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Abstract

This paper studies dimensionality reduction in a

weakly supervised setting, in which the prefer-

ence relationship between examples is indicated

by weak cues. A novel framework is proposed

that integrates two aspects of the large margin

principle (angle and distance), which simultane-

ously encourage angle consistency between pref-

erence pairs and maximize the distance between

examples in preference pairs. Two specific al-

gorithms are developed: an alternating direction

method to learn a linear transformation matrix

and a gradient boosting technique to optimize a

non-linear transformation directly in the function

space. Theoretical analysis demonstrates that

the proposed large margin optimization criteria

can strengthen and improve the robustness and

generalization performance of preference learn-

ing algorithms on the obtained low-dimensional

subspace. Experimental results on real-world

datasets demonstrate the significance of study-

ing dimensionality reduction in the weakly su-

pervised setting and the effectiveness of the pro-

posed framework.

1. Introduction

High-dimensional data is encountered in many machine

learning applications, is difficult to work with, and suffers
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deterioration in performance due to the “curse of dimen-

sionality”. Dimensionality reduction methods are there-

fore an important and increasingly inherent part of modern

data analysis and processing. Working with a new low-

dimensional space is more efficient and can often be of

advantage for analyzing the intrinsic structure of the data

in various applications, including compact data representa-

tions (Ye et al., 2004), high-dimensional data visualization

(Roweis & Saul, 2000; Tenenbaum et al., 2000), and clas-

sification algorithms (Chen et al., 2005).

Conventional supervised dimensionality reduction algo-

rithms employ explicit labels (e.g., the character of a hand-

written digit or the identity of a face image) for learning.

Here we propose a weakly supervised approach in which

preference relationships between examples are extracted

from prior information for dimensionality reduction. A

weakly supervised approach is preferred to a fully super-

vised approach, since obtaining sufficient labeled data for

large datasets can be expensive, especially when it involves

procedures like human hand labeling, clinical trials, or ex-

perimentation. In some cases explicit labels that corre-

spond to the data do not even exist; for example, in docu-

ment retrieval it is difficult to establish whether a document

is absolutely relevant or irrelevant with respect to the query

without definite criteria. In the weakly supervised setting,

we rely on the preference relationships between examples

rather than their explicit labels, which can be obtained from

both the explicit labels themselves or from other prior in-

formation, such as click count on a document indicating

relevance to a query.

According to the quantity of supervised information used,

existing dimensionality reduction methods can be rough-

ly categorized into unsupervised (Tenenbaum et al., 2000;
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Roweis & Saul, 2000; Hinton & Roweis, 2002), super-

vised (Fukumizu et al., 2003; Lacoste-Julien et al., 2008),

or semi-supervised methods (Memisevic & Hinton, 2005;

Jain et al., 2010; Rai & Daumé III, 2009). Traditional-

ly, principal component analysis (PCA) and kernel PCA

(Hastie et al., 2005) function by preserving the global co-

variance structure of data when the label information is un-

available. Several manifold learning methods, such as Lo-

cally Linear Embedding (LLE) (Roweis & Saul, 2000) and

ISOMAP (Tenenbaum et al., 2000), perform well without

prior information by assuming that the data lie on a low-

dimensional manifold and by preserving the data locali-

ty. Fisher’s Discriminant Analysis (FDA) (Fisher, 1936)

and its extensions (Sugiyama, 2006; 2007) are known to

work well and are useful in practice since they maximize

between-class scatter and minimize within class scatter. By

considering that unlabeled examples are readily available

and labeled ones are fairly expensive to obtain, Yang et. al.

(Yang et al., 2006) extended basic LLE and ISOMAP into

semi-supervised versions. Kim et. al. (Kim et al., 2009)

assumed that all data points are concentrated around a low-

dimensional submanifold and derived the Hessian energy

for semi-supervised dimensionality reduction.

These existing dimensionality reduction algorithms are not

suitable for the weakly supervised setting where preference

relationships between examples are required. Of relevance

to this is preference learning (Fürnkranz & Hüllermeier,

2010; Chu & Ghahramani, 2005; Houlsby et al., 2012),

which aims to learn a model that predicts the underlying

preference relationships between examples. Here, howev-

er, we instead concentrate on how to conduct dimensional-

ity reduction using preference relationships.

