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Abstract

Cross-entropy loss together with softmax is ar-

guably one of the most common used super-

vision components in convolutional neural net-

works (CNNs). Despite its simplicity, popularity

and excellent performance, the component does

not explicitly encourage discriminative learning

of features. In this paper, we propose a gen-

eralized large-margin softmax (L-Softmax) loss

which explicitly encourages intra-class compact-

ness and inter-class separability between learned

features. Moreover, L-Softmax not only can ad-

just the desired margin but also can avoid overfit-

ting. We also show that the L-Softmax loss can

be optimized by typical stochastic gradient de-

scent. Extensive experiments on four benchmark

datasets demonstrate that the deeply-learned fea-

tures with L-softmax loss become more discrim-

inative, hence significantly boosting the perfor-

mance on a variety of visual classification and

verification tasks.

1. Introduction

Over the past several years, convolutional neural networks

(CNNs) have significantly boosted the state-of-the-art per-

formance in many visual classification tasks such as ob-

ject recognition, (Krizhevsky et al., 2012; Sermanet et al.,

2014; He et al., 2015b;a), face verification (Taigman et al.,

2014; Sun et al., 2014; 2015) and hand-written digit recog-

nition (Wan et al., 2013). The layered learning architecture,

together with convolution and pooling which carefully ex-

tract features from local to global, renders the strong visu-

al representation ability of CNNs as well as their current

significant positions in large-scale visual recognition tasks.
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Figure 1. Standard CNNs can be viewed as convolutional feature

learning machines that are supervised by the softmax loss.

Facing the increasingly more complex data, CNNs have

continuously been improved with deeper structures (Si-

monyan & Zisserman, 2014; Szegedy et al., 2015), smaller

strides (Simonyan & Zisserman, 2014) and new non-linear

activations (Goodfellow et al., 2013; Nair & Hinton, 2010;

He et al., 2015b). While benefiting from the strong learn-

ing ability, CNNs also have to face the crucial issue of

overfilling. Considerable effort such as large-scale train-

ing data (Russakovsky et al., 2014), dropout (Krizhevsky

et al., 2012), data augmentation (Krizhevsky et al., 2012;

Szegedy et al., 2015), regularization (Hinton et al., 2012;

Srivastava et al., 2014; Wan et al., 2013; Goodfellow et al.,

2013) and stochastic pooling (Zeiler & Fergus, 2013) has

been put to address the issue.

A recent trend towards learning with even stronger features

is to reinforce CNNs with more discriminative information.

Intuitively, the learned features are good if their intra-class

compactness and inter-class separability are simultaneous-

ly maximized. While this may not be easy due to the in-

herent large intra-class variations in many tasks, the strong

representation ability of CNNs make it possible to learn

invariant features towards this direction. Inspired by such

idea, the contrastive loss (Hadsell et al., 2006) and triplet

loss (Schroff et al., 2015) were proposed to enforce extra

intra-class compactness and inter-class separability. A con-
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Figure 2. CNN-leanrned features visualization (Softmax Loss (m=1) vs. L-Softmax loss (m=2,3,4)) in MNIST dataset. Specifically,

we set the feature (input of the L-Softmax loss) dimension as 2, and then plot them by class. We omit the constant term in the fully

connected layer, since it just complicates our analysis and nearly does not affect the performance. Note that, the reason why the testing

accuracy is not as good as in Fig.2 is that we only use 2D features to classify the digits here.

sequent problem, however, is that the number of training

pairs and triplets can theoretically go up to O(N2) where

N is the total number of training samples. Considering

that CNNs often handle large-scale training sets, a subset

of training samples need to be carefully selected for these

losses. The softmax function is widely adopted by many C-

NNs (Krizhevsky et al., 2012; He et al., 2015a;b) due to its

simplicity and probabilistic interpretation. Together with

the cross-entropy loss, they form arguably one of the most

commonly used components in CNN architectures. In this

paper, we define the softmax loss as the combination of a

cross-entropy loss, a softmax function and the last fully

connected layer (see Fig. 1). Under such definition, many

prevailing CNN models can be viewed as the combination

of a convolutional feature learning component and a soft-

max loss component, as shown in Fig. 1. Despite its popu-

larity, current softmax loss does not explicitly encourage

intra-class compactness and inter-class-separability. Our

key intuition is that the separability between sample and pa-

rameter can be factorized into amplitude ones and angular

ones with cosine similarity: Wcx = ‖Wc‖2‖x‖2 cos(θc),
where c is the class index, and the corresponding param-

