
Large t → cZ as a sign of vectorlike quarks in light of the W mass

Andreas Crivellin,1,2,* Matthew Kirk ,3,† Teppei Kitahara ,4,5,6,‡ and Federico Mescia 3,§

1Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
2Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
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The rare flavor-changing top quark decay t → cZ is a clear sign of new physics and experimentally very
interesting due to the huge number of top quarks produced at the LHC. However, there are few (viable)
models which can generate a sizable branching ratio for t → cZ—in fact vectorlike quarks seem to be the
only realistic option. In this paper, we investigate all three representations (under the Standard Model gauge
group) of vectorlike quarks (U, Q1 and Q7) that can generate a sizable branching ratio for t → cZ without
violating bounds from B physics. Importantly, these are exactly the three vectorlike quarks which can lead
to a sizable positive shift in the prediction forW mass, via the couplings to the top quark also needed for a
sizable Brðt → cZÞ. Calculating and using the one-loop matching of vectorlike quarks on the Standard
Model effective field theory, we find that Brðt → cZÞ can be of the order of 10−6, 10−5 and 10−4 for U, Q1

and Q7, respectively, and that in all three cases the large W mass measurement can be accommodated.

DOI: 10.1103/PhysRevD.106.L031704

I. INTRODUCTION

The Standard Model (SM) of particle physics contains
three generations of chiral fermions, i.e., Dirac fields whose
left- and right-handed components transform differently
under its gauge group. While a combination of LHC
searches and flavor observables excludes a chiral fourth
generation [1,2], vectorlike fermions (VLFs) can be added
consistently to the SM without generating gauge anoma-
lies. In fact, VLFs appear in many extensions of the SM
such as grand unified theories [3–5], composite models or
models with extra dimensions [6,7] and little Higgs models
[8,9] (including the option of top condensation [10–14]).
VLFs are not only interesting from the theoretical

perspective, but also from the phenomenological point of
view as they could be involved in an explanation of b →
slþl− data [15–19], the tension in ðg − 2Þμ [20–35] or

account for the Cabibbo angle anomaly [36–45].
Furthermore, vectorlike quarks (VLQs) can lead to tree-
level effects in Z-t-c and h-t-c couplings after electroweak
(EW) symmetry breaking and therefore generate sizable
effects in the related flavor-changing neutral current
(FCNC) decays of the top quark [43–49].
There are three VLQs (U, Q1 and Q7) that generate a

Z-t-c (and h-t-c) coupling but do not give rise to down-
quark FCNCs at tree level, such that the former can be
sizable. However, even these VLQs affect e.g., theW mass1

and B decays at the loop level. Therefore, it is important to
calculate and include these effects in a phenomenological
analysis in order to assess the possible size of t → ZðhÞc
and to evaluate if one can account for the recent measure-
ment of the W mass by the CDF Collaboration [51], which
suggests thatMW is larger than the expected within the SM.

II. SETUP AND MATCHING CALCULATION

There are seven possible representations [under the SM
gauge group SUð3ÞC × SUð2ÞL ×Uð1ÞY] of VLQs, given
in Table I, defining them as heavy fermions which are
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1The contribution of VLQs to the W mass, via the oblique S
and T parameters, has previously been calculated at fixed order in
Ref. [50], where they studied the contribution to electroweak
observables and Higgs decays only.

PHYSICAL REVIEW D 106, L031704 (2022)
Letter

2470-0010=2022=106(3)=L031704(8) L031704-1 Published by the American Physical Society

https://orcid.org/0000-0003-0845-7227
https://orcid.org/0000-0002-4847-9511
https://orcid.org/0000-0003-3582-2162
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.L031704&domain=pdf&date_stamp=2022-08-17
https://doi.org/10.1103/PhysRevD.106.L031704
https://doi.org/10.1103/PhysRevD.106.L031704
https://doi.org/10.1103/PhysRevD.106.L031704
https://doi.org/10.1103/PhysRevD.106.L031704
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


triplets of SUð3ÞC and that can mix with the SM quarks
after EW symmetry breaking, i.e., fermions which can have
couplings to the SMHiggs and a SM quark. The kinetic and
mass terms2 are