This paper proposes a new framework of weakly super-

vised dimensionality reduction that considers two differ-

ent aspects of the large margin principle, the angle lev-

el and distance level. In the angle level, an ideal dimen-

sionality reduction algorithm is capable of generating low-

dimensional examples whose preference relationships can

be linearly predicted. Therefore, the directions of prefer-

ence vectors corresponding to preference pairs should be

consistent. In the distance level, in order to clearly dis-

tinguish the preference relationship between two examples

in a preference pair, their distance should be maximized.

Based on these principles we present two weakly super-

vised dimensionality reduction algorithms, one of which

learns a linear transformation matrix using an alternating

direction method, while the other learns a non-linear trans-

formation directly in function space based on the gradient

boosting regression tree (GBRT), which offers the advan-

tages of being insensitive to hyper-parameters, robust to

overfitting, and scalable. We perform a theoretical analy-

sis of the robustness and generalization error of preference

learning algorithms on the obtained low-dimensional sub-

spaces and suggest that using the large margin principle

in weakly supervised dimensionality reduction is advanta-

geous for both. Experimental results using both algorithms

on real-world datasets demonstrate the value of studying di-

mensionality reduction in a weakly supervised setting and

the effectiveness of the proposed algorithms.

2. Motivation and Notation

Here we take web image searching as an example to il-

lustrate the motivation behind using weakly supervised di-

mensionality reduction. Click count information encoding

users’ preferences on each query-image pair can be col-

lected from the search engine and regarded as weakly su-

pervised information. This weakly supervised information

is intrinsically different to conventional supervised infor-

mation; for example, given two images a and b and their

click counts 10 and 100 for a specific query q, it would be

inappropriate and inaccurate to assert that image b is rele-

vant (positive) to the query and image a irrelevant (nega-

tive) simply by setting a threshold to determine the labels.

A more reasonable assumption would be that image b is

preferable to image a with regard to this query. Howev-

er, it is not straightforward to introduce this weakly super-

vised information into conventional supervised dimension-

ality reduction methods because they require explicit class

label information (i.e., the relevant/irrelevant information

in web image ranking) for training. We thus propose a nov-

el framework of weakly supervised dimensionality reduc-

tion for this setting.

Formally, given a training sample of n examples

{x1, · · · , xn} where x ∈ R
D, we use binary matrix ηij ∈

{0, 1} to indicate whether there exists a preference relation-

ship between example xi and example xj . Moreover, for

the preference pairs, if example xi is preferred to example

xj , i.e., xi ≻ xj , we define yij = 1, otherwise yij = −1.

The task is to then learn a transformation φ : RD → R
d

where d ≪ D in order to discover the low-dimensional

representations of examples by considering this weak pref-

erence information. The framework of weakly supervised

dimensionality reduction is formulated from two perspec-

tives, as described above: the angle level and the distance

level (see Figure 1).

Angle level. Considering a preference prediction task, an

optimal dimensionality reduction algorithm would be ca-

pable of generating low-dimensional examples that are dis-

criminative enough for preference learning (see Figure 2).

For simplicity, a linear preference prediction model rep-

resented by a weight vector w is considered in the low-

dimensional space. For a preference pair (φ(xi), φ(xj)),
indicating that example-i is preferred to example-j, we

have w(φ(xi) − φ(xj)) > 0, which means that the an-

gle between the weight vector w and preference vector
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Figure 1. Schematic illustration of the large margin principle in

the proposed weakly supervised dimensionality reduction frame-

work.

(φ(xi)−φ(xj)) is in (0, π/2). Given more preference pairs

we can obtain the similar angle constraints (e.g., the includ-

ed angles are in (0, π/2)). In order to accurately predict the

preference pairs, the angle constraints between the weight

vector w and all the preference vectors should be maxi-

mally satisfied. In other words, the optimal weight vector

should be the one whose angles between preference vectors

most meet this angle constraint. In dimensionality reduc-

tion this optimization principle can be transformed in order

to discover the low-dimensional preference vectors whose

angles between each other are, on average, small.

