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scales as 1/N and the central charges scale as O(N1) contrary to the usual O(N2) scaling
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1 Introduction

The AdS/CFT correspondence provides a definition of quantum gravity in (d + 1)-

dimensional anti-de Sitter space via conformal field theory in d-dimensions [1–3]. The

most well-studied examples of AdS/CFT typically involve supersymmetric gauge theories

realized on the stack of N branes in string/M-theory. The dual gravity description in bulk

becomes semi-classical supergravity in the limit where string coupling goes to zero and

the AdS radius becomes large. This is tantamount to taking large N and large ’t Hooft

coupling limit in the boundary field theory side.

However, the strong version of AdS/CFT asserts that the correspondence between AdS

gravity and boundary CFT holds beyond the semi-classical/particle limit. It means that

any conformal field theory in d-dimensions is equivalent to a quantum gravity in d + 1-

dimensional AdS. For a finite N theory (the parameter N can be replaced by central charges

in general even-dimensional CFTs) at generic coupling, the bulk description can be exotic

(such as light string states, non-local interactions) and very different from Einstein gravity.

One necessary condition for a large N CFT to have a weakly-coupled Einstein-like

holographic description in AdS is the sparseness of the low-lying spectrum [4, 5]. It means

that as we take the large N limit, the gap between the low-lying operators scales as O(1).

This condition is also necessary for the confinement/deconfinement transition to occur,

which is dual to the Hawking-Page phase transition [6, 7]. The number of heavy (∆ ≫

O(N2)) states grows exponentially, which is accounted by the black hole microstates.

Typically, most large N gauge theories in the ’t Hooft limit satisfy this condition. This

is because low-lying gauge-invariant operators are formed out of O(N) elementary fields,

such as TrΦi with 2 ≤ i ≤ N in the case of N = 4 super Yang-Mills theory. The ’t Hooft

limit ensures that the possible anomalous dimensions for the elementary fields are under

control. Therefore one natural question to ask is whether it is possible to have a large N

gauge theory that does not satisfy the sparseness condition, which is necessary (and maybe

sufficient) to have a holographic description.
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In this paper, we show that there indeed exists large N gauge theories with dense

spectrum at low-energy. More precisely, the gap in the scaling dimensions for the low-lying

operators scales as 1/N , and the dimensions ∆ of the ‘single-trace operators’ lie within a

band of ∆ ∈ (1, 3]. The central charges a and c of these theories grows linearly in the rank

of gauge group N , contrary to the intuitive growth of matrix degrees of freedom N2.

The gauge theories we study turn out to be rather simple, but strongly-coupled and do

not have any weak-coupling limit. Our theories contain a U(1)A × U(1)B flavor symmetry,

and we test the AdS version of the Weak Gravity Conjecture (WGC) [8, 9] for the charged

states. We find the WGC holds for these theories even though they are not dual to semi-

classical Einstein-like gravity.

2 The model: SU(N) SYM theory with 1 adjoint and fundamental

Let us consider the N = 1 supersymmetric SU(N) gauge theory with 1 adjoint chiral

multiplet Φ and a pair of fundamental/anti-fundamental chiral multiplets (Q, Q̃). Let us

turn off any superpotential term. There are two flavor U(1) symmetries that we call U(1)B

and U(1)A. The charge assignments for the various symmetries can be summarized in a

table as follows:

SU(N) U(1)B U(1)A R

Q N 1 N 1 − NRΦ

Q̃ N̄ −1 N 1 − NRΦ

Φ adj 0 −1 RΦ

(2.1)

The R-symmetry and U(1)A symmetry are subject to the anomaly constraint. To find the

superconformal R-charge in the IR we have to invoke ‘a-maximization’ [10], which states

that the correct IR R-charge maximizes the a-function. The central charges for 4d SCFT

can be written in terms of trace anomalies [11]:

a =
3

32

(
3TrR3 − TrR

)
, c =

1

32

(
9TrR3 − 5TrR

)
(2.2)

Now the R-charge is fixed by evaluating ∂a
∂R = 0, ∂2a

∂R2 < 0.

An additional caveat arises from the fact that all the operators must satisfy the uni-

tarity constraint: any gauge-invariant chiral operators should have a scaling dimension ∆

greater than 1. During the course of a-maximization, it often happens that the resulting

value of R-charges causes certain chiral operator dimensions to drop to 1 or lower. This indi-

cates that the corresponding operator gets decoupled along the renormalization group flow.

