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ABSTRACT 

 
Recently, we have developed a novel discriminative training 

method named large-margin minimum classification error (LM-

MCE) training that incorporates the idea of discriminative margin 

into the conventional minimum classification error (MCE) training 

method. In our previous work, this novel approach was formulated 

specifically for the MCE training using the sigmoid loss function 

and its effectiveness was demonstrated on the TIDIGITS task 

alone. In this paper two additional contributions are made. First, 

we formulate LM-MCE as a Bayes risk minimization problem 

whose loss function not only includes empirical error rates but also 

a margin-bound risk. This new formulation allows us to extend the 

same technique to a wide variety of MCE based training. Second, 

we have successfully applied LM-MCE training approach to the 

Microsoft internal large vocabulary telephony speech recognition 

task (with 2000 hours of training data and 120K of vocabulary) 

and achieved significant recognition accuracy improvement across-

the-board. To our best knowledge, this is the first time that the 

large-margin approach is demonstrated to be successful in large-

scale speech recognition tasks. 

 

Index Terms—minimum classification error training, 

discriminative training, large-margin learning  

 

1. INTRODUCTION 

 
Discriminative training for hidden Markov models (HMMs) has 

been a central theme in speech recognition research for many 

years [2][3][10][11][13][15]. The essence of these discriminative 

training algorithms is the adoption of optimization criteria that are 

directly or indirectly related to the empirical error rate in the 

training set. 

A key issue in discriminative training is its generalization 

ability, i.e., the ability to translate gains in the training set to the 

test set. In the past, the generalization ability of discriminative 

training is usually achieved by optimizing the smoothed empirical 

training set error rate. Recently, many studies have been 

conducted to incorporate margins (distance between the well 

classified samples and the decision boundary) into the 

discriminative training process [6][7][8][9][14][16] to further 

improve the generalization ability. For example, Li and Jiang 

[7][8], and Liu, Jiang and Rigazio [9] proposed maximizing the 

margins directly using the gradient descent algorithm [7][9] and 

the semi-definite programming [8] when the training set error rate 

is very low. Li, Yuan and Lee [6], Yu et al. [16], and Sha and Saul 

[14] proposed optimizing some form of combined scores of the 

margin and empirical error rate. Positive results have been 

reported on small tasks using these techniques but not yet on 

large-scale automatic speech recognition (ASR) tasks in the past. 

Our current work is an extension to our recently proposed 

novel discriminative training method named large-margin 

minimum classification error (LM-MCE) training [16] that 

incorporates the idea of discriminative margin into the 

conventional MCE training method. The basic idea of LM-MCE is 

to include the margin in the optimization criteria along with the 

smoothed empirical error rate and make the correct samples 

classified well away from the decision boundary. To successfully 

incorporate the margin, we proposed increasing the discriminative 

margin gradually over iterations. This allows for mitigating the 

side effect of introducing additional outlier tokens (tokens that are 

far away from the center of the loss function and have no effect in 

adjusting the model parameters) when a fixed large margin is 

used. LM-MCE can be directly applied to the HMM trained using 

the maximum likelihood (ML) criteria and has achieved 17% 

relative word error rate reduction (WERR) and 19% relative string 

error rate reduction (SERR) in the TIDIGITS corpus [5] compared 

with the conventional MCE training. 

In our previous work [16], LM-MCE was formulated 

specifically for the MCE training using sigmoid loss function and 

its effectiveness was demonstrated only on small vocabulary 

speech recognition tasks. In this paper we made two additional 

contributions. First, we formulate LM-MCE as a Bayes risk 

minimization decision problem whose loss function not only 

includes empirical error rates but also a margin bound risk. This 

new formulation allows us to extend the same technology to a 

wide variety of MCE training methods. Second, we successfully 

apply our LM-MCE training approach to the Microsoft internal 

large vocabulary telephony speech recognition task (with 2000 

hours of training data and 120K of vocabulary) and achieved 

significant recognition accuracy improvement across-the-board. 