Formally, given two preference pairs pij = (φ(xi), φ(xj))
and pkl = (φ(xk), φ(xl)), the included angle between

them can be measured by the cosine function

cos(pij , pkl) =
(φ(xi)− φ(xj))

T (φ(xk)− φ(xl))

‖φ(xi)− φ(xj)‖‖φ(xk)− φ(xl)‖
, (1)

and the corresponding loss can be computed by the hinge
loss with margin γ:

h(γ−yijyklcos(pij , pkl)) = max(γ−yijyklcos(pij , pkl), 0).
(2)

This can be seen as an extension of the large margin prin-

ciple to the angle domain and an approach to improve gen-

eralization.

Distance level. Similarly, starting with a prediction weight

vector w and a preference pair (φ(xi), φ(xj)), we have

δ = w(φ(xi) − φ(xj)) > 0. The larger δ, the easier

it is to distinguish example-i and example-j. The value

of δ is largely determined by the distance between φ(xi)
and φ(xj) because the angle level constraint has forced

the weight vector to be parallel to the preference vectors.

Therefore, in dimensionality reduction it is necessary to

maximize the distance between two low-dimensional ex-

amples in one preference pair. Formally, in the large mar-

gin principle, this distance level constraint can be described

by

h(γ−‖φ(xij)−φ(xj)‖) = max(γ−‖φ(xi)−φ(xj)‖, 0), (3)

where γ is the constant margin.

Putting the above angle level and distance level optimiza-
tion criteria together, we obtain the objective function

min
φ

∑

ij

ηijh(γ1 − ‖φ(xi)− φ(xj)‖)

+C
∑

i,j,k,l

ηijηklh(γ2 − yijyklcos(pij , pkl)),
(4)

where γ1 and γ2 are constant margins for two kinds of

constraint and C is a positive constant. The first term

in Eq. (4) aims to maximize the distance between low-

dimensional examples in preference pairs and the second

term encourages consistency between the directions of low-

dimensional preference vectors. The constant C controls

the relative importance of these two competing terms and

it is carefully chosen via cross-validation.

3. Large-margin Weakly Supervised

Dimensionality Reduction

We first study the linear transformation L ∈ R
d×D for

weakly supervised dimensionality reduction. The low-
dimensional representation of each example can be com-
puted by φ(x) = Lx and Eq. (4) is reformulated as

min
L∈Rd×D

∑

ij

ηijh(γ1 − ‖L(xi − xj)‖)

+C
∑

i,j,k,l

ηijηklh

(

γ2 − yijykl

(xi − xj)
TLTL(xk − xl)

‖L(xi − xj)‖‖L(xk − xl)‖

)

,

(5)

Since problem (5) is composed of two non-smooth objec-

tive functions (i.e., the distance level and angle level func-

tions) that are difficult to jointly optimize, we solve these t-

wo sub-problems alternately using the alternating direction

method.

Since the alternating direction method is usually based

on variable splitting combined with the augmented La-

grangian, we initially split the variable L into two and

transform the primal problem (5) as

min
L,K

{f(L) + g(K) : L−K = 0}, (6)

where f(·) corresponds to the first term in Eq. (5) and g(·)
corresponds to the second term in Eq. (5). The augmented
Lagrangian related to problem (6) is

L(L,K, λ, µ) = f(L)+g(K)+〈λ, L−K〉+
µ

2
‖L−K‖2, (7)

where λ is a Lagrangian multiplier related to the equali-

ty constraint and µ is a parameter weighting the quadratic

penalty. After rearranging the terms, the augmented La-

grangian is rewritten as

L(L,K, β) = f(L) + g(K) +
µ

2
‖L−K + β‖2, (8)
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Figure 2. Illustration of the angle constraint. Given three examples A,B and C and their orders A ≻ B ≻ C, we can generate three

preference pairs (A,B), (B,C) and (A,C) and their corresponding preference vectors (A−B), (B−C) and (A−C). To ensure that

the weight vector w correctly predicts the preferences of these examples, the direction of w is constrained in the overlapping orientations

of these three vectors, i.e., the shadow regions. Furthermore, from the left to the right of the figure we observe that if the directions of

preference vectors are more inconsistent the constraint on w is more rigorous and it is more difficult to find the optimal weight vector.

where β = λ
µ

. The alternating direction method that solves

the original problem (5) looks for a saddle point of the

augmented Lagrangian by alternately solving the following

problems at iteration t:

Lt+1 = min
L

L(L,Kt, βt) (9)

Kt+1 = min
K

L(Lt+1,K, βt) (10)

βt+1 = βt + Lt+1 −Kt+1. (11)

All the challenges of the algorithm now reside in the reso-

lution of these three problems.

