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ABSTRACT Softmax cross-entropy loss with L2 regularization is commonly adopted in the machine

learning and neural network community. Considering that the traditional softmax cross-entropy loss simply

focuses on fitting or classifying the training data accurately but does not explicitly encourage a large decision

margin for classification, some loss functions are proposed to improve the generalization performance by

solving the problem. However, these loss functions enhance the difficulty of model optimization. In addition,

inspired by regularized logistic regression, where the regularized term is responsible for adjusting the width

of decision margin, which can be seen as an approximation of support vector machine, we proposed a

large-margin regularization method for softmax cross-entropy loss. The advantages of the proposed loss

are twofold as follows: the first is the generalization performance improvement, and the second is easy

optimization. The experimental results on three small-sample datasets show that our regularization method

achieves good performance and outperforms the existing popular regularization methods of neural networks.

INDEX TERMS Neural networks, cross-entropy loss, large-margin regularization.

I. INTRODUCTION

Over the past several years, deep learning has gained great

success [1]–[6], especially in computer vision; convolutional

neural networks (CNNs) have boosted the state-of-the-art

performance in many visual recognition tasks [7]–[12]. Thus

far, there also are many works that have improved clas-

sical CNNs from the aspects of data augmentation, loss

function, network structure, optimization algorithm, activa-

tion function, decorrelation of neutral vector variables, and

so on [5], [13]–[18].

Among studies on loss function improvement, many

focus on learning features that simultaneously maxi-

mized their intra-class compactness and inter-class separa-

bility [19], [20]. Wen et al. [21] proposed center loss that is

used to add into the normal supervision signal, such as cross-

entropy (CE) loss. The loss aims to simultaneously learn a

center for the deep features of each class and penalizes the

distances between the deep features and their corresponding

class centers for face recognition. Liu et al. [22] introduced
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cosine distance to replace the linear classification score in

original CE loss and proposed congenerous cosine loss for

person recognition.

Similar to congenerous cosine loss, large-margin loss also

tried to change the classification score. The loss reduced com-

pulsively classification score so that the learned features in

each class can be more compact; therefore, the classification

margin can be enlarged [23]. Furthermore, Schroff et al. [24]

proposed that the triplet loss for face recognition minimizes

the distance between a class center, a positive sample and

samples with the same identity; the loss maximizes the dis-

tance between the class center and its negative samples.

Liu et al. [23] built on L-Softmax loss proposed that the

angular Softmax loss pushes convolutional neural networks

(CNNs) to learn angularly discriminative features. The main

difference between L-Softmax loss andA-Softmax loss is that

the classification score of L-Softmax is a linear score, while

the classification score of the A-Softmax [25] is an angular

score. GM-loss assumes that the deep features of all sample

points in a dataset follow a Gaussian mixture distribution,

and the sample points belonging to different classes fol-

low different Gaussian distributions. The GM-loss involves
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FIGURE 1. Subfigure (a) shows the regularized vectors in the proposed large-margin regularized S-CE loss. The
regularized vectors are indicated in red. W1, W2 and W3 represent the weight vectors of three classes in Softmax
regression, and Wi − Wj represents the regularized regression, which includes the vector difference of Wi and Wj ,
i, j ∈ {1, 2, 3}. Subfigure (b) illustrates how the regularization term enlarges the classification margin by taking the
example of two-class classification.

two terms, a classification loss and a log likelihood regular-

ization term, which is responsible for pushing the network to

generate GM distributed features [26]. Actually, many real

datasets do not follow Gaussian distribution [14], [27], [28];

therefore, the loss still has some limitations.

In addition, Softmax cross-entropy (S-CE) loss with L2 or

L1 regularization is commonly adopted for alleviating over-

fitting in the machine learning and neural network commu-

nity, especially when the training samples are insufficient.

