#### Large MIMO Systems

Large MIMO systems, with tens to hundreds of antennas, are a promising emerging communication technology. This book provides a unique overview of this technology, covering the opportunities, engineering challenges, solutions, and stateof-the-art of large MIMO test beds. There is in-depth coverage of algorithms for large MIMO signal processing, based on metaheuristics, belief propagation, and Monte Carlo sampling techniques, and suited for large MIMO signal detection, precoding, and LDPC code designs. The book also covers the training requirement and channel estimation approaches in large-scale point-to-point and multiuser MIMO systems; spatial modulation is also included. Issues like pilot contamination and base station cooperation in multicell operation are addressed. A detailed exposition of MIMO channel models, large MIMO channel sounding measurements in the past and present, and large MIMO test beds is also presented. An ideal resource for academic researchers, next generation wireless system designers and developers, and practitioners in wireless communications.

**A. CHOCKALINGAM** is a Professor in the Department of Electrical Communication Engineering, Indian Institute of Science (IISc), Bangalore, India. He has made pioneering contributions in the area of low complexity near-optimal signal detection in large MIMO systems. He is a recipient of the Swarnajayanti Fellowship from the Department of Science and Technology, Government of India, and a Fellow of the Indian National Academy of Engineering (INAE), the National Academy of Sciences, India (NASI), and the Indian National Science Academy (INSA).

**B.** SUNDAR RAJAN is a Professor in the Department of Electrical Communication Engineering, Indian Institute of Science (IISc), Bangalore, India. He is a well-known authority in the area of space-time coding for MIMO channels and distributed space-time coding, and a leading expert in the design of space-time codes based on algebraic techniques. He is a recipient of the Professor Rustum Choksi Award from IISc for excellence in research in engineering, and a Fellow of the Indian National Academy of Engineering (INAE), the National Academy of Sciences, India (NASI), the Indian National Science Academy (INSA), and the Indian Academy of Sciences (IASc).

"This cutting-edge portrayal of large-scale MIMO systems provides a shrewd long-term outlook on this salient wireless subject."

Lajos Hanzo University of Southampton

"This is a very timely and useful book written by authors who are pioneers in the area of large MIMO systems."

Vijay K. Bhargava The University of British Columbia

"Large MIMO will power our wireless networks before this decade is out and the race is just starting. Chockalingam and Sundar Rajan have compiled an excellent companion for this journey."

Arogyaswami Paulraj Stanford University

# Large MIMO Systems

A. CHOCKALINGAM AND B. SUNDAR RAJAN

Indian Institute of Science, Bangalore





University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107026650

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data

Chockalingam, A., author.
Large MIMO systems / A. Chockalingam, Indian Institute of Science, Bangalore;
B. Sundar Rajan, Indian Institute of Science, Bangalore.
pages cm
ISBN 978-1-107-02665-0 (hardback)
MIMO systems. I. Rajan, B. Sundar, author. II. Title.
TK5103.4836.C49 2014
621.39'8-dc23 2013041123

ISBN 978-1-107-02665-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our teachers and students

1

2

3

Cambridge University Press 978-1-107-02665-0 - Large MIMO Systems A. Chockalingam and B. Sundar Rajan Frontmatter <u>More information</u>

## Contents

| Prefe | ace      |                                                                                                                 | page xiii |
|-------|----------|-----------------------------------------------------------------------------------------------------------------|-----------|
| Ackn  | lowledgn | nents                                                                                                           | XV        |
| Abbr  | eviation | 8                                                                                                               | xvii      |
| Nota  | tion     |                                                                                                                 | xxiii     |
| Intro | duction  | I Contraction of the second | 1         |
| 1.1   | Multia   | antenna wireless channels                                                                                       | 2         |
| 1.2   | MIMC     | ) system model                                                                                                  | 4         |
| 1.3   | MIMC     | ) communication with CSIR-only                                                                                  | 5         |
|       | 1.3.1    | Slow fading channels                                                                                            | 5         |
|       | 1.3.2    | Fast fading channels                                                                                            | 6         |
| 1.4   | MIMC     | ) communication with CSIT and CSIR                                                                              | 7         |
| 1.5   | Increa   | sing spectral efficiency: quadrature amplitude modulation                                                       |           |
|       | (QAM     | ) vs MIMO                                                                                                       | 9         |
| 1.6   | Multiu   | ser MIMO communication                                                                                          | 11        |
| 1.7   | Organ    | ization of the book                                                                                             | 12        |
| Refer | rences   |                                                                                                                 | 14        |
| Large | e MIM(   | ) systems                                                                                                       | 16        |
| 2.1   | Oppor    | tunities in large MIMO systems                                                                                  | 16        |
| 2.2   | Chann    | el hardening in large dimensions                                                                                | 17        |
| 2.3   | Techno   | ological challenges and solution approaches                                                                     | 19        |
|       | 2.3.1    | Availability of independent spatial dimensions                                                                  | 20        |
|       | 2.3.2    | Placement of a large number of antennas and RF chains                                                           | 20        |
|       | 2.3.3    | Low complexity large MIMO signal processing                                                                     | 21        |
|       | 2.3.4    | Multicell operation                                                                                             | 23        |
| Refer | rences   |                                                                                                                 | 24        |
| МІМ   | IO enco  | ding                                                                                                            | 25        |
| 3.1   | Spatia   | l multiplexing                                                                                                  | 25        |
| 3.2   | Space-   | time coding                                                                                                     | 27        |
|       | 321      | Space-time block codes                                                                                          | 28        |
|       | 0.2.1    |                                                                                                                 |           |
|       | 3.2.2    | High-rate NO-STBCs                                                                                              | 29        |