L ¼
X

F

F̄ ði=D −MFÞF; ð2:1Þ

where F ¼ fU;D;Q1; Q5; Q7; T1; T2g and

Dμ ¼ ∂μ þ ig1YFBμ þ ig2SIWI
μ þ igsTAGA

μ : ð2:2Þ

Here TA ¼ 1
2
λA and ðSIÞjk are 0, 12 ðτIÞjk, and −iϵIjk for the

SUð2ÞL singlet, doublet, and triplet representations, respec-
tively, and λA and τI are the Gell-Mann and the Pauli
matrices. The (generalized) Yukawa couplings are encoded
in the Lagrangian

L ¼ LH
qq þ LH

qVLQ þ LH
VLQVLQ; ð2:3Þ

where the first term contains the SM Yukawa couplings

−LH
qq ¼ Yu

ijq̄iH̃uj þ Yd
ijq̄iHdj þ H:c:; ð2:4Þ

the second term the Higgs interactions with vectorlike and
SM quarks

−LH
qVLQ ¼ ξUi ŪH̃†qi þ ξDi D̄H†qi þ ξu1i Q̄1H̃ui

þ ξd1i Q̄1Hdi þ ξQ5

i Q̄5H̃di þ ξQ7

i Q̄7Hui

þ 1

2
ξT1

i H†τ · T̄1qi þ
1

2
ξT2

i H̃†τ · T̄2qi þ H:c:;

ð2:5Þ
and the last term defines the Higgs interactions with two
VLQs (given in Supplemental Material [52] as they are not
relevant for our analysis). Here i; j ¼ f1; 2; 3g are flavor
indices and τ · T̄ ¼ P

I τ
IT̄I .

A. SM effective field theory and Matching

We write the SM effective field theory (SMEFT)
Lagrangian as

LSMEFT ¼ LSM þ
X

i

CiQi; ð2:6Þ

such that the WILSON coefficients have dimensions of
inverse mass squared. Using the Warsaw basis [53], the
operators generating modified gauge-boson couplings to
quarks are

Qð1Þ
Hq; Qð3Þ

Hq; QHu; QHd; QHud; ð2:7Þ

and the four-quark operators generating ΔF ¼ 2 processes
read

Qð1Þ
qq ; Qð3Þ

qq ; Quu; Qdd; Qð1Þ
qu ; Qð1Þ

qd ; Qð8Þ
qu ; Qð8Þ

qd :

ð2:8Þ

The explicit definitions of all these operators can be found in
Ref. [53] and in Supplemental Material [52]. The dipole
operators, responsible for radiative down-type quark decays
after EW symmetry breaking, areQdW andQdB. In addition,
we have the operator involving three Higgs fields,QuH, that
generates modifications of the Higgs-up-quark coupling,
includingpossibly flavor-changing ones, afterEWsymmetry
breaking. Finally we also need two bosonic operators that
lead to a modification to theW mass, QHD and QHWB, with
their contributions approximately given by

δMW ≈ −v2ð29CHD þ 64CHWB þ � � �Þ GeV; ð2:9Þ

where v ≃ 246 GeV and (� � �) indicates SMEFT operators
not relevant in our scenario with VLQs.3 An example
diagram for the W mass correction is shown on the left
in Fig. 1.
The tree-level matching of the operators generating

modified Z-quark couplings is given by

TABLE I. Representations of the Higgs, the SM quarks and of the VLQs under the SM gauge group. The three representations in bold
are the ones relevant for our analysis as they generate flavor-changing top decays at tree level but down-quark FCNCs first appear at one-
loop level.

u d q H U D Q1 Q5 Q7 T1 T2

SUð3ÞC 3 3 3 1 3 3 3 3 3 3 3
SUð2ÞL 1 1 2 2 1 1 2 2 2 3 3
Uð1ÞY 2=3 −1=3 1=6 1=2 2=3 −1=3 1=6 −5=6 7=6 −1=3 2=3

2Note that mass terms such as mU
i Ūui can always be removed

by a field redefinition, such that the kinetic terms and the mass
terms take the diagonal form shown in Eq. (2.1).

