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Abstract

Triple negative breast cancer (TNBC) is currently the only major breast tumor subtype without effective targeted ther-

apy and, as a consequence, usually presents a poor outcome. Due to its more aggressive phenotype, there is an ur-

gent clinical need to identify novel biomarkers that discriminate individuals with poor prognosis. We hypothesize that

miRNAs can be used to this end because they are involved in the initiation and progression of tumors by altering the

expression of their target genes. To identify a prognostic biomarker in TNBC, we analyzed the miRNA expression of

a cohort composed of 185 patients diagnosed with TNBC using penalized Cox regression models. We identified a

four-biomarker signature based on miR-221, miR-1305, miR-4708, and RMDN2 expression levels that allowed for

the subdivision of TNBC into high- or low-risk groups (Hazard Ratio – HR = 0.32; 95% Confidence Interval - CI =

0.11–0.91; p = 0.03) and are also statistically associated with survival outcome in subgroups of postmenopausal sta-

tus (HR = 0.19; 95% CI = 0.04–0.90; p= 0.016), node negative status (HR = 0.12; 95% CI = 0.01–1.04; p = 0.026),

and tumors larger than 2cm (HR = 0.21; 95% CI = 0.05–0.81; p = 0.021). This four-biomarker signature was signifi-

cantly associated with TNBC as an independent prognostic factor for survival.
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Introduction

Breast cancer is the most common cancer among

women, with an estimated 246,660 new cases and 40,450

deaths in 2016 in the United States (Siegel et al., 2016).

Based on gene expression profiling, most studies categorize

breast cancer into the following four major molecular sub-

types: luminal A (presence of estrogen receptor – ER+ and/or

progesterone receptor – PR+, and absence of HER2 expres-

sion – HER2-), luminal B (ER+ and/or PR+, HER2+), HER2

type (ER-, PR-, HER2+), and triple negative (ER-, PR-, and

HER2-) (Risbridger et al., 2010).

Developments in the treatment of some types of breast

cancer have increased the overall survival of patients (Vogel

et al., 2002; Ariazi et al., 2006; Dawood et al., 2009). For ex-

ample, tamoxifen, which is an antagonist of the estrogen re-

ceptor, and trastuzumab, which is a monoclonal antibody

that acts on the HER2 receptor, have improved the survival

outcome of luminal and HER2 breast cancer subtypes, re-

spectively. However, predictive molecular biomarkers and

targeted therapies are still lacking for the treatment of triple

negative breast cancer (TNBC) (Gonzalez-Angulo et al.,

2007; Blows et al., 2010; Iwase et al., 2010; The Cancer Ge-

nome Atlas Network, 2012). This may be the reason for the

low improvement of survival rates of TNBC patients in the

last years (Gonzalez-Angulo et al., 2007). TNBC is a very

heterogeneous disease, which comprises between 12% and

24% of all breast cancers and is associated with early recur-

rence of disease, a more aggressive phenotype, and a worse

clinical prognosis than luminal and HER2 types (Gasparini

et al., 2014). Currently, the only option of treatment for pa-

tients diagnosed with TNBC is chemotherapy, which has

limited benefits to a subgroup of patients. Thus, a molecular

stratification of TNBC based on molecular markers is essen-

tial to identify novel targets of drugs.

We focused our research on microRNAs (miRNAs)

because they are widely known to be critical components in
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cancer progression and drug resistance. miRNAs are small

(19 – 25 nucleotides) single-stranded non-coding RNA mol-

ecules that regulate protein-coding genes through se-

quence-specific binding to 3’ untranslated regions (UTRs)

of messenger RNAs (mRNA) (Zeng et al., 2003; Bartel,

2004). As a consequence, they alter the abundance of gene

expression, usually reducing gene expression, but a few re-

ports have suggested that they may also induce gene expres-

sion (Vasudevan et al., 2007; Place et al., 2008).

