
Large Maximal Cliques Enumeration in Large Sparse

Graphs

Natwar Modani Kuntal Dey

IBM India Research Lab
Vasant Kunj Institutional Area

New Delhi
India

namodani@in.ibm.com

IBM India Research Lab
Vasant Kunj Institutional Area

New Delhi
India

kuntadey@in.ibm.com

Abstract

Identifying communities in social networks is a prob-
lem of great interest. One popular type of community
is where every member of the community knows all
others, which can be viewed as a clique in the graph
representing the social network. In several real life sit-
uations, finding small cliques may not be interesting
as they are large in number and low in information
content. Hence, in this paper, we propose a variant of
maximal clique enumeration problem where we try to
enumerate only large maximal cliques. We describe a
novel preprocessing technique to reduce the graph size
before enumerating the large maximal cliques. This
is of great practical interest since enumerating maxi-
mal cliques is a computationally hard problem and the
execution time increases rapidly with the input size.
We also present a new maximal clique enumeration al-
gorithm SELMaC2, which exploits the constraint on
minimum size of the desired maximal cliques. We
present experimental results on several real life so-
cial networks. Our results show that the preprocess-
ing methods achieve significant reduction in the graph
size. Also our algorithm has fewer intermediate steps
and is faster than the competing algorithms adapted
from the literature by incorporating the minimum size
criterion. Our results also show the scalability of our
approach.

1 Introduction

Finding communities is one of the fundamental prob-
lems in social network analysis [4, 7, 9, 5, 6]. Social
networks found to form in real life come from different
domains, and understanding the communities within
these social networks is often of interest to different
parties in more than one context. Some example so-

15th International Conference on Management of Data
COMAD 2009, Mysore, India, December 9–12, 2009
c©Computer Society of India, 2009

cial networks are formed by people to people interac-
tion (online or telephonic) and website link farms. In
social networks formed by people to people interac-
tion, communities often represent people with shared
interest (including friendship or relations). An exam-
ple of such social network in the online world is based
on email and instant messaging. Another such exam-
ple is the social network formed by telephonic calling
patterns of people [15]. Link farm communities [8] are
often formed to artificially inflate the page ranks of the
participating websites, and they intend to promote the
whole community of websites through mutual recom-
mendation.

Various definitions have been proposed for commu-
nities in a social network. One interesting type of com-
munity in any social network is where every member of
the group knows every other member of the group. If
one thinks of a person in the social network as a vertex
and a relation between two persons (knows) as an edge,
then a social network can be viewed as a graph. We
will concentrate on the social networks where the rela-
tion is bidirectional (i.e., if a knows b, then b also knows
a) and between any pair of people there can be at most
one relation. This would result in a simple undirected
graph describing the social network. One can think
of the communities mentioned above as cliques in the
graph which describes the social network.

Enumerating maximal cliques is a well-studied
problem [10, 16, 20, 2, 12]. Cliques have been viewed
as one type of community in telecom social net-
works [15, 1]. The graphs in such applications are very
large and sparse and the number of maximal cliques
increase exponentially as the clique size decreases. The
information content or value of a smaller clique is ob-
viously less than a larger clique. Hence finding small
maximal cliques may not yield enough value to jus-
tify the effort. Motivated by these real-life problems,
we study a variant of the maximal clique enumeration
problem by incorporating a minimum clique size cri-
terion. To the best of our knowledge, this is the first

systematic study for this variation of the problem.
Our approach is especially suited for sparse graphs.

The minimum size criterion allows us to speed up the
maximal clique enumeration by enabling preprocessing
to reduce the graph size. Our novel filtering criterion
uses the observation that if the two vertices on the
two ends of an edge are to be in the same clique of size
at least L, then they must share at least L vertices
in their respective neighbourhoods1. Additionally, if a
vertex is to participate in a clique of size at least L,
then it must share at least L neighbours with at least
L − 1 of its other neighbours.

The new clique finding algorithm SELMaC2 (which
stands for Sequential Exploration for Large Maximal
Cliques with Maximality Conditions) attaches condi-
tions to every candidate which must be satisfied in
order for it to be a large maximal clique. These con-
ditions allow us to reuse computations performed at
one stage to all further stages by successively refining
the critia for the candidate to be a maximal clique and
thereby improving the run time of the algorithm. Also,
the execution behaviour of our algorithm does not de-
pend heavily on the presence of a few nodes with large
degree.

Our experiments show that the preprocessing
method we propose achieves significant reduction in
the graph size and that our algorithm SELMaC2 has
fewer intermediate steps and is faster than the com-
peting algorithms. To the best of our knowledge, the
prior art attempts to perform maximal clique enumer-
ation on graphs with several thousand nodes only. In
contrast, our approach finds all maximal cliques of size
16 and above (1,291 in number) in a graph with ∼ 7.75
million vertices and ∼ 37 million edges in ∼ 12 min-
utes and all maximal cliques of size 8 and above (2,520
in number) in a graph with ∼ 2.2 million vertices and
∼ 3.55 million edges in less than a minute.

Our main contributions in this paper are the follow-
ing:

1. We pose the problem of community finding as a
variant of maximal clique enumeration problem
by introducing a minimum size criterion.

2. We present a novel preprocessing technique that
exploits the desired minimum clique size and the
extent of overlap in the neighbourhood of adja-
cent vertices to filter the graph before enumerat-
ing maximal cliques.

3. We present SELMaC2, a novel clique enumera-
tion algorithm, which is specially suitable for large
maximal clique enumeration.

4. We present a graph filtering technique to reduce
the graph size by exploiting the minimum size cri-

1where the neighbourhood of a node v is defined as v and all
nodes that are adjacent to it

terion without having to load the entire graph in
memory.

5. We analyze several real life social networks formed
by call detail records of one of the world’s largest
telecom service providers.

The rest of the paper is organized as follows. In Sec-
tion 2 we define the problem formally and introduce
some notations. In Section 3, we present our prepro-
cessing and large maximal clique enumeration algo-
rithm. We contrast our approach with the two other
approaches in the literature which are most relevant
to the problem at hand in Section 5 while surveying
the related work. In Section 6, we describe our exper-
iments and discuss our results and also compare with
other approaches. Finally, we conclude in Section 7.