eters Wc of the last fully connected layer can be regard-

ed as the linear classifier of class c. Under softmax loss,

the label prediction decision rule is largely determined by

the angular similarity to each class since softmax loss us-

es cosine distance as classification score. The purpose of

this paper, therefore, is to generalize the softmax loss to

a more general large-margin softmax (L-Softmax) loss in

terms of angular similarity, leading to potentially larger an-

gular separability between learned features. This is done by

incorporating a preset constant m multiplying with the an-

gle between sample and the classifier of ground truth class.

m determines the strength of getting closer to the ground

truth class, producing an angular margin. One shall see, the

conventional softmax loss becomes a special case of the L-

Softmax loss under our proposed framework. Our idea is

verified by Fig. 2 where the learned features by L-Softmax

become much more compact and well separated.

The L-Softmax loss is a flexible learning objective with ad-

justable inter-class angular margin constraint. It presents

a learning task of adjustable difficulty where the difficulty

gradually increases as the required margin becomes larg-

er. The L-Softmax loss has several desirable advantages.

First, it encourages angular decision margin between class-

es, generating more discriminative features. Its geometric

interpretation is very clear and intuitive, as elaborated in

Section 3.2. Second, it partially avoids overfitting by defin-

ing a more difficult learning target, casting a different view-

point to the overfitting problem. Third, L-Softmax benefits

not only classification problems, but also verification prob-

lems where ideally learned features should have the mini-

mum inter-class distance being greater than the maximum

intra-class distance. In this case, learning well separated

features can significantly improve the performance.

Our experiments validate that L-Softmax can effective-

ly boost the performance in both classification and veri-

fication tasks. More intuitively, the visualizations of the

learned features in Fig. 2 and Fig. 5 show great discrimina-

tiveness of the L-Softmax loss. As a straightforward gener-

alization of softmax loss, L-Softmax loss not only inherits
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all merits from softmax loss but also learns features with

large angular margin between different classes. Besides

that, the L-Softmax loss is also well motivated with clear

geometric interpretation as elaborated in Section 3.3.

2. Related Work and Preliminaries

Current widely used data loss functions in CNNs include

Euclidean loss, (square) hinge loss, information gain loss,

contrastive loss, triplet loss, Softmax loss, etc. To en-

hance the intra-class compactness and inter-class separa-

bility, (Sun et al., 2014) trains the CNN with the combina-

tion of softmax loss and contrastive loss. The contrastive

loss inputs the CNNs with pairs of training samples. If the

input pair belongs to the same class, the contrastive loss

will require their features are as similar as possible. Other-

wise, the contrastive loss will require their distance larger

than a margin. (Schroff et al., 2015) uses the triplet loss

to encourage a distance constraint similar to the contrastive

loss. Differently, the triplet loss requires 3 (or a multiple

of 3) training samples as input at a time. The triplet loss

minimizes the distance between an anchor sample and a

positive sample (of the same identity), and maximizes the

distance between the anchor sample and a negative sample

(of different identity). Both triplet loss and contrastive loss

require a carefully designed pair selection procedure. Both

(Sun et al., 2014) and (Schroff et al., 2015) suggest that

enforcing such a distance constraint that encourages intra-

class compactness and inter-class separability can greatly

boost the feature discriminativeness, which motivates us to

employ a margin constraint in the original softmax loss.