Compelling evidence has shown that aberrantly ex-

pressed miRNAs are involved in the initiation and progres-

sion of human cancers and have considerable potential for

use as biomarkers for the detection, diagnosis, classification,

and treatment of cancer. Different tissue types present

unique expression levels of each miRNA and thereby pres-

ent unique miRNA “signatures.” Similarly, each tumor type

presents a unique miRNA signature, which can be used to

identify the tissue of origin of metastatic tumors and to dis-

criminate between distinct cancer subtypes (Lu et al., 2005).

Thus, the sub-classification of TNBC using miRNAs may

identify new screening methods, prognostic factors, and po-

tential targets for personalized medicine (Cascione et al.,

2013).

In an attempt to identify molecular prognostic markers

specific to TNBC, we analyzed a large TNBC cohort com-

posed of 185 patients and approximately 850 miRNAs

(Dvinge et al., 2013). By computational analysis, we identi-

fied a four-biomarker signature that is statistically associated

with patients’ outcomes in both training and validation

TNBC sets.

Materials and Methods

MicroRNA expression data

A collection of clinically annotated and previously

pre-processed public miRNA/mRNA gene expression data

(Agilent) composed of approximately 850 miRNAs (includ-

ing putative miRNAs) and 185 subjects diagnosed with

TNBC were downloaded from the European Genome-

phenome Archive webpage. This dataset (ID

EGAS00000000122) was derived from fresh-frozen cancer

specimens from tumor banks in the United Kingdom and

Canada. The treatments were homogeneous for clinically

relevant groupings. The selection criterion for the TNBC pa-

tients was based on the presence or absence of ER, PR, and

HER2 empirical gene expression distributions. To define the

presence or absence of specific gene expression, Curtis et al.

(2012) clustered the individuals into two groups by using a

clustering expectation-maximization algorithm (Gaussian

mixture model). Individuals belonging to the cluster with

lower gene expression were set as with absent gene expres-

sion and otherwise as present. They carried out this proce-

dure for each one of the three genes (ER, PR, and HER2). We

selected all individuals with simultaneously absent ER, PR,

and HER2 gene expression. Basic information regarding this

185 patients data set is as follows (mean � standard deviation

or number of individuals): age at diagnosis (54.99 � 14.37

years old), tumor size (2.72 � 18.25 cm), presence (87), ab-

sence (95), and unknown (3) of lymph nodes, grades 1 (1), 2

(20), 3 (159), and unknown (5), subjects in premenopausal

(70), postmenopausal (114), and unknown (1), histological

type (infiltrating ductal carcinoma (171), infiltrating lobular

carcinoma (7), ductal carcinoma in situ (2), invasive tumor

(3), and benign (2)).

The 185 patients were randomized and split into train-

ing (n = 120) and validation (n = 65) sets. The clinical and

pathological characteristics of both training and validation

sets are summarized in Table 1.

Statistical analysis

Because the number of miRNAs (approximately 850)

is higher than the number of observations in the training set

(n=120), standard Cox proportional hazard regression is not

applicable. Thus, we first used the lasso regularized Cox re-

gression for feature selection (Friedman et al., 2010) to se-

lect the miRNAs that are mostly associated with overall

survival time. Then, to accurately estimate the weights of

each feature selected by the penalized Cox regression model

(coefficients estimated by lasso regularized Cox regression

are known to be biased due to l1 penalization), we applied the
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Table 1 - Clinical and pathological characteristics of patients and their tu-

mors in both the training and validation sets. The data are numbers (%) un-

less otherwise stated. SD: standard deviation.