2 Problem Definition

Let G = (V, E) be a simple undirected graph, where
V is the set of vertices and E is the set of edges. Let
K be a subset of vertices V . K is called as a clique
if ∀u, v ∈ K, (u, v) ∈ E. Further, if there is no set
K ′ ⊂ V such that K ′ is a clique and K ⊂ K ′ then K
is called as a maximal clique. We will denote the size
of a set of vertices K by |K|. We let the user specify
a threshold L such that the user is interested only in
the maximal cliques K such that |K| ≥ L.

Large Maximal Clique Enumeration Prob-

lem: Given a simple undirected graph G(V, E), enu-
merate all maximal cliques of size at least L.

We define Γ(v), the neighbourhood of a node v, as

Γ(v) = {v} ∪ {u : (u, v) ∈ E} (1)

Let us define δ(v) = |Γ(v)| and δmax = maxv∈V δ(v).
Also denote the number of nodes with neighbourhood
size exactly δ as nδ. Clearly, Σδmax

δ=0 nδ = |V | and

Σδmax

δ=1 (δ− 1) ∗nδ = 2 ∗ |E|. We define a graph param-

eter ∆ as ∆ = max(δ) s.t. Σδmax

j=δ nj ≥ δ. Here ∆ is
the largest maximal clique size that can be supported
by a graph with the given degree distribution.

3 Algorithm

Now we describe our algorithm to enumerate large
maximal cliques in a very large graph. The compu-
tational effort required to find the maximal cliques in-
creases very quickly with the graph size, hence we first
attempt to filter the graph to reduce the graph size.
We achieve this goal based on the threshold parameter
supplied by the user. Ours is a three phase approach.
In the first phase, we try to reduce the graph size with-
out loading the entire graph in main memory. After
this, we apply another level of filtering on the filtered
graph obtained from the first phase which reduces the
graph size further. Finally on this smaller graph, we
enumerate the large maximal cliques. Note that each

DegreeBasedFilter (infile, outfile, L, Dp){

init Dc = ∅
(∀v ∈ V){

read a node v and its neighbourhood Γ(v)
from the infile,

γ(v) = Γ(v) − (Dc ∪ Dp)
if (|γ(v)| < L) then Dc = Dc ∪ {v}
else write v, γ(v) to outfile

}
// if a node was dropped in this iteration make

a

// recursive call with input and output files
switched

if (Dc 6= ∅)
DegreeBasedFilter(outfile, infile, L, Dc)

}

Figure 1: Algorithm DBFilter : Degree Based Filtering
Algorithm.

of the preprocessing techniques and clique enumera-
tion algorithm can be used independent of each other.

3.1 Preprocessing

The first part of our algorithm uses the observation
that a node v ∈ V cannot participate in a clique of size
L unless δ(v) ≥ L. Once we drop the nodes that do not
satisfy the neighbourhood size criterion, we may have
some vertices which satisfied the criterion earlier, but
do not satisfy it any more. Hence, we apply this cri-
terion recursively on the resulting graph as long as we
can drop some nodes from the graph. We refer to this
procedure as degree based filtering. Some times the
input graph may be too big to hold in the memory in
order to perform the degree based filtering, especially
with programming languages like Java. In Figure 1,
we present a recursive algorithm which will require at
most |V |+δmax amount of random access memory and
two files (i.e., sequential access storage) to perform the
degree based filtering. We assume that the input graph
is given in form of neighbourhood list, i.e., each row
in the input represents a node and all its neighbours
including v itself.

Let Dp denote the set of vertices dropped in previ-
ous iteration and Dc denote the set of vertices dropped
in current iteration. The first call to the degree based
filtering routine is made with Dp = ∅. This preprocess-
ing is similar to filtering technique, termed as peel-
ing, introduced in [1] to reduce the graph size while
attempting to find large cliques in a social network.
However, our technique can handle much larger graphs
as we do not require to store the entire graph in mem-

SharedNeighboursFilter (G(V, E), L){

initialize droppedSomeNodeOrEdge = false

(∀v ∈ V){
∀u ∈ Γ(v){

if (|Γ(v) ∩ Γ(u)| < L){
E = E − {(u, v)}
droppedSomeNodeOrEdge = true

}
}
if(|Γ(v)| < L) {

V = V − v
E = E − {(w, v) ∀w ∈ Γ(v)}
droppedSomeNodeOrEdge = true

}
if (droppedSomeNodeOrEdge)

SharedNeighboursFilter (G(V, E), L)

}

Figure 2: Algorithm SNNFilter : Shared Neighbour-
hood Filtering Algorithm.

ory. Some points worth noting in this algorithm are:

• It takes at most |V | + δmax amount of random
access memory (≤ |V | amount of memory to hold
the dropped vertices, and ≤ δmax to hold the
neighbourhood of a vertex while processing it) ir-
respective of |E|.

• We need to keep track of the nodes dropped only
for two level of recursion, hence, practically the
memory requirement is even less.

• Each vertex in the filtered graph has a minimum
neighbourhood size of L in the filtered graph, i.e.,
the filtered graph consists of k-cores [18] with k =
L.

The next step is to filter the graph further based on
the following criteria. In order for an edge e = (u, v)
to participate in a clique of size L, the nodes on the
two sides of the edge (u, v) must share at least L neigh-
bours in their neighbourhood, i.e., |Γ(u) ∩ Γ(v)| ≥ L.
Furthermore, if a vertex v is to participate in a clique
of size ≥ L, it must have at least L − 1 neighbours u
(besides itself), such that |Γ(v) ∩ Γ(u)| ≥ L.

We use these criteria to first eliminate edges and
then to eliminate the vertices which cannot participate
in a clique of size at least L. Figure 2 shows the algo-
rithm for the same, which we refer to as Shared Neigh-
bourhood Filtering (SNNFiltering for brevity). This is
a far stricter criterion than the degree based filtering
and results in significant reduction in the graph size.

Note that while the degree based filtering results in a
induced subgraph of the remaining vertices, in shared
neighbourhood filtering, some of the edges between the
surviving nodes may also be dropped if they cannot
participate in the same maximal clique.

3.2 Large Maximal Clique Enumeration

Now, we describe our algorithm SELMaC2 to find all
maximal cliques of size at least L. The guiding thought
behind the algorithm is that we expect potentially a
very large but fairly sparse graph and do not expect a
huge number of large maximal cliques. This fact allows
us to explore the graph vertices in a sequential man-
ner as against the depth-first technique used in [10, 16].
We assume the input graph to be in the form of neigh-
bourhood list and process these neighbourhood lists
one by one. SELMaC2 does not presume any specific
ordering of node arrival.