The rest of the paper is organized as follows. In section 2, we 

formulate the LM-MCE training method as a Bayes risk 

minimization problem. In section 3, we apply LM-MCE to the 

Microsoft internal large vocabulary telephony speech recognition 

database to train an acoustic model (AM), evaluate it with 

multiple commercial telephony ASR test sets, and demonstrate 

that our LM-MCE is effective for large-scale modeling and 

recognition tasks. We conclude the paper in section 4. 



2. LM-MCE TRAINING CRITERIA 
 

2.1. MCE Training 
 

MCE training was traditionally formulated as a problem of 

optimizing the smoothed empirical training set error rate and the 

sigmoid function is usually used as the cost function. Recently, 

McDermott and Katagiri [12] have shown that the sigmoid 

function based MCE training can be made equivalent to 

optimizing the estimated empirical test set error rate using the 

Parzen window based non-parametric distribution estimation. 

Consider a C-class classification problem, where each 

observation sample x is to be classified into one of the C classes. 

The objective of the classifier is to design a mapping or decision 

function F(x) from the observation space x∈ℵ to the discrete set 

( ) , 1,2,..., .iC F x i C= ∈ =ℕ  In MCE, we use the zero-one risk 

function ( )ji i jr C Cδ= ≠  for the cost or risk of classifying a class-

j observation into class-i, and use the decision rule 
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classifier parameters denoted byΛ , and we define the anti-

discriminant function as ( ; ) max ( ; )
i k

k i
G x g x

≠
Λ = Λ . Give this, the 

expected overall risk is 

[ ]

1

1

( ; ) 01

( ( ) | ) ( )

[ ( ; ) 0] ( | ) ( )

( [ ( ; ) 0] ( | ))

( ) ( | ) ,

j

x

C

j j

jx

C

j j j

j x

D x

x

C

j x j

j

r F x x p x dx

D x P C x p x dx

P C D x p x C dx

P C p x C dx

δ

δ

=

=

Λ ≥=

=

Λ ≥

= Λ ≥

=

ℜ

 
=  

 

∫

∑∫

∑ ∫

∑ ∫

 (2) 

where 
1

( ) / /
C

j j i j

i

P C R R R R
=

≈ =∑ . We now convert the problem 

from the feature domain to the score domain and the expected 

Bayes classification risk (2) becomes  

( )1 0 :

1 0

( | )
( )

( ; ) /

( ) ( | ) ,

j j

j

C
x j

j j

j jS D x D

C

j D j

j

p x C
P C dSdD

dD x dx

P C p D C dD

∞

= =

∞

=

ℜ =
Λ

=

∑ ∫ ∫

∑ ∫
 (3) 

where 
( ):

( | )
( | )

( ; ) /j

j j

x j

D j

jS D x D

p x C
p D C dS

dD x dx= Λ∫≜  is defined as the 

distribution for the misclassification score for class jC  and can be 

estimated using the Parzen window 

( ) ,

1

1 1
|

j

j

R

r j

D j D

rj r r

D D
p D C W

R H H=

− 
≈  

 
∑ , (4) 

where ,r jD is the misclassification score associated with the 

training data sample xr labeled as class j, jR  is the number of 

training samples for class j, and 
rH is the bandwidth of the one-

dimensional kernel function 
DW  in the score domain. As an 

example, if we choose the symmetric kernel function 
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and we obtain the conventional MCE training criteria with 

sigmoid loss function. We want to mention two observations here. 

First, the Bayes risk minimization based explanation is more 

generic. Sigmoid function is just one of the loss functions can be 

used in the MCE training. Many different loss functions can be 

derived by choosing different kernel function 
DW . Second, the 

conventional MCE is optimizing an estimated empirical error rate 

on the true distribution of the data if the training set is 

representative. In other words, the conventional MCE has some 

built in generalization ability. This property can also be noticed by 

examining the sigmoid loss function. If a token is correctly 

classified but is close to the decision boundary, the cost associated 

with this token is greater than 0. This means that a similar (but not 

exact) token in the test set might be misclassified. On other hand, 

a token that is mis-classified in the training set and is close to the 

decision boundary would have a cost less than 1, indicating that a 

similar token in the test set might be correctly classified. 