Variables Status Training set

(n=120)

Validation set

(n=65)

Age at diagnosis

(years)

Mean (SD) 55.93 (14.47) 53.25 (14.13)

�40 22 (18.3) 13 (20.0)

41-55 33 (27.5) 21 (32.3)

56-70 47 (39.2) 24 (36.9)

> 70 18 (15.0) 7 (10.8)

Tumor size (cm) Mean (SD) 2.76 (1.96) 2.64 (1.49)

�2cm 50 (41.7) 27 (41.5)

> 2cm 69 (57.5) 36 (55.4)

Unknown 1 (0.8) 2 (3.1)

Lymph nodes Negative 59 (49.2) 28 (43.1)

Positive 60 (50.0) 35 (53.8)

Unknown 1 (0.8) 2 (3.1)

Grade 1 1 (0.8) 0 (0)

2 14 (11.7) 6 (9.2)

3 101 (84.2) 58 (89.2)

Unknown 4 (3.3) 1 (1.6)

Menopausal

status

Premenopausal 45 (37.5) 25 (38.5)

Postmenopausal 75 (62.5) 39 (60.0)

Unknown 0 (0) 1 (1.5)

Dead Yes 54 (46.7) 27 (41.5)

No 64 (53.3) 39 (58.5)



standard Cox regression. Figure 1 summarizes the analysis

in a flowchart. To minimize the influence of clinical vari-

ables, such as age at diagnosis, tumor grade, size, pres-

ence/absence of nodes, and menopausal status, we included

them as covariates in the standard Cox regression model.

The risk score for each patient was calculated by multi-

plying the expression level of each miRNA by its corre-

sponding coefficient obtained by the Cox regression in the

training set and summing them. Patients were thus dicho-

tomized into the groups at good or poor prognosis (low or

high risk) using the median cutoff of the risk score as the

threshold value.

Kaplan-Meier survival curves and log-rank tests were

constructed to evaluate the differences in the overall survival

time of predicted good and poor prognosis groups by the

miRNA signature in both the training and validation sets.

Univariate and multivariate analyses with the Cox propor-

tional hazard model were used to assess the prognostic value

of the miRNA signature with and without adjusting for indi-

vidual clinical prognostic variables (age at diagnosis, tumor

grade, tumor size, presence/absence of nodes, and meno-

pausal status), respectively.

To investigate the differential expression of miRNAs

between good and poor prognosis, we performed a Wil-

coxon signed-rank test, which is more robust to outliers than

the t-test.

To identify the correlation between miRNAs and their

respective target gene expressions, we used the Spearman

correlation.

All computations were performed in the R statistical

environment (R Core Team, 2014). Both lasso regularized

and standard Cox regressions were performed by using R

packages, namely glmnet (with parameters alpha = 1 and

family = “cox”) and survival, respectively.

Data access

The data that support the findings of this study are

available from https://www.ebi.ac.uk/ega/, but restrictions

apply to the availability of these data, as these were used un-

der license for the current study. Thus, these data are not

publicly available. However, these data are available from

the authors upon reasonable request and with permission of

the Data Access Committee.

Results

Development of a miRNA prognostic signature for
TNBC patients

The entire set of approximately 850 miRNAs was ana-

lyzed to develop a prognostic signature in the training set.

One subject diagnosed with grade I was removed from our

analysis due to its low quantity.

By performing the lasso regularized Cox regression

analysis, we identified four miRNAs (two of them were pu-

tative) as being associated with overall survival in TNBC,

namely miR-221 (probe ID: A_25_P00010690), miR-1305

(probe ID: A_25_P00015133), miR-11624 (probe ID:

CRINCR2000004678, putative miRNA), and miR-10055

(probe ID: CRINCR2000004642, putative miRNA). We

contacted the authors of the original study (Dvinge et al.,

2013), who provided us with the probe sequences of the two

putative miRNAs. Then, we re-annotated them by mapping

the probe sequences to the human genome version hg38 by

BLAT (Kent, 2002). The putative microRNAs miR-11624

and miR-10055 mapped to (with 100% alignment) the previ-

ously annotated miR-4708 and an exon of gene RMDN2

(regulator of microtubule dynamics 2), respectively. There-

fore, our prognostic signature is composed of three

microRNAs and one gene that codes for a protein, specifi-

cally miR-221, miR-1305, miR-4708, and RMDN2. Next, a

prognostic model composed of these three miRNAs and the

RMDN2 gene was constructed by using the standard Cox

proportional hazard model. Associated coefficients and haz-

ard ratios obtained in both univariate and multivariate (in-

cluding clinical covariates) Cox proportional hazard models

are described in Table 2. The Kaplan-Meier curve discrimi-
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Figure 1 - Scheme for the data analysis. We selected 185 individuals with

