classifier at each training iteration with
error-based weight computation in boosting [21], [37], [46],
[49]. While these weighting schemes are often effective, they
are however predefined, greedy, and and might not reflect the
best adaptation to the dataset.

In view of feature space complexity, recently sub-
categorization classification models [50]–[54] have been pro-
posed to tackle this issue. They are similar to ensemble
learning in that reference images are divided into subsets.
However, in these sub-categorization models, the reference im-
ages of a certain class are divided into clusters based on some
optimization criteria, not randomly. The sub-categorization
models can be generally grouped into two types. The first type
[50]–[52] designs a discriminative classifier with integrated
clustering objective, so that the classification is optimized
based on the separation between the subcategories. The second
type [53], [54] clusters each class into subcategories, generates
an individual classifier for each subcategory and then fuses the
subcategory-level results to obtain the final classification. In
the first type the clustering and classification objectives are
effectively integrated, but the multi-stage design of the second
type is clearer and each stage can be customized in a modular
manner. In addition, these existing models have been built
based on discriminative classifiers including LDA and SVM,
but have not been extended to the other classifiers such as the
sparse representation classifier.

B. Our Contribution

In this work, we propose a large margin local estimate
(LMLE) classification model. Our hypothesis is that by embed-
ding the sparse representation classifier in a sub-categorization
construct, our classifier can effectively address the issues
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Fig. 1. Overview of our LMLE model. In this simplified example, there are two classes of images and the test image f is of class 1. Each reference set is
clustered into two subcategories, and the top local estimate from each reference set is used in the large margin aggregation. The feature vector of f , its local
estimates and the vectors transformed with learned matrices F1 and F2 are shown with histograms.

of intra-class variation and inter-class ambiguity. A brief
overview of our LMLE model is as follows. First, the reference
dictionary of each class is clustered into subcategories using a
weighted clustering method. Then, using each subcategory as
a reference dictionary, a local estimate is generated for the test
image with sparse representation. Next, the similarity between
the test image and each class is computed by fusing the
local estimates with a learning-based large margin aggregation
method. Finally, the test image is classified according to its
similarities with the various classes.

Our main methodological contributions are three-fold. First,
we incorporated sub-categorization into the sparse representa-
tion classifier. Due to the lower intra-class variation within
a subcategory, the subcategory-level local estimates would
exhibit a better representation of the similarity between the test
and reference images in the localized feature space, compared
to the global estimate using the entire reference dictionary.
Then, we designed a large margin aggregation method to fuse
the local estimates for similarity computation while tackling
the issue of inter-class ambiguity. Transformation matrices
are learned in a large margin construct and applied to the
feature vector of the test image and the local estimates, so
that the test image comes closer to the local estimates from
the correct class and farther away from the wrong classes
in the transformed feature space. Third, we designed a sub-
categorization method based on weighted k-means clustering
to group reference images with similar features vectors and
feature separations into one subcategory.

Our LMLE model is closely related to the approaches that
integrate sparse representation with AdaBoost [37], [49]. The

main distinctions of our model are that the reference images
are sub-categorized into clusters rather than randomly divided
into subsets, and the sub-level results are fused with large
margin aggregation rather than boosting. Our LMLE model
is also related to the sub-categorization approach [53], [54].
Compared to these other approaches, which focus on data sub-
categorization and contain a simple fusion step, our model
involves the learning-based aggregation method for fusion,
which leads to a less complicated sub-categorization step. In
addition, our model differs from the other approaches in that
it is built on the sparse representation classifier.

Preliminary data from this work were reported in our
conference paper [55]. In this work, we have enhanced the sub-
categorization method with automatically computed view and
variable weights, simplified the final classification component
based on similarities, elaborated our method design with
further details, and performed more thorough performance
comparison with related approaches. We have also extended
the evaluation to a brain MR database for phenotype clas-
sification and regression tasks, in addition to the original
database used for ILD classification in lung HRCT images,
to demonstrate the general applicability of our LMLE model.

The rest of the paper is organized as follows. Section II
gives the detailed description of our LMLE model. Section III
describes the three databases used in our evaluation and the
application-specific settings. Section IV presents the evaluation
results and discussion. Section V concludes the paper.

II. LARGE MARGIN LOCAL ESTIMATE

We define the classification objective as finding the class
label L(f) of a test image f , with L(f) ∈ {1, ..., L} and L
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is the number of classes. In a supervised setting, L sets of
reference images {Rl : l = 1, ..., L} are given. Each reference
set Rl represents one class l and contains Nl reference images,
Rl = {ril : i = 1, ..., Nl}. Assume feature vectors are
precomputed for all images. The classification problem is to
derive L(f) based on {Rl}. For notation simplicity, throughout
this section, f and ril denote both the test/reference images and
the corresponding H-dimensional feature vectors.

Consider that a reference set of a certain class usually
exhibits large intra-class variation and different reference sets
often have large inter-class ambiguity. A close sparse repre-
sentation of the test image could be achieved for the wrong
class by combining reference images with diverse features,
especially if the test image does appear similar to the reference
images of the wrong class. In such cases, the representation
output would not accurately reflect the similarity relationships
between the test image and the various reference sets, causing
misclassification. To better capture the similarity information,
we propose the LMLE method that generates local estimates
with reference sub-categorization and derives the similarity
with large margin aggregation.

Fig. 1 gives an overview of our LMLE method. First,
each reference set Rl is sub-categorized into a number of
clusters. The reference images within a certain cluster will
exhibit lower intra-class variation compared to that of the
entire reference set. Then, with each cluster as a reference
dictionary, a local estimate is computed for the test image
f with sparse representation. The set of local estimates of
a certain class represents the similarity between f and that
class. The next step is to compute the similarity between f
and each class by fusing the distances between f and the
local estimates from that class. During this fusion step, to
obtain higher similarity with the correct rather than incorrect
classes, the local estimates are transformed with a large margin
aggregation approach. Lastly, the test image f is classified
based on the similarities.

A. Reference Sub-categorization

The first step of our method is to sub-categorize a reference
set Rl into Kl clusters/subcategories. Denote one subcategory
as Rk

l ⊂ Rl : k = 1, ...,Kl. The problem is to assign
each reference image ril ∈ Rl to one of the subcategories.
We design a sub-categorization method based on the k-means
clustering technique.

We expect that reference images with similar feature vectors
and similar feature separations from the other classes to
be grouped into the same subcategory. Formally, given two
reference images ril and rjl , we define two difference terms:
(i) ∥ril −rjl ∥, which is the Euclidean distance between the two
feature vectors; and (ii) ∥dil − djl ∥, which is the Euclidean
distance between the two feature separations. The feature
separation dil is an L − 1 dimensional vector, in which each
element dil(l

′) is the mean Euclidean distance between ril and
the reference set Rl′ , with l′ = 1, ..., L and l′ ̸= l.

