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1 Introduction

In this paper we study the large N behavior of the topologically twisted index introduced

in [1] for three-dimensional N ≥ 2 gauge theories. It is defined as the partition function

of the theory on S2 × S1 with a topological twist along S2 [2, 3] and it is a function of

magnetic charges and chemical potentials for the flavor symmetries. The large N limit of

the index for the ABJM theory was successfully used in [4] to provide the first microscopic

counting of the microstates of an AdS4 black hole. Here we extend the analysis of [4] to a

larger class of N ≥ 2 theories with an M-theory or massive type IIA dual, containing bi-

fundamental, adjoint and (anti-)fundamental chiral matter. Most of the theories proposed

in the literature are obtained by adding Chen-Simons terms [5–12] or by flavoring [13–15]

four-dimensional quivers describing D3-branes probing CY3 singularities. We refer to these

theories as having a four-dimensional parent. They all have an M-theory phase where the

index is expected to scale as N3/2. The main motivation for studying the large N limit

of the index for these theories comes indeed form the attempt to extend the result of [4]

to a larger class of black holes, and we hope to report on the subject soon. However,

the matrix model computing the index reveals an interesting structure at large N which

deserves attention by itself. In particular, we will point out analogies and relations with

other matrix models appeared in the literature on three-dimensional N ≥ 2 gauge theories.

The index can be evaluated using supersymmetric localization and it reduces to a

matrix model. It can be written as the contour integral

Z(n, y) =
1

|W |
∑

m∈Γh

∮
C
Zint(m, x; n, y) (1.1)

of a meromorphic differential form in variables x parameterizing the Cartan subgroup

and subalgebra of the gauge group, summed over the lattice of magnetic charges m of

the group. The index depends on complex fugacities y and magnetic charges n for the

flavor symmetries. As a difference with other well known matrix models arising from

supersymmetric localization in three dimensions, like the partition function on S3 [16–

18] or the superconformal index [19], in the large N limit all the gauge magnetic fluxes

contribute to the integral making difficult its evaluation. Here we use the strategy employed

in [4] to explicitly resum the integrand and consider the contour integral of the sum

Zresummed(x; n, y) =
1

|W |
∑

m∈Γh

Zint(m, x; n, y) (1.2)

which is a complicated rational function of x. We set up, as in [4], an auxiliary large

N problem devoted to find the positions of the poles of Zresummed in the plane x. We

write a set of algebraic equations for the position of the poles, which we call Bethe Ansatz

Equations (BAEs), and we write a Bethe functional whose derivative reproduces the BAEs.

The method for solving the BAEs is similar to that used in [20, 21] for the large N limit

of the partition function on S3 in the M-theory limit and the one used for the partition

function on S5 of five-dimensional theories [22–24]. We take an ansatz for the eigenvalues

where the imaginary parts grow in the large N limit as some power of N . The solution of

– 2 –
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the BAEs in the large N limit is then used to evaluate Z(n, y) using the residue theorem.

In this last step we need to take into account (exponentially small) corrections to the large

N limit of the BAEs which contribute to the index due to the singular logarithmic behavior

of its integrand.

We focus on the limit where N is much greater than the Chern-Simons couplings

ka. For the class of quivers we are considering, this limit corresponds to an M-theory

description when
∑

a ka = 0 and a massive type IIA one when
∑

a ka 6= 0. We recover the

known scalings N3/2 and N5/3 for the M-theory and massive type IIA phase, respectively.

Similarly to [21], we find that, in order to have a consistent N3/2 scaling of the index in the

M-theory phase, we need to impose some constraints on the quiver. In particular, quivers

with a chiral 4d parent are not allowed, as in [21]. They are instead allowed in the massive

type IIA phase.

In the course of our analysis, we find a number of interesting general results.

First, we find a simple universal formula for computing the index from the Bethe

potential, V(∆I), as a function of the chemical potentials,

Re logZ = − 2

π
V(∆I) −

∑
I

[(
nI −

∆I

π

)
∂V(∆I)

∂∆I

]
. (1.3)

We call this the index theorem. It allows to avoid the many technicalities involved in taking

the residues and including exponentially small corrections to the index. By comparing the

index theorem with the attractor formula for the entropy of asymptotically AdS4 black

holes, we are also led to conjecture a relation between the Bethe potential and the prepo-

tential of the dimensionally truncated gauged supergravity describing the compactification

on AdS4 × Y7, with Y7 a Sasaki-Einstein manifold. This relation is discussed in section 7.

Secondly, we find an explicit relation between the Bethe potential and the S3 free

energy of the same N ≥ 2 gauge theory. Although the two matrix models are quite

different at finite N , the BAEs and the functional form of the Bethe potential in the large

N limit are identical to the matrix model equations of motion and free energy functional

for the path integral on S3 found in [21]. This result implies that the index can be extracted

from the free energy on S3 and its derivatives in the large N limit. It also implies a relation

with the volume functional of (Sasakian deformations of) the internal manifold Y7. These

relations deserve a better understanding.

In this paper we give the general rules for constructing the Bethe potential and the

index for a generic Yang-Mills-Chen-Simons theory with bi-fundamental, adjoint and fun-

damental fields and few explicit examples of their application. Many other examples can

be found in an upcoming paper by one of the authors [25], including models for well-known

homogeneous Sasaki-Einstein manifolds, N0,1,0, Q1,1,1, V 5,2, and various nontrivial checks

of dualities. We leave the most interesting part of the story concerning applications to the

microscopic counting for AdS4 black holes for the future.

The paper is organized as follows. In section 2 we review the definition of the topo-

logically twisted index and the strategy for determining its large N limit used in [4]. In

section 3 we give the general rules for constructing the Bethe potential and the index for

a generic Yang-Mills-Chen-Simons theory with bi-fundamentals, adjoint and fundamental

– 3 –
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fields with N3/2 scaling. In section 4 we prove the identity of the Bethe potential and the

S3 free energy at large N . In section 5 we derive the index theorem that allows to express

the index at large N in terms of the Bethe potential and its derivatives. In section 6 we

discuss the rules for a N5/3 scaling. In section 7 we give a discussion of some open issues

and point out analogies with the attractor mechanism for AdS black holes. Appendices A

and C contains the explicit derivations of the rules for N3/2 and N5/3 scalings, respec-

tively. Appendix B contains an explicit example, based on the quiver for the Suspended

Pinch Point.

2 The topologically twisted index

The topologically twisted index of an N ≥ 2 gauge theory in three dimensions is defined as

the partition function on S2×S1 with a topological twist along S2 [1]. It depends on a choice

of fugacities y for the global symmetries and magnetic charges n on S2 parameterizing the

twist. The index can be computed using localization and it is given by a matrix integral

over the zero-mode gauge variables and it is summed over a lattice of gauge magnetic

charges on S2. Explicitly, for a theory with gauge group G of rank r and a set of chiral

multiplets transforming in representations RI of G, the index is given by [1]

Z(n, y) =
1

|W |
∑

m∈Γh

∮
C

∏
Cartan

(
dx

2πix
xkm

) ∏
α∈G

(1−xα)
∏
I

∏
ρI∈RI

(
xρI/2 yI

1−xρI yI

)ρI(m)−nI+1

,

(2.1)

where α are the roots of G and ρI are the weights of the representation RI . In this formula,1

x = ei(At+iβσ) parameterizes the gauge zero modes, where At is a Wilson line on S1 and

runs over the maximal torus of G while σ is the real scalar in the vector multiplet and

runs over the corresponding Cartan subalgebra. m are gauge magnetic fluxes living in the

co-root lattice Γh of G (up to gauge transformations). The index is integrated over x and

summed over m. k is the Chern-Simons coupling for the group G, and there can be a

different one for each Abelian and simple factor in G. Supersymmetric localization selects

a particular contour of integration and the final result can be formulated in terms of the

Jeffrey-Kirwan residue [1].

The index depends on a choice of fugacities yI for the flavor group and a choice of

integer magnetic charges nI for the R-symmetry of the theory. In an N ≥ 2 theory, the

R-symmetry can mix with the global symmetries and we can also write

nI = qI + pI , (2.2)

where qI is a reference R-symmetry and pI magnetic charges under the flavor symmetries

of the theory. Both yI and nI are thus parameterized by the global symmetries of the

theory. Each monomial term W in the superpotential imposes a constraint∏
I∈W

yI = 1 ,
∑
I∈W

nI = 2 , (2.3)

1β is the radius of S1.
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where the product and sum are restricted to the fields entering in W . Each Abelian gauge

group in three dimensions is associated with a topological U(1) symmetry. The contribution

of a topological symmetry with fugacity ξ = eiz and magnetic flux t to the index is given by

Ztop = xt ξm , (2.4)

where x is the gauge variable of the corresponding U(1) gauge field.