3.1. Solving problem (9)

The optimization problem related to L can be restated as

min
L

∑

i,j

ηijh(γ1−‖L(xi−xj)‖)+
µ

2
‖L−K+β‖2. (12)

The most challenging part comes from the non-smooth
hinge loss function. Here we apply the smoothing tech-
nique introduced by (Nesterov, 2005) to approximate the
hinge loss with smooth parameter σ > 0:

hσ =max
z∈Q

zij(γ1 − ‖L(xi − xj)‖)−
σ

2
‖xi − xj‖∞z

2
ij

Q = {z : 0 ≤ zij ≤ 1, z ∈ R
n×n},

(13)

where zij can be obtained by setting the gradient of this

function as zero and then projecting zij in Q, i.e.,

zij = median{
γ1 − ‖L(xi − xj)‖

σ‖xi − xj‖∞
, 0, 1} (14)

Therefore, the smoothed hinge loss hσ is a piece-wise ap-
proximation of h according to different choices of zij in
Eq. (14)

hσ =











0 zij = 0

γ1 − ‖L(xi − xj)‖ −
σ
2
‖xi − xj‖∞ zij = 1

(γ1−‖L(xi−xj)‖)
2

2σ‖xi−xj‖∞
else.

(15)

whose gradient is calculated by

∂hσ

∂L
=















0 zij = 0

−
L(xi−xj)(xi−xj)

T

‖L(xi−xj)‖
zij = 1

−
(γ1−‖L(xi−xj)‖)

σ‖xi−xj‖∞

L(xi−xj)(xi−xj)
T

‖L(xi−xj)‖
else.

The gradient is now continuous and gradient descent type

methods can be efficiently applied to solve the objective

function and find the optimal L. Problem (10) can also

be similarly solved using this approach by replacing the

distance level hinge loss with the angle level hinge loss.

Finally, problem (5) can be efficiently optimized using the

alternating direction method.

3.2. Non-linear Extension

To handle the non-linear input features we propose a gra-

dient boosting approach to directly optimize the objective

function (4) in the function space. In contrast to conven-

tional kernel tricks for non-linear extension, such as by

considering φ(x) = Lψ(x) and the corresponding kernel

K(xi, xj) = φ(xi)
Tφ(xj) = ψ(xi)

TLTLψ(xj), we base

our non-linear algorithm on the gradient boosting regres-

sion tree (GBRT) (Friedman, 2001), which is suitable for

large scale applications.

Given the unspecified transformation φ(·) the resulting ob-
jective function (4) becomes

min
φ

J =
∑

ij

ηijh(γ1 − ‖φ(xi) − φ(xj)‖)

+C
∑

i,j,k,l

ηijηklh

(

γ2 − yijykl

(φ(xi) − φ(xj))
T (φ(xk) − φ(xl))

‖φ(xi) − φ(xj)‖‖φ(xk) − φ(xl)‖

)

.

(16)

Optimization. The transformation φ(·) learned directly in

the function space can be constructed as an ensemble of

multivariate regression trees selected by gradient boosting.

Formally, we can represent the transformation as an addi-

tive function

φ = φ0 + α

T
∑

t=1

ht, (17)
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where φ0 is the initialization, ht is an iteratively added re-

gression tree of limited depth p, and α is the learning rate.