A clique is a subset of neighbourhoods of the mem-
ber nodes. Hence, we start with the neighbourhood of
a node, say v, as a candidate for being clique. Con-
sider another node u which is a neighbor of v. If both
of them participate in a clique, then the clique will be
a subset of the intersection of the neighbourhoods of u
and v. On the other hand, a clique may only contain
v and not u or vice versa. We need to identify cliques
of all three types while processing the vertices. As we
are interested in only large maximal cliques, we retain
only those candidates for further processing which may
lead to large maximal cliques.

We introduce some more notations used in our al-
gorithm. Let U be the set of nodes already processed.
We define a candidate as a set of vertices which may
form a large maximal clique and denote it by c. The
candidate may also have associated maximality con-
ditions discussed below. The set of all candidates is
denoted by C. A candidate c consists of confirmed
node set Fc and alive node set Ac. Fc is a subset of U
and is a clique by itself. Ac is the set of nodes not yet
processed but are neighbours of all the nodes in Fc.

To discard a candidate which may not give rise to
a maximal clique, we make the following observation.
Exactly one of the two conditions will be satisfied by
any given maximal clique K and any vertex v:

1. v ∈ K

2. ∃u : u ∈ K and u /∈ Γ(v)

It is easy to see that if both are true, then K will not
be a clique. On the other hand if both are false, K
will not be maximal since K ∪ v will also be a clique.
To exploit this observation, whenever we drop a ver-
tex from a candidate, we attach a list of vertices that
are not neighbours of the dropped vertex (amongst
the candidate member vertices) as a taboo list to this
candidate. If all the nodes in a taboo list are dropped,
then the above given observation implies that this can-
didate cannot evolve into a maximal clique.

Our algorithm is presented in Figure 3. This algo-
rithm finds all the maximal cliques that are at least L
in size. In our algorithm, when we process a node v,
and are considering the candidate c, if v ∈ c, we create
two candidates, one which includes v, and other which
does not. For the second candidate, we attach a new
taboo list λ as a list of vertices that are not neighbours
of v amongst Ac. If at least one of these nodes is not
part of the candidate at any given point, the candidate
cannot lead to a maximal clique as noted above. We
attach one such taboo list for every such node which
we do not include in the candidate. We denote the
set of taboo lists attached to a candidate c as Λc. An-
other possibility is that Γ(v) contains a maximal clique
which does not include any of the nodes which have
been processed up to now. To cover this possibility,
we create a new candidate with A = Γ(v) − U − {v}
and F = {v} and attach taboo list for each node in
U ∩ Γ(v).

When we include a node from A into F , we may
drop some vertices in A (as they are not neighbour
of nodes included in Fc). We drop such vertices from
the taboo lists also. On the other hand, if the vertex
that is included from A to F is a member of the taboo
list, then the taboo list is satisfied and we discard that
taboo list. Similarly, when we choose to drop a node,
we again remove that vertex from the taboo lists for
the candidate. If at any stage, any of the taboo lists
for a given candidates become empty, then we drop
the candidate as it cannot lead to a maximal clique.
If a taboo list is so large that its violation will lead
to the candidate becoming smaller than desired size
L, then we don’t need to keep this taboo list. This
optimization cannot be performed easily in any other
clique enumeration algorithm. Also, if a taboo list,
say λi, is a superset of another, say λj , we can drop
λi since if a node from λj is present in the candidate,
clearly a node from λi is present in the candidate and
hence λi is satisfied.

4 Correctness and Complexity

Now we will give informal arguments to show the cor-
rectness of our algorithm and provide a bound its com-
plexity.

4.1 Correctness

First, it is easy to see that the filtering schemes do
not drop any edge or vertex which may participate in
a maximal clique of desired size. Hence, it does not
affect the correctness of the overall approach.

Now, we will show that at the end of the algorithm,
the candidate set C corresponds to the set of all max-
imal cliques of size at least L, and that none of the
maximal cliques of size at least L are missing from it.

For the purpose of this section, we will denote
the confirmed and alive set together by the candi-
date name, i.e., c would mean Fc ∪ Ac. Observe that

findLargeMaximalClique(graph G(V, E), size threshold L){

init C = ∅, U = ∅
(∀v ∈ V){

// Create a candidate č from Γ(v) without the vertices already considered
create a new candidate č as follows
Fč = {v}, Ač = Γ(v) − {v} − U and attach taboo lists defined as
for (∀w ∈ U ∩ Γ(v))

create a taboo list λw = Ač − Γ(w)

if (processCandidateTabooLists (č) = true) then C = C ∪ {č}
U = U ∪ {v}
(∀c ∈ C){

if (v ∈ Ac){
C = C − {c}

// Create a candidate ĉ with intersection of c and Γ(v)
create a new candidate ĉ with:
Fĉ = Fc ∪ {v}, Aĉ = (Ac − {v}) ∩ Γ(v) and Λĉ = Λc

if (processCandidateTabooLists (ĉ) = true) then C = C ∪ {ĉ}

if(Ac 6⊂ Γ(v)) {
// Create a candidate c̃ from c without the new vertex v
create a new candidate c̃ with:
Fc̃ = Fc, Ac̃ = Ac − {v} and Λc̃ = Λc

add a new taboo list λ = Ac − Γ(v)
if (processCandidateTabooLists (c̃) = true) then C = C ∪ {c̃}
}

} // end if v ∈ Ac

}
}

}

processCandidateTabooLists (candidate c) {

for each taboo list λi(c) ∈ Λc {
λi(c) = λi(c) ∩ Ac

if ((λi ∩ Fc 6= ∅) OR (|λi| > |Fĉ| + |Aĉ| − L) OR (∃λj ∈ Λc s.t. λi ⊃ λj))

discard λi

if ((|λi| = 0) OR (|Fc ∪ Ac| < L))

return false // this candidate cannot lead to a maximal clique of size≥ L

}
return true // this candidate may lead to a maximal clique of size≥ L

}

Figure 3: SELMaC2: Our Large Maximal Clique Enumeration Algorithm.

if a vertex set K = {k1, k2, . . . , kr} is a clique then
K ⊆ ∩ki∈KΓ(ki). Now, if K is a maximal clique, then
no other vertex can be a neighbor of all the vertices
included in K, i.e.,

K =
⋂

ki∈K

Γ(ki) =
⋂

ki∈K

Γ(ki) − (V − K)

Hence, if K is a maximal clique, it will be of
the form K = ∩ki∈KΓ(ki) − (V − K), and if K =
∩ki∈KΓ(ki) − (V − K), then K will be a clique.