In this paper we are interested in the large N limit of the topologically twisted index

for theories with unitary gauge groups and matter transforming in the fundamentals, bi-

fundamentals and adjoint representation. As in [4], we evaluate the matrix model in two

steps. We first perform the summation over magnetic fluxes introducing a large cut-off

M .2 The result of this summation produces terms in the integrand of the form

N∏
i=1

(
eiB

(a)
i

)M
eiB

(a)
i − 1

, (2.5)

where we defined

ei sign(ka)B
(a)
i = ξ(a)(x

(a)
i )ka

∏
bi-fundamentals
(a,b) and (b,a)

N∏
j=1

√
x
(a)
i

x
(b)
j

y(a,b)

1− x
(a)
i

x
(b)
j

y(a,b)

1− x
(b)
j

x
(a)
i

y(b,a)√
x
(b)
j

x
(a)
i

y(b,a)

×
∏

fundamentals
a

√
x

(a)
i ya

1− x(a)
i ya

∏
anti-fundamentals

a

1− 1

x
(a)
i

ỹa√
1

x
(a)
i

ỹa

, (2.6)

and adjoints are identified with bi-fundamentals connecting the same gauge group (a = b).

In this way the contributions from the residues at the origin have been moved to the

solutions of the “Bethe Ansatz Equations” (BAEs)

ei sign(ka)B
(a)
i = 1 . (2.7)

It is convenient to use the variables u
(a)
i and ∆I , defined modulo 2π,3

x
(a)
i = eiu

(a)
i , yI = ei∆I , ξ(a) = ei∆

(a)
m , (2.8)

and take the logarithm of the Bethe ansatz equations

0 = log [r.h.s. of (2.6)]− 2πin
(a)
i , (2.9)

2According to the rules in [1], the residues to take in (2.1) depend on the sign of the Chern-Simons

couplings. We can choose a set of co-vectors in the Jeffrey-Kirwan prescription such that the contribution

comes from residues with ma ≤ 0 for ka > 0, residues with ma ≥ 0 for ka < 0 and residues in the origin. We

can then take a large positive integer M and perform the summations in eq. (2.1), with ma ≤M−1 (ka > 0)

and ma ≥ 1−M (ka < 0).
3Notice that the index is a holomorphic function of yI and ξ. There is no loss of generality in restrict to

the case of purely imaginary chemical potentials ∆ in (2.8).
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where n
(a)
i are integers that parameterize the angular ambiguities. The BAEs (2.9) can be

obtained as critical points of a “Bethe potential” V(u
(a)
i ).

We then need to solve these auxiliary equations in the large N limit. Once the distri-

bution of poles in the integrand in the large N limit has been found, we can finally evaluate

the index by computing the residue of the resummed integrand of (2.1) at the solutions

of (2.9). In the final expression, the dependence on M disappears.

3 The large N limit of the index

We are interested in the properties of the topologically twisted index in the large N limit

of theories with an M-theory dual. We focus on quiver Chern-Simons-Yang-Mills gauge

theories with gauge group

G =

|G|∏
a=1

U(N)a , (3.1)

and bi-fundamental, adjoint and fundamental chiral multiplets. Most of the conjectured

theories living on M2-branes probing CY4 singularities are of this form. Moreover, many

of them are obtained by adding Chern-Simons terms and fundamental flavors to quivers

appeared in the four-dimensional literature as describing D3-branes probing CY3 singular-

ities. We refer to these theories as quivers with a 4d parent. In order to have a CY4 moduli

space, the Chern-Simons couplings must satisfy

|G|∑
a=1

ka = 0 . (3.2)

The M-theory phase of these theories is obtained for N � ka and this is the limit we

consider here. We expect the index to scale as N3/2.

As in [4], we consider the following ansatz for the large N saddle-point eigenvalue

distribution:

u
(a)
i = iN1/2ti + v

(a)
i . (3.3)

Notice that the imaginary parts of all the u
(a)
i are equal. In the large N limit, we define

the continuous functions ti = t(i/N) and v
(a)
i = v(a)(i/N) and we introduce the density of

eigenvalues

ρ(t) =
1

N

di

dt
, (3.4)

normalized as
∫
dt ρ(t) = 1.

The large N limit of the Bethe potential is performed in details in appendix A.1,

generalizing the analysis in [4]. Here, we report the final result and some of the crucial

subtleties. We need to require the cancellations of long-range forces in the BAEs, as

originally observed in a similar context in [21], and this imposes some constraints on the

quiver. Once these are satisfied, the Bethe potential V becomes a local functional of ρ(t)

and v
(a)
i (t) and it scales as N3/2. The same constraints guarantee that the index itself

scales as N3/2.

– 6 –
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3.1 Cancellation of long-range forces

As in [21], when bi-fundamentals are present, we need to cancel long-range forces in the

BAEs. These are detected by considering the force exerted by the eigenvalue u
(b)
j on the

eigenvalue u
(a)
i in (2.9). They can grow with large powers of N and need to be canceled by

imposing constraint on the quiver and matter content if necessary. Since u
(b)
j − u

(a)
i ∼

√
N

for i 6= j, when the long-range forces vanish, the BAE and the Bethe potential get only

contributions from i ∼ j and they become local functionals of ρ(t) and v
(a)
i (t).

Let us consider the effects of such long-range forces in the Bethe potential V. A single

bi-fundamental field connecting gauge groups a and b contributes terms of the form

∑
i<j

(
u

(a)
i − u

(b)
j

)2

4
−
∑
i<j

(
u

(a)
j − u

(b)
i

)2

4
, (3.5)

to the Bethe potential [see eq. (A.27)]. In the large N limit, they are of order N5/2. In

order to cancel these terms, we are then forced, as in [21], to consider quivers where for each

bi-fundamental connecting a and b there is also a bi-fundamental connecting b and a. The

contribution of the two bi-fundamentals then cancel out [see eq. (A.19) and eq. (A.21)].

From a pair of bi-fundamentals, we get another contribution to the Bethe potential of

the form [see eq. (A.24)]

− 1

2

[(
∆(a,b) − π

)
+
(
∆(b,a) − π

)] N∑
j 6=i

(
u

(a)
i − u

(b)
j

)
sign(i− j) . (3.6)

This term can be canceled by the contribution of the angular ambiguities in (2.9) to the

Bethe potential V

2π
N∑
i=1

n
(a)
i u

(a)
i , (3.7)

provided that,4 ∑
I∈a

(π −∆I) ∈ 2πZ , (3.8)

where the sum is taken over all bi-fundamental fields with one leg in the node a.5 Since for

any reasonable quiver the number of arrows entering a node is the same as the number of

arrow leaving it, this equation is obviously equivalent to
∑

I∈a ∆I ∈ 2πZ and can be also

written as ∏
I∈a

yI = 1 . (3.9)

This condition implies that the sum of the charges under all global symmetries of the

bi-fundamental fields at each node must vanish. For quivers with a 4d parent, this is

4This is actually true only when N is odd. For even N we are left with a common factor π
∑N
i=1 u

(a)
i

which can be reabsorbed in the definition of ξ(a).
5Adjoint fields are supposed to be counted twice.
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equivalent to the absence of anomalies for the global symmetries of the 4d theory. Taking

the product over all the nodes in a quiver, we also get

Tr J = 0 , (3.10)

for any global symmetry of the theory, where the trace is taken over all the bi-fundamental

fermions.

There are also contributions to the Bethe potential of O(N2). The Chern-Simons

terms give indeed ∑
a

ka

N∑
i

(
u

(a)
i

)2

2
. (3.11)

However, the O(N2) term cancels out when the condition (3.2) is satisfied. Finally, there

is a O(N2) contributions of the fundamental fields given by (A.34). This vanishes if the

total number of fundamental and anti-fundamental fields in the quiver is the same.

We turn next to the large N limit of the index. The vector multiplet contributes a

term of O(N5/2) [see eq. (A.36)]

i

N∑
i<j

(
u

(a)
i − u

(a)
j + π

)
. (3.12)

The contribution of O(N5/2) of a chiral multiplet is [see eq. (A.43)]:

i
∑
I∈a

(nI − 1)

2

N∑
i<j

(
u

(a)
i − u

(a)
j + π

)
. (3.13)

To have a cancellation between terms of O(N5/2) and O(N2) for each node a we must have

2 +
∑
I∈a

(nI − 1) = 0 . (3.14)

For a quiver with a 4d parent, this condition is equivalent to the absence of anomalies for

the R-symmetry. If we sum over all the nodes we also obtain the following constraint

|G|+
∑
I

(nI − 1) = 0 . (3.15)

The above equation is equivalent to TrR = 0 for any trial R-symmetry, where the trace is

taken over all the bi-fundamental fermions and gauginos.

