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Abstract

Learning general functional dependencies between anpitnput and output spaces is one of the
key challenges in computational intelligence. While reggogress in machine learning has mainly
focused on designing flexible and powerful input repredents, this paper addresses the comple-
mentary issue of designing classification algorithms thataeal with more complex outputs, such
as trees, sequences, or sets. More generally, we consm@eprs involving multiple dependent
output variables, structured output spaces, and clag#ifigaroblems with class attributes. In order
to accomplish this, we propose to appropriately gener#izenvell-known notion of a separation
margin and derive a corresponding maximum-margin fornadatWhile this leads to a quadratic
program with a potentially prohibitive, i.e. exponentialymber of constraints, we present a cut-
ting plane algorithm that solves the optimization problenpolynomial time for a large class of
problems. The proposed method has important applicatioaieas such as computational biology,
natural language processing, information retrievaletion, and optical character recognition. Ex-
periments from various domains involving different typéootput spaces emphasize the breadth
and generality of our approach.

1. Introduction

This paper deals with the general problem of learning a mapping from irgaibrs or patterns
X € X to discrete response variablgss 9, based on a training sample of input-output pairs
(X1,Y1),- -+, (Xn,Yn) € X x 9 drawn from some fixed but unknown probability distribution. Un-
like multiclass classification, where the output space consists of an arlfitréieyset of labels or
class identifiers)” = {1, ...,K}, or regression, wher¢" = R and the response variable is a scalar,
we consider the case where elementgofirestructured objectsuch as sequences, strings, trees,
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lattices, or graphs. Such problems arise in a variety of applications, gafrgim multilabel clas-
sification and classification with class taxonomies, to label sequence leasaigence alignment
learning, and supervised grammar learning, to name just a few. Moreajignehese problems
fall into two generic cases: first, problems where classes themselves caaiacterized by certain
class-specific attributes and learning should occur across classestaasracross patterns; second,
problems wherg represents a macro-label, i.e. describesfigurationover components or state
variablesy = (y!,...,y"), with possible dependencies between these state variables.

We approach these problems by generalizing large margin methods, moifecafig multiclass
support vector machines (SVMs) (Weston and Watkins, 1998; CrammdeSiager, 2001), to the
broader problem of learning structured responses. The naiveaqdpof treating each structure as a
separate class is often intractable, since it leads to a multiclass problem withlarge number of
classes. We overcome this problem by specifying discriminant functiohgxipéoit the structure
and dependencies withi)f. In that respect our approach follows the work of Collins (2002) on
perceptron learning with a similar class of discriminant functions. Howgvennaximum-margin
algorithm we propose has advantages in terms of accuracy and tunabilitydifis loss functions.
A maximum-margin algorithm has also been proposed by Collins and Duff\2900 the context
of natural language processing. However, it depends on the size output space, therefore it
requires some external process to enumerate a small number of candigaiesy for a given
input x. The same is true also for other ranking algorithms (Cohen et al., 1999yitteet al.,
2000; Schapire and Singer, 2000; Crammer and Singer, 2002; Joa&tif®). In contrast, we
have proposed an efficient algorithm (Hofmann et al., 2002; Altun et @032Joachims, 2003)
even in the case of very large output spaces, that takes advantagespatiseness of the maximum-
margin solution.

A different maximum-margin algorithm that can deal with very large output, setéximum
margin Markov networks, has been independently proposed by Teskar(2004a). The structure
of the output is modeled by a Markov network, and by employing a probabilisémaretation of the
dual formulation of the problem, Taskar et al. (2004a) propose aaeperization of the problem,
that leads to an efficient algorithm, as well as generalization bounds thettdtzpend on the size
of the output space. The proposed reparameterization, howevemesshat the loss function can
be decomposed in the the same fashion as the feature map, thus doespuoot atlptrary loss
functions that may be appropriate for specific applications.

On the surface our approach is related to the kernel dependency estimgpimach described
in Weston et al. (2003). There, however, separate kernel funcéienslefined for the input and
output space, with the idea to encode a priori knowledge about the similartg® function in
output space. In particular, this assumes that the loss is input depedeikhown beforehand.
More specifically, in Weston et al. (2003) a kernel PCA is used in therfieapace defined ovgito
reduce the problem to a (small) number of independent regression mmblde latter corresponds
to an unsupervised embedding (followed by dimension reduction) perfoimte output space
and no information about the pattemss utilized in defining this low-dimensional representation.
In contrast, the key idea in our approach is not primarily to define more carfyphetions, but to
deal with more complex output spaces by extracting combined featurempués and outputs.

For a large class of structured models, we propose a novel SVM algotithirallows us to
learn mappings involving complex structures in polynomial time despite an expahégor infi-
nite) number of possible output values. In addition to respective thedredgats, we empirically
evaluate our approach for a number of specific problem instantiatiorssifatation with class tax-
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Figure 1: lllustration of natural language parsing model.

onomies, label sequence learning, sequence alignment, and natutsldangarsing. This paper
extends Tsochantaridis et al. (2004) with additional theoretical and ealpieisults.

The rest of the paper is organized as follows: Section 2 presents tleeag@dramework of
large margin learning over structured output spaces using represesatafimput-output pairs via
joint feature maps. Section 3 describes and analyzes a generic algaritlsoiing the resulting
optimization problems. Sections 4 and 5 discuss humerous important speeisbeal experimental
results, respectively.

2. Large Margin Learning with Joint Feature Maps

We are interested in the general problem of learning function& — 9 between input spaces
X and arbitrary discrete output spacgsbased on a training sample of input-output pairs. As
an illustrating example, which we will continue to use as a prototypical applicatitime sequel,
consider the case of natural language parsing, where the funfctiogips a given sentenceto a
parse treg. This is depicted graphically in Figure 1.

The approach we pursue is to leardiacriminant function FE X x % — R over input-output
pairs from which we can derive a prediction by maximizifgover the response variable for a
specific given inpuk. Hence, the general form of our hypothedds

f(x;w) = argmax (X,y;w), Q)
yey

wherew denotes a parameter vector. It might be useful to think @fs a compatibility function
that measures how compatible pafssy) are, or, alternatively—F can be thought of as &-
parameterized family of cost functions, which we try to design in such a vaythle minimum of
F(x,-;w) is at the desired outpytfor inputsx of interest.

Throughout this paper, we assutiRgo be linear in someombined feature representatianh
inputs and output¥(x,y), i.e

FXy;w) = (w,W(x,y)). 2

The specific form ot depends on the nature of the problem and special cases will be didcusse
subsequently. However, whenever possible we will develop learnirgitdms and theoretical

1455



TSOCHANTARIDIS, JOACHIMS, HOFMANN AND ALTUN

results for the general case. Since we want to exploit the advantakgsef-based method, we will
pay special attention to cases where the inner product in the joint repaiiea can be efficiently
computed via a joint kernel functial((x,y), (X',y")) = (P(x,y), P(X,y)).

Using again natural language parsing as an illustrative example, we oaaklsuch that we
get a model that is isomorphic to a probabilistic context free grammar (PGFQ@Yl&anning and
Schuetze, 1999). Each node in a parseyrteg a sentencg corresponds to grammar rujg, which
in turn has a score;. All valid parse treey (i.e. trees with a designated start symBais the root
and the words in the sentenkes the leaves) for a sentencare scored by the sum of thig of
their nodes. This score can thus be written in the form of Equation (2), W(iyy) denoting a
histogram vector of counts (how often each grammar gyleccurs in the treg). f(x;w) can be
efficiently computed by finding the structwes Y that maximize$ (x,y; w) via the CKY algorithm
(Younger, 1967; Manning and Schuetze, 1999).

2.1 Loss Functions and Risk Minimization

The standard zero-one loss function typically used in classification ippobgriate for most kinds
of structured responses. For example, in natural language pargiaggatree that is almost correct
and differs from the correct parse in only one or a few nodes shaulgdated differently from
a parse tree that is completely different. Typically, the correctness oédigbed parse tree is
measured by it; score (see e.g. Johnson, 1998), the harmonic mean of precisioncafidase
calculated based on the overlap of nodes between the trees.

In order to quantify the accuracy of a prediction, we will consider legrmith arbitrary loss
functionsA : 9 x 9 — R. Here A(y,y) quantifies the loss associated with a predictjoif the
true output value iy. It is usually sufficient to restrict attention to zero diagonal loss functidgtis
A(y,y) = 0 and for which furthermoré\(y,y’) > 0 fory #y’.> Moreover, we assume the loss is
bounded for every given target valyg i.e. max{A(y*,y)} exists.