Regularization [29] is a method of introducing additional

information to solve an ill-posed problem or prevent over-

fitting by limiting the solution space of a model. L2 regu-

larization is equivalent to placing a Gaussian prior to weight

parameters in the Softmax regression classifier, while L1 reg-

ularization is equivalent to placing a Laplace prior to weight

parameters in the Softmax regression classifier. They limit the

L2 or L1 norm of weight parameters, where the regularization

term coefficient can adjust the effecting main loss function

of the regularization term. Except for L1 and L2 regular-

ization [30], Dropout [31]–[33] randomly drops or freezes

some network neurons during the training process, so it can

constrain the norm of some weights. DropConnect [34] ran-

domly drops or freezes some connections of a network during

the training process and can be seen as a general version of

Dropout. Both Dropout and DropConnect do not have great

effects on small-sample classification due to randomness.

This work builds on the idea that a regularized logistic

regression can be seen as an approximation of a support

vector machine (SVM) [35], [36], which has been proven

in [37]. A SVM is a large-margin classifier, in which the

regularized term is responsible for adjusting the width of the

decision margin. Inspired by the relationship of regularized

logistic regression and SVM, we proposed a large-margin

regularization for S-CE loss to alleviate the overfitting of the

neural network or other learning algorithms that used S-CE

loss. The advantages of this proposed loss are the following:

(i) it obtains a large-margin for classification and improve

the generalization ability of the learning algorithm that used

S-CE loss, and (ii) its optimization is without any constraint

on parameter initialization and optimization algorithm of

the model. The experimental results on three small-sample

datasets show that the proposed regularized loss achieves

good performance and outperforms the existing popular reg-

ularization methods of neural networks.

II. CE LOSS WITH A LARGE-MARGIN REGULARIZATION

Before we introduce the proposed loss, we first review the

S-CE loss that is usually used as the loss function of neural

networks. Denoting the training dataset as D = {(xi, yi)|i ∈

{1, 2, ...,N }} and Yi as one-hot vector of C classes, the non-

zero dimension records the class label of sample xi. Wj and

bj, j ∈ {1, 2, ...,C} represent the parameter vector and bias

of the jth class in Softmax regression, respectively, and the

S-CE loss can then be written as follows:

LS−CE = −

N
∑

i=1

log
( exp(Wyi

T xi + byi )
∑C

j=1 exp(Wj
T xi + bj))

)

. (1)

The optimization goal of a neural network is to minimize

the loss. When the loss function reaches the minimum, 0,

it simply means the model optimized by the loss can classify

the training data 100 percent correctly and does not explicitly

enlarge the decision margin.

A. LARGE-MARGIN REGULARIZED S-CE LOSS

A previous study [37] proved that regularized logistic regres-

sion can be seen as an approximation of SVM. Motivated by

this theory, we focus on extending the regularized logistic

regression to multiple class classification. Since the margin

between a class and any other class needs to be enlarged,

we simultaneously constrain the L2 norm difference vector

of weight vectors of a class and any other class, and we pro-

pose Large-margin Regularized S-CE Loss, which is shown

in (2).

LRCE = LS−CE + β
∑

i6=j

||Wi −Wj||
2, (2)

where LS−CE is responsible for classifying the training

samples correctly. Wi and Wj, i, j ∈ {1, 2, ...,C}, are the

parameter vectors of the ith and jth class in Softmax regres-

sion, and Wi − Wj, the vector difference of Wi and Wj,
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FIGURE 2. Examples of the UIUC-Sport dataset (the upper row), the 15Scenes dataset (the second row) and
the Caltech101 dataset (the bottom row). The UIUC-Sport dataset is an event classification dataset,
the 15Scenes dataset is a scene classification dataset, and the Caltech101 dataset is an object
classification dataset.

are the regularized vectors. Figure 1 shows the regularized

vectors and how the regularized vectors could enlarge the

classification margin.

B. DISCUSSION

In this section, we comment on the proposed loss. First,

our loss function is easy to optimize due to the quadratic

regularized term. Compared with L-Softmax loss, it has no

special requirements on optimization algorithm and parame-

ters initialization.