Unlike any previous work, our work cast a novel view on

generalizing the original softmax loss. We define the i-th

input feature xi with the label yi. Then the original softmax

loss can be written as

L =
1

N

∑

i

Li =
1

N

∑

i

− log

(

efyi
∑

j
efj

)

(1)

where fj denotes the j-th element (j ∈ [1,K], K is the

number of classes) of the vector of class scores f , and N

is the number of training data. In the softmax loss, f is

usually the activations of a fully connected layer W , so fyi
can be written as fyi = W T

yi
xi in which Wyi is the yi-th

column of W . Note that, we omit the constant b in fj , ∀j
here to simplify analysis, but our L-Softmax loss can still

be easily modified to work with b (In fact, the performance

is nearly of no difference, so we do not make it complicated

here.). Because fj is the inner product between Wj and xi,

it can be also formulated as fj = ‖Wj‖‖xi‖ cos(θj) where

θi (0 ≤ θj ≤ π) is the angle between the vector Wj and

xi. Thus the loss becomes

Li = − log

(

e‖Wyi
‖‖xi‖ cos(θyi )

∑

j
e‖Wj‖‖xi‖ cos(θj)

)

(2)

3. Large-Margin Softmax Loss

3.1. Intuition

We give a simple example to describe our intuition. Con-

sider the binary classification and we have a sample x from

class 1. The original softmax is to force W T
1 x > W T

2 x

(i.e. ‖W1‖‖x‖ cos(θ1) > ‖W2‖‖x‖ cos(θ2)) in order

to classify x correctly. However, we want to make the

classification more rigorous in order to produce a deci-

sion margin. So we instead require ‖W1‖‖x‖ cos(mθ1) >
‖W2‖‖x‖ cos(θ2) (0 ≤ θ1 ≤ π

m
) where m is a positive

integer. Because the following inequality holds:

‖W1‖‖x‖ cos(θ1) ≥ ‖W1‖‖x‖ cos(mθ1)

> ‖W2‖‖x‖ cos(θ2).
(3)

Therefore, ‖W1‖‖x‖ cos(θ1) > ‖W2‖‖x‖ cos(θ2) has to

hold. So the new classification criteria is a stronger require-

ment to correctly classify x, producing a more rigorous de-

cision boundary for class 1.

3.2. Definition

Following the notation in the preliminaries, the L-Softmax

loss is defined as

Li = − log

(

e‖Wyi
‖‖xi‖ψ(θyi )

e‖Wyi
‖‖xi‖ψ(θyi ) +

∑

j 6=yi
e‖Wj‖‖xi‖ cos(θj)

)

(4)

in which we generally require

ψ(θ) =







cos(mθ), 0 ≤ θ ≤
π

m
D(θ),

π

m
< θ ≤ π

(5)

where m is a integer that is closely related to the classifi-

cation margin. With larger m, the classification margin be-

comes larger and the learning objective also becomes hard-

er. Meanwhile, D(θ) is required to be a monotonically de-

creasing function and D( π
m
) should equal cos( π

m
).
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Figure 3. ψ(θ) for softmax loss and L-Softmax loss.

To simplify the forward and backward propagation, we

construct a specific ψ(θi) in this paper:

ψ(θ) = (−1)k cos(mθ)− 2k, θ ∈ [
kπ

m
,
(k + 1)π

m
] (6)

where k ∈ [0,m − 1] and k is an integer. Combining Eq.

(1), Eq. (4) and Eq. (6), we have the L-Softmax loss that
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Figure 4. Examples of Geometric Interpretation.

is used throughout the paper. For forward and backward

propagation, we need to replace cos(θj) with
W

T
j xi

‖Wj‖‖xi‖
,

and replace cos(mθyi) with

cos(mθyi) = C
0
m cosm(θyi)− C

2
m cosm−2(θyi)(1− cos2(θyi))

+ C
4
m cosm−4(θyyi )(1− cos2(θyyi ))

2 + · · ·

(−1)nC2n
m cosm−2n(θyyi )(1− cos2(θyi))

n + · · ·
(7)

where n is an integer and 2n ≤ m. After getting rid of θ,

we could perform derivation with respect to x and W . It is

also trivial to perform derivation with mini-batch input.

3.3. Geometric Interpretation

We aim to encourage aa angle margin between classes via

the L-Softmax loss. To simplify the geometric interpreta-

tion, we analyze the binary classification case where there

are only W1 and W2.

First, we consider the ‖W1‖ = ‖W2‖ scenario as shown

in Fig. 4. With ‖W1‖ = ‖W2‖, the classification result

depends entirely on the angles between x and W1(W2).