We investigate a supervised learning scenario, where input-output (gayrs are generated
according to some fixed distributid?(x,y) and the goal is to find a functiohin a given hypothesis
class such that the risk,

R ()= [ Ay, f(x)dP(x.y),
XXy

is minimized. Of courseR is unknown and following the supervised learning paradigm, we assume
that a finite training set of pailS= {(x;,yi) € X x 9 :i=1,...,n} generated i.i.d. according ®

is given. The performance of a functidnon the training sampl& is described by the empirical
risk,

R (1) =5 5 A0 T00).

which is simply the expected loss under the empirical distribution induc&d bgrw-parameterized
hypothesis classes, we will also wriie,ﬁ(w) = ﬂ(ﬁ(f(-;w)) and similarly for the empirical risk.

1. Cases wheré\(y,y’) = 0 fory # y’ can be dealt with, but lead to additional technical overhead, which weedioo
avoid for the sake of clarity.
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2.2 Margin Maximization

We consider various scenarios for the generalization of supportrweetchine learning over struc-
tured outputs. We start with the simple case of hard-margin SVMs, followedtymargin SVMs,
and finally we propose two approaches for the case of loss-sensitMs,Svhich is the most gen-
eral case and subsumes the former ones.

2.2.1 FPARABLE CASE

First, we consider the case where there exists a funétmrameterized by such that the empirical
risk is zero. The condition of zero training error can then be compactly widisea set of nonlinear
constraints

Vie{l,...,n}: yrenya\éi{<w,W(xi,y)>} < (w,W(X,Yi)) - (3)

Notice that this holds independently of the loss functions, since we haumadshat/\(y,y) = 0
andA(y,y') >0fory #£y'.

Every one of the nonlinear inequalities in Equation (3) can be equivaleglgeed by9y| —1
linear inequalities, resulting in a total ofY’| — n linear constraints,

Vie{l,...,n}, Vyeo’\yi: (W,‘-P(xi,yi)—‘-P(xi,y))ZO. (4)

As we will often encounter terms involving feature vector differences eftitpe appearing in
Equation (4), we defind¥;(y) = W(x;,yi) — ¥(xi,y) so that the constraints can be more compactly
written as(w, dW;(y)) > 0.

If the set of inequalities in Equation (4) is feasible, there will typically be moaa thne solu-
tion w*. To specify a unique solution, we propose to selecwtHfer which the separation margin
y, i.e. the minimal differences between the score of the correct lakmid the closest runner-up
y(w) = argmay._,. (w, P(xi,y)), is maximal. This generalizes the maximum-margin principle em-
ployed in support vector machines (Vapnik, 1998) to the more genesalamasidered in this paper.
Restricting theL, norm ofw to make the problem well-posed leads to the following optimization
problem:

max
yow:[lw]|=1

stVvie{l,....n}, Wwe>\yi: (w,d%i(y)) >vy.
This problem can be equivalently expressed as a convex quadragi@pran standard form
: L2
SVMp: min E||W\| (5)
s.tVi, vy e o \yit (w,8¥(y)) > 1. (6)

2.2.2 DFT-MARGIN MAXIMIZATION

To allow errors in the training set, we introduce slack variables and peofmosptimize a soft-
margin criterion. As in the case of multiclass SVMs, there are at least twoet@ysoducing slack
variables. One may introduce a single slack varid@pl®r violations of thenonlinearconstraints
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(i.e. every instance;) (Crammer and Singer, 2001) or one may penalize margin violations for
everylinear constraint (i.e. every instancg and outputy # y;) (Weston and Watkins, 1998; Har-
Peled et al., 2002). Since the former will result in a (tighter) upper boumthe empirical risk

(cf. Proposition 1) and offers some advantages in the proposed optimizatieme (cf. Section 3),
we have focused on this formulation. Adding a penalty term that is linear indbk gariables to

the objective, results in the quadratic program

SVM; : m|n —||W||2—|— ELEI 7)

S-WMWE I\yit (w,B%iy)) > 1-§;, & > 0.

Alternatively, we can also penalize margin violations by a quadratic term lgadithe following
optimization problem:

SVM;: m|n —||WH2 ZlEZ

s.t.w,Vye Y\yi: (w,d¥i(y)) >1-§;.

In both case<C > 0 is a constant that controls the trade-off between training error minimizaiwn a
margin maximization.

2.2.3 (ENERAL LOSSFUNCTIONS: SLACK RE-SCALING

The first approach we propose for the case of arbitrary loss fursgtisrio re-scale the slack vari-
ables according to the loss incurred in each of the linear constraints. dalyitviolating a margin
constraint involving & # y; with high lossA(y;,y) should be penalized more severely than a vi-
olation involving an output value with smaller loss. This can be accomplished hiphing the
margin violation by the loss, or equivalently, by scaling the slack variable wéhinverse loss,
which yields

SVMLS: mln —HWH2+ Zli.

&i
Alyi,y)
A justification for this formulation is given by the subsequent proposition.

S.LVi, Yy e \yit (w,dWi(y)) > 1~

Proposition 1 Denote by¢*(w) the optimal solution of the slack variables in S?Mor a given
weight vectow. Theni 57, & is an upper bound on the empirical rig@(w).

Proof Notice first tha; = max{0, max,.y, { A(yi,y) (1— (w,0%i(y)))}}.
Case 1: If f(xi;w) =vyi, then" > 0= A(y;, f(x;;w)) and the loss is trivially upper bounded.
Case 2: Ify = f(x;w) # i, then(w,d¥;(y)) < 0 and thusAE' p>1 which is equivalent to

iy
& = AiLY)-
Since the bound holds for every training instance, it also holds for the geera |

The optimization problem SV@IS can be derived analogously, whekdy;, y) is replaced by /A (yi,y)
in order to obtain an upper bound on the empirical risk.
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2.2.4 (ENERAL LOSSFUNCTIONS: MARGIN RE-SCALING

In addition to thisslack re-scalingapproach, a second way to include loss functions is to re-scale
the margin as proposed by Taskar et al. (2004a) for the special €dse Hamming loss. It is
straightforward to generalize this method to general loss functions. Thgimm@amstraints in this
setting take the following form:

The set of constraints in Equation (8) combined with the objective in Equalipyi€ld an opti-
mization problem SVl\ﬁmwhich also results in an upper boundﬁﬁ(w*).

Proposition 2 Denote by¢*(w) the optimal solution of the slack variables in S?W/Ifor a given
weight vectomw. Then% yiL1 & is an upper bound on the empirical rig@(w).

Proof The essential observation is thgit= max{0, max { A(y;,y) — (w,3%¥i(y))} } which is guar-
anteed to upper bound.(y;,y) for y such thatiw, d¥;(y)) <O0. [ |

The optimization problem SV@Im can be derived analogously, whekgy;, y) is replaced by /A (yi,y).

2.2.5 (ENERAL LOSSFUNCTIONS: DISCUSSION

Let us discuss some of the advantages and disadvantages of the twdaf@nsupresented. An
appealing property of the slack re-scaling approach is its scaling ingatian

Proposition 3 Suppose\’ = nA withn > 0, i.e. 2\’ is a scaled version of the original loss.
Then by re-scaling C= C/n, the optimization problems S\ﬁ\?l(C) and SVI\@VS (C') are equivalent
as far asw is concerned. In particular the optimal weight vectot is the same in both cases.
Proof First note that eachw is feasible for sv@s and SVI\/f/s in the sense that we can find slack
variables such that all the constraints are satisfied. In fact we can divese optimally and define
Hw) = 3|jw|2+ € 5;& (w) and H(w) = 3|jw|2+ € 5;&"(w), where&* and &' refer to the
optimal slacks in SVI?IS and SVI\_ﬁﬁ’S, respectively, for givew. It is easy to see that they are given
by

& = max{0.max{A(yiy) (1 - (w.3%i(y)))}}

and
" =max{0, max{nA(vi,Y) (1— (w,8%i(y)))}},
respectively. Pulling) out of the max, one gets thgt = né&; and thusy; & =Cn y;&" =C'5;&".
|

From that it follows immediately that B H’.