Second, the proposed loss is a general version of the regu-

larized logistic regression [37]. When the number of classes

equals 2, the proposed loss will degrade into the regular-

ized logistic regression. The regularization term limits the

L2 norm of the difference vector of any parameter vectors

in Softmax regression; thus, it enlarges the distances from

sample points to decision boundary between the class that

the sample points belong to other classes. It is noted that

generalizing the regularized logistic regression is not straight-

forward because the correspondence between the regularized

parameter vector in logistic regression and the one in Softmax

regression cannot be derived easily.

Third, the proposed loss is more adapted to the situation

in which features have been fixed or compact features are

difficult to learn. There exists an implicit assumption under

our loss, that is, the feature embedding of data points is totally

frozen or has little change, which is different from L-Softmax

loss, GM-Softmax loss and A-Softmax loss. In these losses,

the underground assumption is that the features of the sample

points are learnable. Unlike these loss functions, the proposed

loss focuses on constraint weight vectors in the Softmax

classification layer to obtain a large decision margin.

III. EXPERIMENTAL RESULTS

For the experiments, in order to fully evaluate the proposed

method, we compare it with four methods and use three

TABLE 1. Dataset statistics in this paper: category, training data and test
data sizes.

challenging small-sample datasets. We especially compare

these methods with the following four aspects: classifica-

tion accuracies, paired Student’s t-test, feature visualiza-

tion, and the effect of varying the activation function and

initialization.

A. DATASETS AND FEATURES

1) DATASETS

We conduct experiments on three challenging small-sample

datasets, including the UIUC-Sports dataset (UIUC) [38],

the 15 Scenes dataset (15Scenes) [39], and the Caltech

101 dataset (caltech101) [40], which are widely used to eval-

uate small-sample image classification. The detail statistics

with category numbers and data splits of the three datasets

are summarized in Table 1, and the example images are shown

in Figure 2.

2) FEATURES

Since discriminative features are quite important for image

classification, we adopt a convolutional neural network fea-

ture extractor, VGG16 [41], which is pre-trained on the

ImageNet dataset. First, we resize the images into iden-

tical sizes of 256 × 256 and extract the image features

using the pre-trained VGG16 network. Second, we reserve

the features of the last convolutional layer and simply flat-

ten them. Finally, the features dimension of each image is

512 × 8 × 8 = 32768.
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FIGURE 3. Comparison of accuracies obtained by the methods: fully connected network with L2 regularization (FC-L2), fully connected network with
Dropout (FC-D), fully connected network with DropConnect (FC-DC), and fully connected network with large-margin Softmax loss (FC-L), and our loss
(Ours) via boxplots on the UIUC, 15Scenes, and Caltech101 datasets. In each box plot, each method runs 60 rounds.

B. COMPARED METHODS AND THEIR IMPLEMENTATION

To evaluate the classification performance of the proposed

loss on the aforementioned three datasets, we compare a

fully connected network (FC) with the proposed loss, short

for Ours, with the following four baseline methods:

1) FC-L2

fully connected network with L2 regularization. We use a

fully connected network with two layers, where the activation

functions of the first and second layers are rectified linear unit

function (Relu) and Softmax, respectively.

2) FC-D

fully connected network with Dropout. We add a Dropout

layer after the hidden layer of FC-L2; the probability that

a neuron unit is dropped is 0.5. Except for this difference,

the other settings of FC-Dropout are identical to FC-L2.

3) FC-DC

fully connected network with DropConnect. We add a layer

after the hidden layer of FC; the probability that a neuron unit

is dropped is 0.5, and the other settings of FC-L2 are kept

unchanged.

4) FC-LS

fully connected network with large-margin Softmax loss.

We use the large-margin Softmax loss [23] instead of the

Softmax cross-entropy loss in FC-L2. Specifically, since the

large-margin Softmax loss is very difficult to optimization,

following [23], we replaced Relu with PReLU and initialize

the network with Kaiming initialization [42].

C. IMPLEMENTATION DETAILS

To make it fair, we adopt the same settings for all the

compared methods. Specifically, we use the same features

extracted with the pre-trained VGG16 and use the minibatch

stochastic gradient descent. The optimization algorithm is the

RMSprop with the initial learning rate of 0.001, the coeffi-

cient of L2 norm is 5e−4, the batch size is 32, and the number

of epochs is 200. All compared methods are implemented by

the Pytorch method.