© in this web service Cambridge University Press

| viii | Con         | tents                                                |            |
|------|-------------|------------------------------------------------------|------------|
|      |             |                                                      |            |
|      | 3.3         | Spatial modulation (SM)                              | 31         |
|      |             | 3.3.1 SM                                             | 31         |
|      |             | 3.3.2 SSK                                            | 32         |
|      | 5.4         | 3.3.3 GSM                                            | 33         |
|      | Refe        | rences                                               | 38         |
| 4    | MIN         | 10 detection                                         | 40         |
|      | 4.1         | System model                                         | 43         |
|      | 4.2         | Optimum detection                                    | 44         |
|      | 4.3         | Linear detection                                     | 45         |
|      | 4.4         | Interference cancelation                             | 47         |
|      | 4.5         | LR-aided linear detection                            | 48         |
|      |             | 4.5.1 LR-aided detection                             | 49         |
|      | 1.0         | 4.5.2 SA                                             | 51         |
|      | 4.6<br>Refe | Sphere decoding<br>rences                            | 54<br>59   |
|      | 10010       |                                                      | 00         |
| 5    | Dete        | ection based on local search                         | 62<br>65   |
|      | 0.1         | 5.1.1 System model                                   | 65         |
|      |             | 5.1.2 Multistage LAS algorithm                       | 66         |
|      |             | 5.1.3 Complexity                                     | 71         |
|      |             | 5.1.4 Generation of soft outputs                     | 71         |
|      |             | 5.1.5 Near-optimal performance in large dimensions   | 73         |
|      |             | 5.1.6 Decoding of large NO-STBCs using LAS           | 76         |
|      | 5.2         | Randomized search (RS)                               | 81         |
|      |             | 5.2.1 RS algorithm                                   | 81         |
|      |             | 5.2.2 Performance and complexity                     | 83         |
|      | 5.3         | Reactive tabu search (RTS)                           | 85         |
|      |             | 5.3.1 RTS algorithm                                  | 87         |
|      |             | 5.3.2 RTS algorithm versus LAS algorithm             | 91         |
|      |             | 5.3.3 Performance and complexity of RTS              | 92         |
|      |             | 5.3.4 LTS                                            | 96         |
|      |             | 5.3.5 R3TS                                           | 100        |
|      | Pofo        | 5.3.6 Lower bounds on ML performance using RTS       | 103        |
|      | neie        | rences                                               | 107        |
| 6    | Dete        | ection based on probabilistic data association (PDA) | 110        |
|      | 6.1         | PDA in communication problems                        | 111        |
|      | 6.2         | PDA based MIMU detection                             | 112        |
|      |             | 6.2.2 Iterative precedure                            | 112        |
|      |             | 6.2.2 Complexity reduction                           | 113        |
|      | 63          | 0.2.5 Complexity reduction<br>Performance results    | 115<br>116 |
|      | 0.0         | I CHOIMAILLE IESUILS                                 | 110        |