Summarizing, we can have a N3/2 scaling for the index if for each bi-fundamental

connecting a and b there is also a bi-fundamental connecting b and a, the total number of

fundamental and anti-fundamental fields in the quiver is equal, eq. (3.9) and eq. (3.14) are

fulfilled. All these conditions are automatically satisfied for quivers with a toric vector-like

4d parent and also for other interesting models like [26]. However, they rule out many

interesting chiral quivers appeared in the literature on M2-branes. We note a striking

analogy with the conditions imposed in [21].
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3.2 Bethe potential at large N

In this section we give the general rules for constructing the Bethe potential for any N ≥ 2

quiver gauge theory which respects the constraints (3.9) and (3.14):

1. Each group a with CS level ka and chemical potential for the topological symmetry

∆
(a)
m contributes the term

−ikaN3/2

∫
dt ρ(t) t va(t)− i∆(a)

m N3/2

∫
dt ρ(t) t . (3.16)

2. A pair of bi-fundamental fields, one with chemical potential ∆(a,b) and transforming

in the (N,N) of U(N)a × U(N)b and the other with chemical potential ∆(b,a) and

transforming in the (N,N) of U(N)a ×U(N)b, contributes

iN3/2

∫
dt ρ(t)2

[
g+

(
δv(t) + ∆(b,a)

)
− g−

(
δv(t)−∆(a,b)

)]
, (3.17)

where δv(t) ≡ vb(t)− va(t). Here, we introduced the polynomial functions

g±(u) =
u3

6
∓ π

2
u2 +

π2

3
u , g′±(u) =

u2

2
∓ πu+

π2

3
, (3.18)

and we assumed them to be in the range

0 < δv + ∆(b,a) < 2π , −2π < δv −∆(a,b) < 0 , (3.19)

which can be adjusted by choosing a specific determination for the ∆ that are defined

modulo 2π. We will also assume, and this is certainly true if δv assumes the value

zero, that

0 < ∆I < 2π . (3.20)

3. An adjoint field with chemical potential ∆(a,a), contributes

ig+(∆(a,a))N
3/2

∫
dt ρ(t)2 . (3.21)

4. A field Xa with chemical potential ∆a transforming in the fundamental of U(N)a,

contributes

− i
2
N3/2

∫
dt ρ(t) |t|

[
va(t) +

(
∆a − π

)]
, (3.22)

while an anti-fundamental field with chemical potential ∆̃a contributes6

i

2
N3/2

∫
dt ρ(t) |t|

[
va(t)−

(
∆̃a − π

)]
. (3.23)

6We also assume 0 < va(t) + ∆a < 2π and 0 < −va(t) + ∆̃a < 2π.
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Adding all the previous contributions for all gauge groups and matter fields, we get a

local functional V(ρ(t), va(t),∆I) that we need to extremize with respect to the continuous

functions ρ(t) and va(t) with the constraint
∫
dtρ(t) = 1. Equivalently we can introduce a

Lagrange multiplier µ and extremize

V (ρ(t), va(t),∆I)− µ
(∫

dtρ(t)− 1

)
. (3.24)

This gives the large N limit distribution of poles in the index matrix model.

The solutions of the BAEs have a typical piece-wise structure. Eq. (3.24) is the right

functional to extremize when the conditions (3.19) are satisfied. This gives a central region

where ρ(t) and va(t) vary with continuity as functions of t. When one of the δv(t) associated

with a pair of bi-fundamental hits the boundaries of the inequalities (3.19), it remains

frozen to a constant value δv = −∆(b,a) (mod 2π) or δv = ∆(b,a) (mod 2π) for larger (or

smaller) values of t. This creates “tail” regions where one or more δv are frozen and the

functional (3.24) is extremized with respect to the remaining variables. In the tails, the

derivative of (3.24) with respect to the frozen variable is not zero and it is compensated by

subleading terms that we omitted. To be precise, the equations of motion [see eq. (A.14)]

includes subleading terms

∂V
∂(δv)

+ iNρ
[
Li1

(
ei(δv+∆(b,a))

)
− Li1

(
ei(δv−∆(a,b))

)]
= 0 , (3.25)

which are negligible except on the tails, where δv has exponentially small correction to the

large N constant value

δv = −∆(b,a) + e−N
1/2Y(b,a) , δv = ∆(a,b) − e−N

1/2Y(a,b) , (mod 2π) . (3.26)

The quantities Y are determined by equation (3.25) and contribute to the large N limit of

the index.

3.2.1 The ABJM example

As an example, we briefly review here the solution to the BAEs for the ABJM model found

in [4]. A more complicated example, for a U(N)3 quiver is discussed in appendix B. The

reader can find many other examples in [25]. ABJM is a Chern-Simons-matter theory

with gauge group U(N)k × U(N)−k, with two pairs of bi-fundamental fields Ai and Bi
transforming in the representation (N,N) and (N,N) of the gauge group, respectively,

and superpotential

W = Tr (A1B1A2B2 −A1B2A2B1) . (3.27)

We assign chemical potentials ∆1,2 ∈ [0, 2π] to Ai and ∆3,4 ∈ [0, 2π] to Bi. Invariance of

the superpotential under the global symmetries requires that
∑

i ∆i ∈ 2πZ (or equivalently∏
i yi = 1). Conditions (3.9) and (3.14) are then automatically satisfied. The Bethe

– 10 –
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potential, for k = 1,7 reads

V = iN3/2

∫
dt

t ρ(t) δv(t) + ρ(t)2

 ∑
a=3,4

g+ (δv(t) + ∆a)−
∑
a=1,2

g− (δv(t)−∆a)

 .

(3.28)

The solution for
∑

i ∆i = 2π and ∆1 ≤ ∆2, ∆3 ≤ ∆4 is as follows [4]. We have a central

region where

ρ =
2πµ+ t(∆3∆4 −∆1∆2)

(∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4)

δv =
µ(∆1∆2 −∆3∆4) + t

∑
a<b<c ∆a∆b∆c

2πµ+ t(∆3∆4 −∆1∆2)

− µ

∆4
< t <

µ

∆2
. (3.29)

When δv hits −∆3 on the left the solution becomes

ρ =
µ+ t∆3

(∆1 + ∆3)(∆2 + ∆3)(∆4 −∆3)
, δv = −∆3 , − µ

∆3
< t < − µ

∆4
, (3.30)

with the exponentially small correction Y3 = (−t∆4 − µ)/(∆4 − ∆3), while when δv hits

∆1 on the right the solution becomes

ρ =
µ− t∆1

(∆1 + ∆3)(∆1 + ∆4)(∆2 −∆1)
, δv = ∆1 ,

µ

∆2
< t <

µ

∆1
, (3.31)

with Y1 = (t∆2 − µ)/(∆2 −∆1). Finally, the on-shell Bethe potential is

V =
2i

3
µN3/2 =

2iN3/2

3

√
2∆1∆2∆3∆4 . (3.32)

There is also a solution for
∑

i ∆i = 6π which, however, is obtained by the previous one

by a discrete symmetry ∆i → 2π −∆i

(
yi → y−1

i

)
.

3.3 The index at large N

We now turn to the large N limit of the index for an N ≥ 2 quiver gauge theory without

long-range forces. Here, we give the rules for constructing the index once we know the

large N solution ρ(t), va(t) of the BAE, which is obtained by extremizing (3.24). The final

result scales as N3/2.

1. For each group a, the contribution of the Vandermonde determinant is

− π2

3
N3/2

∫
dt ρ(t)2 . (3.33)

2. A U(1)a topological symmetry with flux ta contributes

− taN
3/2

∫
dt ρ(t) t . (3.34)

7There is a similar solution for k > 1 with V → V
√
k. However, we also need to take into account that,

for k > 1, there are further identifications among the ∆I due to discrete Zk symmetries of the quiver.
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3. A pair of bi-fundamental fields, one with magnetic flux n(a,b) and chemical potential

∆(a,b) transforming in the (N,N) of U(N)a×U(N)b and the other with magnetic flux

n(b,a) and chemical potential ∆(b,a) transforming in the (N,N) of U(N)a × U(N)b,

contributes

−N3/2

∫
dt ρ(t)2

[
(n(b,a) − 1) g′+

(
δv(t) + ∆(b,a)

)
+ (n(a,b) − 1) g′−

(
δv(t)−∆(a,b)

)]
.

(3.35)

4. An adjoint field with magnetic flux n(a,a) and chemical potential ∆(a,a), contributes

− (n(a,a) − 1) g′+
(
∆(a,a)

)
N3/2

∫
dt ρ(t)2 . (3.36)

5. A field Xa with magnetic flux na transforming in the fundamental of U(N)a, con-

tributes
1

2
(na − 1)N3/2

∫
dt ρ(t)|t| , (3.37)

while an anti-fundamental field with magnetic flux ña contributes

1

2
(ña − 1)N3/2

∫
dt ρ(t)|t| . (3.38)

6. The tails, where δv has a constant value, as in (3.25), contribute

− n(b,a)N
3/2

∫
δv≈−∆(b,a)(mod 2π)

dt ρ(t)Y(b,a) − n(a,b)N
3/2

∫
δv≈∆(a,b)(mod 2π)

dt ρ(t)Y(a,b) ,

(3.39)

where the integral are taken on the tails regions.

As an example, for ABJM, using the above solution of the BAEs, one obtains the

simple expression [4]

Re logZ = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

. (3.40)

4 Bethe potential versus free energy on S3

We would like to emphasize a remarkable connection of the large N limit of the Bethe

potential, which for us is an auxiliary quantity, with the large N limit of the free energy

F on S3 of the same N ≥ 2 theory.

Recall that the free energy F on S3 of an N = 2 theory is a function of trial R-

charges ∆I for the chiral fields [17, 18]. They parameterize the curvature coupling of the

supersymmetric Lagrangian on S3. The S3 free energy can be computed using localization

and reduced to a matrix model [16]. The large N limit of the free energy, for N � ka,

has been computed in [20, 21, 27–29] and scales as N3/2. For example, the free energy for

ABJM with k = 1 reads [21]

F =
4πN3/2

3

√
2∆1∆2∆3∆4 . (4.1)
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Bethe potential S3 free energy

ka −ka
µ µ

2

va(t)
va(t)

2

ρ(t) 4ρ(t)

∆I π∆I

∆m −π∆m

V 4πiF

V
∣∣∣
BAEs

iπ
2 F
∣∣∣
On-shell

Table 1. The large N Bethe potential versus the S3 free energy of [21].