TABLE 2. Comparison of the classification performance on the UIUC,
15Scenes, and Caltech101 datasets. The methods include the following:
fully connected network with L2 regularized S-CE loss (FC-L2), fully
connected network with Dropout (FC-D), fully connected network with
DropConnect (FC-DC), and fully connected network with large-margin
Softmax loss (FC-LS). Each method runs 60 rounds, and the mean values
and standard deviations of the classification accuracies are reported.

D. CLASSIFICATION ACCURACIES

We run FC-L2, FC-D, FC-DC, FC-LS and Ours on the UIUC,

15Scenes, and Caltech101 datasets for 60 rounds each. The

mean values and standard deviations of the classification

accuracies of 60 rounds are shown in Table 2. A larger mean

and a smaller standard deviation indicate better performance,

which are labeled in bold. The box plot of the classification

accuracies of 60 rounds is shown in Figure 3.

Table 2 shows that on the three datasets, FC-L2 is easy to

overfit and has quite unstable performance. FC-D performs

slightly better than FC-L2 on the UIUC and Caltech101

datasets but has worse performance with FC-L2 on the

15Scenes dataset. FC-DC has competitive performance with

FC-L2 on the Caltech101 dataset but performs worse than

FC-L2 on the UIUC and 15Scenes datasets. FC-LS performs

better than FC-L2 on the UIUC and 15Scenes datasets but

slightly worse than FC-L2 on the Caltech101 dataset.

Our method achieves the best results on the UIUC and

Caltech101 datasets and has a competitive performance with

FC-LS, the best performance, on the 15Scenes dataset. Espe-

cially, our method has the smallest standard deviations of the
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FIGURE 4. Feature visualization of FC-L2 and the proposed method on the UIUC dataset. The first two subfigures are the feature visualization of the
Softmax loss on training data and test data, respectively, and the accuracy on the test data is 83.44%. The points with different colors denote the
features from different classes. The last two subfigures are the feature visualization of our method on training data and test data, respectively, and
the accuracy on the test data is 89.45%.

TABLE 3. p-values of the compared methods, FC-L2, FC-Dropout (FC-D),
FC-DropConnect (FC-DC), and FC-LSoftmax (FC-LS), and the proposed
method by paired Student’s t-test. Each method runs 60 rounds on each
dataset. The scope of p-values is listed in the table (0.005 is the
significance level).

classification accuracies on the UIUC and 15Scenes datasets,

which means that our method is more stable than other

methods.

In addition, Figure 3 shows that on the UIUC dataset,

the box plot of our method is more compact than all the

compared methods, and both the central mark and edges of

the boxes are higher than all the other compared methods;

especially, it has no bad-performing outlier. On the 15Scenes

dataset, the box plot of our method is more compact than FC,

FC-D and FC-DC, but it is close to FC-L. On the Caltech101

dataset, though several of the compared methods are more

compact than ourmethod, ourmethod has higher central mark

and edges of the boxes, which means that our method could

have better performance on this dataset.

E. PAIRED STUDENT’S T-TEST

The experimental results in the previous sections show that

the proposed method obtains better performance. To con-

firm that the improvement is not by chance, we perform a

paired Student’s t-test [43] for the proposed method and other

compared methods, and the p-values are listed in Table 3.

Following [44], the significance level is set as 0.005 in the

paired Student’s t-test. According to Table 3, all the p-values

are much smaller than the significance level. Thus, the null

hypothesis that the compared method has the identical mean

value to the proposed method is always rejected on the UIUC,

15Scenes and Caltech101 datasets.

F. FEATURE VISUALIZATION

In previous experiments, we ran FC-L2 and our method

60 rounds each on the UIUC dataset. In this section,

for the two methods, we select their lowest performance

in 60 rounds, reduce the feature dimensions (the input of

the Softmax layer) as 2 by T-SNE [44] and plot the reduced

features of the training data and test data in Figure 4, where

different colors represent different classes.