|   |      |                  | Contents                                              | i>         |
|---|------|------------------|-------------------------------------------------------|------------|
|   |      |                  |                                                       |            |
|   |      | 6.3.1            | Performance in large V-BLAST MIMO                     | 117        |
|   |      | 6.3.2            | PDA versus LAS performance in NO-STBC MIMO            | 118        |
|   | Refe | rences           |                                                       | 120        |
|   | Dete | ection/d         | decoding based on message passing on graphical models | 123        |
|   | 7.1  | Graph            | nical models                                          | 123        |
|   |      | 7.1.1            | Bayesian belief networks                              | 123        |
|   |      | 7.1.2            | Markov random fields                                  | 124        |
|   | = 0  | 7.1.3            | Factor graphs                                         | 125        |
|   | 7.2  | BP<br>7.0.1      |                                                       | 127        |
|   |      | 7.2.1            | BP in communication problems                          | 128        |
|   |      | (.2.2            | BP algorithm on factor graphs                         | 129        |
|   |      | 7.2.3<br>7.2.4   | BP algorithm on pair-wise MRFS                        | 129        |
|   |      | 7.2.4            | Loopy DP<br>Demped PD                                 | 130        |
|   | 73   | Appli            | cation of BP in MIMO – an oxample                     | 130        |
|   | 1.0  | 731              | MIMO-ISI system model                                 | 131        |
|   |      | 7.3.2            | Detection using BP                                    | 131        |
|   |      | 7.3.3            | Performance and complexity                            | 135        |
|   | 7.4  | Large            | MIMO detection using MRF                              | 138        |
|   |      | 7.4.1            | MRF BP based detection algorithm                      | 138        |
|   |      | 7.4.2            | MRF potentials                                        | 139        |
|   |      | 7.4.3            | Message passing                                       | 140        |
|   |      | 7.4.4            | Performance                                           | 141        |
|   |      | 7.4.5            | Complexity                                            | 143        |
|   | 7.5  | Large            | MIMO detection using a factor graph                   | 143        |
|   |      | 7.5.1            | Computation complexity                                | 146        |
|   |      | 7.5.2            | Performance                                           | 146        |
|   |      | 7.5.3            | Vector GA (VGA) in PDA versus SGA in FG BP            | 146        |
|   | 7.6  | BP wi            | ith the Gaussian tree approximation (GTA)             | 148        |
|   | 7.7  | BP ba            | ased joint detection and LDPC decoding                | 151        |
|   |      | 7.7.1            | System model                                          | 152        |
|   |      | 7.7.2            | Individual detection and decoding                     | 152        |
|   |      | 7.7.3            | Joint detection and decoding                          | 153        |
|   | 70   | (.(.4<br>Tamagar | Performance and complexity                            | 155        |
|   | 1.0  | Trregu           | EXIT short analysis                                   | 150        |
|   |      | 782              | LDPC code design                                      | 160        |
|   |      | 7.8.3            | Coded BEB performance                                 | 163        |
|   | Refe | rences           | Coded DERt performance                                | 165<br>165 |
|   | Ποτ  | ection b         | ased on MCMC techniques                               | 160        |
| , | 8 1  | Monte            | e Carlo integration                                   | 160        |
|   | 8.2  | Marko            | ov chains                                             | 171        |
|   | 0.2  | 11101110         | · · · · · · · · · · · · · · · · · · ·                 | - I I      |