In contrast, the margin re-scaling formulation is not invariant under scalinbe loss function.
One needs, for example, to re-scale the feature hap a corresponding scale factor as well. This
seems to indicate that one has to calibrate the scaling of the loss and the stHimfeature map
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more carefully in the SVNi™ formulation. The SVM*formulation on the other hand, represents
the loss scale explicitly in terms of the const@nt

A second disadvantage of the margin scaling approach is that it potentiedly gignificant
weight to output valuey € 9 that are not even close to being confusable with the target values
yi, because every increase in the loss increases the required margie.ititerpretd= (x;, yi; w) —
F(xi,y;w) as a log odds ratio of an exponential family model (Smola and Hofmann, 20@8)
the margin constraints may be dominated by incorrect vayusit are exponentially less likely
than the target value. To be more precise, notice that in the ié\meulation, the penalty
part only depends og for which (w,8¥;(y)) < 1. These are output valugsthat all receive
a relatively “high” (i.e. 1-close to the optimum) value B{x,y;w). However, in SVI\/fm, &
has to majorize/A(yi,y) — (w,d%;(y)) for all y. This meanst can be dominated by a value
y = argmax {A(yi,y) — (w,3¥i(y)) } which has a large loss, but whose valueg=gk, y; w) comes
nowhere near the optimal value Ibf

3. Support Vector Algorithm for Structured Output Spaces

So far we have not discussed how to solve the optimization problems asdowittiehe various
formulations SVM, SVM; , SVM,, SVMfS, SVMfm, SVMZAS, and SVI\/ﬁm. The key challenge
is that the size of each of these problems can be immense, since we havé wotlled)’| —n
margin inequalities. In many casdg;| may be extremely large, in particular, 9f is a product
space of some sort (e.g. in grammar learning, label sequence learturg,te cardinality may
grow exponentially in the description length wf This makes standard quadratic programming
solvers unsuitable for this type of problem.

In the following, we will propose an algorithm that exploits the special streaitithe maximum-
margin problem, so that only a much smaller subset of constraints needsxplicélg examined.
We will show that the algorithm can compute arbitrary close approximations 8/M optimiza-
tion problems posed in this paper in polynomial time for a large range of stasctund loss func-
tions. Since the algorithm operates on the dual program, we will firstelére Wolfe dual for the
various soft margin formulations.

3.1 Dual Programs

We will denote bya ;) the Lagrange multiplier enforcing the margin constraint for label y;
and exampléx;, y;). Using standard Lagragian duality techniques, one arrives at the fojaiual
quadratic program (QP).

Proposition 4 The objective of the dual problem of Syftbm Equation(6) is given by

1
@(005—5; D> Ay Aindinan T Y iy
LYZYi ,YZY] LYZYi

where Jiy)(jy) = (3Wi(y),3¥j(y)). The dual QP can be formulated as

o =argmaxXd(a), s.t.a>0.
a
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Proof (sketch) Forming the Lagrangian function and eliminating the primal varigildy using
the optimality condition

W) = ; 0 (i) Wi (Y)
Y7Yi

directly leads to the above dual program. |

Notice that thel function that generates the quadratic from in the dual objective canrbputed
from inner products involving values &, which is a simple consequence of the linearity of the
inner product.J can hence be alternatively computed from a joint kernel function &ver)".

In the non-separable case, linear penalties introduce additional dotsstvehereas the squared
penalties modify the kernel function.

Proposition 5 The dual problem to SVMs given by the program in Proposition 4 with additional

constraints
; Oiy) <
Y7Yi

In the following, we denote witl(a, b) the function that returns 1 &= b, and 0 otherwise.

=lNe!

, Vi=1,...,n.

Proposition 6 The dual problem to SVMs given by the program in Proposition 4 with modified
kernel function

Jiy)iy) = (3¥i(y), % (¥)) + (i, j)g.

In the non-separable case with slack re-scaling, the loss function isuctddn the constraints for
linear penalties and in the kernel function for quadratic penalties.

Proposition 7 The dual problem to svﬁf is given by the program in Proposition 4 with additional
constraints

9, Vi=1...,n.
n

Aiy)
y;yi Alyiy) ~

Proposition 8 The dual problem to Svﬁfis given by the program in Proposition 4 with modified
kernel function

. n
’J)CVA(yi,yNA(pr

In the non-separable case with margin re-scaling, the loss function isticeddn the linear part of
the objective function

Proposition 9 The dual problems to S\@}f' and SVI\/fm are given by the dual problems to Sykhd
SVM with the linear part of the objective replaced by

> AiyA(yi,y) and A (iy) vV AYi,Y)

LYZYi LY7Yi

Jiy)iy) = (BWi(y), 8W;(¥)) +&(i

respectively.
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3.2 Algorithm

The algorithm we propose aims at finding a small set of constraints fronulfr&Zed optimization
problem that ensures a sufficiently accurate solution. More preciselyvil construct a nested
sequence of successively tighter relaxations of the original problémg ascutting plane method
(Kelley, 1960), implemented as a variable selection approach in the dualletion. Similar to

its use with the Ellipsoid method (Gtschel et al., 1981; Karmarkar, 1984), we merely require a
separation oracle that delivers a constraint that is violated by the twokrion. We will later
show that this is a valid strategy, since there always exists a polynomiallysibsét of constraints
so that the solution of the relaxed problem defined by this subset fulfillgaditraints from the full
optimization problem up to a precision &f This means, the remaining—potentially exponentially
many—constraints are guaranteed to be violated by no moreetheithout the need for explicitly
adding these constraints to the optimization problem.

We will base the optimization on the dual program formulation which has two impuaativan-
tages over the primal QP. First, it only depends on inner products in thefgaiture space defined
by W, hence allowing the use of kernel functions. Second, the constrairikratne dual program
supports a natural problem decomposition. More specifically, notice teatathstraint matrix de-
rived for the SVM and the SVM variants is diagonal, since the non-negativity constraints involve
only a singlea-variable at a time, whereas in the S\{®hse, dual variables are coupled, but the
couplings only occur within a block of variables associated with the same tdimétance. Hence,
the constraint matrix is (at least) block diagonal in all cases, where dack torresponds to a
specific training instance.

Pseudo-code of the algorithm is depicted in Algorithm 1. The algorithm maintednking
sets§ for each training instance to keep track of the selected constraints wificke tlge current
relaxation. Iterating through the training examp(gsyi), the algorithm proceeds by finding the
(potentially) “most violated” constraint fof;, involving some output valug. If the (appropriately
scaled) margin violation of this constraint exceeds the current val§elnf more thare, the dual
variable corresponding is added to the working set. This variable selection process in the dual
program corresponds to a successive strengthening of the prinidéprdoy a cutting plane that
cuts off the current primal solution from the feasible set. The chosen guitame corresponds to
the constraint that determines the lowest feasible valuéifoOnce a constraint has been added,
the solution is re-computed with respect3oAlternatively, we have also devised a scheme where
the optimization is restricted t§ only, and where optimization over the fi8lis performed much
less frequently. This can be beneficial due to the block diagonal steustuhe constraint matrix,
which implies that variables ;) with j # i,y € S can simply be “frozen” at their current values.
Notice that all variables not included in their respective working set aréditiptreated as 0. The
algorithm stops, if no constraint is violated by more tlgaiVith respect to the optimization in step
10, we would like to point out that in some applications the constraint selectistejn6 may be
more expensive than solving the relaxed QP. Hence it may be advansagesmlve the full relaxed
QP in every iteration, instead of just optimizing over a subspace of the dtiables.