In the training stage, the original softmax loss requires

θ1 < θ2 to classify the sample x as class 1, while the

L-Softmax loss requires mθ1 < θ2 to make the same deci-

sion. We can see the L-Softmax loss is more rigor about the

classification criteria, which leads to a classification mar-

gin between class 1 and class 2. If we assume both softmax

loss and L-Softmax loss are optimized to the same value

and all training features can be perfectly classified, then

the angle margin between class 1 and class 2 is given by
m−1
m+1θ1,2 where θ1,2 is the angle between classifier vector

W1 and W2. The L-Softmax loss also makes the decision

boundaries for class 1 and class 2 different as shown in Fig

4, while originally the decision boundaries are the same.

From another viewpoint, we let θ′1 = mθ1 and assume that

both the original softmax loss and the L-Softmax loss can

be optimized to the same value. Then we can know θ′1 in

the original softmax loss ism−1 times larger than θ1 in the

L-Softmax loss. As a result, the angle between the learned

feature and W1 will become smaller. For every class, the

same conclusion holds. In essence, the L-Softmax loss nar-

rows the feasible angle1 for every class and produces an

angle margin between these classes.

For both the ‖W1‖ > ‖W2‖ and ‖W1‖ < ‖W2‖ scenar-

ios, the geometric interpretation is a bit more complicated.

Because the length of W1 and W2 is different, the feasi-

ble angles of class 1 and class 2 are also different (see the

decision boundary of original softmax loss in Fig. 4). Nor-

mally, the larger Wj is, the larger the feasible angle of its

corresponding class is. As a result, the L-Softmax loss al-

so produces different feasible angles for different classes.

Similar to the analysis of the ‖W1‖ = ‖W2‖ scenario, the

proposed loss will also generate a decision margin between

class 1 and class 2.

3.4. Discussion

The L-Softmax loss utilizes a simple modification over the

original softmax loss, achieving a classification angle mar-

gin between classes. By assigning different values for m,

we define a flexible learning task with adjustable difficulty

for CNNs. The L-Softmax loss is endowed with some nice

properties such as

• The L-Softmax loss has a clear geometric interpreta-

tion. m controls the margin among classes. With big-

ger m (under the same training loss), the ideal margin

between classes becomes larger and the learning dif-

ficulty is also increased. With m = 1, the L-Softmax

loss becomes identical to the original softmax loss.

• The L-Softmax loss defines a relatively difficult learn-

ing objective with adjustable margin (difficulty). A

difficult learning objective can effectively avoid over-

fitting and take full advantage of the strong learning

ability from deep and wide architectures.

• The L-Softmax loss can be easily used as a drop-in

replacement for standard loss, as well as used in tan-

dem with other performance-boosting approaches and

1Feasible angle of the i-th class refers to the possible angle
between x and Wi that is learned by CNNs.
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modules, including learning activation functions, da-

ta augmentation, pooling functions or other modified

network architectures.

4. Optimization

It is easy to compute the forward and backward propagation

for the L-Softmax loss, so it is also trivial to optimize the

L-Softmax loss using typical stochastic gradient descent.

For Li, the only difference between the original softmax

loss and the L-Softmax loss lies in fyi . Thus we only need

to compute fyi in forward and backward propagation while

fj , j 6= yi is the same as the original softmax loss. Putting

in Eq. (6) and Eq. (7), fyi is written as

fyi =(−1)k · ‖Wyi‖‖xi‖ cos(mθi)− 2k · ‖Wyi‖‖xi‖

=(−1)k · ‖Wyi‖‖xi‖

(

C
0
m

( W
T
yi
xi

‖Wyi‖‖xi‖

)m
−

C
2
m

( W
T
yi
xi

‖Wyi‖‖xi‖

)m−2
(1−

( W
T
yi
xi

‖Wyi‖‖xi‖

)2
) + · · ·

)