Instead of training many high variance trees that are then

averaged to avoid overfitting, small trees with high bias are

better suited for efficient computing and generalization. In

each iteration, a new tree to be added is greedily selected to

best minimize the objective function on its addition to the

ensemble:

ht = min
h

J (φt−1 + αh). (18)

This optimal tree ht can be found in the steepest step in the

function space by approximating the negative gradient gt of

the objective function J (φt−1) with respect to the transfor-

mation learned in the previous iteration φt−1. Thus, sub-

gradients are computed with respect to each training exam-

ple xi and the tree ht is approximated in the least squares

sense:

ht = min
h

n
∑

i=1

(gt(xi)− ht(xi))
2, (19)

where

gt(xi) =
∂J (φt−1)

∂φt−1(xi)
. (20)

In each iteration the p-th depth tree splits the input space

into 2p regions and a constant vector consequently trans-

lates the inputs falling into the same region. Furthermore,

in order to improve the efficiency of the solution, we per-

form region splitting by different threads in parallel during

the boosting procedure.

4. Theoretical Analysis

In this section we study the robustness and generaliza-

tion error of preference learning algorithms on the low-

dimensional subspace. We suggest that our proposed large

margin optimization criteria are effective for reducing the

dimensionality of preference pairs. Throughout the theoret-

ical analysis we consider the examples as preference pairs

on the learned low-dimensional space. The loss of the lin-

ear preference prediction model is bounded by a constant

B. Detailed proofs of the following theoretical results are

given in the supplementary materials.

4.1. Robustness Analysis

If a test example and a training example are close to each

other then their associated losses are also close. This prop-

erty is formalized as “robustness” in (Xu & Mannor, 2012),

and the precise definition is given below:

Definition 1. An algorithm A is (K, ǫ(·)) robust forK ∈ N

and ǫ(·) : Z → R if the sample Z can be partitioned into

K disjoint sets, denoted by {Ci}
K
i=1, so that the following

holds for all s ∈ Z , given the loss function l(As, z) of the

algorithm As trained on s:

∀s ∈ s, ∀z ∈ Z, ∀i = 1, · · · ,K :

if s, z ∈ Ci, then |l(As, s)− l(As, z)| ≤ ǫ(s).

Given two preference pairs (z1, z2) and (s1, s2) on the

learned low-dimensional subspace through φ(·), we as-

sume that for both pairs the first example is always pre-

ferred to the second example, i.e., z1 ≻ z2 and s1 ≻ s2.

When each example in the first pair falls into the same sub-

set of the partition of Z as the corresponding example of the

other pair, the “closeness” between two preference pairs is

defined by the angle aspect: if the angle between two pref-

erence vectors is small, i.e., arccos(z1 − z2, s1 − s2) ≤ θ,

we suggest that these two preference pairs are close. A

preference learning algorithm is said to be robust if two

preference pairs are close to each other, i.e., their losses are

close. This robustness can be measured by the following

theorem.

Theorem 1. Fix θ ≥ 0. For any preference pair (z1, z2)
in low-dimensional space Z ⊂ R

d that can be partitioned

into K disjoint sets, denoted by {Ci=1}
K
i=1, assume that

‖z1 − z2‖ ∈ [a, b]. Given a linear preference learning

algorithm A {w : z → R} and ‖w‖ ≤ W , we have for

any s ⊂ Z:

|ℓ(As, z1, z2)− ℓ(As, s1, s2)| ≤W
√

2b2 − 2a2 cos(θ)

∀ i, j = 1, · · · ,K : s1, z1 ∈ Ci and s2, z2 ∈ Cj ,

cos(z1 − z2, s1 − s2) ≥ cos(θ).

Hence A is (K,W
√

2b2 − 2a2 cos(θ))-robust.

Robustness is a fundamental property and ensures that a

learning algorithm performs well. According to Theorem

1, it is instructive to suggest that if we force the angle be-

tween preference vectors to be small, i.e., enlarge cos θ, or

encourage the distance of examples in preference pairs to

be large, i.e., increase the lower bound a, the robustness of

the preference learning algorithm will be improved. These

are exactly the two objectives of the weakly supervised di-

mensionality reduction framework.

4.2. Generalization Analysis

Based on the robustness analysis we now give a PAC gen-

eralization bound for the preference learning algorithm that

fulfills the property of robustness. We first present a con-

centration inequality (Van Der Vaart & Wellner, 1996) that

will help us to derive the bound.