The presented algorithm is implemented in the software pacBs@€™'“, available on the web
athttp://svmight.joachins. org. Note that the SVM optimization problems from iteration to
iteration differ only by a single constraint. We therefore restart the SViroper from the current
solution, which greatly reduces the runtime.
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Algorithm 1 Algorithm for solving SVM, and the loss re-scaling formulations SY&hd SVM, .
1L Inpl'It: (Xlayl)a (R (XmYn)- Ce
2. §«0foralli=1,...,n
3: repeat
4. fori=1,...,ndo

5: [* prepare cost function for optimization */
set up cost function
1-(3¥i(y),w) (SVMo)
(1—@Wi(y), W) ALLY)  (SYML®)
H(y) = § AYi,Y) — (8%i(y),w) (SVM ™)
(1= WY)W VAKLY)  (SYM3®)
Alyiy) — (8¥i(y),w) (SVM;™
wherew = Syes O (jy)0W; (y).
6: /* find cutting plane */
computey = argmaxcqy H(y)
7 /* determine value of current slack variable */
computeg; = max{0, max.s H(y)}
8: if H(y) > & +¢then
9: /* add constraint to the working set */
S —SU{y}
10a: [* Variant (a): perform full optimization */
as < optimize the dual of SVM, SVMj or SVM; overS, S= U;S.
10b: /* Variant (b): perform subspace ascent */
ag «— optimize the dual of SVM, SVM] or SVM; over§
12: end if
13:  end for

14: until no § has changed during iteration

A convenient property of both variants of the cutting plane algorithm is thegt lfave a very
general and well-defined interface independent of the choitieé afid A. To apply the algorithm,
it is sufficient to implement the feature mappikg(x,y) (either explicitly or via a joint kernel
function), the loss function\(y;,y), as well as the maximization in step 6. All of those, in particular
the constraint/cut selection method, are treated as black boxes. While théngaufel(x,y)
andA(yi,y) is typically straightforward, solving the maximization problem for constrailgcdion
typically requires exploiting the structure &f for output spaces that can not be dealt with by
exhaustive search.
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In the slack re-scaling setting, it turns out that for a given exarfplg;) we need to identify
the maximum over

y= aryger;ai(l— (W, 8Wi(y)) AYisY) }-

We will discuss several cases for how to solve this problem in Section gically, it can be
solved by an appropriate modification of the prediction problem in Equatipnvtlich recovers
f from F. For example, in the case of grammar learning with Faescore as the loss function
via A(yi,y) = (1—Fa(yi,y)), the maximum can be computed using a modified version of the CKY
algorithm. More generally, in cases whekgy;, -) only takes on a finite number of values, a generic
strategy is a two stage approach, where one first computes the maximuthas&yr for which the
loss is constant\(y;,y) = const and then maximizes over the finite number of levels.

In the margin re-scaling setting, one needs to solve the maximization problem

y= aryger;aw(yi,y) —(w,3%i(y))}. 9)

In cases where the loss function has an additive decomposition that is thiolepath the feature
map, one can fold the loss function contribution into the weight vegtadW;(y)) = (w,dW;(y)) —
A(yi,y) for somew’. This means the class of cost functions definedrly, -;w) andF (x, -;w) —
A(y,-) may actually be identical.

The algorithm for the zero-one loss is a special case of either algorithme®@éeto identify the
highest scoring that is incorrect,

y =argmax1l— (w,8%¥i(y))}.
YAYi

It is therefore sufficient to identify the best solutign= argmaxc, (w,¥(x;,y)) as well as the
second best solution= argmaxc.gy (W, ¥(xi,y)). The second best solution is necessary to detect
margin violations in cases whege=y;, but (w,d%¥;(¥)) < 1. This means that for all problems
where we can solve the inference problem in Equation (1) for the toytwe can also apply our
learning algorithms with the zero-one loss. In the case of grammar learoingxdmple, we can
use any existing parser that returns the two highest scoring parse trees

We will now proceed by analyzing the presented family of algorithms. In paaticwe will
show correctness and sparse approximation properties, as wellradstmuthe runtime complexity.

3.3 Correctness and Complexity of the Algorithm

What we would like to accomplish first is to obtain a lower bound on the achHeimbprovement of
the dual objective by selecting a single variablg, and adding it to the dual problem (cf. step 10
in Algorithm 1). While this is relatively straightforward when using quadraénaities, the SVM
formulation introduces an additional complication in the form of upper boond®on-overlapping
subsets of variables, namely the set of variabigg in the current working set that correspond to
the same training instance. Hence, we may not be able to answer the alestiergby optimizing
overa, alone, but rather have to deal with a larger optimization problem over a gbblepace.
In order to derive useful bounds, it suffices to restrict attention to simpdedimensional families
of solutions that are defined by improving an existing solution along a spduiictionn. Proving
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that one can make sufficient progress along a specific direction, clegligs that one can make at
least that much progress by optimizing over a larger subspace that in¢haldirectiom. A first
step towards executing this idea is the following lemma.

Lemma 10 Let J be a symmetric, positive semi-definite matrix, and define a conbgaive ina
1 /
O(a) = —50 Ja+ (h,a),

which we assume to be bounded from above. Assume that a saftaord an optimization direc-
tion n is given such thatdJ®(a°),n) > 0. Then optimizing starting froma® along the chosen
directionn will increase the objective by

1(06(a°),n)?

> N >0.

rggx{@(a" +Bn)} —0(a°) =

Proof The difference obtained by a particulfis given by

50(8) = B | (00(a®),n) — 2n'an|

as can be verified by elementary algebra. Solving3fone arrives at

d . . _ (0e(®),n)
Notice that this requireg’Jn > 0. Obviously, the positive semi-definiteness gliarantees)’Jn >
0 for anyn. Moreovern’Jn = 0 together with(J©(a°),n) > 0 would imply thatimg_,, ©(a® +
Bn) = o, which is in contradiction with the assumption tf@ts bounded. Plugging the value for
[3* back into the above expression f® yields the claim. |

Corollary 11 Under the same assumption as in Lemma 10 and for the special case timiza-
tion directionn = &, the objective improves by

.1 (002

Proof Notice thatn = g implies(0JO,n) = 99 angd n'Jn = Jy. |

—oay

Corollary 12 Under the same assumptions as in Lemma 10 and enforcing the conBtraiDtfor
some D> 0, the objective improves by

(0O(°),n) _ o .
max {©(a®+pn)} ~©(@%) =¢ I if (00(a°),n) <Dn'In
0<P=D D(00(a°),n) — %n'dn otherwise

1465



TSOCHANTARIDIS, JOACHIMS, HOFMANN AND ALTUN

Moreover, the improvement can be upper bounded by

o o 1 . (06(a°),n) o
max {0(c+ P}~ O(a) > 5 mm{o, it } (00(a%),n)
Proof We distinguish two cases of eithgr < D or 3* > D. In the first case, we can simple apply
lemma 10 since the additional constraint is inactive and does not changelilién. In the second
case, the concavity @ implies thaf3 = D achieves the maximuma&® over the constrained range.
Plugging in this result fof* into 3@ yields the second case in the claim.

Finally, the bound is obtained by exploiting that in the second case

(06(a®),n)
nn
Replacing one of the D factors in the? Berm of the second case with this bound yields an upper

bound. The first (exact) case and the bound in the second case camipactly combined as shown
in the formula of the claim. |

B*>D «— D<

Corollary 13 Under the same assumption as in Corollary 12 and for the special cassinfke-
coordinate optimization direction = &, the objective improves at least by

99 /0

1 . 5 (@) | 9o

O] o -0 o > = D r o
oI (a®+Per) (G)me{ I aar(a)

Proof Notice thatn = g implies(00,n) = gT? andn’Jn = Jy. [ |

We now apply the above lemma and corollaries to the four different SVM ftations, starting
with the somewhat simpler squared penalty case.

Proposition 14 (SVI\/IZAS) For SVI\/ﬁS step 10 in Algorithm 1 the improvemed® of the dual ob-
jective is lower bounded by

g2
AiRE+ ¢’

Proof Using the notation in Algorithm 1 one can apply Corollary 11 with multi-index (iy),
h=1, and J such that

50 > % where ;= max(A(yi.y)} and R = max{ 8% ()}

(i, j)n
CVAWYLIVAWYLY)

Notice that the partial derivative @ with respect tax g is given by

Jig)y) = (OWi(9),8%;(y)) +

60 :
90 (00) 13 3ug ) = 1 (0. B 9)) ~
0aig 2, Sty VAW
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since the optimality equations for the primal variables yield the identities
na°

Vi C\/ yla

Now, applying the condition of step 10, nameiy\(y;,¥) (1— (w*,8%;(¥))) > & + ¢, leads to the
bound

W = %a?jy@q’j()’), and &=

Finally, Jr = [|8Wi ()| + m and inserting this expression and the previous bound into the
expression from Corollary 11 yields

ey, o
23 \ 90 ig) 2(AyLD)IBYIIE+E) ~ 2(AiIRR+E)

The claim follows by observing that jointly optimizing over a set of variablesititdudea, can
only further increase the value of the dual objective. |

Proposition 15 (SVI\/IZA’“) For SVI\/ﬁmstep 10 in Algorithm 1 the improvemed® of the dual
objective is lower bounded by

e2

_|_

00

v
NI

x,

Ol>

, Where R:myax||6wi(y)\|.

Proof By re-definingd¥; (y)= 52(5/ )y we are back to Proposition 14 with

~

max{ 2 (yi,Y)[8%(y) |2} = max{[[8%i(y)|*} = R
since

(W, d¥i(y)) > VAYL,Y) — & — W5‘-IJ(y)> %

Proposition 16 (SVM.*®) For SVM °step 10 in Algorithm 1 the improveme3® of the dual ob-
jective is lower bounded by

2
6@2min{g £

g Wnere A= madAl.y)and = max [3y)]).