Its contribution to the a-function must then be removed, following which a-maximization

has to be redone [12]. This cycle needs to be iterated over until no more operators decou-

ple. One way to deal with the decoupled operator is to introduce a ‘flip field’ XO for each

would-be decoupled operator O and add a superpotential term W = XOO. The F-term

for XO removes the free O from the chiral ring [13]. The role of the flip field has been

investigated further in [14–16], for example.
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2.1 A band of dense spectrum

Now, let us study the spectrum of this theory. The (single-trace) gauge-invariant operators

of this theory are given as follows:

• Coulomb branch operators: Φn, 2 ≤ n ≤ N

• dressed mesons: QΦnQ̃, 0 ≤ n ≤ N − 1

• ‘baryon’: Q(ΦQ)(Φ2Q) . . . (ΦN−1Q)

• ‘anti-baryon’: Q̃(ΦQ̃)(Φ2Q̃) . . . (ΦN−1Q̃)

We suppressed the gauge indices in the above expression. Let us remark that the chiral

operators charged under U(1)B (that we call baryon) have a very large engineering dimen-

sion. We now have to repeatedly a-maximize and remove gauge-invariant operators whose

scaling dimensions fall below the unitarity bound ∆ > 1.

We find that some of the Coulomb branch operators Φn with n = 2, 3, . . . N get de-

coupled and are replaced by corresponding flip fields, but not all of them are decoupled for

N ≥ 12. Most of the dressed mesons remain coupled, but some of the low-lying ones hit

the unitarity bound and get decoupled. We find none of the ‘baryons’ decouple along the

renormalization group flow.

Due to the peculiarities arising from the pattern of decoupling of operators, it is some-

what technical to establish an analytical handle on the large-N behavior of our theory. For

now, we suffice ourselves with a numerical analysis of all gauge theories with 2 ≤ N ≤ 300.

Upon doing so, we obtain the IR central charges a, c (upon removing the decoupled free

chiral multiplets) behaves approximately as

a ≃ 0.5008N − 0.6838 , (2.3)

c ≃ 0.5034N − 0.6325 . (2.4)

We see that the central charges grow linearly in the rank of gauge group N , which is in

stark contrast to the UV central charges given as O(N2). This is due to the very large

quantum renormalization effect caused by the strong-coupling dynamics. We plot the ratio

of central charges a/c as a function of N in figure 1. Even though a/c approaches close to

1, we find that it stays strictly lower than 1 for a sufficiently large N .

The scaling dimension of the ‘lightest’ operator ∆1 in the spectrum (the operator with

the lowest scaling dimension) as a function of N is depicted in figure 2. The lightest

operator turns out to be either given by the operator QΦnQ̃ or TrΦn for some n depending

on N . For example, QQ̃ is the lightest operator for 2 ≤ N ≤ 11, TrΦN for 12 ≤ N ≤ 16,

and QΦQ̃ for 17 ≤ N ≤ 18.

We visualize the band of operator spectrum by plotting the dimensions of the chiral

operators for each N in figure 3. Here we do not include the baryon and anti-baryon

operators, which are generally heavy (∆B ∼ N) and lie above the band. We find that the

gap between the dimensions of the operators goes like O(1/N). From this, we see that at

large-N , the operator spectrum of the theory densely fills a narrow band of low conformal

dimensions between 1 and 3.
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Figure 1. Plot of a/c vs N . The blue dots represent the data and the orange curve fits the plot

with a/c ≃ −0.1085/N + 0.9947.
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Figure 2. Plot of scaling dimension of the lightest operator ∆1 vs N .

20 40 60 80 100

N

0.5

1.0

1.5

2.0

2.5

3.0

Δ

Figure 3. Dimensions of the ‘single-trace’ operators form a band between 1 and 3.
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2.2 Testing the weak gravity conjecture

Given that the theory described above is not expected to have a weakly coupled gravity

dual, it is interesting to check if its spectrum satisfies the bounds implied by the Weak Grav-

ity Conjecture (WGC) [8]. The implications of the WGC in AdS/CFT were proposed in [9].