Then, we formulate the sub-categorization objective to

minimize the within-subcategory distances:

argmin
{Rk

l }k

Kl∑
k=1

∑
ril∈Rk

l

(ril − µk
l )

TWl(r
i
l − µk

l )

+(dil − θkl )
TUl(d

i
l − θkl ),

(1)

which can also be written as:

argmin
{Rk

l }k

Kl∑
k=1

∑
ril∈Rk

l

(xi
l − ϕk

l )
TQl(x

i
l − ϕk

l ), (2)

where µk
l and θkl represent the mean ril and dil of the sub-

category Rk
l , and Wl and Ul are diagonal matrices containing

weight factors. In the combined form, xi
l ∈ RH+L−1 is the

concatenation of ril and dil , ϕ
k
l ∈ RH+L−1 is the concatenation

of µk
l and θkl , and Ql ∈ R(H+L−1)×(H+L−1) represents the

diagonal matrix combining Wl and Ul.
Our design of the objective function is based on the fol-

lowing considerations. First, the feature vector ril is typically
multiview, i.e. comprising multiple views of features with one
view representing one type of feature. A feature vector ril can
thus be divided into a number of views, and each view contains
multiple feature elements, i.e. variables. We hypothesize that
different views and different variables should carry different
weights to the distance computation. The weight matrix Wl

thus represents the view and variable weights and it is class-
specific. Second, each element of the feature separation dil
should also have a certain weight, and the weight matrix
Ul also controls the balance between the two distance terms
(feature vector and separation). Third, rather than predefining
the weights Wl and Ul, we would like to compute them
automatically to help achieve better sub-categorization. We
adopt the two-level weighting k-means (TW-k-means) algo-
rithm [56] to solve this minimization problem.

Specifically, we reformulate the objective function as:

argmin
{Rk

l }k

Kl∑
k=1

∑
ril∈Rk

l

V+1∑
v=1

∑
h∈Gv

αl(v)βl(h){xi
l(h)− ϕk

l (h)}2

+ C1

V+1∑
v=1

αl(v) log{αl(v)}

+ C2

H+L−1∑
h=1

βl(h) log{βl(h)},

s.t.
V+1∑
v=1

αl(v) = 1, αl(v) ≥ 0,∑
h∈Gv

βl(h) = 1, βl(h) ≥ 0, ∀v = 1, ..., V + 1.

(3)
Here the first term is indeed the same as Eq. (2). The vectors
αl ∈ RV+1 and βl ∈ RH+L−1 represent the view and variable
weights, with V + 1 and H +L− 1 as the numbers of views
and variables in xi

l . V is the number of views in ril , and the
plus one is to include dil as an additional view. Gv denotes
the set of variable indices belonging to view v. Here for a
variable index h, assuming it belongs to view v, the element-
wise weight would be αl(v)βl(h), and this value would equal
to Ql(h, h).
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The difference between Eq. (3) and (2) is the additional
second and third terms to minimize the negative entropies of
the view and variable weights. C1 and C2 are two parameters
to control the contributions of the two terms. In addition, we
also require that the sum of all view weights is one and the sum
of variable weights of a certain view is one. In this way, the
view weights determine the relative importance of the multiple
views and the variable weights are localized at the view-level.

To solve Eq. (3), we apply an iterative approach [56] with
the following steps.

Step 1. With fixed {ϕk
l }, αl and βl, {Rk

l } is ob-
tained by assigning each reference image ril to the near-
est subcategory center with the distance computed as∑V+1

v=1

∑
h∈Gv

αl(v)βl(h){xi
l(h)− ϕk

l (h)}2.
Step 2. With fixed {Rk

l }, αl and βl, update {ϕk
l } that

ϕk
l (h) = N−1

l

∑
ril∈Rk

l
xi
l(h).

Step 3. With fixed {ϕk
l }, {Rk

l } and βl, αl is computed via:

αl(v) =
exp{−Al(v)C

−1
1 }∑V+1

n=1 exp{−Al(n)C
−1
1 }

, (4)

where

Al(v) =

Kl∑
k=1

∑
ril∈Rk

l

∑
h∈Gv

βl(h){xi
l(h)− ϕk

l (h)}2. (5)

Step 4. With fixed {ϕk
l }, {Rk

l } and αl, βl is computed via:

βl(h) =
exp{−Bl(h)C

−1
2 }∑

n∈Gv
exp{−Bl(n)C

−1
2 }

, (6)

where

Bl(h) =

Kl∑
k=1

∑
ril∈Rk

l

αl(v){xi
l(h)− ϕk

l (h)}2, (7)

with v indicating the view that the variable h belongs to. We
refer the readers to [56] for the proofs of Steps 3 and 4.

By initializing {ϕk
l } randomly and αl and βl as uniform

weights, steps 1 to 4 are iterated until the objective function
Eq. (3) reaches the local minimum. The subcategories {Rk

l }
are then obtained.

In the above reference sub-categorization process, the pa-
rameters C1 and C2 are important. To choose suitable C1 and
C2, we design a sub-categorization criterion (SC) to measure
the compactness of subcategories and the separation between
subcategories of different classes. The design is based on the
Dunn index [57], but extended to accommodate subcategories
of multiple classes. Specifically, we define SC as follows:

SC(C1, C2) = (
L∑

l=1

Nl)
−1·

L∑
l=1

Nl{
minKl

k1=1 minKl

k2=1,k2 ̸=k1
∥ϕk1

l − ϕk2

l ∥2

maxKl

k=1 ∆Rk
l

+

L∑
l′=1,l′ ̸=l

minKl

k=1 min
Kl′
k′=1 ∥ϕk

l − ϕk′

l′ ∥2

maxKl

k1=1 maxKl

k2=1,k2 ̸=k1
∥ϕk1

l − ϕk2

l ∥2
},

(8)

where · at the end of the first line denotes the multiplication
operation, and ∆Rk

l denotes the maximum Euclidean distance

between pairs of xi
l in the subcategory Rk

l . The parameters C1

and C2 are implicitly incorporated into this equation that the
subcategory assignments Rk

l and ϕ vectors are computed with
certain values of C1 and C2 in Eq. (3). The two terms in
the sum operation represent (i) the ratio between the mini-
mum between-subcategory distance and the maximum within-
subcategory distance of class l, and (ii) the total of the ratios
between the minimum between-subcategory distances with the
other classes l′ ̸= l and the maximum between-subcategory
distance within class l. The two terms are computed for each
class l = 1, ..., L. The average over all classes, which is
weighted by the number of reference images in each class,
generates the SC. A higher SC implies that the subcategories
are more compact and more separated within the same class
and between different classes. Then by varying C1 and C2

from 10 to 25 with an increment of 5, we perform the sub-
categorization with varying settings of C1 and C2 and select
the values producing the highest SC. This range of 10 to 25
is used according to the performance analysis in [56], which
shows balanced distributions of view and variable weights.

Besides C1 and C2, the sub-categorization method also
involves the parameter Kl. Similar to k-means clustering, we
set it manually based on our empirical studies. We will provide
more details in Section III.