Proof
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Case I
If the working set does not contain an elemgiy)), then we can optimize over; under the

constraint thato iy < A(y.,y) = = D. Notice that

00 N & +¢ I3
— (0% =1— (w*,dW¥; L= > —
00 ig) (@) W, o%i(d)) > A(Yi,9) = A(Yi,Y)

where the first inequality follows from the pre-condition for selectiijg and the last one from
&' > 0. Moreover, notice that )y < R?. Evoking Corollary 13 with the obvious identifications
yields

66)2}min{D,i 00 0(0} o0 (a°)
2 Jir ad(iy) ad(iy)

1 A(W?)C € e _min{&__ &
- 3mn{ S s >R2} A(.9) m'”{Zn’ZR-ZAW)Z}

The second term can be further bounded to yield the claim.

Case ll:

If there are already active constraints for instangen the current working set, i.e; & 0, then we
may need to reduce dual variablagy, in order to get some slack for increasing the newly added
(y)- We thus investigate search directiapsuch thatniy) = 1, Ngy) = — AW i) 57 C 2 <0foryes§,
andn;,/ = Oin all other cases. For such, we guarantee thai®+-n > 0 smce[3 <t SAYLY).

In finding a suitable direction to derive a good bound, we have two (possilifficting) goals.
First of all, we want the directional derivative to be positively bounded afrcay zero. Notice that

= iy (-0 39))

Furthermore, by the restrictions imposed gnn, < 0 implies that the respective constraint is
active and hencé\(yi,y) (1— (w*,d¥;(y))) = &. Moreover the pre-condition of step 10 ensures
that A(y;,y) (1— (W*,d%¥;(Y))) = & + d whered > € > 0. Hence

& n (iy) 0 €
00(a°%),n) = — - = + —~ > —.
PO = ) ( C& Ay ) ALY — ALY
The second goal is to make sure the curvature along the chosen directiohtoo large.

13, Ay n %y ny
n JI’] —J (i9)( ; A yl’ C )(iy) + %y; Y|, CA y. y) CJ('Y)(W)
Rz 0 aniz 0 ~0O
<R +2———+ iy +——"""-— al al.,
<R42 LA R-ZA? _ARAE
AWYLY) T AL 9?2 T AlLY)?
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This follows from the fact thaf.; a0,) < Ai Sy Aoésiy_él) < €&i Evoking Corollary 12 yields
1. (0e(a®),n)
30 > Emm{ Ty (06(a®),n)
1 JAMIC myg | e o [ce €
> = ’ = =
= 2”"”{ n R (Al 20 8RRA?
INER

Proposition 17 (SVM.™) For SVM™step 10 in Algorithm 1 the improvemed® of the dual
objective is lower bounded by

2
50> = where R— max |3 (y) .

8R?’

Proof By re-definingd¥; (y)= 2“&% we are back to Proposition 16 with

man{A(yi,y)zllé‘TJi W)} = max || oW, W%} =R,
since

W) 2 A0Y) —& = why) 21—

This leads to the following polynomial bound on the maximum siz8. of

Theorem 18 With R = max R, A= max A\ and for a givere > 0, Algorithm 1 terminates after
incrementally adding at most

2nA 8CASR? 2nA 8CARZ) CAZRR+nA CAR +nA
max{—, 2 } , max{ - } , =2 and — 2
constraints to the working set S for the S¥MSVM'™, SVM;*and SVM ™ respectively.
Proof With S= 0 the optimal value of the dual 8. In each iteration a constraint is added that
is violated by at least, provided such a constraint exists. After solving the S-relaxed QP in step
10, the objective will increase by at least the amounts suggested bydtiops 16, 17, 14 and 15
respectively. Hence after t constraints, the dual objective will be at |le@®igs these increments.
The result follows from the fact that the dual objective is upper boundedebynthimum of the
primal, which in turn can be bounded by'‘Cand %CA for SVM, and SVM respectively. |
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Note that the number of constraints $idoes not depend ofy|. This is crucial, sincey’| is
exponential or infinite for many interesting problems. For problems whepeGstan be computed
in polynomial time, the overall algorithm has a runtime polynomiahjR, A, 1/¢, since at least
one constraint will be added while cycling throughralhstances and since step 10 is polynomial.
This shows that the algorithm considers only a small number of constraiots #llows an extra
slack, and that the solution is correct up to an approximation that depeis precision parameter
€. The upper bound on the number of active constraints in such an amatexsolution depends
on the chosen representation, more specifically, we need to upper toaimifference vectors
|W(xi,y) — W(xi,y)||? for arbitraryy,y € 9. In the following, we will thus make sure that suitable
upper bounds are available.

4. Specific Problems and Special Cases

In the sequel, we will discuss a number of interesting special cases oftieead scenario outlined
in the previous section. To model each particular problem and to be abla thewalgorithm and
bound its complexity, we need to examine the following three questions foroeaeh

e Modeling How can we define suitable feature map&,y) for specific problems?
e Algorithms How can we compute the required maximization oyefor givenx?

e SparsenesdHow can we boundW¥(x,y) — W(x,y')||?

4.1 Multiclass Classification

A special case of Equation (1) is winner-takes-all (WTA) multiclass classifin, where)” =
{y1,...,yx } andw = (v},...,vi)"is a stack of vectorsi being a weight vector associated with the
k-th classyx. The WTA rule is given by

f(x) = ar@lyrkr;f;l;<F (X, y;w), F (X, Yis W) = (v, D(X)) . (10)

Hered(x) € RP denotes an arbitrary feature representation of the inputs, which in maey ozay
be defined implicitly via a kernel function.

4.1.1 MODELING

The above decision rule can be equivalently represented by making aseiat feature map as
follows. First of all, we define the canonical (binary) representatidateglsy € 9 by unit vectors

N(y) = (3(y1,Y), 8(y2.Y), - -, 8(ykY)) € {0,1}¥, (11)

so that(A°(y),A°(y')) = &(y,y’). It will turn out to be convenient to use direct tensor products
to combine feature maps ov&rand?. In general, we thus define thieoperation in the following
manner

® :RP xR — RD'K, (a® b)i-}-(j—l)D =a-bj.
Now we can define a joint feature map for the multiclass problem by

W(x,y) = D(X) @ A%(y). (12)
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Itis is easy to show that this results in an equivalent formulation of the multid¥dgsas expressed
in the following proposition.

Proposition 19 F(x,y;w) = (w,¥(X,y)), where F is defined in Equatiofl0) and ¥ in Equa-
tion (12).

Proof Forall yk€ 97: (w, W(x,Yi)) = 32 Wrlr (X, Yk) = 31 741 Vid @ (X)3(],K) = Fg_1 Via P (X) =
{Vi, P(X)). m

4.1.2 ALGORITHMS

It is usually assumed that the number of clagsés simple multiclass problems is small enough,
so that an exhaustive search can be performed to maximize any objeaiv¥.oSimilarly, we can
find the second besgte .

4.1.3 SARSENESS
In order to bound the norm of the difference feature vectors, wegatee following simple result.

Proposition 20 Define R= || ®(x;)||. Then||W(xi,y) — W(xi,y")||? < 2R?.

Proof
[W(xi,y) — Pxi, Y% < [P0, Y) 12+ [P0, Y)]Z = 2] D(xi) ||,

where the first step follows from the Cauchy-Schwarz inequality and tlomdetep exploits the
sparseness agf°. [

4.2 Multiclass Classification with Output Features

The first generalization we propose is to make use of more interesting dagiutesA than the
canonical representation in Equation (11). Apparently, we could ussathe approach as in Equa-
tion (12) to define a joint feature function, but use a more general form.f

4.2.1 MODELING

We first show that for any joint feature map constructed via the direct tensor productthe
following relation holds:

Proposition 21 For W = ® ® A the inner product can be written as

(Wx,y), W(X,Y")) = (B(x), D)) - (A(Y),ALY)) -
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Proof By simple algebra

D-KD-K D K D K
W(x,y), W ‘ s = (XN (Y
(Wxy), WX, szu (% Y)Ws(X',y") dzlk;dzlk:lcpd Ak(Y) @ (X )N (y')
D D K
(x) )\k(Y))\k’ = (D(x),D(X)) - (A(Y),AY)) -
=1d 1 k=1k'=1

This implies that for feature magsthat are implicitly defined via kernel functiois K(x, x")
(®d(x),P(x)), one can define a joint kernel function as follows:

I((x,y), (X,¥) = (P(x,y), P(X,¥)) = (AY),AlY)) K(X,X).