| х  | Cont                                     | ents    |                                                           |     |  |  |
|----|------------------------------------------|---------|-----------------------------------------------------------|-----|--|--|
|    |                                          |         |                                                           |     |  |  |
|    | 8.3                                      | MCMO    | C techniques                                              | 173 |  |  |
|    |                                          | 8.3.1   | Metropolis–Hastings algorithm                             | 173 |  |  |
|    |                                          | 8.3.2   | Simulated annealing                                       | 175 |  |  |
|    |                                          | 8.3.3   | Gibbs sampling                                            | 176 |  |  |
|    | 8.4                                      | MCMO    | C based large MIMO detection                              | 177 |  |  |
|    |                                          | 8.4.1   | System model                                              | 178 |  |  |
|    |                                          | 8.4.2   | Conventional Gibbs sampling for detection                 | 179 |  |  |
|    |                                          | 8.4.3   | Motivation for mixed-Gibbs sampling (MGS)                 | 180 |  |  |
|    |                                          | 8.4.4   | MGS                                                       | 182 |  |  |
|    |                                          | 8.4.5   | Effect of mixing ratio $q$                                | 183 |  |  |
|    |                                          | 8.4.6   | Stopping criterion                                        | 184 |  |  |
|    |                                          | 8.4.7   | Performance and complexity of the MGS algorithm           | 186 |  |  |
|    |                                          | 8.4.8   | Multirestart MGS algorithm for higher-order QAM           | 188 |  |  |
|    |                                          | 8.4.9   | Effect of multiple restarts                               | 188 |  |  |
|    |                                          | 8.4.10  | MGS with multiple restarts                                | 190 |  |  |
|    |                                          | 8.4.11  | Restart criterion                                         | 191 |  |  |
|    |                                          | 8.4.12  | Performance and complexity of the MGS-MR algorithm        | 191 |  |  |
|    |                                          | 8.4.13  | Performance of the MGS-MR as a function of loading        |     |  |  |
|    |                                          |         | factor                                                    | 193 |  |  |
|    | Refer                                    | rences  |                                                           | 195 |  |  |
| 9  | Channel estimation in large MIMO systems |         |                                                           |     |  |  |
|    | 9.1                                      | MIMO    | capacity with imperfect CSI                               | 197 |  |  |
|    | 9.2                                      | How m   | nuch training is required?                                | 198 |  |  |
|    |                                          | 9.2.1   | Point-to-point MIMO training                              | 199 |  |  |
|    |                                          | 9.2.2   | Multiuser MIMO training                                   | 201 |  |  |
|    | 9.3                                      | Large : | multiuser MIMO systems                                    | 202 |  |  |
|    |                                          | 9.3.1   | System model                                              | 202 |  |  |
|    |                                          | 9.3.2   | Iterative channel estimation/detection in frequency-flat  |     |  |  |
|    |                                          |         | fading                                                    | 202 |  |  |
|    |                                          | 9.3.3   | Iterative channel estimation/equalization in ISI channels | 208 |  |  |
|    |                                          | 9.3.4   | Equalization using initial channel estimates              | 213 |  |  |
|    |                                          | 9.3.5   | Equalization using the MGS-MR algorithm                   | 214 |  |  |
|    | Refer                                    | rences  |                                                           | 216 |  |  |
| 10 | Precoding in large MIMO systems          |         |                                                           |     |  |  |
|    | 10.1                                     | Precod  | ling in point-to-point MIMO                               | 219 |  |  |
|    |                                          | 10.1.1  | SVD precoding                                             | 220 |  |  |
|    |                                          | 10.1.2  | Pairing of good and bad subchannels                       | 221 |  |  |
|    |                                          | 10.1.3  | Performance of X-codes and Y-codes                        | 226 |  |  |
|    | 10.2                                     | Precod  | ling in a multiuser MIMO downlink                         | 227 |  |  |
|    |                                          | 10.2.1  | Linear precoding                                          | 227 |  |  |
|    |                                          | 10.2.2  | Non-linear precoding                                      | 229 |  |  |
|    |                                          | 10.2.3  | Precoding in large multiuser MISO systems                 | 230 |  |  |

|    | Contents                                                         | xi  |
|----|------------------------------------------------------------------|-----|
|    |                                                                  |     |
|    | 10.2.4 Precoder based on norm descent search (NDS)               | 233 |
|    | 10.2.5 Complexity and performance                                | 236 |
|    | 10.2.6 Closeness to sum capacity                                 | 237 |
|    | 10.3 Multicell precoding                                         | 239 |
|    | 10.3.1 System model                                              | 241 |
|    | 10.3.2 Precoding without BS cooperation                          | 244 |
|    | 10.3.3 Precoding with BS cooperation                             | 245 |
|    | 10.3.4 Performance                                               | 246 |
|    | References                                                       | 248 |
| 11 | MIMO channel models                                              | 251 |
|    | 11.1 Analytical channel models                                   | 252 |
|    | 11.1.1 Spatial correlation based models                          | 252 |
|    | 11.1.2 Propagation based models                                  | 256 |
|    | 11.2 Effect of spatial correlation on large MIMO performance: an |     |
|    | illustration                                                     | 260 |
|    | 11.2.1 Pinhole effect                                            | 261 |
|    | 11.2.2 Effect of spatial correlation on LAS detector performance | 262 |
|    | 11.3 Standardized channel models                                 | 264 |
|    | 11.3.1 Models in IEEE 802.11 WiFi                                | 265 |
|    | 11.3.2 Models in 3GPP/LTE                                        | 267 |
|    | 11.4 Large MIMO channel measurement campaigns                    | 268 |
|    | 11.5 Compact antenna arrays                                      | 275 |
|    | 11.5.1 PIFA                                                      | 276 |
|    | 11.5.2 PIFAs as elements in compact arrays                       | 277 |
|    | 11.5.3 MIMO cubes                                                | 278 |
|    | References                                                       | 279 |
| 12 | Large MIMO testbeds                                              | 285 |
|    | 12.1 $12 \times 12$ point-to-point MIMO system                   | 286 |
|    | 12.2 $8 \times 16$ point-to-point MIMO system at 10 Gbps rate    | 287 |
|    | 12.3 $16 \times 16$ multiuser MIMO system                        | 287 |
|    | 12.4 $64 \times 15$ multiuser MIMO system (Argos)                | 288 |
|    | $12.5  32 \times 14$ multiuser MIMO system (Ngara)               | 290 |
|    | 12.6 Summary                                                     | 293 |
|    | References                                                       | 293 |
|    | Author index                                                     | 297 |
|    | $Subject \ index$                                                | 303 |
|    |                                                                  |     |