B. Local Estimate Generation
With the subcategories generated for each reference set, our

second step is to compute the local estimates with each ref-
erence subcategory Rk

l as the reference dictionary. Formally,
given a test image f , we find the local estimate fl,k by linear
combination of a sparse set of reference data in Rk

l . The
local estimate fl,k represents a sparse representation of the
test image f . A small representation error ∥f − fl,k∥2 means
high similarity between f and the reference dictionary Rk

l ,
and hence a high probability of f belonging to class l.

We suggest that any sparse coding algorithm can be used
to generate fl,k. There are a number of existing sparse coding
formulations with various L1 [58] or L0 [59] regularizations.
In our study, we choose to use the L0 formulation for its
simplicity. The local estimate is thus generated by:

yl,k = argminyl,k
∥f −Rk

l yl,k∥22, s.t. ∥yl,k∥0 ≤ C,

fl,k = Rk
l yl,k,

(9)
where Rk

l ∈ RH×Nk
l represents the concatenated matrix

of feature vectors of all reference images in Rk
l with Nk

l

denoting the number of reference images, yl,k ∈ RNk
l is the

sparse coefficient vector and C is a constant. The orthogonal
matching pursuit (OMP) [59] algorithm1 is used to derive yl,k.
Note that this component is not the focus of our methodology
and hence we choose to use the standard algorithms rather
than proposing our own solution.

C. Large Margin Aggregation
After the local estimates are obtained, the next step is to

compute the similarity between the test image f and each

1The OMP package is downloaded from
http://www.cs.technion.ac.il/r̃onrubin/software.html

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMI.2015.2393954

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

reference set Rl. The degree of similarity corresponds to the
probability of classifying f to class l. Formally, the problem is
to compute the similarity S(f, l, Rl) based on the set of local
estimates {fl,k : k = 1, ...,Kl} generated for class l.

There are a number of ways to do this. For example, a
simple max pooling technique can be applied, by selecting
the local estimate that is the closest to the test image to derive
similarity. Mean pooling can also be used, by computing the
mean local estimate and calculating the distance between the
mean and the test image. A variation of the mean pooling is
to incorporate the concept of kNN, by computing the mean
local estimate based on only the top few local estimates that
are the closest to the test image.

The main design consideration for this similarity measure
is that we would like a large similarity from the correct
class and small similarities from the wrong classes, based on
which the test image would then be accurately classified. The
above mentioned techniques would not necessarily satisfy this
expectation, mainly due to the large inter-class ambiguity. With
inter-class ambiguity, some local estimates from the incorrect
class would inevitably appear close to the test image; and these
similarities could possibly be larger than those computed from
the correct class.

To overcome this issue, we designed a large margin aggre-
gation algorithm with a learning-based transformation matrix.
By transforming the test image and local estimates in a large
margin construct, the test image would become closer to the
local estimates of the correct class and more distant from
those of the wrong classes. The similarities derived in this
way would then lead to better classification.

Specifically, we define the similarity between the test image
f and reference set Rl as:

S(f, l, Rl) = {1 +D(f, l, Rl)}−1, (10)

where D(f, l, Rl) is the distance between f and Rl, and
computed as the accumulated transformed Euclidean distance
between f and M local estimates that are the closest to f :

D(f, l, Rl) =
M∑

m=1

∥Flf − Flfl,m∥2. (11)

Here Fl ∈ RH×H is the learned transformation matrix and is
specific to class l. The selection of M closest local estimates
{fl,m : m = 1, ...,M} is based on the Euclidean distance
between the transformed vectors Flf and Flfl,k. Note that
S(f, l, Rl) and D(f, l, Rl) involve the l factor, which means
that f is assumed to belong to class l (not necessarily
true) and the transformation matrix Fl of class l is to be
used to compute the distance between f and Rl. In other
words, S(f, l, Rl) ̸= S(f, l′, Rl) with l′ ̸= l and likewise
D(f, l, Rl) ̸= D(f, l′, Rl), since a different Fl′ would be used
to compute D(f, l′, Rl).

With this distance function, assuming the class label of f
is l, we would expect that D(f, l, Rl) < D(f, l, {Rl′ : l′ =
1, ..., L, l′ ̸= l}). This is equivalent to:

M∑
m=1

∥Flf − Flfl,m∥2 <

M∑
m′=1

∥Flf − Flfl′,m′∥2, (12)

where m′ indexes the M closest local estimates {fl′,m′} from
all the wrong classes l′ ̸= l. Note that {fl′,m′} are pooled from
all classes l′ ̸= l rather than selected for each wrong class, in
order to minimize the number of constraints and hence the
training complexity.

To obtain the transformation matrix Fl, we gather a set of I
training samples from the reference set Rl, which are denoted
as {ril : i = 1, ..., I}. For a certain training sample ril , the
mth closest local estimates from the correct class is denoted
as ril,m, and likewise, the m′th closest local estimate from the
wrong class is denoted as ril′,m′ . The degree of closeness is
determined by the Euclidean distance between ril and the local
estimates.

We then formulate our goals of training as: (i) to minimize
the total distance between the transformed feature Flr

i
l and M

closest local estimates {Flr
i
l,m} from the correct class:

M∑
m=1

∥Fl(r
i
l − ril,m)∥2, (13)

and (ii) to impose a large margin difference so that the
transformed local estimate from the wrong classes is one unit
further away than that from the correct class, for all pairs of
Flr

i
l,m and Flr

i
l′,m′ :

∥Fl(r
i
l − ril,m)∥2 + 1 ≤ ∥Fl(r

i
l − ril′,m′)∥2,

∀m = 1, ...,M, m′ = 1, ...,M.
(14)

The overall training objective thus becomes:

argmin
Fl

I∑
i=1

M∑
m=1

∥Fl(r
i
l − ril,m)∥2+

I∑
i=1

M∑
m=1

M∑
m′=1

[1 + ∥Fl(r
i
l − ril,m)∥2 − ∥Fl(r

i
l − ril′,m′)∥2]+,

(15)
where [z]+ = max(0, z) is the standard hinge loss. By solving
this objective function, the transformed feature Flr

i
l would

become more similar to {Flr
i
l,m : m = 1, ...,M} than

{Flr
i
l′,m′ : m′ = 1, ...,M}, and hence would be classified

accurately as class l.
To solve the objective function Eq. (15), we note that

∥Fl(r
i
l −ril,m)∥2 can be rewritten as (ril −ril,m)TXl(r

i
l −ril,m)

where Xl = (Fl)
TFl. We then reformulate Eq. (15) following

the semidefinite programming model [60] as:

argmin
Xl

I∑
i=1

M∑
m=1

(ril − ril,m)TXl(r
i
l − ril,m)+

I∑
i=1

M∑
m=1

M∑
m′=1

ξimm′ ,

s.t. (ril − ril′,m′)TXl(r
i
l − ril′,m′)−

(ril − ril,m)TXl(r
i
l − ril,m) ≥ 1− ξimm′ ,

ξimm′ ≥ 0, Xl ≽ 0,

(16)

where Xl is required to be positive semidefinite. The slack
variable ξimm′ is introduced to represent the hinge loss.