− 2k · ‖Wyi‖‖xi‖
(8)

where
W

T
yi

x

‖Wyi
‖‖x‖ ∈ [cos(kπ

m
), cos( (k+1)π

m
)] and k is an in-

teger that belongs to [0,m−1]. For the backward propaga-

tion, we use the chain rule to compute the partial derivative:
∂Li

∂xi
=

∑

j
∂Li

∂fj

∂fj
∂xi

and ∂Li

∂Wyi

=
∑

j
∂Li

∂fj

∂fj
∂Wyi

. Because

∂Li

∂fj
and

∂fj
∂xi

,
∂fj
∂Wyi

, ∀j 6= yi are the same for both orig-

inal softmax loss and L-Softmax loss, we leave it out for

simplicity.
∂fyi
∂xi

and
∂fyi
∂Wyi

can be computed via

∂fyi
∂xi

= (−1)k ·

(

C
0
m

m(W T
yi
xi)

m−1
Wyi

(‖Wyi‖‖xi‖)
m−1

−

C
0
m

(m− 1)(W T
yi
xi)

m
xi

‖Wyi‖
m−1‖xi‖m+1

− C
2
m

(m− 2)(W T
yi
xi)

m−3
Wyi

(‖Wyi‖‖xi‖)
m−3

+ C
2
m

(m− 3)(W T
yi
xi)

m−2
xi

‖Wyi‖
m−3‖xi‖m−1

+ C
2
m

m(W T
yi
xi)

m−1
Wyi

(‖Wyi‖‖xi‖)
m−1

− C
2
m

(m− 1)(W T
yi
xi)

m
xi

‖Wyi‖
m−1‖xi‖m+1

+ · · ·

)

− 2k ·
‖Wyi‖xi
‖xi‖

,

(9)

∂fyi
∂Wyi

= (−1)k ·

(

C
0
m

m(W T
yi
xi)

m−1
xi

(‖Wyi‖‖xi‖)
m−1

−

C
0
m

(m− 1)(W T
yi
xi)

m
Wyi

‖Wyi‖
m+1‖xi‖m−1

− C
2
m

(m− 2)(W T
yi
xi)

m−3
xi

(‖Wyi‖‖xi‖)
m−3

+ C
2
m

(m− 3)(W T
yi
xi)

m−2
Wyi

‖Wyi‖
m−1‖xi‖m−3

+ C
2
m

m(W T
yi
xi)

m−1
xi

(‖Wyi‖‖xi‖)
m−1

− C
2
m

(m− 1)(W T
yi
xi)

m
Wyi

‖Wyi‖
m+1‖xi‖m−1

+ · · ·

)

− 2k ·
‖xi‖Wyi

‖Wyi‖
.

(10)

In implementation, k can be efficiently computed by con-

structing a look-up table for
W

T
yi

xi

‖Wyi
‖‖xi‖

(i.e. cos(θyi)). To

be specific, we give an example of the forward and back-

ward propagation when m = 2. Thus fi is written as

fi = (−1)k
2(W T

yi
xi)

2

‖Wyi‖‖xi‖
−
(

2k + (−1)k
)

‖Wyi‖‖xi‖ (11)

where, k =







0,
W

T
yi

xi

‖Wyi
‖‖xi‖

≤ cos(π
2
)

1,
W

T
yi

xi

‖Wyi
‖‖xi‖

> cos(π
2
)
.

In backward propagation,
∂fyi
∂xi

,
∂fyi
∂Wyi

can be computed

with

∂fyi
∂xi

=(−1)k
(

4W T
yi
xiWyi

‖Wyi‖‖xi‖
−

2(W T
yi
xi)

2
xi

‖Wyi‖‖xi‖
3

)

−
(

2k + (−1)k
)‖Wyi‖xi

‖xi‖
,

(12)

∂fyi
∂Wyi

=(−1)k
(

4W T
yi
xixi

‖Wyi‖‖xi‖
−

2(W T
yi
xi)

2
Wyi

‖xi‖‖Wyi‖
3

)

−
(

2k + (−1)k
)‖xi‖Wyi

‖Wyi‖
.

(13)

While m ≥ 3, we can still use Eq. (8), Eq. (9) and E-

q. (10) to compute the formula for forward and backward

propagation.