We notice a striking similarity with (3.32). This is not a coincidence and generalizes to

other theories. Indeed, remarkably, although the finite N matrix models are quite different,

for any N = 2 theory, the large N limit of the Bethe potential becomes exactly equal to the

large N limit of the free energy F on S3. We can indeed compare the rules for constructing

the Bethe potential with the rules for constructing the large N limit of F , which have

been derived in [21]. By comparing the rules in section 3.2 with the rules given in section

2.2 of [21], we observe that they are indeed the same up to a normalization. For reader’s

convenience the map is explicitly given in table 1. The conditions for cancellation of long-

range forces (and therefore the allowed models) are also remarkably similar.

It might be surprising that our chemical potentials for global symmetries are mapped

to R-charges in the free energy. However, remember that our ∆I are angular variables.

The invariance of the superpotential under the global symmetries implies that∏
I∈matter fields

yI = 1 , (4.2)

in each term of the superpotential, which is equivalent to∑
I∈matter fields

∆I = 2π` ` ∈ Z , (4.3)

where now ∆I are the index chemical potentials. Under the assumption 0 < ∆I < 2π, few

values of ` are actually allowed. In the ABJM model reviewed above, only ` = 1 and ` = 3

give sensible results, with ` = 3 related to ` = 1 by a discrete symmetry of the model. We

found a similar result in all the examples we have checked, and we do believe indeed that

a solution of the BAE only exists when∑
I∈matter fields

∆I = 2π , (4.4)

for each term of the superpotential, up to solutions related by discrete symmetries. ∆I/π

then behaves at all effects like a trial R-symmetry of the theory and we can compare the

index chemical potentials in V with the R-charges in F .
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5 An index theorem for the twisted matrix model

Under mild assumptions, the index at large N can be actually extracted from the Bethe

potential with a simple formula.

Theorem 1. The index of any N ≥ 2 quiver gauge theory which respects the con-

straints (3.9) and (3.14), and satisfies in addition (4.4), can be written as

Re logZ = − 2

π
V(∆I) −

∑
I

[(
nI −

∆I

π

)
∂V(∆I)

∂∆I

]
, (5.1)

where V is the extremal value of the functional (3.24)

V(∆I) ≡ −iV
∣∣∣
BAEs

=
2

3
µN3/2 , (5.2)

and µ is the Lagrange multiplier appearing in (3.24).8

Proof. We first replace the explicit factors of π, appearing in eqs. (3.17)–(3.23), with a

formal variable π. Note that the “on-shell” Bethe potential V is a homogeneous function

of ∆I and π and therefore it satisfies

V(λ∆I , λπ) = λ2 V(∆I ,π) ⇒ ∂V(∆I ,π)

∂π
=

1

π

[
2V(∆I)−

∑
I

∆I
∂V(∆I)

∂∆I

]
. (5.3)

Now, we consider a pair of bi-fundamental fields which contribute to the Bethe potential

according to (3.17). The derivative of V(∆I ,π) with respect to ∆(b,a) and ∆(a,b) is given by

∑
I=(b,a),(a,b)

nI
∂V(∆I ,π)

∂∆I

= iN3/2

∫
dt ρ(t)2

[
n(b,a)g

′
+

(
δv(t) + ∆(b,a)

)
+ n(a,b)g

′
−
(
δv(t)−∆(a,b)

)]
+

∑
I=(b,a),(a,b)

nI
∂V
∂ρ

∂ρ

∂∆I︸ ︷︷ ︸
vanishing on-shell

+
∑

I=(b,a),(a,b)

nI
∂V
∂(δv)

∂(δv)

∂∆I︸ ︷︷ ︸
tails contribution

. (5.4)

The expression in the first line is precisely part of the contribution of a pair of bi-

fundamentals (3.35) to the index. In the tails, using (3.25), we find

∂(δv)

∂∆(b,a)
= −1 ,

∂(δv)

∂∆(a,b)
= 1 ,

∂V
∂(δv)

= −iY(b,a)ρ ,
∂V
∂(δv)

= iY(a,b)ρ . (5.5)

Therefore, the last term in eq. (5.4) can be simplified to

iN3/2n(b,a)

∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a) + iN3/2n(a,b)

∫
δv≈∆(a,b)

dt ρ(t)Y(a,b) . (5.6)

8The second identity in (5.2) is a consequence of a virial theorem for matrix models (see appendix B

of [29]).
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This precisely gives the tail contribution (3.39) to the index. Next, we take the derivative

of the Bethe potential with respect to π. It can be written as

∂V
∂π

= − iN3/2

∫
dt ρ(t)2

[
g′+
(
δv(t) + ∆(b,a)

)
+ g′−

(
δv(t)−∆(a,b)

)]
+ iN3/2

∫
dt ρ(t)2

[
2π2

3
− π

3

(
∆(b,a) + ∆(a,b)

)]
. (5.7)

The expression in the first line completes the contribution of a pair of bi-fundamentals (3.35)

to the index. The expression in the second line, after summing over all the bi-fundamental

pairs, can be written as

∑
pairs

[
2π2

3
− π

3

(
∆(b,a) + ∆(a,b)

)]
=
π

3

∑
I

(π −∆I) =
π2

3
|G| , (5.8)

which is precisely the contribution of the gauge fields (3.33) to the index. Here, we used

the condition

π|G|+
∑
I

(∆I − π) = 0 . (5.9)

This condition follows from the fact that, assuming (4.4) for each superpotential term,

∆I/π behaves as a trial R-symmetry, so that (3.14) yields

2 +
∑
I∈a

(
∆I

π
− 1

)
= 0 , (5.10)

which, summed over all the nodes, since each bi-fundamental field belongs precisely to

two nodes, gives (5.9). Condition (5.9) is indeed equivalent to TrR = 0, where the trace is

taken over the bi-fundamental fermions and gauginos in the quiver and R is an R-symmetry.

Combining everything as in the right hand side of eq. (5.1) we obtain the contribution of

gauge and bi-fundamental fields to the index. The proof for all the other matter fields and

the topological symmetry is straightforward.

If we ignore the linear relation among the chemical potentials, we can always use a set

of ∆I such that V is a homogeneous function of degree two of the ∆I alone.9 In this case,

the index theorem simplifies to

Re logZ = −
∑
I

nI
∂V(∆I)

∂∆I
. (5.11)

6 Theories with N5/3 scaling of the index

Chern-Simons quivers of the form (3.1) have a rich parameter space. If condition (3.2) is

satisfied and N � ka, they have an M-theory weakly coupled dual. In the t’Hooft limit,

9This is what happens in (3.32) for ABJM. Recall that
∑
i ∆i = 2π so that the four ∆i are not linearly

independent.

– 15 –



J
H
E
P
0
8
(
2
0
1
6
)
0
6
4

N, ka � 1 with N/ka = λa fixed and large, they have a type IIA weakly coupled dual.

When instead
|G|∑
a=1

ka 6= 0 , (6.1)

they probe massive type IIA [30]. There is an interesting limit, given (6.1), where again

N � ka. The limit is no more an M-theory phase [31], but rather an extreme phase of

massive type IIA. Supergravity duals of this type of phases have been found in [31–38].

The free energy scales as N5/3 [31]. We now show that also the topologically twisted index

scales in the same way. As it happens for the S3 matrix model [21, 36], we find a consistent

large N limit whenever the constraints (3.10) and (3.15) are satisfied.

The ansatz for the eigenvalue distribution is now, as in [21, 36],

u(a)(t) = N1/3(it+ v(t)) . (6.2)

The scaling is again dictated by the competition between the Chern-Simons terms, now

with (6.1), and the gauge and bi-fundamental contributions.

6.1 Long-range forces

Since the eigenvalue distribution is the same for all gauge groups, the long-range forces (3.5)

cancel automatically. We see that, differently from before, we can have a consistent large

N limit also in the case of chiral quivers. We also need to cancel the long-range forces (3.6).

They compensate each other if condition (3.9) is satisfied. Since the eigenvalues are the

same for all groups, it is actually enough to sum over nodes and we obtain the milder

constraint (3.10) on the flavor charges:

Tr J = 0 , (6.3)

where the trace is taken over bi-fundamental fermions in the quiver.

We obtain similar conditions by looking at the scaling of the twisted index. As in

section 3, vector multiplets and chiral bi-fundamental multiplets contribute terms (3.12)

and (3.13) which are of order O(N7/3). They compensate each other if condition (3.14) is

satisfied. Since the eigenvalues are the same for all groups, it is again enough to sum over

nodes and we obtain the constraint (3.15) on the flavor magnetic fluxes:

TrR = |G|+
∑
I

(nI − 1) = 0 , (6.4)

where the trace is taken over bi-fundamental fermions and gauginos in the quiver.

Conditions TrR = Tr J = 0 are certainly satisfied for all quivers with a four-

dimensional parent, even the chiral ones.