Let U be the set of vertices processed up to now.
Then, it is easy to see that the candidates in our algo-
rithm are of the form

c =
⋂

p∈P

Γ(p) − Q

where (P, Q) form a partition of U . Hence, when U =
V , each candidate will be a clique if it is not empty.
Since we are checking for maximality using the taboo
lists, we would be discarding the non-maximal cliques.
Hence, the output of the algorithm is a set of maximal
cliques.

Now, we want to show that we will not miss any
maximal clique of size ≥ L. To show this, note that
we drop the candidates based on two conditions.

1. The size of the candidate has become less than L,
i.e., |Fc ∪Ac| < L. Clearly, this candidate cannot
lead to maximal clique of size ≥ L.

2. One of the taboo lists has become empty for the
candidate c. Let us say this taboo list is created
due to dropping the node u. This implies that in
current situation, Fc ∪ Ac − Γ(u) = ∅. Hence, we
can bring back u, and form a clique which will
have the clique resulting from processing c and
u. Hence, clearly the clique found by processing
c will not be maximal.

We retain all the other candidates of the form c =
⋂

p∈P Γ(p) − Q where (P, Q) form a partition of U .
Hence, we will not miss any maximal clique of size
≥ L.

4.2 Complexity

Now, we will show the time complexity of our algo-
rithm. For a vertex and a candidate, we need to check
for the existence of the vertex in the candidate. If the
vertex is a part of the candidate, then we need to per-
form an intersection. The checking for existence of an
element in a set can be performed in constant time
(with a hashset based implementation), and the inter-
section can be performed in time linear in the size of
the smaller set.

To process the taboo lists of a candidate, we require
time that is product of the maximum taboo list size
and number of taboo lists for that candidate. It is easy

to see that since no more than δmax − L number of
nodes can be dropped to form a candidate (otherwise
the candidate becomes too small), and each taboo list
is bounded in size by δmax −L (since if the list is any
longer then it cannot be violated without reducing the
size of the clique below the desired limit). Hence the
bound on time to process one candidate for a given
vertex is O((δmax − L)2), and the overall complexity
of our clique enumeration algorithm is:

O(|V | ∗ |C| ∗ (δmax − L)2) (2)

Since the complexity of our algorithms depends on
the number of candidates, we now compute the max-
imum number of candidates. Consider any existing
candidate. When it is processed with another node in
its alive node set, there are two possibilities. The first
possibility is that it is split in to two candidates, one
which contains the next node and the one which does
not. If the candidate which contains the node retains
all the members of the original node than the other
candidate which does not contain the node, will be
a subset of the first candidate. Hence we will end up
with the same candidate after processing the node. On
the other hand, if the candidate containing the node
does not have all members of the parent candidate,
then the size of both the candidates will be at least 1
less than the original candidate. Also note that when
a candidate contains multiple vertices in the confirmed
part, the size of the candidate is bounded from above
by the smallest neighbourhood size. Now, by defini-
tion, there are less than ∆ nodes with neighbourhood
size more than ∆. If they interact with nodes with
neighbourhood size ≤ ∆, then they do not determine
the number of candidates. Hence, to find the worst
case, we assume that they do not interact with nodes
with neighbourhood size ≤ ∆. From such nodes (of
neighbourhood size > ∆), we can get at most 2∆ can-
didates (which will happen when there is one starting
point and rest of the nodes cause splits).

For convenience, we will denote the nodes with a
neighbourhood size > ∆ as VL and the other nodes
as VS . If we consider the candidates which start from
nodes in VS , the candidates can undergo at most ∆−L
splits (after that it becomes too small to be interest-
ing). Hence, from a candidate of starting size ≤ ∆,
we can get up to 2(∆−L) candidates. To compute the
maximum number of candidates, now we only need to
compute how many starting candidates of size ≤ ∆ we
can have. But each node can at most start one new
candidate, hence the new starting candidates can be at
most |V |. Hence, the maximum number of candidates
can be:

|C| = O(2∆ + |V |2(∆−L)) (3)

In sparse graphs with |E| ∼ O(|V |), it is easy to

see that ∆ ≤
√

|E| ⇒ ∆ ∼ O(
√

|V |). Hence, the

number of candidates in sparse graphs are O(2
√

|V | +

|V |2(
√

|V |−L)), and the overall complexity of our algo-

rithm is O(|V |∗(2
√

|V |+ |V |2(
√

|V |−L))∗(δmax−L)2).

5 Comparison And Related Work

Finding communities is one of the fundamental prob-
lems in social network analysis [4, 7, 9, 5, 6]. Various
definitions have been proposed for communities in a
social network [11, 17, 3] including cliques. [15, 1] at-
tempt to enumerate maximal cliques in social networks
formed by telecom interactions. In [1], the authors
also present a filtering technique, termed as peeling,
to reduce the graph size while attempting to find large
cliques in a social network. Peeling is similar to DB-
Filter algorithm presented in this paper. However, our
technique can handle much larger graphs as we do not
require to store the entire graph in memory. Besides
this, the authors are not aware of any graph filtering
technique for clique enumeration. One might attempt
to use clustering coefficients, defined in [21], as the ra-
tio of number of triangles in the immediate neighbour-
hood of the node divided by the number of possible
triangles based on the degree of the vertex. However
it cannot be used to filter the graph meaningfully while
not affecting any interesting maximal cliques.

Maximal clique enumeration is a well known and
well studied problem [10, 16, 20, 2, 12, 14]. There
are primarily two lines of work for this problem, of
which one guarantees a run time that is polynomial
in output size and the other trades this guarantee for
fast running time for practical problems. Some ex-
amples of output polynomial solutions are [20, 12, 19]
which are amongst theoretically the best possible re-
sults. These methods are based on augmentation of
a clique in such a way that one would avoid going in
direction of a non-maximal clique, making it hard to
know if a clique under construction is likely to have
the required minimum size until very late. Hence it is
hard to effectively exploit the largeness constraint of
the interesting maximal cliques.

The other line of work utilizes neighbourhood based
approaches, starting with a large sized vertex set
and iteratively or recursively pruning it to a maximal
clique. This type of approach is explored in [10, 16].
It is hard to provide output polynomial guarantee in
these approaches. However, it is relatively easier to ex-
ploit the restriction on the minimum size of the clique
to speed up the computations. Our work falls in this
category. A sketch of some of the ideas discussed in
this paper were presented in [13] as a poster.