Overall, our formulation of the optimization goal for large
margin aggregation, especially Eq. (16), is mathematically
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similar to the LMNN algorithm [33]. However, the underlying
concepts are different. In particular, if applying LMNN to
classify the images, the distances would be computed between
the reference image ril and its neighboring images rml and
rm

′

l′ from the same and different classes. In our model, the
distances are computed between the reference image ril and
its local estimates ril,m and ril′,m′ , and there is no nearest-
neighbor relationship between the reference images. On the
other hand, considering the LMNN solver2 is optimized for
efficiency, we choose to modify it to adapt to our formulation
and solve Eq. (16) to obtain Xl and then Fl. Briefly, the solver
is modified to identify similar local estimates from the various
classes for each feature vector and construct this information
as the input to the optimization routine.

Note that this large margin aggregation method is used
to learn the transformation matrix Fl for each class. The
similarity between the test image f and reference set Rl could
then be derived using Eq. (10). The only parameter involved
is M , which we found based on our empirical studies that its
value is best to be application specific. The number of training
samples I depends on the experimental design of training and
testing. We provide more details in Section III.

D. Similarity-based Classification

The last step is to classify the test image f based on its
similarities with the reference sets {Rl}. This procedure is
defined as:

L(f) = argmax
l

{ max
l′=1,...,L

S(f, l′, Rl)}, (17)

with l = 1, ..., L. The class label L(f) thus corresponds to
the highest similarity value among the various reference sets
computed with the various transformation matrices.

III. APPLICATIONS TO MEDICAL IMAGE CLASSIFICATION

The proposed LMLE method was applied to three prob-
lems: ILD classification in lung HRCT images, phenotype
classification and regression in brain MR. We describe the
problem domains, imaging datasets, and application-specific
processing in the following sections. The evaluation metrics
are also described.

A. ILD Classification in Lung HRCT Images

Interstitial lung disease (ILD) represents a group of lung
diseases that affect the interstitium, and cause progressive
scarring of lung tissue and progressive dyspnea [61]. HRCT
is typically used to visualize the tissue patterns to identify the
specific type of ILD. Manual interpretation is challenging and
time-consuming especially with large inter-subject variation
even for the same type of ILD. Large inter-class ambiguity
and intra-class variation also cause difficulties in designing au-
tomated methods. As shown in Fig. 2, the images of different
types can be similar while those of the same type can appear
different. For example, the two ground glass images look

2The LMNN package is downloaded from
http://www.cse.wustl.edu/ kilian/code/code.html

Fig. 2. Two example images (segments of HRCT axial slices) for each of the
five lung tissue types. From left to right columns: normal (NM), emphysema
(EM), ground glass (GG), fibrosis (FB) and micronodules (MN).

TABLE I
NUMBER OF IMAGE PATCHES AND SUBJECTS OF THE FIVE TISSUE

CLASSES IN THE ILD DATABASE.

Class NM EM GG FB MN
# image patches 6438 1474 2974 4396 7849

# subjects 12 5 35 35 16

different, with extensive ground glass opacity in the top image
but minimal in the bottom image. The fibrotic types include a
mixture of tissue patterns, such as reticulation, architectural
distortion and honeycombing, hence encompassing a large
degree of visual variation. In the emphysema images, there
are low attenuation patterns and the mild or moderate cases
can exhibit similar appearances to normal cases. Identifying
the correct tissue type is thus challenging with such intra-class
variation and inter-class ambiguity.

The ILD database [62] has been developed by Depeursinge
et al. to provide a common platform for evaluating automated
ILD classification methods. The database contains 113 HRCT
images, with 2062 2D regions each annotated as one of the
seventeen types of lung tissues. Following the setup of the
existing classification methods for this ILD database [2], [6],
[49], we classify five classes of lung tissue (L = 5): normal
(NM), emphysema (EM), ground glass (GG), fibrosis (FB)
and micronodules (MN). The classification was performed
on 2D image patches of 31 × 31 pixels. The patches are
half-overlapping with centroids residing inside the annotated
regions. The number of image patches belonging to each tissue
class is listed in Table I, selected from 93 HRCT images.
Note that some subjects contain more than one tissue type.
For simplicity, we refer to the image patches as images in the
following description.

To apply our LMLE method, each image was first repre-
sented by a 176 dimensional (H = 176) texture-intensity-
gradient (TIG) feature vector [6]. Specifically, the feature
vector included three views (V = 3): rotation-invariant Gabor-
local binary patterns (RGLBP) texture feature, intensity his-
togram, and multi-coordinate histogram of oriented gradients
(MCHOG) gradient feature. We chose to use the TIG feature
vector because it showed good descriptiveness and discrimi-
native power on the ILD database [6], [49].

We found empirically that if using the entire reference
set as the reference dictionary (without sub-categorization),
good sparse representations could be obtained by combining
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a minimum of 10 reference images. We thus decided that the
number of reference images in a subcategory should be large
enough that at least 10 of them could be sparsely selected.
Consequently, we chose to set the number of subcategories
Kl = ⌊Nl/40⌋, so that a subcategory would contain around
40 images; and the constant C for local estimate generation
was set to 10. We preferred not to use a number larger than 40
since we also required a sufficient number of subcategories to
fuse the local estimates. In addition, based on our parameter
selection defined in Eq. (8), the parameters C1 and C2 were
set to 15 and 10, respectively. For large margin aggregation,
various settings of the number of closest local estimates M
were experimented (details shown in Section IV), and M = 5
was found to provide the best classification results.

For consistency of experimental setup and convenience of
performance comparison with our previous work [49], [55],
we divided the database into four subsets of similar number of
subjects. Within each subset, a leave-one-subject-out scheme
was used by having each subject as the test data and the other
subjects as the reference data to generate subcategories and
local estimates. For large margin aggregation, training was
conducted by combining every three subsets and randomly
selecting 10% of the data to learn one set of transformation
matrices; hence a total of four sets of transformation matrices
were learned. During testing, the transformation matrices
learned from the subsets not containing the test subject were
applied to classify the test data.

B. BP Classification and Regression in Brain MR Images

The MICCAI 2014 Machine Learning Challenge (MLC)
[63] is aimed at evaluating different machine learning methods
in predicting clinically relevant brain phenotype (BP) using
MR scans. MLC includes two specific objectives: binary two-
class (L = 2) classification to predict a binary class label, and
continuous regression to predict a continuous numerical label,
for a certain subject. The database comprises 150 subjects
with annotated binary labels (with 75 from each of the two
classes), and 315 subjects with annotated continuous labels
(ranged from 1.8 to 9.4). Note that the clinical context of the
dataset is not released to the public hence the exact meanings
of the binary and continuous labels are unknown. Nevertheless,
we chose to employ this database in our experimentation,
since it provided a standardized platform for performance
comparison with pre-computed feature vectors; and it helped
to demonstrate the generalizability of our method with a
different imaging modality (MR) and organ of interest (brain)
from the HRCT lung database and including a regression task.