There the authors argued that the WGC is essentially equivalent to requiring that extremal

non-BPS Reissner-Nordström (RN) black holes in AdS must be unstable. Depending on

the mechanism behind the decay of these black holes, they arrive at different bounds. The

simplest of these comes from requiring that there should be a light charged particle to which

even the smallest extremal AdS-RN black holes can decay. In the dual CFT, this implies

that the spectrum should contain an operator with dimension ∆ and charge q such that

∆2

q2
≤

9CT

40CV
, (2.5)

where CT and CV are the coefficients appearing in the two-point functions of the energy-

momentum tensor and the corresponding flavor current, respectively. For a 4d N = 1

SCFT, we can compute the coefficients by computing the trace anomalies as CT ∼ TrR3

and CV ∼ TrRF 2 where F is the flavor symmetry generator.

There are two U(1) flavor symmetries in our theory, that we label as U(1)A and U(1)B.

We test the WGC for these two flavor symmetries. We can estimate how the coefficients

grow in N using the trace anomaly formula and using the fact RΦ ∼ 1/N to get

CT ∼ O(N), (2.6)

CV,A ∼ 2N(RQ − 1)N2 + N2(RΦ − 1) ∼ O(N3), (2.7)

CV,B ∼ 2N(RQ − 1) ∼ O(N). (2.8)

Therefore we obtain CT

CV,A
∼ O(1/N2) and CT

CV,B
∼ O(1).

Let us check the WGC for the U(1)A. Upon plotting ∆2/q2 of the lightest mesonic

operator QΦnQ̃ in the theory against the ratio 9CT /40CV,A in figure 4, we see that indeed

the WGC bound is satisfied. For the U(1)B, we have ‘baryon’ and ‘anti-baryon’ with charge

B = ±N , and we plot the ∆2/B2 against the ratio of CT and CV,B in figure 5. We also

find that the WGC bound is satisfied by this operator.

A second weaker bound was also obtained in [9] by considering the decay of AdS black

holes through scalar hair formation. For small extremal black holes, this gives

(∆ − 2)2

q2
≤

9CT

40CV
, (2.9)

which being a weaker bound is automatically satisfied in our theories. Slightly stronger

bounds than (2.5) are obtained by considering the formation of scalar-hair for intermediate

(r+ ∼ LAdS) and large (r+ ≫ LAdS) sized black holes. The respective conditions are:

4(∆ − 2)2

3q2
≤

9CT

40CV
, (2.10)

3(∆ − 1)(∆ − 3)

2q2
≤

9CT

40CV
. (2.11)
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Figure 4. Test of the Weak Gravity Conjecture for U(1)A. Red: 9CT /40CV,A, Blue: ∆2/q2 for

the lightest meson.
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Figure 5. Test of the Weak Gravity Conjecture for U(1)B . Red: 9CT /40CV,B , Blue: ∆2/q2 for

the baryon operators charged under U(1)B .

We checked that these conditions are also satisfied by the lightest meson operator in our

theory for the case of U(1)A and by the baryon operator in the case of U(1)B. Therefore,

it follows that our theory is indeed concordant with the Weak Gravity Conjecture despite

it having a dense spectrum of light states.

3 Another model: SU(N) theory flowing to the Argyres-Douglas theory

Let us consider SU(N) super Yang-Mills with a pair of fundamental/anti-fundamental chi-

ral multiplets (Q, Q̃), a single adjoint chiral multiplet Φ and two set of (N − 1) gauge

singlets Xi, Mi coupled via superpotential couplings that flip all the Coulomb branch op-

erators TrΦn+1, as well as the dressed mesons TrQΦn−1Q̃ for all 1 ≤ n ≤ N − 1. The

superpotential is given by

W =
N−1∑

i=1

XiTrΦi+1 + MiTrQΦi−1Q̃. (3.1)

– 6 –
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The spectrum of chiral operators (both in the UV and IR) in this case is simply given by

Xi, Mi ∀1 ≤ i ≤ N − 1 in addition to the operator QΦN−1Q̃ which becomes the ‘moment-

map’ operator in the IR.