In our experiments, we compare SELMaC2 with [16,
10]. To provide a fair comparison, we modified their
approaches to exploit the minimum size criteria in our
experiments. In essence, the approaches of these and
our algorithm are similar and they essentially differ in
the bounding condition. We can consider the approach
as constructing a binary decision tree, with thinking

of including a vertex as a left child of a given node,
and dropping a vertex as right child. However, un-
like the other two approaches which perform a depth
first search for maximal cliques, we explore the graph
vertices in a sequential fashion.

The approach described in [16] takes a neighbour-
hood and decides to include or drop one vertex at a
time to construct a clique, deferring the check about
its maximality until the clique is formed. Then it is
compared with all the cliques found to the left of it in
the decision tree to make sure no clique found left of it
is a superset of this. Here, the operations at each inter-
mediate node is relatively inexpensive, but it leads to
a large number of leaf nodes which need to be checked
against other leaf nodes to the left of them. Also, in
order to check the maximality, one needs to keep all
the cliques found in memory, in addition to the graph,
and hence it is a memory intensive algorithm.

The approach described in [10] also takes a neigh-
bourhood and decides to include or drop one vertex at
a time to construct a clique. At each node, it checks
if any of the dropped nodes can be brought back to
extend this clique. This check ensures that if a can-
didate is leading to a non-maximal clique, one would
be able to detect it soon and save needless computa-
tions. However, the processing at intermediate nodes
becomes more expensive. Also, one has to keep check-
ing at each intermediate node on one path for a node
that is dropped. This may lead to repetitive compu-
tation.

In our approach, we construct a binary decision for-
est as against a single decision binary tree in the ap-
proaches mentioned above. At each stage, we want to
ensure that we stop as soon as we know if the candi-
date leads to a non-maximal clique. For this purpose,
we maintain the ‘taboo lists’ as described in Section 3.
We only need to update the taboo lists to determine
the maximality possibility. Here, the work we do in
one iteration is useful in all the nodes below it too,
as the taboo lists percolate down the tree. The re-
duction in execution time is somewhat accompanied
by increase in space requirement as we need to main-
tain the taboo list for each dropped node. However,
we have presented some checks in the algorithm which
can reduce the amount of space taken by these lists.
Also, since we are largely concerned with very sparse
graphs (with say maximum degree of δmax), the max-
imum amount of space we may need for a candidate’s
taboo lists is upper bounded by (δmax − L)2.

Cliques may sometimes be too restrictive a defini-
tion [11] for communities in social networks. Several
clique relaxations have been proposed in literature, no-
tably quasi-cliques, k-cores [18], k-cliques [11], k-club
and k-plex [17]. However, some of these definitions are
too difficult to compute while some others do not have
the desired properties of a social community.

DataSet Region Call / SMS # CDRs Vertices Edges δmax ∆ Max Clique Size
DS1 Mixed SMS 46,401,569 2,212,016 3,555,345 3,796 183 13
DS2 Urban SMS 87,333,241 4,769,284 10,811,702 44,554 309 15
DS3 Mixed Call 195,871,787 5,806,784 28,951,874 4,623 646 19
DS4 Urban Call 386,692,792 7,747,671 37,271,744 5,212 1,080 20

Table 1: Some statistics about the datasets

6 Experiments

We now describe our experiments and discuss our re-
sults. We build a social network from the Call De-
tail Records (CDRs - transaction detail about one
phone call/SMS) of one of the largest telecom service
providers in the world.

We used Java 1.6 to implement all three algorithms
in a single thread program. We set the maximum
memory size in Java to be 2GB and the programs were
run on a 2 CPU running at 3GHz 4GB memory ma-
chine. While we report one number each for number
of nodes in decision trees and execution time, we had
performed several (≥ 5 in each case) runs of the ex-
periments. The number of nodes in the repeated runs
were (expectedly) the same and the variation in the
execution time was bounded by about 5%. The ex-
ecution time reported is obtained by making calls to
system clock and is in seconds.

A Call Detail Record is the transaction detail about
one phone call/SMS. It includes information about
caller, callee and call duration among other things.
We treated each phone number as a vertex and cre-
ated an edge between a pair of vertices if there was a
phone call/SMS between the two phone numbers cor-
responding to the vertices. This process provides us
a simple unweighted undirected graph for each social
network. We collected the CDRs for two different re-
gions for a period of one month each and segregated
data into SMS and voice call data. We discarded the
CDRs corresponding to inter-circle calls (i.e., we con-
sidered only the local calls / SMSs). This gives us four
data sets. One of the regions was an urban area and
the other was mixed (urban+rural) population. Hence
our study covers various prototypical social networks.
Some statistics about the data sets is presented in Ta-
ble 1.

Effectiveness of filtering techniques: First we
study the effectiveness of the filtering techniques pre-
sented in this paper. After the SNNFiltering, the num-
ber of vertices and edges come down by several orders
of magnitude. Table 2 shows our results. Figure 4
shows the number of vertices and number of edges for
DS4 as a function filtering level. One can see that the
degree based filtering achieves a factor of ∼ 11 reduc-
tion in |V | and ∼ 4 reduction in |E| for L = 13 on the
dataset DS4. The reduction factor crosses ∼ 1000 for
|V | and ∼ 220 for |E| for L = 20. However, the shared
neighbourhood based filtering far outperforms the de-
gree based filtering by achieving a reduction by factor
of ∼ 190 for |V | and ∼ 178 for |E| over and beyond

what the degree based filtering achieves for L = 13.
For L = 20, the further reduction ratio (from degree
based to SNN filtering) is ∼ 64 for |V | and ∼ 86 for |E|.
Please note that the graph size resulting from SNN fil-
tering for L = 13 itself is much smaller than the size
of the graph resulting from degree based filtering for
L = 20, the size of the maximal clique. After SNN
filtering, the parameters which influence the time and
space complexity (namely ∆ and δmax) are also consid-
erably lower (as compared to degree based filtering).
This implies that the performance of clique enumera-
tion algorithms become far better due to SNNFilter-
ing.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

13 14 15 16 17 18 19 20

Minimum Clique Size

Time DF (Sec) Time SNNF (Sec) |V| after DF

|V| after SNNF |E| after DF |E| after SNNF

Figure 4: Effectiveness of filtering on DS4: Without
filtering |V | = 5, 806, 784 and |E| = 28, 951, 874

Key Observation: The shared neighbourhood cri-
terion for filtering the graph is very effective and fairly
efficient.