From Figure 4, we can observe that on the training dataset,

the features of the fifth and seventh categories learned by our

method are more separable than the ones learned by FC-L2.

That is, the inter-class distance of the features learned by our

method is larger than FC-L2, and the features of the sixth

category learned by our method is more compact than the one

learned by FC-L2. This means that the intra-class distance of

the features learned by our method is smaller than FC-L2,

which shows that in our method has better generalization

performance on the test dataset and indicates our method

learns a large decision margin for classification.

G. EFFECT OF VARYING THE ACTIVATION FUNCTION

AND INITIALIZATION

To show that the proposed loss can be optimized easily,

we evaluate the effect on network parameters of different

activation functions and initialization methods on FC with

the proposed loss (our method) and FC-LS. In particular,

we select two activation functions, ReLU and PReLU, and

two initialization methods, Uniform initialization and Kaim-

ing initialization. Under four combinations of the activa-

tion functions and initialization methods, our method and

FC-LS runs on the UIUC, 15Scenes, and Caltech101 datasets

for 60 rounds each, and the corresponding mean values are

reported in Table 4.

According to Table 4, we can observe the following: first,

when the activation function ReLU is selected, FC-LS cannot

be optimized regardless of which initialization method is

selected. However, our method always has good performance

regardless of which the activation function is selected. Sec-

ond, the network parameter initialization method has slight

effect on performance for both our method and FC-LS. Third,

our method has a good and stable performance. In summary,

the proposed loss is a more general loss function that does

not have more requirements on the activation function and

initialization method of network parameters.
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TABLE 4. Comparison of the classification accuracies obtained by
different methods on the UIUC, 15Scenes, and Caltech101 datasets when
changing the activation function and network initialization. Each setting
for FC with the proposed loss (our method) and FC-LS runs 60 rounds; the
mean values are listed in the table cells.

H. DISCUSSION

The experimental results on the UIUC, 15Scenes, and

Caltech101 datasets show that among the compared meth-

ods, both Dropout and DropConnect did not show an

obvious advantage compared with a network without

Dropout or DropConnect. The reason is that these two meth-

ods train many subnetworks of the original network randomly

in the training phase and in the test phase, no neuron or no

connection is dropped. Due to large randomness, the accuracy

of the subnetworks and the ambiguity among the subnetworks

cannot be ensured, so that they cannot work well on these

small-sample datasets.

FC-LSoftmax performs better than Dropout and DropCon-

nect. Themethod introduces a largemargin idea into the S-CE

loss function so as to learn more discriminative features and

obtain better generalization ability. The important issue of the

method is that it does not easily converge and has require-

ments on activation function and initialization method of

network parameters. In addition, we find that FC-LSoftmax

cannot perform well on image data including more objects,

such as the UIUC and Caltech101 datasets. In contrast, our

method converges easily and can work well for different

initialization methods of network parameters and activation

functions.

Our method shows higher accuracy, better stability, and

easy optimization, which are mainly attributed to the intro-

duction of a regularized term that facilitates a large decision

margin between classes for network or model. A regularized

term is quadratic, which does not add difficulty to parameter

optimization. In contrast, since the regularized term limits

parameter space, the optimization speed is increased. Further-

more, our method obtains the best performance on the UIUC

and Caltech101 datasets and has a competitive performance

with FC-LS on the 15Scenes dataset. The experimental

results on these three datasets suggest that our method obtains

good performance regardless of the image data include more

objects or few objects.

IV. CONCLUSION

In the paper, we proposed a new large-margin regularization

method with easy optimization for Softmax cross-entropy

loss of neural networks. The experimental results on three

small-sample datasets confirmed that our ensemble method

(i) can obtain good generalization performance and outper-

forms the existing popular regularization methods of neural

networks, and (ii) is adapted to optimize the neural network

compared with some newly proposed loss functions. Future

work includes increasing the number of networks and exper-

imenting on different types of networks as well as different

kinds of data, such as speech and text, to evaluate the effec-

tiveness of the proposed loss.
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