6.2 Bethe potential at large N

1. Each group a with CS level ka contributes

−ikaN5/3

∫
dt ρ(t) t v(t) +

ka
2
N5/3

∫
dt ρ(t)

(
t2 − v(t)2

)
. (6.5)
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2. A bi-fundamental field with chemical potential ∆I contributes

i g+ (∆I) N
5/3

∫
dt

ρ(t)2

1− iv′(t)
. (6.6)

3. A fundamental field contributes

−1

4
N5/3

∫
dt ρ(t) sign(t) [it+ v(t)]2 , (6.7)

while an anti-fundamental field contributes

1

4
N5/3

∫
dt ρ(t) sign(t) [it+ v(t)]2 . (6.8)

6.3 The index at large N

1. For each group a, the contribution of the Vandermonde determinant is

−π
2

3
N5/3

∫
dt

ρ(t)2

1− iv′(t)
. (6.9)

2. A chiral bi-fundamental field, with chemical potential ∆I and magnetic flux nI con-

tributes

−(nI − 1) g′+ (∆I)N
5/3

∫
dt

ρ(t)2

1− iv′(t)
. (6.10)

Fundamental fields do not contribute to the index explicitly.

Notice that the relation with the S3 free energy discussed in section 4 and the index theorem

of section 5 also hold for this class of quiver gauge theories.10

7 Discussion and conclusions

In this paper we have studied the large N behavior of the topologically twisted index for

N = 2 gauge theories in three dimensions. We have focused on theories with a conjectured

M-theory or massive type IIA dual and examined the corresponding field theory phases,

where holography predicts a N3/2 or N5/3 scaling for the path integral, respectively. We

correctly reproduced this scaling for a class of N = 2 theories and we also uncovered some

surprising relations with apparently different physical quantities.

The first surprise comes from the identification of the Bethe potential V with the S3

free energy F of the same N = 2 gauge theory. Recall that, in our approach, the BAE

and the Bethe potential are auxiliary quantities determining the position of the poles in

the matrix model in the large N limit. V depends on the chemical potentials for the flavor

symmetries, satisfying (4.3), while F depends on trial R-charges, which parameterize the

curvature couplings of the theory on S3. Both quantities, V and F are determined in

terms of a matrix model (auxiliary in the case of V). The two matrix models, and the

corresponding equations of motion are different for finite N , but, quite remarkably become

10The coefficient 2/3 in front of µ in eq. (5.2) must be replaced by 3/5.
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indistinguishable in the large N limit. Also the conditions to be imposed on the quiver for

the existence of a N3/2 or N5/3 scaling are the same. Although the structure of the long-

range forces and the mechanism for their cancellation is different, they rule out quivers

with chiral bi-fundamentals in the M-theory phase and impose the same conditions on

flavor symmetries.

This identification leads to a relation of the Bethe potential V with the volume func-

tional of Sasaki-Einstein manifolds. The exact R-symmetry of a superconformal N = 2

gauge theory can be found by extremizing F (∆I) with respect to the trial R-charges ∆I [21],

but F (∆I) makes sense for arbitrary ∆I . The functional F (∆I) has a well-defined geomet-

rical meaning for theories with an AdS4× Y7 dual, where Y7 is a Sasaki-Einstein manifold.

The value of F upon extremization is related to the (square root of the) volume of Y7. More

generally, at least for a class of quivers corresponding to N = 3 and toric cones C(Y7),

the value of F (∆I), as a function of the trial R-symmetry parameterized by ∆I , has been

matched with the (square root of the) volume of a family of Sasakian deformation of Y7,

as a function of the Reeb vector. For toric theories, the volume can be parameterized in

terms of a set of charges ∆I , that encode how the R-symmetry varies with the Reeb vector,

and it has been conjectured in [39–41] to be a homogeneous quartic function of the ∆I , in

agreement with the homogeneity properties of V and F .

A second intriguing relation comes from the index theorem (5.1). The original reason

for studying the large N limit of the topologically twisted index comes from the counting

of AdS4 black holes microstates. The entropy of magnetically charged black holes asymp-

totic to AdS4 × S7 was successfully compared with the large N limit of the index in [4],

when extremized with respect to the chemical potential ∆I . We expect that a similar

relation holds for magnetically charged BPS black holes asymptotic to AdS4 × Y7, for a

generic Sasaki-Einstein manifold. Given the very small number of black holes known, this

statement is difficult to check. Assuming, however, that it is true, we can compare the

on-shell index of a superconformal N = 2 gauge theory dual to AdS4 × Y7 twisted by a

set of magnetic charges nI with the entropy of a black hole in AdS4× Y7 supported by the

same magnetic charges. The entropy of such black hole is determined in supergravity by

the attractor mechanism [42]. The black hole can be written as a solution of the N = 2

gauged supergravity obtained by truncating the KK spectrum on Y7 to a consistent set of

modes, which contains vector and hypermultiplets [43–47]. In a gauge supergravity with

only vectors, the entropy of the black hole can be obtained by extremizing with respect to

XI the quantity [44]

I(XI) = −
∑
I

nI
∂F
∂XI

, (7.1)

where F(XI) is the supergravity prepotential and XI a set of covariantly-constant homo-

geneous holomorphic sections. Here, we are working in the gauge
∑

I gIX
I = 1, where gI

are the electric gaugings of the theory and we assume that there are no magnetic ones.

The presence of hypermultiplets just add algebraic constraints [48, 49]. Comparison of the

attractor equation (7.1) with the index theorem (5.11) suggests the identification of ∆I

with XI and a proportionality between V(∆I) and F(XI), valid also before extremization.
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This proportionality certainly holds for ABJM since the prepotential is

F = i
√
X0X1X2X3 , (7.2)

which can be clearly mapped to (3.32). It would be quite interesting to see how to formulate

this identification in more general theories with hypermultiplets.

We thus see an intriguing chain of identifications

Bethe potential V ⇐⇒ S3 free-energy F ⇐⇒ prepotential F

of functionals depending on chemical potentials, trial R-charges and bulk scalar fields,

respectively. A relation between the free energy F and the prepotential of the compacti-

fied theory was already suggested in [41]. This chain of identifications certainly calls for

further investigation.11

The main motivation of our analysis comes certainly from the attempt to extend the

result of [4] to a larger class of black holes. The difficulty of doing so is mainly the exiguous

number of existing black holes solutions with an M-theory lift. Few numerical examples are

known in Sasaki-Einstein compactifications [48], mostly having Betti multiplets as massless

vectors. Some interesting examples involves chiral quivers and are therefore outside the

range of our technical abilities at the moment. It is curious that apparently well-defined

chiral quivers, which passed quite nontrivial checks [52], have an ill-defined large N limit

both for the S3 free energy and the topologically twisted index in the M-theory phase. It

would be quite interesting to know whether this is just a technical problem and another

saddle-point with N3/2 scaling exists, or the models are really ruled out.

It would be also quite interesting to find new examples of AdS4 M-theory and massive

type IIA black holes directly in eleven or ten dimensions (see, for example, [53]) or in some

other consistent truncations of eleven dimensional supergravity where to test our results.

We hope to come back to all these questions quite soon.
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A Derivation of general rules for theories with N3/2 scaling of the index

In this appendix we give a detail derivation of the rules presented in the main text for

finding the Bethe potential and the index at large N . The result is a straightforward

generalization of [4].

11As well as the relation to other extremization problems and generalizations [50, 51].
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We consider the following large N saddle-point eigenvalue distribution ansatz

u
(a)
i = iNαti + v

(a)
i . (A.1)

Notice that the imaginary parts of the u
(a)
i are equal. We also define

δvi = v
(b)
i − v

(a)
i . (A.2)

In the large N limit, we define the continuous functions ti = t(i/N) and v
(a)
i = v(a)(i/N)

and we introduce the density of eigenvalues

ρ(t) =
1

N

di

dt
, (A.3)

normalized as
∫
dt ρ(t) = 1. Furthermore, we impose the additional constraint

|G|∑
a=1

ka = 0 , (A.4)

corresponding to quivers dual to M-theory on AdS4 × Y7 and N3/2 scaling.

A.1 Bethe potential at large N

We may write the Bethe ansatz equations as

0 = log [r.h.s. of (2.6)]− 2πin
(a)
i , (A.5)

where n
(a)
i are integers that parameterize the angular ambiguities. We define the “Bethe

potential” as the function whose critical points gives the BAEs (A.5). In the large N limit

the Bethe potential V will be the sum of various contributions,

V = VCS + Vbi-fund + Vadjoint + V(anti-)fund . (A.6)

α will be determined to be 1/2 by the competition between Chern-Simons terms and matter

contribution.