Proposition 1. Let (|N1, · · · , |NK ||) be an i.i.d.

multinomial random variable with parameters n and

(µ(C1), · · · , µ(CK)). By the Breteganolle-Huber-Carol

inequality we have Pr{
∑K

i=1 |
Ni

n
− µ(Ci)| ≥ λ} ≤

2K exp(−nλ2

2 ), hence with probability at least 1− δ,

K
∑

i=1

|
Ni

n
− µ(Ci)| ≤

√

2K ln 2 + 2 ln(1/δ)

n
.

The generalization error bound for preference learning al-

gorithms is presented in the following theorem.
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Theorem 2. If a preference learning algorithm A is

(K, ǫ(·))-robust and the training sample s is composed of

n preference pairs {pi = (s1, s2)}
n
i=1 whose examples are

generated from µ, then for any δ > 0, with probability at

least 1− δ, we have,

|L(As)− ℓemp(As)| ≤ ǫ(s) + 2B

√

2K ln 2 + 2 ln(1/δ)

n
.

By combining the results of Theorem 1 and Theorem 2

we can easily bound the generalization error of prefer-

ence learning on the obtained low-dimensional subspace.

Robustness is sufficient and necessary for generalization.

Discovering the low-dimensional examples based on the

distance and angle aspects of the large margin principle

can simultaneously strengthen the robustness of preference

learning and improve the generalization error

5. Experiments

In this section we qualitatively and quantitatively evaluate

the proposed WSDR algorithm on two toys and two real-

world applications. The proposed algorithm and its non-

linear extension GB-WSDR are compared with Locality

Preserving Projections (LPP, He & Niyogi, 2004), Local

Fisher’s Discriminant Analysis (LFDA, Sugiyama, 2006)

and Large Margin Component Analysis (LMCA, Torre-

sani & Lee, 2007). The effectiveness of the learned low-

dimensional examples is assessed using the ranking error

from RankSVM (Joachims, 2002).

5.1. Toy Examples

We first conducted an experiment using data samples from

the UMIST face dataset (Graham & Allinson, 1998). Sup-

pose that we have three kinds of face images: a man with

glasses, a man without glasses, and a woman without glass-

es; we are required to find the face images of a man with

glasses. Clearly, these three classes can be ranked as fol-

lows: the images of a man with glasses are ranked first s-

ince they are an absolute match; the images of a man with-

out glasses are ranked second since they partially match;

and the images of a woman without glasses are ranked last

since they do not match at all. The dataset used in this

experiment is composed of these three classes of human

faces from UMIST face dataset, with 48, 25 and 19 images

in rank 1, 2 and 3, respectively.

In Figure 3 (a) we show the 2D subspace discovered by the

WSDR algorithm. It is clear that the angles between differ-

ent low-dimensional preference pairs are very close due to

the angle constraint through the large margin principle. On

the other hand, the two examples in a particular preference

pair are obviously separated, when considering the large

margin principle from the distance level. Hence, based on

this optimal subspace, it would be a trivial task to obtain

a linear function that accurately predicts their preference

relationships.

The second toy example is based on the USPS digit dataset

(Hull, 1994), which is composed of 16 × 16 grayscale im-

ages of hand written digital characters from 0 to 9. We sam-

pled 20 examples from five classes (0 to 4) and treated the

true digits shown in the images as their corresponding weak

labels. Therefore, the preference relationships between ex-

amples could be determined by comparing their attached

digits. The low-dimensional subspace for these digit im-

ages was generated by GB-WSDR using a non-linear ap-

proach and the results are presented in Figure 3 (b).

In Figures 3 (b) and (c) it can be seen that the low-

dimensional examples of different labels are separated

from each other, while the examples bearing the same la-

bels are closely distributed. The low-dimensional exam-

ples generated by LMCA are suitable for multi-class clas-

sification, whereas it is difficult to find a linear function

that predicts their preference relationships. On the other

hand, WSDR extracts the preference relationship from the

weak labels and then integrates it into the large margin prin-

ciple from the distance and angle aspects simultaneously.

The preference relationships of examples are therefore p-

reserved in the low-dimensional subspace and it can be ex-

pected that preference learning on this subspace would be

more accurate.