an absent expression of ER, PR, and HER2 from a breast cancer data set

composed of 1,290 individuals. This subset of 185 TNBCs was split into

training (120 individuals) and validation (65 individuals) sets. To select

biomarkers associated with overall TNBC survival, we used the Lasso reg-

ularized Cox regression model on the training set. Four genes were se-

lected by the method. Then, to better estimate the parameters of the model,

we used the standard Cox regression model. Finally, we confirmed the re-

sults obtained in the training set by applying the four-biomarkers in the

validation set.



nating subjects classified with good or poor prognosis

(log-rank test p < 0.001) in the training set is shown in Figure

2A. The four-biomarker signature (Table 2) is indeed statis-

tically associated with overall survival time in TNBC even

after inclusion of clinicopathological covariates (univariate:

HR = 0.29, 95% CI: 0.16 – 0.52, p < 0.001; multivariate: HR

= 0.32, 95% CI: 0.17 – 0.59, p < 0.001).

Wilcoxon signed-rank tests showed that all four bio-

markers (miR-221: p < 0.001, miR-1305: p < 0.001, miR-

4708: p < 0.001, and RMDN2: p < 0.001) are significantly

overexpressed in patients classified with good prognosis in

the training set (Figure 3A).

Validation of the four-biomarker signature in a test
set

The Cox proportional hazard model obtained in the

training set was applied to 65 subjects of the testing set and

validated. The Kaplan-Meier curves are shown in Figure 2B

(log-rank test p = 0.050). Hazard ratios and respective p-val-

ues of both univariate and multivariate Cox proportional
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Figure 2 - Kaplan-Meier analysis showing that the four-biomarker signature is associated with survival in triple negative breast cancer. (A) Kaplan-Meier

curve of the four-biomarker signature in the training set. (B) Kaplan-Meier curve of the four-biomarker signature in the validation set. CI = confidence in-

terval; HR = hazard ratio. HR and 95% CI were estimated by multivariate Cox regression with age at diagnosis, grade, the presence of nodes, and meno-

pausal status included as covariates. The p-value was obtained by the log-rank test of the Kaplan-Meier curve.

Table 2 - Univariate and multivariate analyses of the four-biomarker signature. Univariate and multivariate analyses were performed based on the Cox re-

gression model. CI: confidence interval.

Training set

Univariate analysis Multivariate analysis

Variables Hazard ratio (95%CI) p-value Hazard ratio (95%CI) p-value

Age at diagnosis 1.12 (0.85-1.47) 0.407 1.12 (0.70-1.80) 0.642

Tumor grade (II/III) 3.00 (0.94-9.64) 0.065 2.59 (0.79-8.50) 0.116

Tumor size 1.27 (1.07-1.50) 0.006 1.06 (0.88-1.27) 0.540

Presence of nodes 1.44 (1.21-1.71) <0.001 1.35 (1.11-1.64) 0.002

Menopausal status (pre/pos) 1.04 (0.60-1.83) 0.883 1.30 (0.46-3.66) 0.623

Four-biomarker signature 0.29 (0.16-0.52) <0.001 0.32 (0.17-0.59) <0.001

Validation set

Univariate analysis Multivariate analysis

Variables Hazard ratio (95%CI) p-value Hazard ratio (95%CI) p-value

Age at diagnosis 1.27 (0.88-1.85) 0.207 1.38 (0.74-2.65) 0.306

Tumor grade (II/III) 2.73 (0.37-20.22) 0.327 2.08 (0.27-16.09) 0.484

Tumor size 1.42 (0.98-2.05) 0.065 1.35 (0.92-1.97) 0.124

Presence of nodes 1.51 (0.98-2.30) 0.059 1.62 (0.96-2.72) 0.071

Menopausal status (pre/pos) 0.68 (0.52-2.73) 0.675 0.67 (0.17-2.73) 0.579

Four-biomarker signature 0.39 (0.14-1.04) 0.059 0.32 (0.11-0.91) 0.033



hazard models are shown in Table 2. The four-biomarker

signature is an independent prognostic factor (univariate:

HR = 0.39, 95% CI: 0.14 – 1.04, p < 0.059; multivariate: HR

= 0.39, 95% CI: 0.14 – 1.04, p = 0.033) after inclusion of the

covariates. Subgroups of patients with postmenopausal sta-

tus (Figure 4B - HR=0.19; 95% CI = 0.04 – 0.90; p = 0.016),

node negative status (Figure 4C – HR = 0.12; 95% CI = 0.01

– 1.04; p = 0.026), and a tumor size greater than the median,

i.e., 2 cm (Figure 4F – HR = 0.21; 95% CI = 0.05 – 0.81; p =

0.021) also showed that the four-biomarker signature was

statistically associated with overall survival. Subgroups

comprising premenopausal status (Figure 4A – HR = 0.54;

95% CI = 0.09 – 3.21; p = 0.966), node positive status (Fig-

ure 4D – HR = 0.78; 95% CI = 0.25 – 2.47; p = 0.543), and a

tumor size smaller than 2 cm (Figure 4E – HR = 0.60; 95%

CI = 0.12 – 2.86; p = 0.535) do not present statistical evi-

dence of associations between the four-biomarker signature

and survival outcome at a p-value threshold of 0.05.

Wilcoxon signed-rank tests showed that all four bio-

markers (miR-221: p = 0.004, miR-1305: p = 0.001, miR-

4708: p = 0.022, and RMDN2: p = 0.004) are also signifi-

cantly overexpressed in patients classified with good prog-

nosis in the validation set, confirming the results obtained in

the training set (Figure 3B).

To confirm that indeed all four biomarkers are essen-

tial for classification into good or poor prognoses, we per-

formed the following experiment: four competing three-

biomarker signatures were designed by deleting one of the

four genes from the set. Then, we repeated the survival anal-

ysis for each of these three-biomarker signatures. The results

showed that none of the three-gene signatures was statisti-

cally associated with overall survival in the testing data set,

confirming that all four biomarkers are, in fact, necessary

(Figure S1).

Next, we analyzed the gene expression patterns be-

tween the identified miRNAs and their known target genes.

We identified a statistically significant negative association

between miR-221 and p27 (Spearman correlation = -0.34; p

< 0.005), but not between miR-221 and c-kit (Spearman cor-

relation = 0.18; p-value = 0.158), miR-1305 and RUNX2

(Spearman correlation = -0.14; p-value = 0.282), miR-4708

and SMAD1 (Spearman correlation = -0.14; p-value =

0.250), and miR-4708 and SMAD4 (Spearman correlation =

0.18; p-value = 0.158). We also constructed Kaplan-Meier

curves for the five target genes. Figure 5 shows that all five

target genes are also associated with TNBC overall survival.

Figure 6A shows the heatmaps for both the four biomarkers

and Figure 6B for their target genes (p27, c-kit, RUNX2,

SMAD1, and SMAD4) in the 65 individuals composing the

validation set. To verify whether the categorizations as good

or poor prognosis by the four-biomarker set are similar to the

ones obtained by each one of the five target genes, we calcu-

lated the Spearman correlation coefficient. As results, we

obtained the following: p27 (Spearman correlation = 1;

p-value < 0.001), c-kit (Spearman correlation = 0.80; p-value

< 0.001), RUNX2 (Spearman correlation = 0.81; p-value <

0.001), SMAD1 (Spearman correlation = 1; p-value < 0.001),

and SMAD4 (Spearman correlation = 1; p-value < 0.001). In

other words, the classification of TNBC patients into low or

high risk obtained by the four-biomarker is very similar to

the classification obtained by each target gene independ-

ently.