A.1.1 Chern-Simons contribution

Each group a with CS level ka and topological chemical potential ∆
(a)
m , contributes to the

finite N Bethe potential as

VCS =
N∑
i=1

[
−ka

2

(
u

(a)
i

)2
−∆(a)

m u
(a)
i

]
. (A.7)

Given the large N saddle-point eigenvalue distribution (A.1), we find

VCS =
ka
2
N2α

N∑
i=1

t2i − iNα
N∑
i=1

(
kativ

(a)
i + ∆(a)

m ti

)
. (A.8)

Summing over nodes the first term vanishes (since
∑|G|

a=1 ka = 0). Taking the continuum

limit, we obtain

VCS = −ikaN1+α

∫
dt ρ(t) t va(t)− iN1+α∆(a)

m

∫
dt ρ(t) t . (A.9)

– 20 –



J
H
E
P
0
8
(
2
0
1
6
)
0
6
4

A.1.2 Bi-fundamental contribution

For a pair of bi-fundamental fields, one with chemical potential ∆(a,b) transforming in the

(N,N) of U(N)a×U(N)b and one with chemical potential ∆(b,a) transforming in the (N,N)

of U(N)a ×U(N)b, the finite N contribution to the Bethe potential is given by

Vbi-fund =
∑

bi-fundamentals
(b,a) and (a,b)

N∑
i,j=1

[
Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))
− Li2

(
e
i
(
u
(b)
j −u

(a)
i −∆(a,b)

))]

−
∑

bi-fundamentals
(b,a) and (a,b)

N∑
i,j=1

[(
∆(b,a) − π

)
+
(
∆(a,b) − π

)
2

(
u

(b)
j − u

(a)
i

)]
, (A.10)

up to constants that do not depend on u
(b)
j , u

(a)
i .

We would like to remind the reader that all angular variables are defined modulo 2π.

Part of the ambiguity in ∆I can be fixed by requiring that

0 < δv + ∆(b,a) < 2π , −2π < δv −∆(a,b) < 0 . (A.11)

The remaining ambiguity of simultaneous shifts δv → δv + 2π, ∆(a,b) → ∆(a,b) + 2π,

∆(b,a) → ∆(b,a)− 2π can also be fixed by requiring that δv(t) takes the value 0 somewhere,

if it vanishes at all, which we assume. We then have

0 < ∆I < 2π . (A.12)

To compute Vbi-fund, we break

N∑
i,j=1

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))

=
∑
i>j

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))
+
∑
i<j

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))

+
N∑
i=1

Li2

(
e
i
(
u
(b)
i −u

(a)
i +∆(b,a)

))
. (A.13)

The crucial point here is that the last term is naively of O(N) and thus subleading; however,

we should keep it since its derivative is not subleading on part of the solution when δv hits

∆(a,b) or −∆(b,a). Therefore, we keep

N

∫
dt ρ(t)

[
Li2

(
ei(δv(t)+∆(b,a))

)
− Li2

(
ei(δv(t)−∆(a,b))

)]
. (A.14)

This will be important in the tail contribution to the Bethe potential. The second term

in (A.13) is∑
i<j

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))
= N2

∫
dt ρ(t)

∫
t
dt′ ρ(t′) Li2

(
ei(ub(t

′)−ua(t)+∆(b,a))
)
.

(A.15)
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We first write the dilogarithm function as a power series, i.e.,

Li2(eiu) =

∞∑
k=1

eiku

k2
. (A.16)

Then, we consider the integral

Ik =

∫
t
dt′ ρ(t′) eik(ub(t

′)−ua(t)+∆(b,a))

=

∫
t
dt′ e−kN

α(t′−t)
∞∑
j=0

(t′ − t)j

j!
∂jx

[
ρ(x) eik(vb(x)−va(t)+∆(b,a))

]
x=t

,

where in the second equality we have Taylor-expanded the integrand around the lower

bound. Doing the integration over t′ we see that the leading contribution is for j = 0, thus

Ik =
ρ(t) eik(vb(t)−va(t)+∆(b,a))

kNα
+O(N−2α) . (A.17)

Substituting we find∑
i<j

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))
= N2−α

∫
dt Li3

(
ei(δv(t)+∆(b,a))

)
ρ(t)2 +O(N2−2α) .

(A.18)

Next, we need to compute the first term in (A.13). In order for the integral to be localized

at the boundary, we need to invert the integrand. Since 0 < Re
(
u

(b)
j − u

(a)
i + ∆(b,a)

)
< 2π:

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))
= − Li2

(
e
i
(
u
(a)
i −u

(b)
j −∆(b,a)

))
+

(
u

(b)
j − u

(a)
i + ∆(b,a)

)2

2

− π
(
u

(b)
j − u

(a)
i + ∆(b,a)

)
+
π2

3
. (A.19)

The summation
∑

i>j of the first term in the latter expression is similar to (A.18) but

with −Li3

(
e−i(δv(t)+∆(b,a))

)
instead of Li3. The two contributions may then be combined,

using (D.5),

N2−α
∫
dt
[
Li3

(
ei(δv(t)+∆(b,a))

)
− Li3

(
e−i(δv(t)+∆(b,a))

)]
ρ(t)2

= iN2−α
∫
dt g+

(
δv(t) + ∆(b,a)

)
ρ(t)2 , (A.20)

where we have introduced the polynomial function g+(u) defined in eq. (3.18).

The second term in the first line of (A.10) can be treated similarly. We now have

−2π < Re(u
(b)
j − u

(a)
i −∆(a,b)) < 0 and

−Li2

(
e
i
(
u
(b)
j −u

(a)
i −∆(a,b)

))
= Li2

(
e
i
(
u
(a)
i −u

(b)
j +∆(a,b)

))
−

(
u

(b)
j − u

(a)
i −∆(a,b)

)2

2

− π
(
u

(b)
j − u

(a)
i −∆(a,b)

)
− π2

3
. (A.21)
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As before, the result of the summation
∑

i>j together with that of
∑

i<j yields a cubic

polynomial expression

− iN2−α
∫
dt g−

(
δv(t)−∆(a,b)

)
ρ(t)2 , (A.22)

where g−(u) is defined in eq. (3.18).

The left over terms from (A.19) and (A.21), throwing away the constants which do not

affect the critical points, are[(
∆(a,b) − π

)
+
(
∆(b,a) − π

)]∑
i>j

(
u

(b)
j − u

(a)
i

)
, (A.23)

which, combined with the second line in (A.10), gives

1

2

[(
∆(a,b) − π

)
+
(
∆(b,a) − π

)]∑
i 6=j

(
u

(b)
j − u

(a)
i

)
sign(i− j) . (A.24)

This term can be precisely canceled by

− 2π

N∑
i=1

(
n

(b)
i u

(b)
i − n

(a)
i u

(a)
i

)
, (A.25)

provided that
∑

I∈a ∆I ∈ 2πZ.12

Notice that a single bi-fundamental chiral multiplet, with chemical potential ∆(b,a),

transforming in the representation (N,N) of U(N)a × U(N)b contributes to the Bethe

potential as

N∑
i,j=1

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆(b,a)

))
−

(
u

(b)
j − u

(a)
i + ∆(b,a)

)2

4

 . (A.26)

Using eq. (A.19) we find the following long-range terms

∑
i<j

(
u

(a)
i − u

(b)
j

)2

4
−
∑
i<j

(
u

(a)
j − u

(b)
i

)2

4
. (A.27)

In the large N limit, they are of order N5/2 and cannot be canceled for chiral quivers.

To find a nontrivial saddle-point the leading terms of order N1+α and N2−α have to be

of the same order, so we need α = 1/2. Putting everything together we arrive at the final

expression for the large N contribution of the bi-fundamental fields to the Bethe potential

Vbi-fund = iN3/2
∑

bi-fundamentals
(b,a) and (a,b)

∫
dt ρ(t)2

[
g+

(
δv(t) + ∆(b,a)

)
− g−

(
δv(t)−∆(a,b)

)]
.

(A.28)

12When N ∈ 2Z≥0 + 1. For even N one can include an extra (−1)m in the twisted partition function,

which can be reabsorbed in the definition of the topological fugacity ξ, to compensate the overall factor of

π.

– 23 –



J
H
E
P
0
8
(
2
0
1
6
)
0
6
4

In the sum over pairs of bi-fundamental fields (b, a) and (a, b), adjoint fields should

be counted once and should come with an explicit factor of 1/2. Keeping this in mind

and setting

vb = va , ∆(b,a) = ∆(a,b) = ∆(a,a) , (A.29)

we find the contribution of fields transforming in the adjoint of the ath gauge group with

chemical potential ∆(a,a) to the large N Bethe potential,

Vadjoint = iN3/2
∑

adjoint
(a,a)

g+

(
∆(a,a)

) ∫
dt ρ(t)2 . (A.30)

A.1.3 Fundamental and anti-fundamental contribution

The fundamental and anti-fundamental fields contribute to the large N Bethe potential as13

V(anti-)fund =
N∑
i=1

 ∑
anti-fundamental

a

Li2

(
e
i
(
−u(a)i +∆̃a

))
−

∑
fundamental

a

Li2

(
e
i
(
−u(a)i −∆a

))
+

1

2

N∑
i=1

 ∑
anti-fundamental

a

(
∆̃a − π

)
u

(a)
i +

∑
fundamental

a

(
∆a − π

)
u

(a)
i


− 1

4

N∑
i=1

 ∑
anti-fundamental

a

(
u

(a)
i

)2
−

∑
fundamental

a

(
u

(a)
i

)2

 . (A.31)

Let us denote the total number of (anti-)fundamental fields by (ña)na. Substituting in

V(anti-)fund the ansatz (A.1) and taking the continuum limit, the first line contributes

− (ña − na)
2

N2

∫
t>0

dt ρ(t) t2

+ iN3/2

∫
t>0

dt ρ(t) t


∑

anti-fundamental
a

[
va(t)−

(
∆̃a−π

)]
−

∑
fundamental

a

[
va(t)+

(
∆a−π

)] ,

(A.32)

while the second and the third lines give

(ña − na)
4

N2

∫
dt ρ(t) t2

− i

2
N3/2

∫
dt ρ(t) t


∑

anti-fundamental
a

[
va(t)−

(
∆̃a−π

)]
−

∑
fundamental

a

[
va(t)+

(
∆a−π

)] .