For the continuous regression problem, with our LMLE
model, the continuous labels were first quantized into four
discrete labels (divided equally between 1.6 and 9.6) to convert
the regression problem into a four-class (L = 4) classification
problem. The number of images belonging to each class is
listed in Table II. After the classification using LMLE, a con-
tinuous label was then generated as the regression result based
on the reference images. Specifically, assume the test image
f was classified to class l ∈ {1, ..., 4}. Its continuous label
was computed by averaging the sparse represented continuous

Fig. 3. Example brain MR images, showing one axial slice from one subject
of each class. Top row: two classes of the binary classification task. Bottom
row: four classes of the continuous regression task.

TABLE II
NUMBER OF IMAGES OF DIFFERENT CLASSES IN THE MLC DATABASE.

Binary Continuous
Class 1 2 1 2 3 4

# images 75 75 149 58 65 43

labels from the top M subcategories of class l:

M−1
M∑

m=1

ρml yl,m, (18)

in which yl,m is obtained using Eq. (9), and ρml ∈ R1×Nm
l

contains the continuous labels of the reference images in Rm
l .

We directly used the feature vectors provided in the MLC
database. A 184-dimensional feature vector (H = 184) is
provided for each subject, which is a set of standard mor-
phological features computed with FreeSurfer [64], including
volumes of cortical and sub-cortical structures and average
thickness measurements within cortical regions. The detailed
description of the features can be found in the database.
Example images of the two tasks are shown in Fig. 3. To
obtain the number of views, we analyzed the distributions of
each variable and grouped the variables of similar value ranges
into one view. We thus identified three feature views (V = 3),
with the first 115 variables as view 1, variables 115-183 as
view 2 and the last variable 184 as view 3. Such a separation
of views was also semantically verified based on the list of
feature names.

Similar to our processing for the ILD dataset, we found that
10 reference images could provide good sparse representation,
and hence set C = 10 for local estimate generation. However,
considering that the number of subjects is limited in the MLC
dataset, we set the number of subcategories Kl = ⌊Nl/20⌋ so
that there would be a sufficient number of subcategories. The
parameters C1 and C2 were found to be both 10, according
to Eq. (8). All reference images were used to learn the
transformation matrices {Fl}. The parameter M was set to 2,
based on our experimental evaluation (details in Section IV).
The process of training and testing was similar to that for
the ILD database, based on leave-one-subject-out but without
subdivision of subsets for reference data construction, and
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TABLE III
RECALL, PRECISION, F-SCORE AND OVERALL ACCURACY OF ILD

CLASSIFICATION.

NM EM GG FB MN
Recall 0.861 0.801 0.830 0.874 0.877

Precision 0.893 0.738 0.763 0.869 0.900
F-score 0.877 0.768 0.795 0.872 0.888

Accuracy 0.861

with four-fold cross validation for learning the large margin
aggregation. The above settings were common to the binary
and four-class classification problems.

C. Metrics of Performance Evaluation

In the ILD classification and BP binary classification tasks,
we evaluated the recall, precision and F-score measures for
each class. Accuracy was also measured for the overall
database, defined as the number of correct classifications
divided by the total number of test samples in the database.
The receiver operating characteristic (ROC) analysis was per-
formed to show the true positive rates versus false positive
rates. To obtain the ROC curves, the derived similarities
S(f, l, Rl) were linearly normalized so that for each test image
f , the similarity value corresponding to the classification
output was rescaled to score of 1; and the classification
threshold varied based on these scores. For multi-class ILD
classification, an ROC curve was generated for each class
using the one-versus-all technique, i.e. choosing one positive
class and the others as the negative classes. The area under the
curve (AUC) was then computed to quantify the classification
performance. We compared with the standard classifiers that
are related to our LMLE model, including the kNN, LMNN,
SVM, and sparse representation classifiers. McNemar’s test
was used to analyze the statistical significance of performance
improvement over these compared classifiers.

For the BP continuous regression task, we evaluated the
root-mean-square error (RMSE) between the predicted and
annotated continuous labels. We also measured the per-class
recall, precision and F-score, and overall accuracy for the
four-class classification. We compared with the standard ap-
proaches, including the linear regression, kNN, LMNN, and
sparse representation. The statistical significance of perfor-
mance improvement was evaluated with the paired t-test.

IV. RESULTS AND DISCUSSION

A. Overall Performance

The recall, precision, F-score and accuracy of ILD clas-
sification using our LMLE model are shown in Table III.
The confusion matrix is shown in Table IV. The results show
good classification performance with relatively balanced rates
among different tissue types. All tissue types exhibited recall
levels above 80%. The EM tissue type obtained the lowest
precision, although in fact there were not many other types of
images misclassified as EM. Its precision was largely affected
by the small number of EM images compared to the other
tissue types. The results also show very good differentiation

TABLE IV
CONFUSION MATRIX OF ILD CLASSIFICATION.

Ground Prediction
Truth NM EM GG FB MN
NM 0.861 0.045 0.028 0.013 0.053
EM 0.129 0.801 0.005 0.065 0.000
GG 0.076 0.000 0.830 0.043 0.052
FB 0.005 0.014 0.059 0.874 0.048
MN 0.030 0.000 0.058 0.036 0.877

TABLE V
WITHIN-CLASS FEATURE REPRESENTATIVENESS AND BETWEEN-CLASS

FEATURE DISCRIMINATION IN THE ILD DATABASE.

NM EM GG FB MN Multi
NM 0.834 0.843 0.803 0.914 0.949 0.567
EM 0.638 0.866 0.953 0.843 0.798 0.637
GG 0.853 0.860 0.902 0.662 0.903 0.625
FB 0.971 0.919 0.937 0.901 0.967 0.816
MN 0.773 0.869 0.705 0.577 0.847 0.832

between GG and EM, and EM and MN, with close to 0
misclassification rates. A special case was that 12.9% of EM
images were misclassified as NM. We observed that a majority
of these EM images displayed high visual similarities with the
NM images, and these images were difficult to differentiate
even by visual analysis. The low discriminative power of
feature descriptors thus affected the classification performance
between EM and NM.

To better demonstrate the effectiveness of our LMLE model,
the results in Table III and IV need to be analyzed relative
to the difficulty of the problem. Specifically, we wanted to
measure the intra-class variation and inter-class ambiguity in
the feature space, and then gauge the classification perfor-
mance based on the measured data. To do this, we conducted
one-class classification for each tissue type, one-versus-one
pairwise classification between each pair of tissue types, and
one-versus-all multi-class classification for all tissue types,
all using SVM. Four-fold cross validation was applied and
the polynomial kernel was found to perform the best. The
LIBSVM [65] package was used. The results are shown in
Table V, in which the diagonal shows the one-class classifica-
tion rates, the last column shows the one-versus-all multi-class
classification rates, and the other off-diagonal elements show
the one-versus-one pairwise classification rates. With ideally
representative and discriminative features, we would expect
perfect rates. In this database, however, there were on average
15% one-class and pairwise misclassifications, and 30% multi-
class misclassifications, which indicated the influence of intra-
class variation and inter-class ambiguity.