Execution behavior of clique enumeration al-

gorithms: We now present the execution behavior of
the three algorithms, our taboo list based algorithm
presented in this paper, neighbourhood based algo-
rithm presented in [16] and the depth first search ap-
proach presented in [10]. We modified the other two
algorithms to incorporate check for minimum size cri-
terion at appropriate place and we also modified the
DFS algorithm for maximal clique enumeration rather
than the maximal independent set enumeration.

We perform three experiments about the execution
behavior of the algorithms. In the first experiment, we
want to find the execution behavior of the algorithms

for appropriately filtered graphs. This would tell us
how fast we can get the cliques of a given minimum
size using a particular algorithm with appropriately
filtering. Here, both the input graph and cliques of
interest are different in different cases. In the second
experiment, we want to study the sensitivity of the
clique finding algorithms on L for a fixed input graph
(i.e., the input graph is same, but the cliques of inter-
est are different in different cases). Finally, we want to
characterize the effect of input graph size on the exe-
cution behavior of the clique finding algorithms when
the algorithms are trying to find the cliques of fixed
minimum size (i.e., the input graphs are different, but
the cliques of interest are the same in different cases).

Now we describe our experiments in more detail.
First, we choose different values of L and filter each
dataset using the DBFilter and SNNFilter algorithms
for this value of L, resulting in smaller graphs with
different sizes. We report the number of cliques and
the number of nodes in the binary decision tree and
the execution time for each algorithm for each value
of L in Table 3. Here MaxCand means the maximum
number of valid candidates at any point of execution
of algorithm. We do not report this number for DFS
algorithm since it explores one candidate at a time.
TotalCand refers to the number of candidates gener-
ated by the algorithm in all. For neighbourhood based
algorithm we report the number of leaf nodes and to-
tal number of nodes generated in the binary decision
tree.

As we go from higher values of L to the lower val-
ues, we see that at first, the neighbourhood based al-
gorithm performs slightly better than the other two.
However, when the value of L is a little away from
the maximum clique size, our taboo list based algo-
rithm starts performing the best. Also, the rate of in-
crease in the execution time is the slowest for our algo-
rithm, followed by the DFS algorithm, and it increases
very sharply for Neighbourhood based algorithm as the
value of L decreases (and consequently, the number of
maximal cliques increases). The reason for this behav-
ior is that when we set L to be close to the maximum
clique size, there are very few opportunities for the al-
gorithms to attempt dropping a vertex as it would lead
to a clique candidate smaller than the desired size L.
Hence, the Neighbourhood based algorithm and DFS
based algorithms are not penalized heavily for carrying
extra candidates or for repetitive computations. How-
ever, once the value of L is reduced, the number of
maximal cliques become far larger and the penalty for
carrying the non-maximal cliques for too long is stiff
for Neighbourhood based algorithm. Also, the size of
decision subtrees rooted at the dropped nodes become
large as L reduces and the DFS algorithm starts per-
forming repetitive computation leading to slow down.
In our approach, since we reuse the computations per-
formed at a node in all its successors, we do not suffer

from this type of a slow down. Another fact worth
mentioning is that the neighbourhood based recursive
algorithm starts to run out of heap space due to the
deep calls putting too much data on to the heap. Al-
though with an implementation in other programming
languages may enable it to process these data sets, it
is clear that this algorithm is more memory intensive
in a comparable implementation platform.

0

1

10

100

1,000

10,000

100,000

1,000,000

13 14 15 16 17 18 19 20
Minimum Clique Size

#Cliques #MaxCand #TotalCand Time (Sec)

Figure 5: Execution behaviour of SELMaC2 on DS4

Figure 5 characterizes the execution behaviour of
our algorithm on DS4. We plot the number of cliques,
time taken by our algorithm, the total number of can-
didates generated and maximum number of candidates
at any given point of time as a function of minimum
desired clique size.

In order to see the effect of change in L on the be-
havior of the three clique enumeration algorithms on
the same graph, we fix our input graph and its filter-
ing level. We then vary L for the clique enumeration
algorithms and the results are reported in Table 4. It
is clear that as L grows, the run time and number of
candidates etc go down exponentially. It is interesting
to note that the Neighbourhood-based approach failed
to produce any output for all the runs within the same
resource constraints in this set of experiments. Hence
it is not included in the table.

Finally, we choose different values of L and filter the
dataset using the DBFilter and SNNFilter algorithms
for this value of L, resulting in smaller graphs with
different sizes. Now, we find the same set of cliques
by running the clique enumeration algorithms with a
fixed value of L. We report the number of cliques and
the number of nodes in the binary decision tree and
the execution time for each algorithm in Table 5. Also,
based on this trend, it is clear that one can not hope
to run the maximal clique enumeration algorithms on
the graphs of such scale using comparable resources
without the preprocessing techniques discussed in the

paper.
Key Observations:

1. Our algorithm is the fastest when the number of
cliques is reasonably large. It is also less sensitive
to the input size compared to the other algorithms.

2. Total number of candidates is least in our algo-
rithm in all the experiments.

7 Conclusions

In this paper, we examined a variation of maximal
clique enumeration problem with a constraint on the
minimum size of the maximal cliques, presented pre-
processing technique to reduce the effective graph size
and presented a new large maximal clique enumeration
algorithm. We evaluated our approach on real life so-
cial networks formed by CDRs of one of the largest
telecom service providers in the world. We found that
the filtering techniques reduce the graph size by or-
ders of magnitude and our large clique enumeration
algorithm outperforms the methods adopted from lit-
erature in significant number of cases.

As we found in our experiments, in real life the
seemingly daunting graph sizes may be handled in very
practical times (within minutes) to find the cliques,
hence it may be worthwhile to try and characterize the
expected run times of community finding algorithms
based on graph properties.

References

[1] J. Abello, M. G. C. Resende, and S. Sudarsky.
Massive quasi-clique detection. In Latin American
Theoretical INformatics, pages 598–612, 2002.

[2] E. A. Akkoyunlu. The enumeration of maximal
cliques of large graphs. SIAM Journal of Com-
puting, 2(1):1–6, March 1973.

[3] R. Alba. A graph-theoritic definition of a socio-
metric clique. Journal of Math Sociology, 3:113–
126, 1973.

[4] A. Clauset, M. E. J. Newman, and C. Moore.
Finding community structure in very large net-
works. Phys. Rev., E 70(066111), 2004.

[5] Y. Dourisboure, F. Geraci, and M. Pellegrini. Ex-
traction and classification of dense communities in
the web. In WWW, pages 461–470, 2007.