5.2. Collaborative Filtering

We next present results on a collaborative filtering task for

movie recommendations on the MovieLens dataset 1 which

contains approximately 1 million ratings for 3592 movies

by 6040 users; ratings are on a scale of 1 to 5. For each user,

a different predictive model was derived. We used 70% of

the movies rated by each user for training and the remain-

ing 30% for testing. The features for each movie consist-

ed of the ranking provided by D reference users. Missing

rating values in the input features were populated with the

median rating score of the given reference users. Figure 4

shows the pairwise accuracies of different algorithms:

∑

i,j 1yi>yj&w(φ(xi)−φ(xj))>0
∑

i,j 1yi>yj

. (21)

In each subfigure in Figure 4, the horizontal axis corre-

sponds to the number of the reference user (i.e., the dimen-

sion D of the original feature x), while the vertical axis in-

dicates the dimension d of the projected examples. We find

that both WSDR and its non-linear extension GB-WSDR

outperform other competitors on nearly all different d and

D settings. This is mainly due to the fact that WSDR is

constructed by considering the preference relationships of

1http://grouplens.org/datasets/movielens/
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Figure 3. (a) The 2D subspace discovered by WSDR on the UMIST dataset and the 2D subspaces discovered by the GB-WSDR (b) and

LMCA (c) algorithms on the USPS dataset.

examples and its elaborate use of the large margin principle

to improve performance.

The book-crossing dataset 2 contains 278,858 users and

1,149,780 ratings for 271,379 books. The low density of

ratings makes predictions very noisy. Thus, we required

users to have reviewed at least 200 books and then kept

those books with at least 10 reviews; a dataset of 89 books

and 131 users remained. For this dataset, each of the 131

users was selected in turn as a test user and the other 130

users served as input features. The pairwise accuracies for

different algorithms are reported for these 131 leave-one-

out experiments in Figure 5 (a).

Both LFDA and LMCA achieve satisfactory experimen-

tal results based on Fisher’s principle and the large mar-

gin principle, respectively, but their performance is limited

because of their inaccurate interpretation of the weakly su-

pervised labels. Instead of straightforwardly using these

labels, WSDR infers pairwise relationships from them and

then exploits a general large margin principle to formulate

the dimensionality reduction problem. Therefore, the pref-

erence learning on the low-dimensional examples generat-

ed by WSDR is more accurate. The alternating direction

method reduces the burden of solving the combination of t-

wo complex non-smooth functions in WSDR, and gradient

boosting is an ideal technique for extending WSDR into a

non-linear version. Both of these two optimization method-

s are effective and converge fast. Figures 5 (b) and (c) show

the convergence curves for the WSDR and GB-WSDR al-

gorithms on the book-crossing dataset.

5.3. Ranking

Three datasets 3 (Table 1) were used that have previously

been used to evaluate ranking and ordinal regression (Fung

et al., 2006). Since the target values are continuous, we

discretized them into S equal sized bins (Table 1). The

pairwise accuracies for different algorithms were evaluated

on each dataset in a five-fold cross-validation experimen-

t; these results are presented in Table 2. Both WSDR and

GB-WSDR stably outperform other competitors. For ex-

2http://grouplens.org/datasets/book-crossing/
3http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html

Table 1. Datasets used in the ranking experiments. N is the size

of the dataset, D is the number of attributes, S is the number of

classes, and M is the average total number of pairwise relations

per fold of the training set.

DATA SET N D S M

PYRIMIDINES 74 28 3 1113
TRIAZINES 186 61 4 7674
WISCONSIN BREAST CANCER 194 33 4 8162

ample, when the low-dimension is set as five on the Tri-

azines dataset, the baseline algorithms have pairwise accu-

racies of around 60%, whereas the accuracy of WSDR ex-

ceeds 70% and GB-WSDR obtains a further performance

improvement via the non-linear approach.
We next sampled a set of queries from the query logs of

a commercial search engine and generated a certain num-

ber of query-image pairs for each of the queries. In to-

tal, 10, 000 queries and 41, 021 query-image pairs were

available with click counts greater than zero. From this

dataset, we randomly sampled a test set containing about

2, 000 queries and 9, 300 query-image pairs and used the

remaining data for model training. Each query-image pair

was represented as the combination of a 4000-dim PHOW

feature of the image and a 7394-dim BOW feature of the

text query. For WSDR and GB-WSDR, preference rela-

tionships could easily be inferred from the click counts

for the images in the training set and used as the weak-

ly supervised information for dimensionality reduction and

rank model learning. For the comparison algorithms we

assumed that an image was relevant to a query if its click

count was greater than a particular threshold; otherwise, it

was deemed irrelevant. We manually labeled the query-

image pairs in the test set for ranking performance evalua-

tion.