Compared to the multi-class classification results in Table V,
our recall rates showed a large improvement, suggesting the
effectiveness of our LMLE model in accommodating the
feature space complexity. The other results in Table V are
not directly comparable with Table IV, since our results were
obtained from multi-class classification. Nevertheless, it can be
seen that only 63.8% of EM images were correctly classified
with pairwise classification of EM and NM images. This

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMI.2015.2393954

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

TABLE VI
RECALL, PRECISION, F-SCORE AND OVERALL ACCURACY OF BP BINARY

CLASSIFICATION.

Class-1 Class-2
Recall 0.929 0.960

Precision 0.972 0.916
F-score 0.944 0.945

Accuracy 0.945

TABLE VII
CONFUSION MATRIX OF BP BINARY CLASSIFICATION.

Ground Prediction
Truth Class-1 Class-2

Class-1 0.929 0.071
Class-2 0.040 0.960

illustrated that EM and NM types were not well separated
in the feature space with high inter-class ambiguity. This also
explained the high misclassification rates between EM and
NM in Table IV. The poorest separation was between MN
and FB images at 0.577, while our result show relatively
low misclassification rate (0.036) between these two types.
While there were considerable misclassification between GG
and EM, and EM and MN (Table V), our results in Table IV
show very accurate differentiation between these pairs. These
results demonstrate that by minimizing the intra-class variation
at the subcategory-level and tackling the inter-class ambiguity
with large margin aggregation, our LMLE model could better
discover the intrinsic feature space separation and enhance
accurate classification.

The BP binary classification results are shown in Table VI
and VII. The feature space analysis using one-class and
pairwise SVM classifiers are shown in Table VIII. The linear
kernel was found to perform the best with SVM and four-fold
cross validation was used. The low rates in Table VIII suggest
that this classification task was particularly challenging with
large intra-class variation and inter-class ambiguity. In this
case, since the task is binary classification, we can compare the
classification recall in Table VI directly with the off-diagonal
rates in Table VIII, 0.929 vs. 0.533 and 0.960 vs. 0.640. The
large improvement demonstrates that our LMLE model was
very effective in tackling the feature space complexity.

For the BP continuous regression task, we obtained an
RMSE of 0.845. The results of four-class classification are
shown in Talbe IX and X. The feature space characteristics
evaluated based on one-class, one-versus-one pairwise, and
one-versus-all multi-class linear-kernel SVM classification are
shown in Table XI. It can be seen from Table XI that the

TABLE VIII
WITHIN-CLASS FEATURE REPRESENTATIVENESS AND BETWEEN-CLASS

FEATURE DISCRIMINATION IN THE BP BINARY CLASSIFICATION
DATABASE.

Class-1 Class-2
Class-1 0.829 0.533
Class-2 0.640 0.772

TABLE IX
RECALL, PRECISION, F-SCORE AND OVERALL ACCURACY OF BP

FOUR-CLASS CLASSIFICATION.

Class-1 Class-2 Class-3 Class-4
Recall 0.993 0.983 0.969 0.721

Precision 0.980 0.966 0.851 1.000
F-score 0.987 0.974 0.907 0.838

Accuracy 0.949

TABLE X
CONFUSION MATRIX OF BP FOUR-CLASS CLASSIFICATION.

Ground Prediction
Truth Class-1 Class-2 Class-3 Class-4

Class-1 0.993 0.007 0.000 0.000
Class-2 0.017 0.983 0.000 0.000
Class-3 0.031 0.000 0.969 0.000
Class-4 0.000 0.023 0.256 0.721

majority of misclassifications were between nearby classes,
which had close continuous labels, and the further classes were
well separated. A similar trend was shown in our results also
(Table X). Furthermore, in our results, misclassifications were
largely reduced, compared to the multi-class classification
rates with SVM. It can also been seen that in the pairwise
classification there was misclassification between classes 1 and
4 and between classes 2 and 3, while our results show perfect
differentiation between the class pairs. These results thus
demonstrate the effectiveness of our LMLE model against the
intra-class variation and inter-class ambiguity. Between classes
3 and 4, LMLE classified all class 3 images accurately but
misclassified 25.6% class 4 images as class 3. This tendency
of classifying more images to class 3 was due to the smaller
intra-class variation in class 3 compared to class 4 (0.939 vs.
0.850) that it was easier to learn an effective large margin
aggregation model for class 3.

Our method was implemented in Matlab, running on a PC
with a 2.66-GHz dual core CPU. The majority of execution
time was allocated to reference sub-categorization, local es-
timate generation and learning of transformation matrix. For
ILD classification, reference sub-categorization needed about
29 seconds, and learning of transformation matrix needed
about 22 minutes. Note that these operations were run of-
fline at the subject-level with four-fold cross validation for
matrix learning, hence the total number of runs was small.
With additional new test images, the reference subcategories
and transformation matrices need not be regenerated either.

TABLE XI
WITHIN-CLASS FEATURE REPRESENTATIVENESS AND BETWEEN-CLASS

FEATURE DISCRIMINATION IN THE BP FOUR-CLASS CLASSIFICATION
DATABASE.

Class-1 Class-2 Class-3 Class-4 Multi
Class-1 0.881 0.910 0.960 0.995 0.920
Class-2 0.604 0.824 0.611 0.955 0.517
Class-3 0.832 0.726 0.939 0.797 0.631
Class-4 0.953 0.892 0.663 0.850 0.581
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Fig. 4. Accuracy of ILD classification and BP binary classification, and RMSE of BP continuous regression, with the proposed reference sub-categorization
(LMLE), without the feature separation factor (r only), without view and variable weights (no weights), and random partitioning (random).

Fig. 5. Accuracy of ILD classification and BP binary classification, and RMSE of BP continuous regression, with the proposed reference sub-categorization
(LMLE), and cluster centroids as the local estimates (Centr), with various numbers of subcategories Kl = ⌊Nl/60⌋ to ⌊Nl/20⌋ for the ILD database, and
Kl = ⌊Nl/25⌋ to ⌊Nl/5⌋ for the MLC database.

The image-wise classification needed on average 0.4 second,
which was mainly spent on local estimate generation. For
BP binary classification, reference sub-categorization, learning
of transform matrix and image-wise classification required
0.12 second, 1 minute and 0.02 second, respectively. For BP
continuous regression, these numbers were 0.27 second, 2
minutes and 0.04 second, respectively. Much less time was
required for the two BP tasks, due to the smaller numbers of
images compared to the ILD database.