5. Experiments and Results

5.1. Experimental Settings

We evaluate the generalized softmax loss in two typical

vision applications: visual classification and face verifica-

tion. In visual classification, we use three standard bench-

mark datasets: MNIST (LeCun et al., 1998), CIFAR10

(Krizhevsky, 2009), and CIFAR100 (Krizhevsky, 2009).

In face verification, we evaluate our method on the wide-

ly used LFW dataset (Huang et al., 2007). We only use

a single model in all baseline CNNs to compare our per-

formance. For convenience, we use L-Softmax to denote

the L-Softmax loss. Both Softmax and L-Softmax in the

experiments use the same CNN shown in Table 1.

General Settings: We follow the design philosophy of

VGG-net (Simonyan & Zisserman, 2014) in two aspect-

s: (1) for convolution layers, the kernel size is 3×3 and

1 padding (if not specified) to keep the feature map un-

changed. (2) for pooling layers, if the feature map size

is halved, the number of filters is doubled in order to p-

reserve the time complexity per layer. Our CNN archi-

tectures are described in Table 1. In convolution layers,

the stride is set to 1 if not specified. We implement the

CNNs using the Caffe library (Jia et al., 2014) with our

modifications. For all experiments, we adopt the PReLU

(He et al., 2015b) as the activation functions, and the batch

size is 256. We use a weight decay of 0.0005 and momen-

tum of 0.9. The weight initialization in (He et al., 2015b)
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Layer MNIST (for Fig. 2) MNIST CIFAR10/CIFAR10+ CIFAR100 LFW

Conv0.x N/A [3×3, 64]×1 [3×3, 64]×1 [3×3, 96]×1 [3×3, 64]×1, Stride 2

Conv1.x [5×5, 32]×2, Padding 2 [3×3, 64]×3 [3×3, 64]×4 [3×3, 96]×4 [3×3, 64]×4

Pool1 2×2 Max, Stride 2

Conv2.x [5×5, 64]×2, Padding 2 [3×3, 64]×3 [3×3, 96]×4 [3×3, 192]×4 [3×3, 256]×4

Pool2 2×2 Max, Stride 2

Conv3.x [5×5, 128]×2, Padding 2 [3×3, 64]×3 [3×3, 128]×4 [3×3, 384]×4 [3×3, 256]×4

Pool3 2×2 Max, Stride 2

Conv4.x N/A N/A N/A N/A [3×3, 256]×4

Fully Connected 2 256 256 512 512

Table 1. Our CNN architectures for different benchmark datasets. Conv1.x, Conv2.x and Conv3.x denote convolution units that may

contain multiple convolution layers. E.g., [3×3, 64]×4 denotes 4 cascaded convolution layers with 64 filters of size 3×3.

CIFAR10  Softmax

CIFAR10  L-Softmax(m=4)
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Figure 5. Confusion matrix on CIFAR10, CIFAR10+ and CIFAR100.

and batch normalization (Ioffe & Szegedy, 2015) are used

in our networks but without dropout. Note that we only

perform the mean substraction preprocessing for training

and testing data. For optimization, normally the stochas-

tic gradient descent will work well. However, when train-

ing data has too many subjects (such as CASIA-WebFace

dataset), the convergence of L-Softmax will be more dif-

ficult than softmax loss. For those cases that L-Softmax

has difficulty converging, we use a learning strategy by let-

ting fyi =
λ‖Wyi

‖‖xi‖ cos(θyi )+‖Wyi
‖‖xi‖ψ(θyi )

1+λ and start

the gradient descent with a very large λ (it is similar to op-

timize the original softmax). Then we gradually reduce λ

during iteration. Ideally λ can be gradually reduced to zero,

but in practice, a small value will usually suffice.

MNIST, CIFAR10, CIFAR100: We start with a learning

rate of 0.1, divide it by 10 at 12k and 15k iterations, and

eventually terminate training at 18k iterations, which is de-

termined on a 45k/5k train/val split.

Face Verification: The learning rate is set to 0.1, 0.01,

0.001 and is switched when the training loss plateaus. The

total number of epochs is about is about 30 for our models.

Testing: we use the softmax to classify the testing sam-

ples in MNIST, CIFAR10 and CIFAR100 dataset. In LFW

dataset, we use the simple cosine distance and the nearest

neighbor rule for face verification.