Figure 6 summarizes the performances of RankSVM in

mAP on the low-dimensional subspaces learned by the five

algorithms over different-dimensional subspaces. WSDR

and GB-WSDR produce considerably better ranking ac-

curacies than the other algorithms on the dataset, and the

gradient boosting approach always outperforms the linear

approach. The difference in accuracy between our algo-

rithms and the competitors is particularly dramatic when
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(a) (b) (c) (d) (e) 

Figure 4. Pairwise accuracies of different algorithms on the MovieLens dataset: (a) GB-WSDR, (b) WSDR, (c) LMCA, (d) LFDA, and

(e) LPP.

(a) (b) (c) 

Figure 5. (a) Pairwise accuracies of different algorithms and convergence curves for the WSDR (b) and GB-WSDR (c) algorithms on

the book-crossing dataset.

Table 2. Pairwise accuracies of different algorithms on three datasets

d=5 d=10 d=15 d=20

Pyrim Triazines Wiscoin Pyrim Triazines Wiscoin Pyrim Triazines Wiscoin Pyrim Triazines Wiscoin

LPP 78.93± 1.87 63.93± 0.42 63.31± 0.30 82.85± 2.10 69.47± 1.84 64.82± 0.51 83.33± 2.15 70.82± 2.56 64.37± 0.33 83.66± 2.83 71.36± 2.72 64.17± 0.41

LFDA 88.68± 0.42 56.18± 0.52 65.41± 1.02 88.49± 0.74 57.48± 1.83 65.34± 0.46 88.60± 0.67 58.57± 1.39 67.36± 0.92 88.23± 1.29 53.57± 1.01 70.85± 2.53

LMCA 88.10± 1.58 67.01± 5.59 67.01± 6.24 89.17± 1.35 72.29±3.19 66.88± 6.46 87.85± 1.79 71.97± 1.89 69.47± 6.90 88.24± 1.40 71.90± 1.67 69.48± 4.97

WSDR 90.83± 1.69 72.67± 2.26 69.40± 2.12 91.10± 2.00 72.62± 1.33 69.71± 1.36 90.44± 1.85 72.73± 2.03 69.52± 1.73 90.16± 1.28 73.13± 3.82 69.42± 1.58

GB-WSDR 90.00± 1.22 74.11± 2.23 69.89± 0.23 91.31± 1.13 74.08± 1.67 69.64± 0.11 90.87± 0.82 74.32± 1.85 69.53± 1.86 90.81± 1.56 76.48± 1.29 69.57± 1.49

a small number of projection dimensions is used. In such

cases, LPP, LFDA and LMCA cannot find appropriate low-

dimensional subspaces because they are not concerned with

the subsequent ranking task or influenced by the noise

from inferring explicit labels from click count informa-

tion. In contrast, WSDR and GB-WSDR solve the low-

dimensional subspaces by optimizing the ranking-related

objective function of Eq. (4) and therefore achieve sta-

ble performance even when projecting onto a very low-

dimensional subspace.

Figure 6. mAP scores on different low-dimensional subspaces.

6. Conclusion

In this paper we study the weakly supervised dimensional-

ity reduction problem, where the preference relationships

between examples are provided rather than explicit class

labels. By extending the large margin principle into the an-

gle domain we encourage angle consistency between pref-

erence pairs while simultaneously maximizing the distance

between the two examples in one particular preference pair.

Theoretical analysis of these two objectives show that they

are beneficial for strengthening robustness and improving

the generalization error bound of preference learning al-

gorithms on the obtained low-dimensional subspace. We

introduce two new practical algorithms: a linear algorithm

for learning a transformation matrix and a non-linear algo-

rithm utilizing the gradient boosting technique to learn the

transformation directly in the function space. Both algo-

rithms are efficiently optimized and demonstrate promising

experimental results on real-world datasets.
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