### Preface

The physical layer capabilities in wireless transmissions are growing. In particular, the growth trajectory of the achieved data transmission rates on wireless channels has followed Moore's law in the past decade and a half. Over a span of 15 years starting mid-1990s, the achieved wireless data transmission rates in several operational scenarios have increased over 1000 times. The data transmission rate in WiFi which was a mere 1 Mbps in 1996 (IEEE 802.11b) had reached 1 Gbps by 2011 (IEEE 802.11ac). During the same span of time, the data rate in cellular communication increased from about 10 kbps in 2G to more than 10 Mbps in 4G (LTE). One of the promising technologies behind such a sustained rate increase is multiantenna technology – more popularly referred to as the multiple-input multiple-output (MIMO) technology, whose beginnings date back to the late 1990s.

The interest shown in the study and implementation of MIMO systems stems from the promise of achieving high data rates as a result of exploiting independent spatial dimensions, without compromising on the bandwidth. Theory has predicted that the greater the number of antennas, the greater the rate increase without increasing bandwidth (in rich scattering environments). This is particularly attractive given that the wireless spectrum is a limited and expensive resource.

More than a decade of sustained research, implementation, and deployment efforts has given MIMO technology the much needed maturity to become commercially viable. More and more wireless products and standards have started adopting MIMO techniques, mainly in the small number of antennas regime (2–8 antennas). However, the promise of achieving very high spectral efficiencies using a much larger number of antennas still remains open to research and subsequent commercial exploitation. We call MIMO systems which achieve spectral efficiencies of tens to hundreds of bps/Hz using tens to hundreds of antennas "large MIMO systems." This book is exclusively about large MIMO systems.

Large MIMO systems, by their very nature, merit special attention and treatment. For example, algorithms and techniques which are known to work well with a small number of antennas may not scale well for a large number of antennas. Therefore, newer and alternative approaches are needed. Also, in addition to increased rate and diversity gains, large dimensionality brings other advantages (e.g., channel hardening, which can be exploited to achieve low complexity signal

#### xiv Preface

processing) which do not come with smaller systems. Bringing out such large MIMO centric opportunities, issues, and solution approaches and techniques is one of the key objectives in this book.

A few words about what motivated us to write this book are in order. Our teaching and research interest in space-time coding and multiuser detection in the early- to mid-2000s brought us together to collaborate on MIMO wireless research. Being in the same department and having offices in the same building helped - we could discuss ideas over casual chats during coffee/tea breaks and evening walks. Our first set of results on large MIMO systems were published in mid-2008. Since then, we have continued our research on various signal processing aspects in large MIMO systems, which has led to several of our subsequent publications on large MIMO. The large MIMO idea seems to have caught on, as we can see in the chapter on large MIMO testbeds (Chapter 12). Over these years, we have given tutorial talks on this topic to conferences and industry. We felt that, in the process, we had generated a critical mass of material, enough to write a book on large MIMO systems. Also, we found that a book written exclusively on large MIMO systems was yet to appear at the time of proposing this book to the publisher. We thank the publisher for having accepted our proposal for writing this book, and here we are with our intended book on large MIMO systems.

It is heartening to see that large MIMO systems have become more popular now compared to the days when we first started publishing on this topic in 2008. Large MIMO systems seem to have started to flourish under several names; largescale MIMO, massive MIMO, hyper-MIMO, higher-order MIMO, to name a few. It is even more heartening to realize that large MIMO technology is one of the key technologies being considered for standardization in 5G and beyond.

We hope that this book will be of interest and use to researchers, graduate students, and wireless system designers and implementers, and will create the interest needed to take large MIMO research, development, and standardization activities to the next level.

### Acknowledgments

We would first like to thank our graduate students for their valuable contributions to our large MIMO research. At a time when people started thinking that there is not much of interest left in MIMO research, they took on the challenges of exploring the uncharted area of MIMO systems with tens to hundreds of antennas. Thanks to their dedicated and sustained efforts, we were able to make some of the early contributions to the field of large MIMO systems. This book to a large extent draws on these contributions, and we thank all our students for their commitment, hard work, and help. Our many thanks are due to: K. Vishnu Vardhan, Saif K. Mohammed (currently an Assistant Professor at the Indian Institute of Technology, Delhi), Ahmed Zaki, N. Srinidhi, Suneel Madhekar, P. J. Thomas Sojan, Pritam Som, Tanumay Datta, N. Ashok Kumar, Suresh Chandrasekaran, Yogendra Umesh Itankar, P. M. Chandrakanth, M. Raghavendra Nath Reddy, Harsha Eshwaraiah, T. Lakshmi Narasimhan, Kamal Agarwal Singhal, Manish Mandloi, and Shovik Biswas.