[6] D. Gibson, J. Kleinberg, and P. Raghavan. In-
ferring web communities from link topology. In
HYPERTEXT, pages 225–234, 1998.

[7] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks. Proc.
Natl. Acad. Sci, USA 99(7821), 1973.

[8] Z. Gyongyi and H. Garcia-Molina. Web spam tax-
onomy. In First International Workshop on Ad-
versarial Information Retrieval on the Web, 2005.

[9] R. A. Hanneman and M. Riddle. Introduction to
Social Network Methods. University of California,
Riverside, Riverside, CA, 2005.

[10] E. Loukakis and C. Tsouros. A depth first search
algorithm to generate the family of maximal in-
dependent sets of a graph lexicographically. Com-
puting by Springer-Verlog, 27:349–366, 1981.

[11] R. Luce. Connectivity and generalized cliques in
sociometric group structure. In Psychometrika,
volume 15, pages 169–190, 1950.

[12] K. Makino and T. Uno. New algorithm for enu-
merating all maximal cliques. In SWAT, pages
668–679, 2004.

[13] N. Modani and K. Dey. Large maximal cliques
enumeration in sparse graphs. In CIKM, 2008.

[14] G. D. Mulligan and D. G. Corneil. Corrections to
bierstone’s algorithm for generating cliques. Jour-
nal of the Assoc. for Comp. Machinery, 19:244–
247, 1972.

[15] A. A. Nanavati, S. Gurumurthy, G. Das,
D. Chakraborty, K. Dasgupta, S. Mukherjea, and
A. Joshi. On the structural properties of massive
telecom call graphs: Findings and implications.
In CIKM, 2006.

[16] R. E. Osteen and J. T. Tou. A clique-detection al-
gorithm based on neighbourhoods in graph. Intl.
Journal of Computer and Information Science,
2(4):257–268, 1973.

[17] S. Seidman and B. Foster. A graph-theoritic gen-
eralization of the clique concept. Journal of Math-
ematical Sociology, 6:139–154, 1978.

[18] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5:269–287, 1983.

[19] E. Tomita, A. Tanaka, and H. Takahashi. The
worst-case time complexity for generating all
maximal cliques and computational experiments.
Theor. Comput. Sci., 363(1):28–42, 2006.

[20] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shi-
rakawa. A new algorithm for generating all the
maximal independent sets. SIAM Journal of
Computing, 6(3):505–517, September 1977.

[21] D. J. Watts and S. H. Strogatz. Collective dynam-
ics of ‘small-world’ networks. Nature, 393:440–
442, June 1998.

Data Time Taken |V | |E| δmax ∆
Set L Deg SNN Deg SNN Deg SNN Deg SNN Deg SNN

6 64.973 19.242 117,412 7,914 618,325 39,471 964 218 99 61
7 55.416 9.722 56,868 2,981 340,615 19,196 469 200 85 55
8 42.611 5.324 25,222 1,413 168,109 10,975 274 172 76 50

DS1 9 41.106 3.921 5,959 711 46,644 6,388 253 153 67 43
10 36.453 1.485 2,283 397 21,916 3,940 235 138 63 37
11 27.866 0.832 1440 220 15,686 2,320 222 103 59 32
12 27.467 0.537 985 155 11,856 1,480 208 61 56 27
13 26.750 0.419 692 80 9,089 790 198 45 53 24
8 205.047 84.911 210,672 4,608 1,457,362 39,482 5,505 169 160 70
9 147.778 18.323 53,150 2,603 446,893 24,719 1,526 141 130 61

10 117.163 10.374 23,074 1,527 228,078 15,610 601 114 115 53
DS2 11 107.001 8.090 12,713 927 142,194 9,697 356 91 104 46

12 97.501 4.161 7,813 573 97,210 6,062 219 60 97 39
13 91.763 2.855 4,427 370 63,881 3,468 213 44 92 30
14 87.978 2.404 3,107 94 49,796 838 211 37 89 21
15 99.977 1.351 2,523 56 43,143 480 209 22 87 19
12 1026.022 265.875 872,184 3,057 11,105,410 36,343 2,957 97 332 62
13 907.970 243.792 702,524 2,049 9,281,099 25,106 2,601 84 307 57
14 947.419 178.072 541,895 1,262 7,401,614 16,470 2,189 76 282 52

DS3 15 820.090 137.614 377,296 907 5,320,047 12,391 1,637 71 255 49
16 642.502 73.659 193,925 633 2,853,552 8,902 1,098 63 218 46
17 570.687 23.775 59,557 401 928,046 5,515 527 52 168 40
18 368.715 10.533 25,088 211 401,956 2,846 386 49 132 36
19 311.987 4.603 6,829 72 116,144 1,123 222 47 98 32
13 1361.123 343.507 681,755 3,597 8,890,281 49,884 2,969 261 569 74
14 968.530 270.186 475,173 2,237 6,487,060 30,660 2,502 136 489 63
15 836.269 164.434 304,074 1,431 4,333,420 20,330 1,980 90 399 57

DS4 16 640.435 81.090 161,971 856 2,410,607 12,786 1,480 82 295 53
17 497.075 30.380 31,150 607 529,290 9,015 608 73 171 47
18 399.878 15.680 17,010 427 316,233 6,264 489 67 148 42
19 364.323 11.960 10,651 214 216,449 3,288 482 56 141 37
20 360.749 9.121 7,629 119 167,648 1,940 480 49 134 35

Table 2: Effect of Filtering

Our Algorithm DFS Neighbourhood
DataSet L #Cliques MaxCand TotalCand Time TotalCand Time TotalNodes LeafNodes Time

6 9,973 11,115 81,661 53.336 107,412 147.191 N/F N/F N/F
7 4,903 6,020 49,432 12.779 67,875 32.216 N/F N/F N/F
8 2,520 3,540 31,591 5.064 43,539 9.698 378,852 87,149 142.408

DS1 9 1,287 1,906 17,828 2.097 26,992 3.579 226,037 38,389 13.467
10 671 1,207 11,430 1.233 16,706 1.345 117,065 12,931 2.157
11 290 589 5,668 0.694 8,873 0.633 51,879 3,115 0.520
12 108 272 2,516 0.264 3,346 0.251 18,565 477 0.374
13 35 91 765 0.192 1,215 0.135 4,131 35 0.169
8 9,066 11,936 122,413 39.02 164,380 132.711 N/F N/F N/F
9 4,752 6,938 75,603 17.49 103,904 43.618 N/F N/F N/F