3Note that the SMEFTeffects in theW mass are known fully at
leading order [54,55] but only partially at next-to-leading order
(NLO) [56], since in that work flavor universality of the SMEFT
coefficients is assumed. However we have checked that, after
making some conservative assumptions about the flavor depend-
ence, the NLO effects are small.
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Cð1Þij
Hq þ Cð3Þij

Hq ¼ −
ξD�
i ξDj
2M2

D
−
ξT1�
i ξT1

j

8M2
T1

þ ξT2�
i ξT2

j

4M2
T2

;

Cð1Þij
Hq − Cð3Þij

Hq ¼ ξU�
i ξUj
2M2

U
−
ξT1�
i ξT1

j

4M2
T1

þ ξT2�
i ξT2

j

8M2
T2

;

Cij
Hu ¼ −

ξu1�i ξu1j
2M2

Q1

þ ξQ7�
i ξQ7

j

2M2
Q7

;

Cij
Hd ¼

ξd1�i ξd1j
2M2

Q1

−
ξQ5�
i ξQ5

j

2M2
Q5

; ð2:10Þ

for Z-diL-d
j
L, Z-u

i
L-u

j
L, Z-u

i
R-u

j
R, and Z-d

i
R-d

j
R, respectively.

Modified W couplings to left-handed quarks arise from

Cð3Þ
Hq alone, while right-handed modifications do not appear

in our scenario, due to our (later) choice to set ξd1 to zero
which removes all contributions to the CHud coefficient.
From these equations, we can see that only the representa-
tions U and Q1 with coupling ξu1 and Q7 (shown in bold in
Table I) lead to effects in t → cZ while avoiding tree-level
FCNCs in the down sector. An approximate formula for
this branching ratio is

Brðt → cZÞ ≈ v4

2
f½Cð1Þ23

Hq − Cð3Þ23
Hq �2 þ ½C23

Hu�2g: ð2:11Þ

We calculated the one-loop matching on the SMEFT for
these VLQs for the operators relevant for B physics, the W
mass and EW precision observables (EWPOs) using
MatchMakerEFT [57] and compared the results to our own
calculation, finding perfect agreement. Details of our calcu-
lation and explicit expressions for the relevant wilson
coefficients are given in Supplemental Material [52].

III. PHENOMENOLOGICAL ANALYSIS

The current 95% C.L. upper bounds for t → cZ and
t → ch, based on the full LHC run 2 dataset, are [58–61]

Brðt → cZÞ < 1.3 × 10−4; Brðt → chÞ < 9.9 × 10−4:

ð3:1Þ

While this already constrains some beyond the SM scenar-
ios, at the high-luminosity (HL-)LHC [62,63], FCC-hh
[64], ILC [65], or the FCC-ee [66], one can expect to be

sensitive to t → cZ branching ratios on the order of
10−5–10−6 [65,67]. For t → ch (see Ref. [68] and refer-
ences therein), sensitivities on the order of 10−4 and 10−5

for the HL-LHC [69] and FCC-hh [68,70,71] are estimated,
respectively. A summary of the future prospects for these
FCNC top decays is given in Table II.
For the numerical analysis we use the software package

SMELLI [73,74] (based on FLAVIO [75] and WILSON [76]),
with fα;MZ;GFg constituting the input scheme. Further-
more, we work in the down-basis such that Cabibbo-
Kobayashi-Maskawa (CKM) elements appear in transitions
involving left-handed up-type quarks after EW symmetry
breaking, meaning that Yd is diagonal in unbroken SUð2ÞL
while Yu ≈ V† · diagð0; 0; ytÞ, with V being the CKM
matrix. Note that in our setup the determination of CKM
elements is already modified at tree level. The resulting
effects are consistently accounted for in SMELLI using the
method described in Ref. [77] but choosing ΓðKþ → μþνÞ=
Γðπþ → μþνÞ, BrðB → XceþνÞ, BrðBþ → τþνÞ, and
ΔMd=ΔMs as observables (see Supplemental Material
[52] for details).
Concerning the EW fit, the long-standing tension in the

W mass, previously with a significance of ≈1.8σ [78–80],
was recently increased by the measurement of the CDF
Collaboration [51]. In Ref. [81], they have made a naive
combination of the existing measurements (Tevatron [51],
LEP [82], ATLAS [83] and LHCb [84]), assuming a
common 4.7 MeV systematic uncertainty, and give a
new world average of

FIG. 1. Examples of Feynman diagrams showing the U con-
tributions to the operator QHD, affecting theW-boson mass (left),

and Qð1;3Þ
qq , affecting Bs − B̄s mixing (right).