(A.33)

13Up to a factor −π(ña − na)ui/2 that cancels at this order for total number of fundamentals equal to

total number of anti-fundamentals, which we will need to assume for consistency.
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Combining eq. (A.32) and eq. (A.33), we obtain

V(anti-)fund = − (ña − na)
4

N2

∫
dt ρ(t) t |t|

+
i

2
N3/2

∑
anti-fundamental

a

∫
dt ρ(t) |t|

[
va(t)−

(
∆̃a − π

)]

− i

2
N3/2

∑
fundamental

a

∫
dt ρ(t) |t|

[
va(t) +

(
∆a − π

)]
. (A.34)

Summing over nodes the first term vanishes, demanding that

|G|∑
a=1

(ña − na) = 0 . (A.35)

We see that we need to consider quivers where the total number of fundamentals equal the

total number of anti-fundamentals. For each single node this number can be different.

A.2 The index at large N

We are interested in the large N limit of the logarithm of the twisted partition function.

A.2.1 Gauge vector contribution

Given the expression for the matrix model in section 2, the Vandermonde determinant

contributes to the logarithm of the index as

log
∏
i 6=j

(
1−

x
(a)
i

x
(a)
j

)
= log

∏
i<j

(
1−

x
(a)
j

x
(a)
i

)2(
−
x

(a)
i

x
(a)
j

)

= i
N∑
i<j

(
u

(a)
i − u

(a)
j + π

)
− 2

N∑
i<j

Li1

(
e
i
(
u
(a)
j −u

(a)
i

))
. (A.36)

The first term is of O(N2) and, therefore, a source of the long-range forces and will be

canceled by the contribution coming from the chiral multiplets. The second term is treated

as in appendix A.1.2, and gives

Re logZgauge = −π
2

3
N3/2

∫
dt ρ(t)2 +O(N) . (A.37)

A.2.2 Topological symmetry contribution

A U(1)a topological symmetry with flux ta contributes as

i

N∑
i=1

u
(a)
i ta . (A.38)

In the continuum limit, we get

Re logZtop = −taN3/2

∫
dt ρ(t) t+O(N) . (A.39)
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A.2.3 Bi-fundamental contribution

We can rewrite the contribution to the twisted index of a bi-fundamental chiral multiplet

transforming in the (N,N) of U(N)a × U(N)b, with magnetic flux n(b,a) and chemical

potential ∆(b,a) as:14

N∏
i=1

(
x

(b)
i

x
(a)
i

) 1
2(n(b,a)−1)(

1− y(b,a)
x

(b)
i

x
(a)
i

)n(b,a)−1

×

×
N∏
i<j

(−1)n(a,b)−1

(
x

(a)
i x

(b)
i

x
(a)
j x

(b)
j

) 1
2(n(b,a)−1)(

1− y(b,a)

x
(b)
j

x
(a)
i

)n(b,a)−1(
1− y−1

(b,a)

x
(a)
j

x
(b)
i

)n(b,a)−1

.

(A.40)

The first term in
∏
i is subleading and the second term only contributes in the tail where

δv ≈ −∆(b,a),

N
(
n(b,a) − 1

) ∫
dt ρ(t) log

(
1− ei(δv+∆(b,a))

)
(A.41)

= −N3/2
(
n(b,a) − 1

) ∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)(t) +O(N) (A.42)

The first two terms in
∏
i<j give a long-range force contribution to the index

i

2

(
n(b,a) − 1

)∑
i<j

[(
u

(a)
i − u

(a)
j + π

)
+
(
u

(b)
i − u

(b)
j + π

)]
, (A.43)

while the last two terms result in

−N3/2
(
n(b,a) − 1

) ∫
dt ρ(t)2

[
Li2

(
ei(δv+∆(b,a))

)
+ Li2

(
e−i(δv+∆(b,a))

)]
+O(N)

= −N3/2
(
n(b,a) − 1

) ∫
dt ρ(t)2g′+

(
δv(t) + ∆(b,a)

)
+O(N) . (A.44)

A bi-fundamental field transforming in the (N,N) of U(N)a × U(N)b, with magnetic flux

n(a,b) and chemical potential ∆(a,b) gives the same contribution with the replacement a↔ b

and δv → −δv.

The long-range force contribution of bi-fundamental fields at node a cancels with the

gauge contribution in (A.36), provided that

2 +
∑
I∈a

(nI − 1) = 0 , (A.45)

where the sum is taken over all chiral bi-fundamentals I with an endpoint in a.

In picking the residues, we need to insert a Jacobian in the twisted index and evaluate

everything else at the pole. The matrix B appearing in the Jacobian is 2N × 2N with

14The phases can be neglected, as we will be interested in log |Z|.
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block form

B =
∂
(
eiB

(a)
j , eiB

(b)
j
)

∂(log x
(a)
l , log x

(b)
l )

=


x

(a)
l

∂eiB
(a)
j

∂x
(a)
l

x
(b)
l

∂eiB
(a)
j

∂x
(b)
l

x
(a)
l

∂eiB
(b)
j

∂x
(a)
l

x
(b)
l

∂eiB
(b)
j

∂x
(b)
l


2N×2N

, (A.46)

and only contributes in the tails regions,15

− log detB = −N3/2
∑

bi-fundamentals
(b,a) and (a,b)

∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)(t)

+

∫
δv≈∆(a,b)

dt ρ(t)Y(a,b)(t) +O(N logN) .

Summarizing, pairs of bi-fundamental fields contribute to the logarithm of the index as

Re logZbi-fund
bulk = −N3/2

∑
bi-fundamentals
(b,a) and (a,b)

∫
dt ρ(t)2

[
(n(b,a) − 1) g′+

(
δv(t) + ∆(b,a)

)
+ (n(a,b) − 1) g′−

(
δv(t)−∆(a,b)

) ]
. (A.47)

The tails contribution is also given by

Re logZbi-fund
talis = −N3/2

∑
bi-fundamentals
(b,a) and (a,b)

n(b,a)

∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)(t)

+ n(a,b)

∫
δv≈∆(a,b)

dt ρ(t)Y(a,b)(t) . (A.48)

A field transforming in the adjoint of the ath gauge group with magnetic flux n(a,a)

and chemical potential ∆(a,a) only contributes to the bulk index. To find its contribution

we need to include an explicit factor of 1/2 in the expression (A.47) and take

vb = va , ∆(b,a) = ∆(a,b) = ∆(a,a) , n(b,a) = n(a,b) = n(a,a) . (A.49)

A.2.4 Fundamental and anti-fundamental contribution

The fundamental and anti-fundamental fields contribute to the logarithm of the index as

log

N∏
i=1

∑
anti-fundamental

a

(
x

(a)
i

) 1
2

(ña−1)
[
1− ỹa

(
x

(a)
i

)−1
]ña−1

×
∑

fundamental
a

(
x

(a)
i

) 1
2

(na−1)
[
1− y−1

a

(
x

(a)
i

)−1
]na−1

. (A.50)

15We refer the reader to [4] for a detailed analysis of the Jacobian at large N .
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Figure 1. The SPP Chern-Simons-matter quiver.

Using the scaling ansatz (A.1), in the continuum limit we get

log

N∏
i=1

∑
anti-fundamental

a

(
x

(a)
i

) 1
2

(ña−1) ∑
fundamental

a

(
x

(a)
i

) 1
2

(na−1)

= −1

2
N3/2

 ∑
anti-fundamental

a

(ña−1)+
∑

fundamental
a

(na−1)

∫ dt ρ(t) t+O(N) , (A.51)

and

log
N∏
i=1

∑
anti-fundamental

a

[
1− ỹa

(
x

(a)
i

)−1
]ña−1 ∑

fundamental
a

[
1− y−1

a

(
x

(a)
i

)−1
]na−1

= N3/2

 ∑
anti-fundamental

a

(ña−1)+
∑

fundamental
a

(na−1)

∫
t>0

dt ρ(t) t+O(N) . (A.52)

Putting the above equations together we find:

Re logZ(anti-)fund =
1

2
N3/2

 ∑
anti-fundamental

a

(ña − 1) +
∑

fundamental
a

(na − 1)

∫ dt ρ(t) |t| .

(A.53)

B An explicit example: the SPP theory

We now consider, as an example, the quiver gauge theory which describes the dynamics of

N M2-branes at the suspended pinch point (SPP) singularity (see figure 1). The Chern-

Simons levels are (2k,−k,−k) and the superpotential coupling is given by

W = Tr [X (A1A2 − C1C2)−A2A1B1B2 + C2C1B2B1] . (B.1)
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The marginality condition on the superpotential (4.4) impose constraints on the chemical

potential of the various fields

∆A + ∆B = π , ∆B + ∆C = π , 2∆A + ∆X = 2π , (B.2)

where we have used the symmetry of the quiver to set ∆A1 = ∆A2 = ∆A, and so on. Hence,

∆B = ∆ , ∆X = 2∆ , ∆A = ∆C = π −∆ , (B.3)

and

nB = n , nX = 2n , nA = nC = 1− n , (B.4)

where nI denotes the flavor magnetic flux of the field I. We assume 0 ≤ ∆ ≤ 2π and we

enforced condition (4.4). One can check that all other solutions are related to the one we

are presenting by a discrete symmetry of the quiver.16

B.1 The BAEs at large N

The theory under consideration is invariant under

A↔ C , U(N)(2) ↔ U(N)(3) . (B.7)

Let us assume that the saddle-point solution is also invariant under this Z2 symmetry.