Our research and teaching in multiuser detection and space-time coding had a positive influence on our understanding of and contribution to large MIMO research. We thank all the students who attended our courses on CDMA and multiuser detection, and space-time signal processing and coding. We also thank the students who contributed to our research in these areas. Parts of early drafts of this book were used in the CDMA and multiuser detection course. We thank the students for the valuable feedback on these drafts.

N. Srinidhi, Tanumay Datta, and T. Lakshmi Narasimhan were helpful in the development of the manuscript in many ways (generating figures, proofreading, LaTex help, offering general feedback and comments on the structure and contents of the book). Our special thanks are due to them. We also thank Ms. G. Nithya, our project associate, for her help in the preparation of the manuscript. We appreciate her technical support to our laboratory activities and large MIMO related activities.

We thank Emanuele Viterbo and Yi Hong for their fruitful research collaboration on MIMO precoding and sampling based lattice decoding. We also thank Onkar Dabeer for his collaboration on AdaBoost for MIMO signal detection. We are grateful to Rajesh Sundaresan and Vivek Borkar for useful discussions on MCMC techniques.

#### xvi Acknowledgments

We gratefully acknowledge the continuous support of Defence Research and Development Organization (DRDO) in our research. Our special thanks are due to Defence Electronics Application Laboratory (DEAL), Dehradun, for active support for large MIMO system development. We also acknowledge a gift from the Cisco University Research Program, a corporate advised fund of Silicon Valley Community Foundation.

We thank the academic institutions and industries who hosted our talks and discussion meetings on large MIMO systems, on one occasion or another. These interactions stimulated us to continuously engage in and broaden our views and scope of our research in large MIMO.

Our thanks are due to Dheeraj Sreedhar, N. Srinidhi, Tanumay Datta, Sanjay Vishwakarma, T. Lakshami Narasimhan, S. N. Padmanabhan, and S. V. R. Anand for useful discussions on large MIMO system development. We also thank our colleagues K. J. Vinoy, Gaurab Banerjee, and Bharadwaj Amrutur for discussions on RF and hardware related issues. Working with the scientists of DEAL, Dehradun, and the engineers of Tata Elxsi, Bangalore, on large MIMO system development was an exciting experience. We thank them for their zeal and commitment to the development effort.

We thank Cambridge University Press for accepting our proposal to write this book. It was a pleasure working with Philip Meyler and Mia Balashova, Cambridge University Press, on this project. Special thanks are due to Mia for the excellent support she rendered throughout the various stages of writing this book. Her response to our queries and concerns at every stage was always prompt and clear. She made our book writing experience a smooth one.

Finally, we express our sincere gratitude to our families – our indulgence in several of our academic pursuits, including writing of this book, would not have been possible without their patience, understanding, and support.

| 2G            | Second generation                              |
|---------------|------------------------------------------------|
| 3G            | Third generation                               |
| 3GPP          | Third generation partnership project           |
| $4\mathrm{G}$ | Fourth generation                              |
| 5G            | Fifth generation                               |
| ADC           | Analog-to-digital conversion                   |
| AGC           | Automatic gain control                         |
| AoA           | Angle of arrival                               |
| AoD           | Angle of departure                             |
| AP            | Access point                                   |
| APP           | A posteriori probability                       |
| AS            | Angular spread                                 |
| ASIC          | Application specific integrated circuit        |
| AWGN          | Additive white Gaussian noise                  |
| BC            | Broadcast channel                              |
| BCJR          | Bahl–Cocke–Jelinek–Raviv                       |
| BER           | Bit error rate                                 |
| BP            | Belief propagation                             |
| bpcu          | Bits per channel use                           |
| BPSK          | Binary phase shift keying                      |
| BQP           | Binary quadratic program                       |
| BS            | Base station                                   |
| CCDF          | Complementary cumulative distribution function |
| CDA           | Cyclic division algebra                        |
| CDF           | Cumulative distribution function               |
| CDMA          | Code division multiple access                  |
| CN            | Check node                                     |
| COMP          | Coordinated multipoint                         |
| COST          | Cooperation in science and technology          |
| CP            | Cyclic prefix                                  |
| CPSC          | Cyclic prefixed single-carrier                 |
| CRB           | Cramer–Rao bound                               |
| CRLB          | Cramer–Rao lower bound                         |
| CSI           | Channel state information                      |
|               |                                                |