TABLE II. Summary of current limits and future sensitivities
for t → Zc and t → hc. The values in brackets are the assumed
systematic uncertainties on the underlying experimental mea-
surements at the future colliders (if provided).

Brðt → cZÞ × 105 Brðt → chÞ × 105

Current LHC
13 [60] 99 [61]

(13 TeV; 139 fb−1)
HL-LHC 3.13 [67] (0%)

15 [69]
(14 TeV; 3 ab−1) 6.65 [67] (10%)
HE-LHC 0.522 [67] (0%) 7.7 [68] (0%)
(27 TeV; 15 ab−1) 3.84 [67] (10%) 8.5 [68] (10%)
FCC-hh

7.7 [72]
(100 TeV; 3 ab−1)
FCC-hh 2.39 [71] (5%)
(100 TeV; 10 ab−1) 9.68 [70] (10%)
FCC-hh 0.0887 [67] (0%) 0.96 [68] (0%)
(100 TeV; 30 ab−1) 3.54 [67] (10%) 3.0 [68] (10%)

4.3 [72]
ILC

9.1 [65]
(250 GeV; 2 ab−1)
ILC

2.9 [65]
(1 TeV; 8 ab−1)
FCC-ee

2.8 [66]
(350 GeV; 10 ab−1)
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Mexp
W ¼ 80413.3� 8.0 MeV: ð3:2Þ

This value is 5.5σ higher than the SM prediction MSM
W ¼

80358.7� 6.0 MeV [79].
Concerning B physics, even though the hints for lepton

flavor universality (LFU) violation in b → slþl− data
cannot be explained by our LFU effects, an additional LFU
part [85–91], generated by Z-b-s penguins, can further
increase the agreement with data. In addition, box dia-
grams, like the one shown on the right in Fig. 1, also
generate effect in Bs − B̄s mixing (we use inputs from
Ref. [92] for the SM prediction).
In all our analyses,we set themasses of theVLQs to 2TeV.

This is consistent with the published model-independent

bounds for third-generation VLQs of MVLQ > 1.31 TeV
limits from ATLAS [93] and recent conference reports
[94,95] which give slightly stronger limits. We also checked
single VLQ production, which is model dependent, and
found the bounds for our scenarios to be weaker or
nonexistent. Let us now consider the three cases of U, Q1

and Q7 numerically.
U.—In addition to the modified Z-t-c coupling, this

VLQ also generates relevant effects in b → slþl− tran-
sitions via a Z penguin, resulting in an C9 ≈ −C10=4
pattern. In fact, mainly due to the measurements of P0

5

[96] and Bs → ϕμþμ− [97,98] there is a preference for a
nonzero contribution with such a structure. The bounds
from Bs − B̄s mixing turn out to be weakened due to a

FIG. 2. Preferred regions in the ξ2 − ξ3 plane for the three representations of VLQ that generate t → cZ at tree level but give rise to
down-quark FCNCs only at the loop level: U (top left),Q1 (top right), andQ7 (bottom left). The contour lines show the predicted size of
Brðt → cZÞ × 105. The region preferred by all data [the global fit region with using the new experimental average in Eq. (3.2)] is shown
at the 1σ and 2σ level, while the others regions correspond to 1σ. We also show in the preferred region from the EW fit without the
inclusion of the newMW result from CDF (red, dash-dotted line), where it can be seen that a large t → cZ branching ratio is also possible
in this scenario. Note that in the plot for Q7 the hatched regions on the top left and top right are already excluded by the current LHC
limits on t → cZ.
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partial (accidental) cancellation between the one-loop
matching and the renormalization group equation effect.
Similarly, the contribution to b → sγ suffers from a
cancellation, but here between terms generated by the
matching on the SMEFT and integrating out the W at
the weak scale (b → sγ is included within the b → slþl−