 

2.2. LM-MCE 
 

Note that the generalization ability of the MCE training can be 

further improved through LM-MCE, which embeds discriminative 

margins in the margin-free Bayes risk of (3). We define the 

discriminative margin in the score space as a positive value m >0, 

which represents the extent of the classifier’s tolerant gap (this is 

different from previous work where m was chosen to fit the 

distribution of the training data and might be less than 0). We then 

modify the earlier margin-free version of the integration space in 

(2): { : ( ; ) 0}jx D x Λ ≥  to the new, margin-sensitive one: 

{ : ( ; ) }jx D x mΛ ≥ − . As a result, (3) is changed to 
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with an additional term of “margin-bound” Bayes risk. (6) is 

accordingly changed to 
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The margin-sensitive Bayes risk in the form of (7) can be 

viewed as a principled extension to the traditional MCE [2] in two 

ways. First, the slope of the traditional sigmoid loss function in 

MCE can be adaptive to each training sample. Second, a non-zero 

valued discriminative margin is introduced to improve the gap 

tolerance and generalization ability of the classifier. Note our LM-

MCE criteria can be easily extended when other kernel functions 

are used. 

MCE training is usually carried out using either the 

generalized probabilistic descent (GPD) [4] or extended Baum 

Welch (EBW) method [1], both of which update the HMM 

parameters based on the derivatives of the loss function. The 

introduction of the margin does not change the basic parameter 

updating algorithms. However, setting a fixed large margin as 

described above may introduce additional outlier tokens (as 

illustrated in Figure 1) and thus hurt the training performance. In 

Figure 1, tokens represented with circles belong to class 1 and that 

represented with triangles belong to class 2. In the upper sub-

figures, margins are set to 0 while in the lower sub-figures 

margins are set to a positive value. As can be seen, the token 

represented by the right-most circle in the upper-left sub-figure is 

not an outlier token. However, when the margin is set to a fixed 

large value, it becomes an outlier as indicated in the lower-left 

sub-figure. To overcome this drawback, we proposed using 

gradually increased margins over iterations [16]. In other words, 

the margin is originally set to 0 or even negative and then 

increased over iterations. The training process (as well as the 

change of the margin) stops when the minimum word error rate 

(WER) on the development set is achieved. 
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Figure 1: Illustration of LM-MCE 

3. EXPERIMENTAL RESULTS 

 
We have applied LM-MCE to the Microsoft internal large-scale 

telephony ASR task in training a large-scale HMM system. The 

test set of this task contains multiple commercial telephony data 

sets. 

  

3.1. Microsoft Telephony Speech Database 

 
The Microsoft internal large-scale telephony speech database is 

used to build a large vocabulary telephony ASR system. The entire 

training set consists of 26 separate corpuses, 2.7 million utterances, 

and a total of 2000 hours of speech data. To improve the 

robustness of acoustic models, data are collected through various 

channels including close-talk telephones, far-field microphones, 

and cell phones. Speech data are recorded under various conditions 

with different environmental noises. Both native English speakers 

and speakers with various foreign accents are included. The text 

prompts include common telephony-application style utterances 

and some dictation-style utterances from the Wall Street Journal 

database. 

The model evaluation is conducted on several typical context 

free grammar (CFG) based commercial telephony ASR tasks. In 

order to examine the generalization ability of our approach, 

database-independent tests are conducted, i.e., the test data are 

collected by vendors that have not contributed to the training 

database.  

The overall vocabulary size of our ASR system is 120K. 

However, the actual vocabulary used for different tests varies from 

one set to another. Table 1 summarizes the test sets used in our 

experiments.  

 

Table 1. Description of the test sets 

 

Name Voc Size Word Count Description 

MSCT 70K 4356 General call center application. 