B. Component Analysis

We present our evaluations of the various important com-
ponents in our LMLE model in the following sentences. First,
we evaluated our design of the reference sub-categorization
component. In particular, we were interested in analyzing the
effects of (i) including feature separation dil into the distance
computation Eq. (1); and (ii) including view and variable
weights αl and βl into the sub-categorization objective Eq. (3).
As shown in Fig. 4, our method obtained higher classification
recall and precision and lower RMSE, when compared to
the alternatives r only (without feature separation dil) and
no weights (without view and variable weights αl and βl).
This suggests the benefit of including the feature separation
factor and view/variable weights into the sub-categorization
method. Fig. 6 shows the SC values computed using Eq. (8).
For all three tasks, our reference sub-categorization method
provided the highest SC, meaning that the generated subcate-
gories were more compact and better separated than using the
alternative methods r only, no weights and random.

In addition, to assess if the clustering-based method is
necessary for reference sub-categorization, we compared it
with random partitioning of the reference data into subcat-
egories. For a thorough evaluation of the random approach,

Fig. 6. The SC measure on the three tasks computed with the proposed
reference sub-categorization (LMLE), without the feature separation factor
(r only), without view and variable weights (no weights), and random parti-
tioning (random).

different numbers of subcategories (varied between ± 50% of
the numbers of subcategories used in our LMLE model) were
evaluated. We obtained minimal differences in classification
performance between these different numbers of subcategories.
Multiple runs of random partitioning were conducted to obtain
the average performance. As shown in Fig. 4 and 6, our
clustering-based approach offered large improvement over the
random approach. It was also observed that across the dif-
ferent runs, the classification performance remained relatively
consistent for the ILD classification task, but varied to a larger
extent for the BP classification and regression tasks. These ob-
servations suggest that the resultant subcategory assignments
had large impact on the classification performance. With the
small MLC database, the intrinsic subcategory structure in
the feature space could be under-represented by the limited
data, and the random partitioning could sometimes produce
similar effects to our clustering-based approach. For the large
ILD database, the feature space would form subcategories
more naturally; and with the large number of images, it
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Fig. 7. ROC curves of ILD classification and BP binary classification, comparing our large margin aggregation method (LMLE) with NNLE, MaxLE,
MeanLE and SvmLE. The notation after “:” indicates the label of the positive class. The numbers in the brackets indicate the AUC values.

was impractical for the random approach to obtain similar
subcategories to the clustering-based approach.

Then, we evaluated our design of using sparse representa-
tion to generate the local estimates. In particular, we compared
with the more intuitive way of using the cluster/subcategory
centroids as the local estimates (Centr), and analyzed the
effect of different numbers of subcategories. The experimental
results are shown in Fig. 5, where our model with sparse
representation for local estimates outperformed the approach
using cluster centroids in all three tasks. A trend common to
the three tasks was that the performance difference between
LMLE and Centr gradually decreased as the number of
subcategories increased. This was mainly because with larger
numbers of subcategories, each subcategory becomes more
homogeneous, and the resultant sparse representation moves
towards the cluster centroid (with a scaling factor) leading
to similar performance to Centr. We also found that with a
smaller number of subcategories, the local estimates generated
with sparse representation were indeed more adapted to the
test data than the cluster centroid, and the large margin
aggregation component worked better with such local es-
timates. Consequently, LMLE achieved higher performance
with relatively small number of subcategories. In addition,
for BP classification and regression, the performance of Centr
improved with larger number of subcategories, mainly because
the cluster centroids became more representative for the more
homogeneous subcategories. However for ILD classification,
the classification accuracy reduced with larger number of
subcategories. We suggest that this could be due to over sub-

Fig. 8. RMSE of BP continuous regression, comparing our large margin
aggregation method (LMLE) with NNLE, MaxLE, MeanLE and SvmLE.

categorization and that data in the overlapping areas of the
feature space were clustered into individual subcategories and
caused noise in the top M most similar local estimates.

Next, we evaluated our design of the large margin ag-
gregation. Specifically, we compared our LMLE with (i)
using kNN to compute the similarity based on the top M
similar local estimates (NNLE); (ii) max pooling based on
the most similar local estimates from each class (MaxLE);
(iii) mean pooling based on the mean distances of the local
estimates (MeanLE); and (iv) classification with SVM with
the concatenated distances between the test image and local
estimates as the feature vector (SvmLE). For NNLE, the
parameter M followed the same settings as our LMLE model.
For SvmLE, the polynomial kernel performed the best, and
the training and testing procedure was the same as ours.
We show the various ROC curves for ILD classification and
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Fig. 9. Recall and precision of ILD classification and BP binary classification, and RMSE of BP continuous regression, with different settings of M .

BP binary classification in Fig. 7, and different RMSEs for
BP continuous regression in Fig. 8. Note that since the BP
binary classification task involves only two classes, we only
show the ROC curves with class 1 as the positive class. Our
method achieved the highest AUCs and lowest RMSE. Among
the compared approaches, our method can be considered
an extension of the NNLE with top similar local estimates
identified in the transformed feature space. The performance
improvement over NNLE thus demonstrated the benefit of
the proposed learning-based large margin aggregation method.
In addition, the NNLE approach performed better than the
pooling approaches MaxLE and MeanLE. While SvmLE also
involved supervised learning based on the local estimates, its
performance was unsatisfactory for the two classification tasks.
This implies the benefit of the similarity-based classification
in our large margin aggregation method. The SvmLE approach
was however more suitable than NNLE for the BP continuous
regression task with a lower RMSE.

We also evaluated the effect of parameter M , which is the
number of closest local estimates for large margin aggregation.
Its impact on the classification and regression performance
is shown in Fig. 9. For ILD classification, as M increased,
the classification recall and precision gradually improved and
became relatively stable at M = 5. From M = 5 onwards,
while the recall of EM continued to improve, the recall of
GG dropped. Therefore, we chose M = 5 for the ILD
database. For BP binary classification, there were only three
subcategories in each class, hence we tested M = 1 to 3 only.
At M = 2, we obtained more balanced results compared to
M = 1, and higher recall and precision compared to M = 3.
Therefore, M was set to 2 for the BP binary classification
task. For the BP continuous regression task, the fourth class
contained only two subcategories, we thus tested M = 1 and
M = 2 only. It was found that M = 2 gave a smaller RMSE.

Finally, to assess the risk of overfitting during learning of
the transformation matrices for large margin aggregation, we
evaluated the results separately on the training and testing

datasets. If the results were excellent on the training sets
but poor on the testing sets, overfitting was indicated. We
found that compared to the testing set, the performance on the
training set was about 5% and 3% higher in accuracy for ILD
classification and BP binary classification, and 0.01 lower in
RMSE for BP continuous regression. These differences were
relatively small, implying that overfitting was not an important
concern for these tasks.