Discussion

By analyzing a large TNBC cohort, we identified a

four-biomarker signature composed of miR-221, miR-1305,

miR-4708, and RMDN2 in a training set and then confirmed

their association with prognosis in a validation set.

miR-221 has been associated with several cancers,

such as thyroid papillary (Visone et al., 2007), liver (Pineau

et al., 2010), and prostate cancers (Fornari et al., 2008).

miR-221 directly interacts with cyclin-dependent kinase in-
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Figure 3 - Expression of miR-221, miR-1305, miR-4708, and RMDN2 between good and poor prognosis in the (A) training and (B) validation sets. Hori-

zontal bars represent the median. All genes are statistically overexpressed in patients with a good prognosis at a p-value threshold of 0.05.



hibitors CDKN1B/p27 and CDKN1C/p57 by binding to

their mRNA 3’UTR (le Sage et al., 2007; Visone et al.,

2007; Fornari et al., 2008; Pineau et al., 2010). Galardi et al.

(2007) and Visone et al. (2007) showed that the expression

levels of miR-221 and p27 are negatively correlated, which

was also confirmed in our TNBC dataset. Thus, the down-

regulation of miR-221 in the group classified with poor

prognosis might lead to increased p27 expression.

P27 is a negative regulator of cell cycle progression,

and the loss of this protein is often observed in several can-

cers (le Sage et al., 2007; Visone et al., 2007; Fornari et al.,

2008; Pineau et al., 2010). The increased p27 expression

through miR-221 down-regulation in patients classified with

poor prognosis might induce cell cycle arrest, resulting in re-

sistance to chemotherapy (chemotherapy is useful in highly

proliferative cancer cells, but it is not effective in quiescent

cells or slow-cycling). Cancer stem cells, which are respon-

sible for cancer metastasis and recurrence, are generally qui-

escent or slow-cycling and resistant to conventional chemo-

and radio-therapies (Yoshida and Saya, 2016). Zou et al.

(2011) reported that p27 and p57 control hematopoietic stem

cells dormancy, while Besson et al. (2007) showed an asso-

ciation between p27 and bronchioalveolar stem cell expan-

sion. Moreover, it is also known that p27 prevents the

activation of RhoA (Besson et al., 2004; Wang and Lee,

2014) and that the inactivation of the RhoA-ROCK pathway

enhances cancer stem cell propagation (Ohata et al., 2012;

Tilson et al., 2015).

Another possible pathway influenced by miR-221 and

also related to tumorigenesis is angiogenesis. Endothelial

cells transfected in vitro with miR-221 have inhibited tube

formation, migration, and wound healing properties

(Poliseno et al., 2006). The underlying mechanism involves

the down-regulation of the protein c-kit, a receptor for stem

cell factor, without affecting the mRNA level, suggesting a

post-transcriptional regulation (Poliseno et al., 2006). In-

deed, even in our TNBC data set, we did not identify the cor-

relation between miR-221 and c-kit expression. In

hematopoietic progenitor cells, miR-221 reduces c-kit ex-

pression and thus reduces cell proliferation (Felli et al.,

2005). Overexpression of miR-221 indirectly reduces the ex-

pression of endothelial nitric oxide synthase (NOS) in Dicer

siRNA-transfected cells (Suarez et al., 2007). Nitric oxide is

a crucial regulator for endothelial cell growth, migration,

vascular remodeling, and angiogenesis (Zeiher, 1996). Re-

cently, it was demonstrated that endothelial NOS plays a

crucial role in the mobilization and functional activity of

stem and progenitor cells (Aicher et al., 2003; Iwakura et al.,

2003; Landmesser et al., 2004).

Changes in the miR-1305 expression are associated

with tumorigenesis in several tissues (Niyazi et al., 2011;

Shah et al., 2013; Tormo et al., 2015). RUNX2 is a direct tar-

get of miR-1305 (Chen and Liu, 2017), and its up-regulation

is associated with a variety of cancer tissues (Brubaker et al.,

2003; Kayed et al., 2007; Endo et al., 2008). More specifi-

cally, in breast cancer, Runx2 has been demonstrated to pro-

mote bone metastasis (Javed et al., 2005; Li et al., 2015).