STK 40K 12851 
Finance applications (stock 

transaction, etc.) 

QSR 55K 5718 

Name dialing application (note: 

pronunciations of most names are 

generated by letter-to-sound rules). 

 

3.2. Experimental Settings 
 

In our experiments, all data are sampled at a rate of 8K Hz. 

Phonetic decision trees are used for state tying and there are about 

6000 tied states with an average of 16 Gaussian mixture 

components per state. The 52-dimensional raw acoustic feature 

vectors are composed of the normalized energy, 12 MFCCs (Mel-

Frequency Cepstrum Coefficients) and their first, second and third 

order time derivatives. The 52-dimensional raw features are further 

projected to form 36-dimensional feature vectors via 

heteroscedastic linear discriminant analysis (HLDA) 

transformation [17].  

The baseline uses ML trained HMMs. The LM-MCE training 

is performed upon the ML-trained model. In the large-margin 

MCE training, the training data is decoded by a simple unigram 

weighted CFG and the competitors are updated every three 

iterations. In the training process the window bandwidth 
rH  is set 

to 30. (While our theory allows us to carry out utterance 



dependent window size, in our current experiment, we use fixed-

sized windows only. Extension to variable-size window is our 

future work.) All HMM model parameters (except transition 

probabilities) are updated. Only two epochs of training are 

performed in the LM-MCE training: the first epoch is performed 

with m =0 and takes three iterations and the second epoch is 

performed with m =6 and also takes three iterations. Due to the 

high cost of training on such a large database, tweaking and tuning 

of our system are largely limited, we had tried one more epoch 

with m =12 but don’t observe further improvement and therefore 

stopped. Better improvement might be achieved if the process was 

continued with decreased (usually by half) margin adjustment 

step. Growth transformation based training algorithm [1] is used 

for fast convergence. 

In order to prevent variance underflow, a dimension 

dependent variance floor is set to be 1/20 of the average variance 

over all Gaussian components along that dimension. Variance 

values that are less than the variance floor will be set to that floor 

value.  

  

3.3. Experimental Results 
 

The WER on the three database-independent test sets are presented 

in Table 2. Compared with the ML baseline, the conventional 

MCE training can reduce the WER by 11.58%. LM-MCE training 

further reduces the WER and achieves 16.57% WER reduction 

over the ML baseline across three test sets. The results shown in 

Table 2 demonstrate that the LM-MCE training approach has 

strong generalization ability in large-scale ASR tasks as well as 

small-scale tasks demonstrated in our earlier work.  

 

Table 2. Experimental results on the three database-independent 

telephony ASR test sets. 

 

Test Set ML MCE LM-MCE 

WER 12.413% 10.514% 10.009% 

Abs. WERR -- 1.899% 2.404% MSCT 

Rel. WERR -- 15.30% 19.37% 

WER 7.993% 7.330% 6.926% 

Abs. WERR -- 0.663% 1.067% STK 

Rel. WERR -- 8.30% 13.35% 

WER 9.349% 8.464% 7.887% 

Abs. WERR -- 0.885% 1.4625 QSR 

Rel. WERR -- 9.47% 15.64% 

WER 9.918% 8.769% 8.274% 

Abs. WERR -- 1.149% 1.644% Average 

Rel. WERR -- 11.58% 16.57% 

 

4. SUMMARY AND CONCLUSIONS 
 

We have formulated our LM-MCE training as a Bayes risk 

minimization problem and applied it to train a large-scale speech 

recognition system. To our best knowledge, this is the first time the 

margin-based discriminative training is successfully applied to 

speech recognition tasks with very large vocabulary size and 

massive amount of training data.  

We extensively tested LM-MCE on multiple database-

independent test sets covering a large number of commercial 

telephony ASR applications and conditions. The experimental 

results demonstrate that the LM-MCE not only works for small-

vocabulary ASR tasks (such as TIDIGITS [5]) but is also well 

suited for large-scale model training and can achieve significant 

performance improvement on large-scale ASR tasks. 
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