Of course, nothing prevents us from expressing the inner produattpubspace via yet another
kernel functionL(y,y’) = (A(y),A(Yy')). Notice that the kerndl is simply the identity in the stan-
dard multiclass case. How can this kernel be chosen in concrete cabasitélly may encode any
type of prior knowledge one might have about the similarity between clalssdlluminating to
note the following proposition.

Proposition 22 Define W(x,y) = ®(x) ® A(y) with A(y) € RR; then the discriminant function
F(x,y;w) can be written as

F(x,y;w) = Zl)\ (Vr, D

wherew = (V},...,VR)’ is the stack of vectong € RP, one vector for each basis function/of

Proof

R D

l?\ (y)dg Vid Qa (X Zdz Wp. (d-1)+rAr () @ (X) = (W, D(x) @ A(Y))

= (W, P(xy)) = F(xy;w).

r=

We can give this a simple interpretation: For each output featumecorresponding weight vecter
is introduced. The discriminant function can then be represented as lateeggum of contributions
coming from the different features. In particular, in the case of bineaguresh\ : 9 — {0, 1},
this will simply be a sum over all contributionis;, ®(x)) of features that are active for the class
i.e. for whichA((y) = 1.

Itis also important to note that the orthogonal representation providesienaidxiarge hypoth-
esis class and that nothing can be gained in terms of representationalyoweludingadditional
features.
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Corollary 23 Assume a mappind(y) = (A(y)',A%(y)’)’, A(y) € RR and definéP(x,y) = ®(x) @
A(y) and¥(x,y) = ®(x) @ A°(y). Now, for everyi there isw such that W, W(x,y) ) = (w, ¥(x,y))
and vice versa.

Proof Applying Proposition 22 twice it follows that

. R+K R+K
(W, P(x,y)) = ;)\r(y) (U, @(x)) = < Zl?\r(Y)Vr7¢(X)> = (W, P(x)) = (W, P(x,y)) -

where we have defined, = YR XA (y)¥;. The reverse direction is trivial and requires setting

vy =0forr=1,....R. |

In the light of this corollary, we would like to emphasize that the rationale behmdse of class
features is not to increase the representational power of the hypatpesss, but to re-parameterize
(or even constrain) the hypothesis space such that a more suitableerpteon for)” is produced.

We would like togeneralize across classas we want to generalize across input patterns in the stan-
dard formulation of classification problems. Obviously, orthogonal sepr@tions (corresponding

to diagonal kernels) will provide no generalization whatsoever acifiesaht classey. The choice

of a good output feature majpis thus expected to provide an inductive bias, namely that learning
can occur across a set of classes sharing a common property.

Let us discuss some special cases of interest.

Classification with Taxonomies Assume that class labejsare arranged in a taxonomy. We will
define a taxonomy as a set of elemenits 9 equipped with a partial ordet. The partially ordered
set(Z, <) might, for example, represent a tree or a lattice. Now we can define bieatyrés for
classes as follows: Associate one featwravith every element irz according to

Aoly) = 1 ify<zory=z
227710 otherwise.

This includes multiclass classification as a special case of an unordeargd=s¢”. In general,
however, the features, will be “shared” by all classes below, e.g. all nodey in the subtree
rooted atz in the case of a tree. One may also introduce a relative wéighor every feature
and define $-weighted (instead of binary) output feature mapsA, = B,\,. If we reflect upon
the implication of this definition in the light of Proposition 22, one observes thateffectively
introduces a weight vectar, for every element ofz, i.e. for every node in the hierarchy.

Learning with Textual Class Descriptions As a second motivating example, we consider prob-
lems where classes are characterized by short glosses, blurbs oteottual descriptions. We
would like to exploit the fact that classes sharing some descriptors are titkbly similar, in order

to specify a suitable inductive bias. This can be achieved, for examplksdnciating a feature

with every keyword used to describe classes, in addition to the class idéteitge standard vector
space models like term-frequency of idf representations can be applieddel glasses and the
inner product{A(y),A(y")) then defines a similarity measure between classes corresponding to the
standard cosine-measure used in information retrieval.
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Learning with Class Similarities The above example can obviously be generalized to any situa-
tion, where we have access to a positive definite similarity function for phaleasses. To come up
with suitable similarity functions is part of the domain model—very much like determimiggod
representation of the inputs—and we assume here that it is given.

4.2.2 ALGORITHMS

As in the multiclass case, we assume that the number of classes is small enqegfoto an
exhaustive search.

4.2.3 ARSENESS

Proposition 20 can be generalized in the following way:

Proposition 24 Define R= || ®(x;)|| and S= max,c [|A(y) || then||W(xi,y) — W(xi,Y)||? < 2R?S
forally,y € .

Proof (W(xi,y), W(xi,y)) = [|®(x)||?-||A(Y)||? < RS. In the last step, we have used Proposi-
tion 21. |

4.3 Label Sequence Learning

The next problem we would like to formulate in the joint feature map framewattkeigproblem of
label sequence learning, or sequence segmentation/annotation. Hegeaths to predict a label
sequence = (y1,...,y") for a given observation sequenge= (x*,...,x"). In order to simplify
the presentation, let us assume all sequences are of the sameTenf#t us denote by the
set of possible labels for each individual variafflgi.e. 9 = =T. Hence each sequence of labels is
considered to be a class of its own, resulting in a multiclass classification prabte |=| different
classes. To model label sequence learning in this manner would of awatree very useful, if one
were to apply standard multiclass classification methods. However, this cavebsome by an
appropriate definition of the discriminant function.

4.3.1 MODELING

Inspired by hidden Markov model (HMM) type of interactions, we praptsdefined to include
interactions between input features and labels via multiple copies of the ieguirés as well as
features that model interactions between nearby label variables. ihiaggemost intuitive to start
from the discriminant function

F(X,y;w Zi ; Wo, D(x))3(Y, 0) Jrr]Ti1 Ezzzv“vmgé(yt,c)é(y‘“ﬁ)
< Zlq) ) @ AS(y > < zi/\c ®/\Cyt+1> (13)

Herew = (W', W')’, A denotes the orthogonal representation of labels Byandn > O is a scaling
factor which balances the two types of contributions. Itis straightforiarelad off the joint feature
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map implicit in the definition of the HMM discriminant from Equation (13),

(S e() @AS(Y)
W(x,y) = (n th 11/\C(yt) ®/\C(y(+1)> .

Notice that similar to the multiclass case, we can apply Proposition 21 in the caseimiplicit
representation oo via a kernel functiorK and the inner product between labeled sequences can
thus be written as

T-1
(W((x,y)), ¥(xy)) = 215 YV, PKX) +02 Y 8, ¥)3( Ly, (14)

st st=1

A larger family of discriminant functions can be obtained by using more ploeature functions

Y. We would like to mention three ways of extending the previous HMM discriminkist of

all, one can extract features not just frofy but from a window around!, e.g. replacingb(x')

with ®(x!=", ... xt ..., x!*"). Since the same input pattechnow occurs in multiple terms, this has
been called the use olverlappingfeatures (Lafferty et al., 2001) in the context of label sequence
learning. Secondly, it is also straightforward to include higher ordetabel interactions beyond
pairwise interactions by including higher order tensor terms, for instdaisel, tripletsy; A°(y') ®
AS(y+1) @ AS(y+2), etc. Thirdly, one can also combine higher ordéeatures with input features,
for example, by including terms of the tye ®(x!) @ AS(y') @ AS(y1).

4.3.2 ALGORITHMS

The maximization ofw,W(x;,y)) overy can be carried out by dynamic programming, since the
cost contributions are additive over sites and contain only linear aneésteaeighbor quadratic
contributions. In particular, in order to find the best label sequ§nés;i, one can perform Viterbi
decoding (Forney Jr., 1973; Schwarz and Chow, 1990), which lsandatermine the second best
sequence for the zero-one loss (2-best Viterbi decoding). Viterboding can also be used with
other loss functions by computing the maximization for all possible values of sisglmction.

4.3.3 PARSENESS

Proposition 25 Define R= max ||®(x)||; then||W(x;,y) — W(xi,Y)|? < 2T2(R?+n?)