It is known that this theory flows to the (A1, A2N−1) Argyres-Douglas (AD) theo-

ries [17, 18] at its IR fixed point [19, 20]. We can therefore simply borrow the known

results for AD theories to understand the growth of the central charges and operator scal-

ing dimensions as a function of N . Thus the IR central charges are given by:

a =
12N2 − 5N − 5

24(N + 1)
, c =

3N2 − N − 1

6(N + 1)
. (3.2)

As is the case of the previous example without flipping all the Coulomb branch operators

and the dressed mesons, we see that the IR central charges grow linearly with N such that

a, c ∼ 0.5N and a/c ∼ 1 at large-N . The scaling dimensions of Mi and Xi are given by [21]

∆Mi
=

2N − i + 1

N + 1
, ∆Xi

=
3N − i + 2

N + 1
, (3.3)

with i = 1, . . . , N − 1. A pair of N = 1 chiral multiplets (Mi, Xi) form an N = 2 chiral

multiplet, with the bottom component given by the scalar component of Mi.

We see that the lightest chiral ring operator is given by MN−1 while the heaviest chiral

ring operator is given by X1. As before, the scaling dimension of the lightest operator is only

infinitesimally greater than 1 at large-N . Meanwhile, the gap in the scaling dimensions of

the lightest and the second lightest operator decays as O(1/N), indicating the formation of a

continuous band of operators with low conformal dimensions. We can also see this from the

fact that the gap between the dimensions of the heaviest and lightest operator asymptotes

to 2 while the number of chiral operators in the interacting sector grows linearly at large-N .

The IR fixed point of this theory has enhanced N = 2 supersymmetry and U(1)A ×

U(1)R symmetry gets enhanced to SU(2)R × U(1)r. The U(1)B remains as the flavor

symmetry of the theory with the moment-map operator given as Z ≡ QΦN−1Q̃. If we

denote the (anti)-baryon operator as X ≡ QN ΦN(N−1)/2 and Y ≡ Q̃N ΦN(N−1)/2, there is

a relation given by XY = ZN . They parametrize the Higgs branch of the theory, which is

given by C
2/ZN .

The operator X, Y has scaling dimension N (which is consistent with the fact that

∆Z = 2) and U(1)B charge ±N . We find that the 9CT

40CV,B
= 3N2−N−1

2N2 > 1 in the large-N

limit, whereas ∆2/B2 = 1 for all N . Therefore the WGC is satisfied for the U(1)B.

4 Discussion

In this paper, we showed that there exist large N gauge theories with the dense low-lying

spectrum, and the degrees of freedom measured by the central charges grow linearly in N .

We focused on a set of particular 4d N = 1 supersymmetric SU(N) gauge theories. They

provide interesting counter-examples of the commonly expected behavior of any large N

gauge theories, namely O(N2) degrees of freedom and sparse spectrum given by the gauge-

invariant operators. Let us make a few comments regarding this model.

– 7 –
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As our models do not have a sparse low-lying spectrum, it is impossible to have a

weakly-coupled Einstein dual in AdS5. In the paper [9], the authors tested the AdS version

of the WGC for the SQCD in the conformal window. They found that it does not satisfy

the WGC, and suggested that it may be due to the fact that this theory is not dual the

weakly-coupled Einstein gravity. Nevertheless, our models do satisfy the AdS version of

the Weak Gravity Conjecture. This can be thought of as a piece of evidence that the WGC

holds for more general quantum gravity, instead of being a special property of Einstein-like

gravity. In the case of 2d CFT, modular invariance of the partition function implies the

WGC in AdS3 [22–24]. In the current case of 4d CFT, as was demonstrated in [9], it seems

that the WGC is not a generic property of arbitrary CFT even though it holds beyond

the weakly-coupled Einstein gravity. It would be interesting to search for a condition in

higher-dimension from which the WGC follows.

We expect there to be no confinement/deconfinement type phase transition at finite

temperature or finite chemical potential. One way to probe the zero-temperature phase

with varying chemical potential is by studying the superconformal index [25, 26]. Recently

it was demonstrated that the index can indeed detect the phase structure, thereby account-

ing for the entropy of large AdS black holes [27–29]. The Cardy-like formula for the 4d

index [30, 31] describing the high-energy behavior suggests that our model is unlikely to

exhibit such a phase transition. However, it would be desirable to study detailed phase

structure of our theory using the superconformal index, as was done in [28, 32, 33].

Let us remark that there exists a ‘landscape’ of large N gauge theories that share the

property (dense low-lying states) of our model. Many of the generalized Argyres-Douglas

theories [34, 35] can be written in terms of gauge theories [36–38]. Even with the same

matter content, one can deform the theory via relevant operators and coupling with gauge

singlets [15, 39], which produce a large set of SCFTs sharing similar properties. It would

be interesting to clarify the bulk interpretation of these theories.
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