CAMBRIDGE

| xviii Abbreviations |  |
|---------------------|--|
|---------------------|--|

| CSIR            | Channel state information at receiver            |
|-----------------|--------------------------------------------------|
| CSIT            | Channel state information at transmitter         |
| DAC             | Digital-to-analog conversion                     |
| dB              | Decibel                                          |
| $\mathrm{DFT}$  | Discrete Fourier transform                       |
| DoA             | Direction of arrival                             |
| DoD             | Direction of departure                           |
| DPC             | Dirty paper coding                               |
| EPA             | Extended pedestrian A model                      |
| ETU             | Extended typical urban model                     |
| EVA             | Extended vehicular A model                       |
| EXIT            | Extrinsic information transfer                   |
| FDD             | Frequency division duplex                        |
| FDMA            | Frequency division multiple access               |
| FIR             | Finite impulse response                          |
| FFT             | Fast Fourier transform                           |
| FGBP            | Factor graph belief propagation                  |
| FPGA            | Field-programmable gate array                    |
| GA              | Gaussian approximation                           |
| GAI             | Gaussian approximation of interference           |
| GDL             | Generalized distributive law                     |
| GPDA            | Generalized PDA                                  |
| GPS             | Global positioning system                        |
| GSM             | Generalized spatial modulation                   |
| GTA             | Gaussian tree approximation                      |
| HDTV            | High-definition television                       |
| IC              | Integrated circuit                               |
| ICI             | Inter-carrier interference                       |
| IDFT            | Inverse DFT                                      |
| IF              | Intermediate frequency                           |
| IFA             | Inverted F antenna                               |
| $\mathbf{IFFT}$ | Inverse FFT                                      |
| iid             | independent and identically distributed          |
| ILS             | Integer least-squares                            |
| ISDIC           | Iterative soft decision interference cancelation |
| ISI             | Inter-symbol interference                        |
| IUI             | Inter-user interface                             |
| KL              | Kullback–Leibler                                 |
| LAN             | Local area network                               |
| LAS             | Likelihood ascent search                         |
| LD              | Linear dispersion                                |
| LDPC            | Low-density parity-check                         |
| LHS             | Left hand side                                   |
| LLL             | Lenstra-Lenstra-Lovasz                           |

|   | ٠ |   |
|---|---|---|
| Х | I | Х |

| LLR        | Log-likelihood ratio                                        |
|------------|-------------------------------------------------------------|
| LOS        | Line-of-sight                                               |
| LR         | Lattice reduction                                           |
| LS         | Local search                                                |
| LTE        | Long-term evolution                                         |
| LTE-A      | Long-term evolution advanced                                |
| LTS        | Lavered tabu search                                         |
| MAC        | Media access control                                        |
| MAP        | Maximum a posteriori probability                            |
| MCMC       | Markov chain Monte Carlo                                    |
| MF         | Matched filter                                              |
| MGS        | Mixed-Gibbs sampling                                        |
| MGS-MR     | Mixed-Gibbs sampling with multiple restarts                 |
| MIMO       | Multiple-input multiple-output                              |
| ML         | Maximum likelihood                                          |
| MMSE       | Minimum mean square error                                   |
| MMSE-ISDIC | MMSE based iterative soft-decision interference cancelation |
| MMSE-SIC   | MMSE successive interference cancelation                    |
| MRF        | Markov random field                                         |
| MSE        | Mean square error                                           |
| MUBF       | Multiuser beamforming                                       |
| MUD        | Multiuser detection                                         |
| NDS        | Norm descent search                                         |
| NLOS       | Non-line-of-sight                                           |
| NO-STBC    | Non-orthogonal space-time block code                        |
| OFDM       | Orthogonal frequency division multiplexing                  |
| OFDMA      | Orthogonal frequency division multiple access               |
| OLA        | Overlap-and-add                                             |
| OSTBC      | Orthogonal space-time block code                            |
| PAM        | Pulse amplitude modulation                                  |
| PAPR       | Peak-to-average power ratio                                 |
| PAS        | Power angular spectrum                                      |
| PC         | Personal computer                                           |
| PDA        | Probabilistic data association                              |
| pdf        | Probability density function                                |
| PDP        | Power delay profile                                         |
| PIC        | Parallel interference cancelation                           |
| PIFA       | Planar inverted F antenna                                   |
| pmf        | Probability mass function                                   |
| PSK        | Phase shift keying                                          |
| QAM        | Quadrature amplitude modulation                             |
| QPSK       | Quadrature phase shift keying                               |
| R3TS       | Random-restart reactive tabu search                         |
| RF         | Radio frequency                                             |