The inhibition of miR-1305 expression in TNBC patients

may lead to an increase in Runx2 expression via a

post-transcriptional mechanism (because we did not identify

the correlation between them) that promotes breast cancer

aggressiveness.

Overexpression of miR-4708 directly inhibits SMAD1

and SMAD4 gene expression (Kato et al., 2014). The SMAD

family is a group of transcription factors coding regulatory

genes that mediate the TGF-� pathway, which controls the

cell cycle and growth (Massagué, 2000; Derynck et al.,

2001). The TGF-� pathway can inhibit cell proliferation by

activating receptor-regulator SMADs (SMAD1, 2, 3, 5, and

8), which activate SMAD4. These molecules are then trans-

ferred to the nucleus to control gene expression (Shi and

Massague, 2003).
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Figure 4 - Kaplan-Meier analysis of overall survival in subgroups of tri-

ple-negative breast cancer patients in the validation set. (A) Premenop-

ausal patients; (B) postmenopausal patients; (C) patients without nodes

identified; (D) patients with nodes; (E) patients with a tumor size of 2 cm

or less; (F) patients with tumor size greater than 2 cm. Hazard ratios and

confidence intervals were obtained by multivariate Cox regression with

age at diagnosis, tumor grade, tumor size, and presence of nodes status as

covariates. P-values were obtained by log-rank tests for the Kaplan-Meier

curves. HR = hazard ratio; CI = confidence interval.



Consistent with the tumor inhibitory role of the TGF-�

pathway, the association between deregulation of SMADs

and tumor proliferation has been found in different cell

types. Increased BMPR-IB (a protein of TGF-� pathway)

expression leads to a deregulated SMAD1 activity, which

was already reported to be associated with an increase in

breast cancer progression (Helms et al., 2005). Inactivating

mutations in SMAD4 have been found in different tumor

types (Hahn et al., 1996; Schutte et al., 1996; Miyaki et al.,

1999), including breast cancers (Levy and Hill, 2005;

Deckers et al., 2006). Moreover, silencing or knockout of

SMAD4 promotes cell proliferation by abrogating the TGF-�

pathway (Levy and Hill, 2005; Deckers et al., 2006).

Aside from the inhibitory characteristic of the TGF-�

pathway on cell growth, this pathway is also central to an-

other contradictory role, metastasis (Derynck et al., 2001).

Evidence suggests that the down-regulation of SMAD4 re-

duces metastasis in breast cancer cells (Deckers et al., 2006).

Thus, these findings suggest the following hypothesis:

down-regulation of miR-4708 increases SMAD expression,

which, in turn, activates the TGF-� pathway. TGF-� path-

way activation, then, could lead to increased metastatic be-

havior. Since we did not identify the correlation between

mir-4708 and SMAD1 neither between mir-4708 and

SMAD4, we believe they may be regulated by a post-

transcriptional mechanism.

Finally, the RMDN2 gene is known to code proteins

that bind and regulate microtubule growth. Its mutants are

associated with defective chromosome segregation (Oishi et

al., 2007; Law et al., 2015). During anaphase, when the sis-

ter chromatids usually move in opposite directions, in

RMDN2 mutants, chromatids do not segregate; they become

stretched and cut at the end of cell division (Oishi et al.,

2007). A genome-wide association analysis suggested a po-

tential relationship between the RMDN2 3’UTR and in-

creased susceptibility to malignant melanoma (Law et al.,

2015).

In summary, all four biomarkers are associated with

cell cycle control and growth, pathways that are intimately

related to cancer development and progression. The pre-

sented scenario supports the hypothesis that the down-re-

gulation of these four biomarkers may be leading to more

aggressive and faster-growing tumors in patients classified

with a poor prognosis.