Proof Notice that|[W(x,y)[|% = || 3 ®(x}) @ AY)||? + || 5 AY) @ Ay )% The first
squared norm can be upper bounded by

Hzm )R AW = ZZ@ 3(y%y) < T°R?

and the second one I?T2, which yields the claim. [ |

4.4 Sequence Alignment

Next we show how to apply the proposed algorithm to the problem of leatoiafign sequences
x € ¥*, whereX* is the set of all strings over some finite alphabefor a given pair of sequences
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x € £* andy € Z*, alignment methods like the Smith-Waterman algorithm select the sequence of
operations (e.g. insertion, substitution) that transfoximso y and that maximizes a linear objective
function

a(x,y) = argmaxw, ¥(x,y,a))

acAq

that is parameterized by the operation scave®(x,y, a) is the histogram of alignment operations.
The value of(w,¥(x,y,a(x,y))) can be used as a measure of similarity betweandy. It is the
score of the highest scoring sequence of operations that transtomtasy. Such alignment models
are used, for example, to measure the similarity of two protein sequences.

4.4.1 MODELING

In order to learn the score vectar we use training data of the following type. For each native
sequence; there is a most similar homologous sequeycalong with the optimal alignmerg;.

In addition we are given a set of decoy sequenées= 1,...,k with unknown alignments. Note
that this data is more restrictive than what Ristad and Yianilos (1997) carisitleeir generative
modeling approach. The goal is to learn a discriminant functitimat recognizes the homologous
sequence among the decoys. In our approach, this correspondsing fiweight vectow so that
homologous sequences align to their native sequence with high scortbaatite alignment scores
for the decoy sequences are lower. Wih= {y;, y, ...,y}‘} as the output space for the i-th example,
we seek av so that(w, W(x;,yi,a)) exceedgw, W(x;,yt, a)) for all t anda. This implies a zero-one
loss and hypotheses of the form

f(xi) = argmaxmax(w, ¥(x,y,a)) . (15)
yeor @

The design of the feature m&p depends on the set of operations used in the sequence alignment
algorithm.

4.4.2 ALGORITHMS

In order to find the optimal alignment between a given native sequeane a homologous/decoy
sequence as the solution of

maax(w, Y(x,y,a)), (16)

we can use dynamic programming as e.g. in the Smith-Waterman algorithm. To sobrgmiax
in Equation (15), we assume that the numkef decoy sequences is small enough, so that we can
select among the scores computed in Equation (16) via exhaustive .search

4.4.3 SARSENESS

If we select insertion, deletion, and substitution as our possible operagank (non-redundant)
operation reads at least one character in eithery. If the maximum sequence lengthNs then
theL;-norm of W(x,y, a) is at most Al and thel,-norm of W(x,y, a) — W(x,y’,d) is at most 2/2N.
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4.5 Weighted Context-Free Grammars

In natural language parsing, the task is to predict a labeled/tbeesed on a string = (xg, ..., Xk)

of terminal symbols. For this problem, our approach extends the apm®aéiCollins (2000) and
Collins and Duffy (2002b) to an efficient maximum-margin algorithm with gelriess functions.

We assume that each node in the tree corresponds to the application ¢éxt-doee grammar rule.
The leaves of the tree are the symbolg,imvhile interior nodes correspond to non-terminal symbols
from a given alphabei\. For simplicity, we assume that the trees are in Chomsky normal form.
This means that each internal node has exactly two children. An excepéignmexterminal nodes
(non-leaf nodes that have a terminal symbol as child) which have exawtigluld.

4.5.1 MODELING

We consider weighted context-free grammars to model the dependenaeoetandy. Grammar
rules are of the formm [C; — C;j,Cy] or nj[Ci — x|, whereC;,C;,Cy € A are non-terminal symbols,
andx € 7 is a terminal symbol. Each such rule is parameterized by an individual wejghh
particular kind of weighted context-free grammar are probabilistic contegtgrammars (PCFGSs),
where this weighty, is the log-probability of expanding nodd with rule n;. In PCFGs, the indi-
vidual node probabilities are assumed to be independent, so that théifitpli(x,y) of sequence
x and treey is the product of the node probabilities in the tree. The most likely parse tgéeldox
from a designated start symbol is the predicted l&ibe). This leads to the following maximization
problem, where we useiles(y) to denote the multi-set of nodesyn

h(x) = argmaxP(y|x) = argmax{ Z w|} .
yey yey nerulesly)

More generally, weighted context-free grammars can be used in ounfiaias follows.W(x,y)
contains one featuréjx for each node of type;jx[Ci — C;j,Cy] and one featurd; for each node

of typen [Ci — X;]. As illustrated in Figure 1, the number of times a particular rule occurs in the
tree is the value of the feature. The weight veatocontains the corresponding weights so that

<W7 LP(X7Y)> = Zn|erules(y) W.
Note that our framework also allows more compMXx,y), making it more flexible than

PCFGs. In particular, each node weight can be a (kernelized) lineatidn of the fullx and
the span of the subtree.

4.5.2 ALGORITHMS

The solution of argmax - (w,W(x,y)) for a givenx can be determined efficiently using a CKY-
Parser (see Manning and Schuetze, 1999), which can also returadtedsbest parse for learn-
ing with the zero-one loss. To implement other loss functions, 4iKg;,y) = (1 — Fi(y;,Yy)), the
CKY algorithm can be extended to compute both argimaxl — (w,d¥i(y)))A(yi,y) as well as
argmax. o (A(Yi,y) — (w,8%i(y))) by stratifying the maximization over all values 6f(yi,y) as
described in Joachims (2005) for the case of multivariate classification.
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[ fit0/l tax0/1] fit A taxA |
4 training instances per class
acc 28.32  28.32| 27.47 29.74, +5.01%
N-loss| 1.36 132 130 1.21] +12.40%
2 training instances per class
acc 20.20 20.46| 20.20 21.73| +7.57%
N-loss| 1.54 151 139 1.33]| +13.67%

Table 1: Results on the WIPO-alpha corpus, section D with 160 groupg Gsiold and 5-fold
cross validation, respectively. ‘flt’ is a standard (flat) SVM multiclass moftiek, the
hierarchical architecture. ‘0/1’ denotes training based on the clasiifidass, A\’ refers
to training based on the tree loss.

4.5.3 ARSENESS

Since the trees branch for each internal node, a tree over a sequefileagthN hasN — 1 internal
nodes. Furthermore, it h&spre-terminal nodes. This means that thenorm of W(x,y) is 2N — 1
and that the_,-norm of W(x,y) — W(x,y’) is at most,/4N2 + 4(N — 1)2 < 2v/2N.

5. Experimental Results

To demonstrate the effectiveness and versatility of our approach, phedjit to the problems of
taxonomic text classification (see also Cai and Hofmann, 2004), namedretignition, sequence
alignment, and natural language parsing.

5.1 Classification with Taxonomies

We have performed experiments using a document collection released Wyottee Intellectual
Property Organization (WIPQO), which uses the International Patensifitagion (IPC) scheme. We
have restricted ourselves to one of the 8 sections, namely section D toanefsl, 710 documents
in the WIPO-alpha collection. For our experiments, we have indexed the tdlelamm tags. We
have furthermore sub-sampled the training data to investigate the effeat tfaihing set size.
Document parsing, tokenization and term normalization have been pedavitiethe MindServer
retrieval enginé. As a suitable loss functior\, we have used a tree loss function which defines
the loss between two classgsandy’ as the height of the first common ancestoryadindy’ in
the taxonomy. The results are summarized in Table 1 and show that the @dopiesarchical
SVM learning architecture improves performance over the standard mult8\dgsin terms of
classification accuracy as well as in terms of the tree loss.

5.2 Label Sequence Learning

We study our algorithm for label sequence learning on a named entityrmigiomg(NER) problem.
More specifically, we consider a sub-corpus consisting of 300 sexgeinam the Spanish news
wire article corpus which was provided for the special session of C@90R devoted to NER.

2. This software is available &tt p: / / www. r ecomi nd. com
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Method| HMM | CRF| PerceptronSVM
Error 9.36 | 5.17 5.94 5.08

Table 2: Results of various algorithms on the named entity recognition task.

Method | Train Err| Test Err| Const | Avg Loss
SVM, 0.2+0.1 | 5.1+0.6 | 2824+106| 1.02+0.01
SVM2AS 0.4+0.4 | 5.14+-0.8| 2626+225| 1.10+0.08
SVMZAm 0.3+0.2 | 5.1+0.7| 2628+119| 1.17+0.12

Table 3: Results for various SVM formulations on the named entity recognitsi (a= 0.01,
c=1).