C. Performance Comparison

We present the performance comparison with the existing
techniques in this section. First, for the ILD classification,
we compared our method to the most recent approaches
reported for the same ILD database that we used, including
the approach based on localized features (LF) [2], our previous
patch-adaptive sparse approximation (PASA) method that pro-
posed the TIG feature descriptor [6], and the boosted multifold
sparse representation (BMSR) model based on boosted sparse
representation [49]. For LF and BMSR, we directly used the
results reported in [2] and [49]. However, we note that those
results for LF were obtained based on a slightly different
selection of images from our work. We re-ran the PASA
method on our current database. In addition, we compared our
approach to a number of standard and related classification
models, including the standard sparse representation classi-
fier (SRC) with L0 regularization, kNN based on Euclidean
distances, LMNN with learning-based distance computation
based on kNN, and the polynomial-kernel multi-class SVM.
These approaches all had the same TIG feature descriptors and
training and testing procedures that were used with LMLE.

The differences in recall and precision between our LMLE
model and the other approaches are shown in Fig. 10. Positive
numbers suggest performance improvements. The results show
that our LMLE model achieved large improvements over the
standard SRC, kNN, LMNN and SVM classifiers. It was
interesting to see that the approaches based on discriminative
learning, i.e. LMNN and SVM, did not gain advantage over
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the simple kNN approach. Such behavior could be attributed to
the feature space complexity that the performance of discrim-
inative learning in LMNN and SVM was limited by the large
number of contradicting constraints defined by the training
samples. The standard SRC model did not perform well for
this task either. This was mainly due to the occurrences of bet-
ter sparse representation for the wrong class, which contained
highly similar reference images to the test image. Compared
to the approaches specifically designed for ILD classification,
i.e. LF, PASA and BMSR, our LMLE model achieved overall
higher recall and precision, and more balanced results for
different tissue types. The LF method was especially effective
in handling the EM images, but were not as effective for
the MN images. We obtained considerable improvements in
recall levels over PASA and BMSR, but lower precision
in several cases. This was due to a different distribution
in the misclassification results. For example, compared to
PASA, much fewer images were misclassified as EM but more
were misclassified as MN. The performance gain over PASA
indicates the benefit of our model when compared to the
data-driven dictionary adaptation. The overall improvement
over BMSR demonstrates the advantage of reference sub-
categorization over random subdivision and fusion of sub-level
results using large margin aggregation over boosting.

We further tested the statistical significance of performance
improvement between our model and each approach (exclud-
ing LF) using McNemar’s test. The test was performed by
formulating a 2×2 matrix containing (i) the number of images
classified accurately by LMLE and the compared approach,
(ii) the number of images classified accurately by LMLE but
inaccurately by the compared approach; (iii) the number of
images classified inaccurately by LMLE but accurately by the
compared approach; and (iv) the number of images classified
inaccurately by both approaches. The null hypothesis was that
the LMLE model and the compared approach provided equal
classification accuracies. We obtained p-value < 10−15 in all
pairwise comparisons. This thus suggests that our model was
significantly better than the other approaches. The LF method
was not included in this test since we did not have the image-
wise label results.

For the BP binary classification task, we compared our
model to BMSR, SRC, kNN, LMNN and SVM. The compared
approaches were applied based on the same set of feature
descriptors and testing procedures as our model. As shown
in Fig. 11, our model obtained large improvements in classifi-
cation recall and precision over the other approaches. The Mc-
Nemar’s test derived p-values < 10−15 suggesting statistical
significance as well. The results also show that kNN performed
better than the sparse representation-based approaches BMSR
and SRC. This could be due to the objective of sparse
representation, which aimed at finding optimal combination of
reference images to represent the test image. With large intra-
class variation and inter-class ambiguity, such an objective
could lead to close representation from the wrong classes
and possibly more misclassifications than simply combining
the most similar reference images. The discriminative LMNN
and SVM approaches did not perform well. The intra-class
variation, inter-class ambiguity and small number of samples

Fig. 10. Differences in recall and precision between our LMLE model and
the other various classification methods, for ILD classification.

Fig. 11. Differences in recall and precision between our LMLE model and
the other various classification methods, for BP binary classification.

relative to the feature length could have restricted the learn-
ing capabilities of these algorithms. Our results suggest that
the subcategory-based sparse representation and large margin
aggregation were particularly effective with this database.

The decrease in RMSE using our model compared to the
other approaches for BP continuous regression is shown in
Fig. 12. To compute the continuous label using the BMSR,
SRC, kNN and LMNN classifiers, four-class classification was
first conducted; the continuous labels corresponding to the
sparsely selected (for BMSR and SRC) or nearest neighbor
(for kNN and LMNN) reference images from the identified
class were then combined to generate the continuous label of
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Fig. 12. Differences in RMSE between the other various regression methods
and our LMLE model, for BP continuous regression.

the test image. The standard least squares (LS) and sparse
representation (SR) were also applied for regression to com-
pute the continuous labels without involving the four-class
classification. The results show that our model performed the
best. The LMNN approach improved considerably over kNN.
When comparing Table XI with Table VIII, it can be seen
that the intra-class variation and inter-class ambiguity were
smaller in the four-class classification. This could explain why
LMNN obtained more obvious performance improvement over
kNN for this BP continuous regression task than the binary
classification task. As expected, by including the L0 regu-
larization, SR performed better than LS. The classification-
based sparse representation approaches BMSR and SRC were
not as effective as direct regression using SR. This suggests
that sparse representation using the entire reference set was
more suitable for this regression task than using subsets of
reference images. Such behavior can be explained as follows.
In the four-class construct, images with close continuous labels
near the class boundaries were separated into different classes;
and this separation would limit the flexibility and effectiveness
of the class-specific sparse representation (BMSR and SRC)
compared to using the entire reference set (SR). Our LMLE
model was affected by this issue as well. However, with
our subcategory-based sparse representation and large margin
fusion, the issue was effectively tackled and highly accurate
classification was achieved.

The statistical significance of performance improvement of
our model over each approach we compared it to for BP con-
tinuous regression was evaluated using the paired t-test. The
error vector computed based on the LMLE results was paired
with the error vector from the compared approach. The null
hypothesis was that the predictions using LMLE had the same
mean error as the predictions using the compared approach. A
one-tailed test was conducted to determine if our mean error
was smaller than the mean error from the compared approach.
We obtained a p-value < 10−10 in all pairwise comparisons.
This indicated that the LMLE model achieved statistically
significant improvement over the compared approaches.

V. CONCLUSIONS

We present a Large Margin Local Estimate (LMLE) model
for medical image classification. By first sub-categorizing
the reference sets, the derived reference subcategories would
exhibit lower intra-class variation compared to the overall
reference sets. Sparse representation is then used to generate

the local estimates at the subcategory-level. The distances
between the test image and the local estimates are then fused
using large margin aggregation to minimize the influence of
inter-class ambiguity. The test image is finally classified based
on its similarities with the various classes. The LMLE model
is independent of the feature design and was applied to ILD
classification in lung HRCT images, phenotype classification
and regression in brain MR images. Our extensive performance
evaluation showed that our model outperformed other often-
used classifiers.
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