region in Fig. 2). Concerning EWPOs, a shift in MW is
dominantly generated by top-loop effects within the
SMEFT (left diagram in Fig. 1), bringing theory and
experiment into total agreement. Meanwhile, the second-
generation coupling ξU2 is constrained by the total Z width.
These finding are summarized in Fig. 2 (top left) where one
can see that Brðt → cZÞ can be of the order of 2 × 10−6,
which could be probed by FCC-hh.
Q1 with ξu1 .—The VLQ Q1 with the couplings ξu1 is

found to be a very promising candidate for sizable rates of
t → cZ, since it has small effects in B physics as it
generates at tree level only right-handed corrections to
Z-up-quark couplings. At the same time, we can get an
improvement concerning the agreement between theory
and experiment in MW through the direct one-loop con-
tribution to CHD for large couplings is induced through top
loops in the SMEFT (thus favoring the third-generation
coupling), while large couplings to charm quarks are ruled
out by the total Z width, as shown in Fig. 2 (top right).
From there we see that an enhancement of Brðt → cZÞ up
to 1 × 10−5 is possible, which could already be probed by
the HE-LHC (albeit in an optimistic scenario with zero
systematic errors). Note, however, that even in this quite
unconstrained scenario Brðt → chÞ can be at most
3 × 10−6, which is still a factor of 3 smaller than the reach
of even the most optimistic FCC-hh scenario.
Q7.—In case of the VLQQ7 [see Fig. 2 (bottom left)], the

preferred sign for the contribution inb → slþl− processes is
generated, but in order for its size to be relevant, quite large
couplings are required. Furthermore, for small third-gener-
ation couplings (ξQ7

3 < 1) an effectwith thewrong sign arises
inMW , while for large couplings the sign reverses, which can
be traced back to two different contributions, one propor-
tional to ðξQ7

3 Þ4 and the other involving ðξQ7

3 Þ2y2t . Note that in
the regime of such large couplings, small tensionswithHiggs
data arise in the h → ZZ;WW; γγ partial widths, with
tensions of 1.8, 1.5, and 1.2σ, respectively. Concerning
Brðt → cZÞ, again an enhancement of the branching ratio up
to 1 × 10−5 is possible, which could be probed by the HE-
LHC, FCC-hh, FCC-ee, or ILC. Given the large couplings
allowed by data, Brðt → chÞ can be enhanced up to
3 × 10−5, therefore potentially visible at the FCC-hh if the
systematic uncertainties are well controlled.

IV. CONCLUSIONS

In this paper we examined the possibility of obtaining a
sizable branching ratio for t → cZ within models contain-
ing VLQs. This is only feasible for representations which
solely change Z couplings to the up-type quarks at tree
level while not generating down-type FCNCs at this
perturbative order, i.e., U, Q1 and Q7. However, at the
loop level, B physics and electroweak observables are still
affected. We therefore calculated the one-loop matching of
these VLQs onto the SMEFT operators relevant for flavor
and electroweak precision observables.
Using these results, we found in our phenomenological

analysis that one can generate a sizable branching ratio for
t → cZ of the order of 1 × 10−6, 1 × 10−5 and 1 × 10−4, for
U, Q1 and Q7, respectively. Therefore, the parameter space
of Q7 is already constrained by LHC limits on t → cZ,
whileQ1 andU can be tested by the HL-LHC and the FCC-
hh, respectively. Importantly, these three VLQ representa-
tions are also the ones which lead to a relevant and positive
shift in theW mass and can thus explain the larger value of
MW , compared to the SM prediction, obtained recently by
the CDF Collaboration. In fact, accounting for a largerMW
requires sizable couplings to top quarks (see also Ref. [99])
which are also important for measurable effects in t → cZ,
showing that these observables are correlated. Furthermore,
U and Q7 lead to LFU effects in b → slþl− which cannot
explain RðKð�ÞÞ but affect observables like P0

5 and Bs →
ϕμþμ− and, in combination with LFU violating effects, can
further improve the description of data. In conclusion, t →
cZ is an unambiguous signal of VLQs and sizable
branching ratios of it, within the range of the HL-LHC,
are motivated by the recent CDF measurement of the
W mass.
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