The label set in this corpus consists of non-name and the beginning atiduadion of person
names, organizations, locations and miscellaneous names, resulting in & {ata® different
labels. In the setup followed in Altun et al. (2003), the joint feature ’¥ép,y) is the histogram
of state transition plus a set of features describing the emissions. An adapsesh of the Viterbi
algorithm is used to solve th@rgmaxin line 6. For both perceptron and SVM a second degree
polynomial kernel was used.

The results given in Table 2 for the zero-one loss, compare the gemerM with condi-
tional random fields (CRF) (Lafferty et al., 2001), Collins’ perceptaod the SVM algorithm. All
discriminative learning methods substantially outperform the standard H&&tdition, the SVM
performs slightly better than the perceptron and CRFs, demonstrating tbfitlodém large margin
approach. Table 3 shows that all SVM formulations perform comparatiijhuted to the fact the
vast majority of the support label sequences end up having Hamming dgistdaadhe correct label
sequence. Notice that for 0-1 loss functions all three SVM formulatiomgauivalent.

5.3 Sequence Alignment

To analyze the behavior of the algorithm for sequence alignment, we ootestra synthetic dataset
according to the following sequence and local alignment model. The nativeeace and the decoys
are generated by drawing randomly from a 20 letter alphabet1,..,20} so that lettec € Z has
probabilityc/210. Each sequence has length 50, and there are 10 decoys persegtience. To
generate the homologous sequence, we generate an alignment stringtbf3érconsisting of 4
characters “match”, “substitute”, “insert” , “delete”. For simplicity of illudtom, substitutions
are alwayx — (cmod 20 + 1. In the following experiments, matches occur with probabiliy, 0
substitutions with G4, insertion with (2, deletion with 02. The homologous sequence is created
by applying the alignment string to a randomly selected substring of the natieshortening of
the sequences through insertions and deletions is padded by additintatraharacters.

We model this problem using local sequence alignment with the Smith-Watermeanitlaig
Table 4 shows the test error rates (i.e. the percentage of times a decdtgriedénstead of the
homologous sequence) depending on the number of training examplesesitis are averaged
over 10 train/test samples. The model contains 400 parameters in the sulpstitatiix 1 and a
costd for “insert/delete”. We train this model using the SY&hd compare against a generative
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Train Error Test Error

n| GenMod | SVM, GenMod | SVM,
1| 20.0+13.3| 0.0+0.0 | 74.3+2.7 | 47.0+4.6
2| 20.0+8.2 | 0.0+0.0 | 54.5+3.3 | 34.3+4.3
4| 10.0&£5.5 | 2.0+£2.0| 28.0+£2.3 | 14.4£1.4
10| 2.0+£1.3 | 0.0+£0.0| 10.2+0.7| 7.1£1.6
20| 2.5+0.8 | 1.0+0.7| 3.4+£0.7 | 5.2+0.5
40| 2.0+£1.0 | 1.0+0.4| 2.3+0.5 | 3.0+0.3
80| 2.8+0.5 | 2.0+0.5| 1.9+£04 | 2.8+0.6

Table 4: Error rates and number of constraiigisdepending on the number of training examples
(e=0.1,C=0.01).
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Figure 2: Number of constraints added®depending on the number of training examples (middle)
and the value of (right). If not stated otherwise€,= 0.1,C = 0.01, andn = 20.
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sequence alignment model, where the substitution matrix is compufég asog (%) (see

e.g. Durbin et al., 1998) using Laplace estimates. For the generative madstport the results
for 8= —0.2, which performs best on the test set. Despite this unfair advantageyh@&forms
better for low training set sizes. For larger training sets, both methodsrpedimilarly, with a
small preference for the generative model. However, an advantalye 8iVM approach is that it is
straightforward to train gap penalties.

Figure 2 shows the number of constraints that are add&bfore convergence. The graph
on the left-hand side shows the scaling with the number of training exampleqrefigcted by
Theorem 18, the number of constraints is low. It appears to grow suddneith the number of
examples. The graph on the right-hand side shows how the number dfaiotssin the finalS
changes with lo¢). The observed scaling appears to be better than suggested by thédapper
in Theorem 18. A good value faris 0.1. We observed that larger values lead to worse prediction
accuracy, while smaller values decrease efficiency while not providirlger benefit.
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Train Test Training Efficiency

Method | Acc | Prec| Rec| F; | Acc | Prec| Rec| F; | CPU-h| %SVM | lter | Const
PCFG 61.4| 92.4| 88.5|90.4| 55.2| 86.8| 85.2| 86.0 0 N/A | N/JA| N/A
SVM, 66.3| 92.8|91.2| 92.0| 58.9| 85.3|87.2|86.2| 1.2 81.6 17 | 7494
SVM?S 62.21 93.9/90.4|92.1|58.9| 88.9|88.1/88.5| 3.4 105 12 | 8043
SVM§m 63.5|93.9/90.8| 92.3| 58.3| 88.7|88.1|88.4| 3.5 18.0 16 | 7117

Table 5: Results for learning a weighted context-free grammar on the RPeahank.

5.4 Weighted Context-Free Grammars

We test the feasibility of our approach for learning a weighted contegtgrammar (see Figure 1)
on a subset of the Penn Treebank Wall Street Journal corpus. Wga&leothe 4098 sentences of
length at most 10 from sections F2-21 as the training set, and the 163cEntémength at most 10
from F22 as the test set. Following the setup in Johnson (1998), we asad bn the part-of-speech
tags and learn a weighted grammar consisting of all rules that occur in thiegrdetta. To solve the
argmaxin line 6 of the algorithm, we use a modified version of the CKY parser of Mahkgor®

The results are given in Table 5. They show micro-averaged precigoall, andF; for the
training and the test set. The first line shows the performance of thealimed?CFG model using
the maximum likelihood estimate (MLE) as computed by Johnson’s implementationsetioad
line show the SVMwith zero-one loss, while the following lines give the results for Fadoss
A(yi,y) = (1—Fa(yi,y)) using SVM; *and SVME™. All results are fo€ = 1 ande = 0.01. All val-
ues ofC between 10! to 1¢? gave comparable prediction performance. While the zero-one loss—
which is also implicitly used in Perceptrons (Collins and Duffy, 2002a; Colk@$§)2)—achieves
better accuracy (i.e. predicting the complete tree correctly)F{kszore is only marginally better
compared to the PCFG model. However, optimizing the SVM forRfyoss gives substantially
betterF;-scores, outperforming the PCFG substantially. The difference is sigmifeccording to a
McNemar test on th&;-scores. We conjecture that we can achieve further gains by inetnpgr
more complex features into the grammar, which would be impossible or at blestasvto use in
a generative PCFG model. Note that our approach can handle arbitrdeiar{e.g. with kernels
and overlapping features) for which thegmaxin line 6 can be computed. Experiments with such
complex features were independently conducted by Taskar et al.{Rb@4ed on the algorithm
in Taskar et al. (2004a). While their algorithm cannot optimize F1-scotkeasaining loss, they
report substantial gains from the use of complex features.

In terms of training time, Table 5 shows that the total number of constraintsl aoltlee working
set is small. It is roughly twice the number of training examples in all cases. \Wiglgaining is
faster for the zero-one loss, the time for solving the QPs remains roughiparable. The re-
scaling formulations lose time mostly on thegmaxin line 6 of the algorithm. This might be sped
up, since we were using a rather naive algorithm in the experiments.

6. Conclusions

We presented a maximum-margin approach to learning functional depéesiéraccomplex output
spaces. In particular, we considered cases where the prediction isctustd object or where
the prediction consists of multiple dependent variables. The key idea is tol thederoblem as

3. This software is available att p: // wwv. cog. br own. edu/ ~nj / Sof t war e. ht m
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a (kernelized) linear discriminant function over a joint feature space mftinand outputs. We
demonstrated that our approach is very general, covering problemsnfrtural language parsing
and label sequence learning to multilabel classification and classification wtfibitdeatures.

While the resulting learning problem can be exponential in size, we presantalgorithm for
which we prove polynomial convergence for a large class of problenesalgd evaluated the al-
gorithm empirically on a broad range of applications. The experiments skaivthih algorithm is
feasible in practice and that it produces promising results in comparisomt@miional genera-
tive models. A key advantage of the algorithm is the flexibility to include diffeless functions,
making it possible to directly optimize the desired performance criterion. Funtre, the ability
to include kernels opens the opportunity to learn more complex dependeanipaied to conven-
tional, mostly linear models.
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