5.2. Visual Classification

MNIST: Our network architecture is shown in Table 1. Ta-

ble 2 shows the previous best results and those for our pro-

posed L-Softmax loss. From the results, the L-Softmax

loss not only outperforms the original softmax loss using

the same network but also achieves the state-of-the-art per-

formance compared to the other deep CNN architectures.

In Fig. 2, we also visualize the learned features by the

L-Softmax loss and compare them to the original softmax
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Method Error Rate

CNN (Jarrett et al., 2009) 0.53
DropConnect (Wan et al., 2013) 0.57

FitNet (Romero et al., 2015) 0.51
NiN (Lin et al., 2014) 0.47

Maxout (Goodfellow et al., 2013) 0.45
DSN (Lee et al., 2015) 0.39

R-CNN (Liang & Hu, 2015) 0.31
GenPool (Lee et al., 2016) 0.31

Hinge Loss 0.47
Softmax 0.40

L-Softmax (m=2) 0.32
L-Softmax (m=3) 0.31
L-Softmax (m=4) 0.31

Table 2. Recognition error rate (%) on MNIST dataset.

Method CIFAR10 CIFAR10+

DropConnect (Wan et al., 2013) 9.41 9.32
FitNet (Romero et al., 2015) N/A 8.39

NiN + LA units (Lin et al., 2014) 10.47 8.81
Maxout (Goodfellow et al., 2013) 11.68 9.38

DSN (Lee et al., 2015) 9.69 7.97
All-CNN (Springenberg et al., 2015) 9.08 7.25

R-CNN (Liang & Hu, 2015) 8.69 7.09
ResNet (He et al., 2015a) N/A 6.43
GenPool (Lee et al., 2016) 7.62 6.05

Hinge Loss 9.91 6.96
Softmax 9.05 6.50

L-Softmax (m=2) 7.73 6.01
L-Softmax (m=3) 7.66 5.94
L-Softmax (m=4) 7.58 5.92

Table 3. Recognition error rate (%) on CIFAR10 dataset. CI-

FAR10 denotes the performance without data augmentation,

while CIFAR10+ is with data augmentation.

loss. Fig. 2 validates the effectiveness of the large mar-

gin constraint within L-Softmax loss. With larger m, we

indeed obtain a larger angular decision margin.

CIFAR10: We use two commonly used comparison proto-

cols in CIFAR10 dataset. We first compare our L-Softmax

loss under no data augmentation setup. For the data aug-

mentation experiment, we follow the standard data aug-

mentation in (Lee et al., 2015) for training: 4 pixels are

padded on each side, and a 32×32 crop is randomly sam-

pled from the padded image or its horizontal flip. In testing,

we only evaluate the single view of the original 32×32 im-

age. The results are shown in Table 3. One can observe that

our L-Softmax loss greatly boosts the accuracy, achieving

1%-2% improvement over the original softmax loss and the

other state-of-the-art CNNs.

CIFAR100: We also evaluate the generalize softmax loss

on the CIFAR100 dataset. The CNN architecture refers to

Table 1. One can notice that the L-Softmax loss outperform

the CNN with softmax loss and all the other competitive

methods. The L-Softmax loss improves more than 2.5%

Method Error Rate

FitNet (Romero et al., 2015) 35.04
NiN (Lin et al., 2014) 35.68

Maxout (Goodfellow et al., 2013) 38.57
DSN (Lee et al., 2015) 34.57

dasNet (Stollenga et al., 2014) 33.78
All-CNN (Springenberg et al., 2015) 33.71

R-CNN (Liang & Hu, 2015) 31.75
GenPool (Lee et al., 2016) 32.37

Hinge Loss 32.90
Softmax 32.74

L-Softmax (m=2) 29.95
L-Softmax (m=3) 29.87
L-Softmax (m=4) 29.53

Table 4. Recognition error rate (%) on CIFAR100 dataset.