CAMBRIDGE

хх

Cambridge University Press 978-1-107-02665-0 - Large MIMO Systems A. Chockalingam and B. Sundar Rajan Frontmatter <u>More information</u>

| RFID    | Radio-frequency identification                             |
|---------|------------------------------------------------------------|
| rms     | Root mean square                                           |
| RS      | Randomized search                                          |
| RTS     | Reactive tabu search                                       |
| SA      | Seysen's algorithm                                         |
| SAGE    | Space-alternating generalized expectation-maximization     |
| SC-FDMA | Single-carrier frequency division multiple access          |
| SCM     | Spatial channel model                                      |
| SCME    | Spatial channel model – extended                           |
| SD      | Sphere decoder                                             |
| SDMA    | Space division multiple access                             |
| SDR     | Semi-definite relaxation                                   |
| SFBC    | Space-frequency block code                                 |
| SGA     | Scalar Gaussian approximation                              |
| SIC     | Successive interference cancelation                        |
| SIMO    | Single-input multiple-output                               |
| SINR    | Signal-to-interference plus noise ratio                    |
| SISO    | Single-input single-output                                 |
| SM      | Spatial modulation                                         |
| SMSE    | Sum mean square error                                      |
| SNR     | Signal-to-noise ratio                                      |
| spcu    | Symbols per channel use                                    |
| SSK     | Space shift keying                                         |
| STBC    | Space-time block code                                      |
| STTC    | Space-time trellis codes                                   |
| SVD     | Singular value decomposition                               |
| TCM     | Trellis coded modulation                                   |
| TDD     | Time division duplex                                       |
| TDL     | Tapped delay line                                          |
| TDMA    | Time division multiple access                              |
| TGn     | Task group IEEE 802.11n                                    |
| THP     | Tomlinson–Harashima precoding                              |
| TOA     | Time of arrival                                            |
| TS      | Tabu search                                                |
| TV      | Television                                                 |
| UCA     | Uniform circular array                                     |
| UE      | User equipment                                             |
| UHF     | Ultra high frequency                                       |
| ULA     | Uniform linear array                                       |
| USB     | Universal serial bus                                       |
| UT      | User terminal                                              |
| UWB     | TIL 1 1                                                    |
|         | Ultra wideband                                             |
| V-BLAST | Vertical Bell laboratories lavered space-time architecture |

|        | `   |   | 1 |
|--------|-----|---|---|
| Y      | - 1 |   |   |
| $\sim$ |     | ` | 1 |
|        |     |   |   |
|        |     |   |   |

| VHF    | Very high frequency                              |
|--------|--------------------------------------------------|
| VLAN   | Virtual local area network                       |
| VP     | Vector perturbation                              |
| VP-SE  | Vector perturbation with sphere encoding         |
| WINNER | Wireless world initiative new radio              |
| WiFi   | Wireless fidelity                                |
| WLAN   | Wireless local area network                      |
| ZF     | Zero forcing                                     |
| ZF-SIC | Zero forcing successive interference cancelation |
| ZP     | Zero padding                                     |
| ZPSC   | Zero padded single-carrier                       |
|        |                                                  |

# Notation

| Complex conjugation                                          |
|--------------------------------------------------------------|
| Hermitian transposition                                      |
| Transposition                                                |
| Absolute value of a complex number (or cardinality of a set) |
| Euclidean norm of a vector                                   |
| Rounding operation to the nearest integer                    |
| Largest integer less than $c$                                |
| Element-wise multiplication operation                        |
| Kronecker product                                            |
| Circularly symmetric complex Gaussian distribution           |
| with mean $\mu$ and variance $\sigma^2$                      |
| Number of transmit antennas                                  |
| Number of receive antennas                                   |
| Stack columns of the input matrix into one column vector     |
| Determinant of matrix $\mathbf{X}$                           |
| Trace of matrix $\mathbf{X}$                                 |
| $n \times n$ identity matrix                                 |
| Vector $\mathbf{x}$                                          |
| Matrix $\mathbf{X}$                                          |
| Field of complex numbers                                     |
| Expectation operation                                        |
| Field of real numbers                                        |
| Non-negative real numbers                                    |
| Set of all integers                                          |
| Real part of the complex argument                            |
| Imaginary part of the complex argument                       |
|                                                              |