By analyzing the five genes that are targets of the three

miRNAs (Figure 5), we noticed that the Kaplan-Meier

curves are very similar. This can be explained by the fact that

these five genes are highly correlated. Notice that in the

heatmap of Figure 6B, there are two sets of genes: one com-

posed of SMAD1, SMAD4, and p27, and the second one

composed of RUNX2 and c-kit. Within each set, the genes

are positively correlated (p < 0.05 for all pairwise Spearman
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Figure 5 - Kaplan-Meier analysis showing that the five target genes are associated with survival in triple negative breast cancer. The p-value is obtained

by the log-rank test of the Kaplan-Meier curve.



correlations within the set), while between sets, they are neg-

atively correlated (p < 0.05 for all pairwise Spearman corre-

lations between sets). No correlation was observed among

the four biomarkers (p > 0.05 for all pairwise Spearman cor-

relations) (Figure 6A). Interestingly, the classifications ob-

tained by the four-biomarker set and each one of the five

target genes are very similar (high correlation). This means

that, although there is no correlation between the miRNA

and expression of its respective target gene, the cooperative

indirect regulation of the four biomarkers on the target genes

might affect the TNBC malignancy (notice that in Figure S1

all four biomarkers were necessary for a proper classifica-

tion).

Although these results indicate that the four-biomarker

signature described here is statistically associated with

TNBC survival outcome, it would be worthwhile to validate

them in other independent cohorts. However, only limited

comparison with published data is possible due to at least

two reasons: (i) the lack of large miRNA TNBC datasets and

(ii) the absence of these four biomarkers in other studies. For

example, Lowery et al. (2009) and Mattie et al. (2006) ana-

lyzed miRNAs in small sets composed of 29 and 20 breast

cancer tumors, respectively. Alternatively, Farazi et al.

(2011), Gasparini et al. (2014), and Raju et al. (2014) pro-

vided large sets composed of 185, 219, and 587 patients of

diverse types of breast cancer, respectively, but none of their

datasets have the four biomarkers that we identified here.

We also tried validation by using the TCGA data set.

We downloaded all the miRNA/mRNA data of 1,099 indi-

viduals diagnosed with breast cancer from the TCGA

webpage. Among them, 113 were diagnosed with TNBC.

We applied our Cox proportional hazard model obtained in

the training set to these 113 subjects. The Kaplan-Meier

curves presented a log-rank test p-value equal to 0.72. In

other words, it was not possible to confirm our results in the

TCGA data set. We have at least two possible explanations

for this negative result. The first one is the low number of

deaths in the TCGA data set (only 13 individuals out of 113,

i.e., ~11.5%). By considering a low number of deaths, it is

challenging to identify differences between the Kaplan-

Meier curves, even if they exist. For comparison, notice that

in the data set we used for our analyses (European Ge-

nome-phenome Archive - EGpA), the proportions of deaths

are 46.7% and 53.3% in the training and validation data sets,

respectively (see Table 1). The second explanation is based

on the short follow-up length of the TCGA data set. In Figure

7, we show the boxplots regarding the follow-up lengths for

people considered alive and dead in both EGpA and TCGA

data sets. Notice that there is no statistical difference in terms

of time to death between individuals that died in the EGpA

(average of 39.44 months) and TCGA (average of 45.69

months) data sets (p = 0.973, Wilcoxon rank test). However,

when we analyzed the time lengths for the last follow-up of

people who survived (or did not die yet), we notice that

EGpA has a much longer follow-up (average of 118.55

months) than TCGA (average of 21.12 months) (p-value <

0.001, Wilcoxon rank test). In other words, to better charac-

terize the outcomes of individuals from the TCGA data set,

we believe that a more extended period of follow-up is nec-

essary.
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Figure 6 - Gene expression heatmaps. (A) For the four prognostic biomarkers and (B) the five genes targets of the three miRNAs. In panel (A), the four

biomarkers are not correlated, while in panel (B) there are two sets of genes: one composed of genes SMAD1, SMAD4, and p27, and the second set com-

posed of RUNX2 and c-kit. Genes within the sets are positively highly correlated, while between sets, they are negatively highly correlated.



The four-biomarker signature is statistically associated

with the overall survival of TNBC patients. These results

may aid in the development of better methods to predict

prognosis or choose therapies for the management of TNBC

patients.
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