Method Outside Data Accuracy

FaceNet (Schroff et al., 2015) 200M* 99.65
Deep FR (Parkhi et al., 2015) 2.6M 98.95
DeepID2+ (Sun et al., 2015) 300K* 98.70

(Yi et al., 2014) WebFace 97.73
(Ding & Tao, 2015) WebFace 98.43

Softmax WebFace 96.53
Softmax + Contrastive WebFace 97.31

L-Softmax (m=2) WebFace 97.81
L-Softmax (m=3) WebFace 98.27
L-Softmax (m=4) WebFace 98.71

Table 5. Verification performance (%) on LFW dataset. * denotes

the outside data is private (not publicly available).

accuracy over the CNN and more than 1% over the current

state-of-the-art CNN.

Confusion Matrix Visualization: We also give the confu-

sion matrix comparison between the softmax baseline and

the L-Softmax loss (m=4) in Fig. 5. Specifically we nor-

malize the learned features and then calculate the cosine

distance between these features. From Fig. 5, one can see

that the intra-class compactness is greatly enhanced while

the inter-class separability is also enlarged.

Error Rate vs. Iteration: Fig. 6 illustrates the relation

between the error rate and the iteration number with differ-

ent m in the L-Softmax loss. We use the same CNN (same

as the CIFAR10 network) to optimize the L-Softmax loss

with m = 1, 2, 3, 4, and then plot their training and testing

error rate. One can observe that the original softmax suffer-

s from severe overfitting problem (training loss is very low

but testing loss is higher), while the L-Softmax loss can

greatly avoid such problem. Fig. 7 shows the relation be-

tween the error rate and the iteration number with different

number of filters in the L-Softmax loss (m=4). We use four

different CNN architecture to optimize the L-Softmax loss

with m = 4, and then plot their training and testing error

rate. These four CNN architectures have the same structure

and only differ in the number of filters (e.g. 32/32/64/128
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Figure 6. Error vs. iteration with different value of m on CIFAR100. The left shows training error and the right shows testing error.
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Figure 7. Error vs. iteration (m=4) with different number of filters on CIFAR100. The left (right) presents training (testing) error.

denotes that there are 32, 32, 64 and 128 filters in every

convolution layer of Conv0.x, Conv1.x Conv2.x and Con-

v3.x, respectively). On both the training set and testing set,

the L-Softmax loss with larger number of filters performs

better than those with smaller number of filters, indicating

L-Softmax loss does not easily suffer from overfitting. The

results also show that our L-Softmax loss can be optimized

easily. Therefore, one can learn that the L-Softmax loss

can make full use of the stronger learning ability of CNNs,

since stronger learning ability leads to performance gain.

5.3. Face Verification

To further evaluate the learned features, we conduct an ex-

periment on the famous LFW dataset (Huang et al., 2007).

The dataset collects 13,233 face images from 5749 persons

from uncontrolled conditions. Following the unrestricted

with labeled outside data protocol (Huang et al., 2007), we

train on the publicly available CASIA-WebFace (Yi et al.,

2014) outside dataset (490k labeled face images belonging

to over 10,000 individuals) and test on the 6,000 face pairs

on LFW. People overlapping between the outside training

data and the LFW testing data are excluded. As preprocess-

ing, we use IntraFace (Asthana et al., 2014) to align the

face images and then crop them based on 5 points. Then

we train a single network for feature extraction, so we on-

ly compare the single model performance of current state-

of-the-art CNNs. Finally PCA is used to form a compact

feature vector. The results are given in Table 5. The gen-

eralize softmax loss achieves the current best results while

only trained with the CASIA-WebFace outside data, and is

also comparable to the current state-of-the-art CNNs with

private outside data. Experimental results well validate the

conclusion that the L-Softmax loss encourages the intra-

class compactness and inter-class separability.

6. Concluding Remarks

We proposed the Large-Margin Softmax loss for the con-

volutional neural networks. The large-margin softmax loss

defines a flexible learning task with adjustable margin. We

can set the parameter m to control the margin. With larger

m, the decision margin between classes also becomes larg-

er. More appealingly, the Large-Margin Softmax loss has

very clear intuition and geometric interpretation. The ex-

tensive experimental results on several benchmark datasets

show clear advantages over current state-of-the-art CNNs

and all the compared baselines.
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