10 2,335 3,978 44,154 7.487 58,997 12.254 562,809 79,437 96.800
DS2 11 975 2,004 21,829 3.052 29,436 4.709 268,810 27,092 10.214

12 329 860 9,543 1.166 13,054 1.311 109,645 7,264 1.236
13 110 255 3,131 0.313 4,852 0.442 37,742 1,412 0.252
14 42 73 835 0.113 1,034 0.142 10,343 174 0.108
15 10 16 227 0.058 240 0.072 1,469 10 0.071
12 10,024 17,027 194,265 47.631 279,122 107.154 N/F N/F N/F
13 5,356 10,887 127,015 25.727 184,761 45.470 N/F N/F N/F
14 2,747 6,816 79,068 12.846 122,141 19.904 1,886,532 183,639 81.309

DS3 15 1,169 4,396 47,709 7.257 76,435 11.360 829,655 49,043 12.211
16 438 2,497 27,188 4.337 42,598 5.212 338,657 10,219 2.307
17 127 1,384 13,434 2.051 16,841 1.592 124,559 1,569 0.656
18 27 612 6,166 1.021 6,939 0.642 47,446 159 0.276
19 8 361 3,420 0.640 3,957 0.294 20,533 8 0.168
13 8,926 16,387 284,706 89.172 401,455 187.817 N/F N/F N/F
14 4,882 10,800 168,869 38.632 252,726 69.058 N/F N/F N/F
15 2,784 6,735 105,745 20.018 162,587 31.932 2,727,889 186,997 1695.293

DS4 16 1,291 5,351 63,377 10.717 95,742 12.157 1,127,515 42,252 71.395
17 404 3,263 33,242 5.332 50,300 5.402 438,905 7,188 3.296
18 141 1,972 17,835 3.138 21,592 1.972 178,101 845 0.917
19 24 974 8,032 1.355 10,037 0.795 79,425 61 0.406
20 2 501 4,170 0.868 6,814 0.472 26,503 2 0.188

Table 3: Comparison of execution behavior: filtered for corresponding minimum clique size

Our Algorithm DFS
DataSet L #Cliques MaxCand TotalCand Time TotalCand Time

6 9,973 11,115 81,661 93.336 107,412 247.191
7 4,903 6,381 57,427 74.787 81,609 200.655
8 2,520 4,021 41,056 48.852 61,618 182.106

DS1 9 1,287 2,658 29,197 31.656 46,256 168.277
10 671 1,802 21,189 21.229 34,898 143.991
11 290 1,254 15,290 14.356 25,987 115.549
12 108 869 10,832 10.871 19,098 97.617
13 35 567 7,750 8.477 14,146 77.120
8 9,066 11,936 122,413 39.020 164,380 162.711
9 4,752 7,591 90,157 36.907 126,624 146.499

10 2,335 4,944 65,452 28.984 95,241 132.694
DS2 11 975 3,181 46,459 23.149 70,700 126.207

12 329 1,963 32,253 17.120 52,474 106.138
13 110 1,318 23,625 14.365 39,441 90.825
14 42 902 17,736 12.097 30,128 77.621
15 10 648 13,834 10.711 23,380 64.170
12 10,024 17,027 194,265 47.631 279,122 107.154
13 5,356 11,661 142,048 41.013 212,266 90.801
14 2,747 8,222 101,142 32.078 159,119 79.123

DS3 15 1,169 5,714 69,847 23.645 116,479 69.469
16 438 4,012 48,120 17.676 84,512 60.703
17 127 2,852 33,821 14.111 61,576 51.414
18 27 2,085 24,382 10.638 45,449 42.583
19 8 1,511 18,086 8.300 33,832 36.853
13 8,926 16,387 284,706 89.172 401,455 187.817
14 4,882 11,907 212,466 75.776 306,701 157.498
15 2,784 8,381 155,752 63.650 233,055 151.485

DS4 16 1,291 5,939 113,743 48.461 174,885 133.324
17 404 4,290 82,468 38.021 130,410 119.857
18 141 3,129 60,797 30.770 97,747 108.221
19 24 2,267 45,611 25.768 73,558 90.476
20 2 1,517 34,925 21.550 56,667 81.192

Table 4: Comparison of execution behavior on DS1, DS2, DS3 and DS4: DS1 filtered for L = 6, DS2 filtered for
L = 8, DS3 filtered for L = 12 and DS4 filtered for L = 13

Our Algorithm DFS Neighbourhood
Filtering MaxCand TotalCand Time TotalCand Time TotalNodes LeafNodes Time

6 3,149 31,891 48.787 34,898 142.736 N/F N/F N/F
7 2,434 26,247 15.783 30,648 36.383 N/F N/F N/F
8 2,066 21,339 6.115 25,829 11.116 137,242 12,963 7.816
9 1,748 17,296 2.927 21,084 4.068 126,552 12,933 2.934

10 1,207 11,430 1.233 16,706 1.345 117,065 12,931 2.157
8 4,392 49,401 48.166 52,474 110.147 N/F N/F N/F
9 3,795 39,273 20.591 41,185 37.364 N/F N/F N/F

10 2,860 29,381 9.085 30,991 10.828 156,262 7,253 3.548
11 1,752 18,847 3.444 20,192 3.947 132,344 7,260 1.934
12 860 9,543 1.166 13,054 1.311 109,645 7,264 1.236
12 8,924 85,264 41.595 84,512 61.052 N/F N/F N/F
13 5,557 63,469 20.336 70,475 30.132 N/F N/F N/F
14 4,915 54,758 12.819 61,442 13.623 403,569 10,220 3.231
15 4,781 50,417 9.908 54,378 9.516 380,259 10,220 2.725
16 2,497 27,188 4.337 42,598 5.212 338,657 10,219 2.307
13 11,444 127,204 85.425 130,410 122.924 N/F N/F N/F
14 8,339 90,648 34.609 106,160 50.245 N/F N/F N/F
15 7,262 75,363 22.960 87,455 24.324 592,750 7,154 8.129
16 5,992 56,001 13.036 68,798 9.890 518,423 7,157 5.591
17 3,263 33,242 5.332 50,300 5.402 438,905 7,188 3.296

Table 5: Comparison of execution behavior on DS1, DS2, DS3 and DS4: clique enumeration algorithms were
run with L = 10 for DS1, 12 for DS2, 16 for DS3 and 17 for DS4. The value of L used in filtering is shown in
the first column.