Thus, we can choose

v
(1)
i = vi , v

(2)
i = v

(3)
i = wi . (B.8)

Given the rules of section 3.2, the Bethe potential reads

V
iN3/2

= 2k

∫
dt t ρ(t) δv(t) +

∫
dt ρ(t)2 ∆

[
(π −∆)(2π −∆)− 2δv2

]
− µ

[∫
dt ρ(t)− 1

]
− 2i

N1/2

∫
dt ρ(t)

[
±Li2

(
ei[δv(t)±(π−∆)]

)]
, (B.9)

where we defined

δv(t) = w(t)− v(t) , (B.10)

and we included the subleading terms giving rise to the equation of motion (3.25).17 The

eigenvalue density distribution ρ(t), which maximizes the Bethe potential, is a piece-wise

function supported on [t�, t�]. We define the inner interval as

t< s.t. δv(t<) = − (π −∆) , t> s.t. δv(t>) = π −∆ . (B.11)

16There is a solution for

∆A + ∆B = 3π , ∆B + ∆C = 3π , 2∆A + ∆X = 4π . (B.5)

which is obtained, using the invariance of Z under yI → 1/yI , from (B.12)–(B.16) by performing the

substitutions

µ→ −µ , k → −k , ∆→ π −∆ , Y ± → −Y ± . (B.6)

17Notice that these terms are subleading in the equation of motion for ρ, since Li2 is finite when its

argument is one, while affect the equation of motion for δv since Li1 is singular.
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Schematically, we have:

t�

ρ = 0

t<

δv = − (π −∆)

Y − = 0

t>

δv = π −∆

Y + = 0

t�

ρ = 0

The transition points are at

t� = − µ

2k(π −∆)
, t< = − µ

k(2π −∆)
, t> =

µ

k(2π −∆)
, t� =

µ

2k(π −∆)
. (B.12)

In the left tail we have

ρ =
1

2∆2

(
µ

π −∆
+ 2kt

)
, δv = − (π −∆)

Y − = −µ+ k(2π −∆)t

∆

t� < t < t< . (B.13)

In the inner interval we have

ρ =
µ

2(π −∆)(2π −∆)∆
, δv =

k(π −∆)(2π −∆)t

µ
t< < t < t> (B.14)

and δv′ > 0. In the right tail we have

ρ =
1

2∆2

(
µ

π −∆
− 2kt

)
, δv = π −∆

Y + = −µ− k(2π −∆)t

∆

t> < t < t� . (B.15)

Finally, the normalization fixes

µ = 2k1/2(π −∆)(2π −∆)

√
∆

4π − 3∆
. (B.16)

µ > 0 implies the following inequality

0 < ∆ < π . (B.17)

For k > 1 there can be discrete Zk identifications among the chemical potential which can

affect the final result. We have not been too careful about them here.

B.2 The index at large N

The rules of the large N twisted index imply that the free energy functional is

Re logZ = −N3/2

∫
dt ρ(t)2

[
∆(4π − 3∆) + n

(
3∆2 − 6π∆ + 2π2 − 2δv2

)]
−N3/22(1− n)

∫
δv≈−(π−∆)

dt ρ(t)Y −(t)−N3/22(1− n)

∫
δv≈ (π−∆)

dt ρ(t)Y +(t) .

(B.18)
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We should take the solution to the BAEs, plug it back into the functional (B.18) and

compute the integral. Doing so, we obtain the following expression for the logarithm of

the index:

Re logZ = − 4

3

k1/2N3/2

(4π − 3∆)3/2
√

∆

×
[
∆
(
7∆2 − 18π∆ + 12π2

)
+ n

(
−6∆3 + 19π∆2 − 18π2∆ + 4π3

)]
. (B.19)

Notice that

Re logZ = − 2

π
V(∆) −

[(
n− ∆

π

)
∂V(∆)

∂∆

]
, (B.20)

where

V(∆) =
4

3
k1/2N3/2(π −∆)(2π −∆)

√
∆

4π − 3∆
, (B.21)

as expected from the index theorem.

C Derivation of general rules for theories with N5/3 scaling of the index

We assume that in the large N limit the eigenvalues corresponding to all the gauge groups

are the same to leading order in N and they behave as

u(a)(t) = Nα(it+ v(t)) , (C.1)

for some 0 < α < 1. We also assume that
∑|G|

a=1 ka 6= 0 in the following discussion, as

appropriate for theories with a massive type IIA behavior. The long-range force analysis

is identical to appendix A. Here we discuss the N5/3 contributions.

C.1 Bethe potential at large N

Each group a with CS level ka contributes to the finite N Bethe potential as

VCS = −ka
2

N∑
i=1

(
u

(a)
i

)2
. (C.2)

Using the scaling ansatz (C.1), we find

− ikaN2α+1

∫
dt ρ(t) t v(t) +

ka
2
N2α+1

∫
dt ρ(t)

(
t2 − v(t)2

)
. (C.3)

To obtain the large N behavior of a bi-fundamental field between U(N)a ×U(N)b we

follow the same strategy as in section A.1.2. For example, consider

N∑
i<j

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆I

))
. (C.4)

We first write the dilogarithm function as a power series, i.e.,

Li2(eiu) =

∞∑
k=1

eiku

k2
, (C.5)
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and then consider the integral

Ik =

∫
t
dt′ρ(t′)ei(ub(t

′)−ua(t)+∆I)

=

∫
t
e−kN

α(t′−t)
∞∑
j=0

(t′ − t)j

j!
∂jx

[
ρ(x)eik[Nα(v(x)−v(t))+∆I ]

]
x=t

. (C.6)

Performing the integral in t′ we find∫
t
dt′e−kN

α(t′−t) (t′ − t)j

j!
= (kNα)−j−1 . (C.7)

Next, we extract the leading contribution of the left over term, i.e.,

∂jx

[
ρ(x)eik[Nα(v(x)−v(t))+∆I ]

]
x=t
∼ (ikNα)j

[
v′(x)jρ(x)eik[Nα(v(x)−v(t))+∆I ]

]
x=t

= (ikNα)j v′(t)jρ(t)eik∆I . (C.8)

Bringing the pieces together we find

Ik =
eik∆I

k
ρ(t)N−α

∞∑
j=0

[
iv′(t)

]j
=
eik∆I

k
N−α

ρ(t)

1− iv′(t)
. (C.9)

Thus,

N∑
i<j

Li2

(
e
i
(
u
(b)
j −u

(a)
i +∆I

))
= N2−α

∫
dtLi3

(
ei∆I

) ρ(t)2

1− iv′(t)
. (C.10)

Following the same steps as before, we get

Vbi-fund = ig+ (∆I)N
2−α

∫
dt

ρ(t)2

1− iv′(t)
. (C.11)

To have a nontrivial saddle-point, we need α = 1/3 which ensure that the Chern-Simons

terms and the matter contributions scale with the same power of N .

The contribution of (anti-)fundamental fields to the Bethe potential is given by [see

section A.1.3],

V(anti-)fund =
(ña − na)

4
N5/3

∫
dt ρ(t) sign(t) [it+ v(t)]2 . (C.12)

Notice that, when the total number of fundamental and anti-fundamental fields in the

quiver are equal, this contribution vanishes.

C.2 The index at large N

The contribution of the Vandermonde determinant to the index can be found using the

same techniques presented in appendix A. We need to compute

− 2
N∑
i<j

Li1

(
e
i
(
u
(a)
j −u

(a)
i

))
. (C.13)
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After a small calculation we find,

Re logZgauge = −π
2

3
N5/3

∫
dt

ρ(t)2

1− iv′(t)
. (C.14)

We now consider a bi-fundamental field with chemical potential ∆I and flavor magnetic

flux nI . Using the same methods given in appendix A, we obtain

Re logZbi-fund
bulk = −(nI − 1) g′+ (∆I)N

5/3

∫
dt

ρ(t)2

1− iv′(t)
. (C.15)

The contribution of (anti-)fundamental fields to the index, at large N , is subleading

and they just contribute through the Bethe potential.

D Polylogarithms

In this appendix we review the Polylogarithms and their properties which we used in the

paper. The polylogarithm function Lin(z) is defined by a power series

Lin(z) =

∞∑
k=1

zk

kn
, (D.1)

in the complex plane over the open unit disk, and by analytic continuation outside the

disk. For z = 1 the polylogarithm reduces to the Riemann zeta function

Lin(1) = ζ(n) , for Ren > 1 . (D.2)

The polylogarithm for n = 0 and n = 1 is

Li0(z) =
z

1− z
, Li1(z) = − log(1− z) . (D.3)

Notice that Li0(z) and Li1(z) diverge at z = 1. For n ≥ 1, the functions have a branch

point at z = 1 and we shall take the principal determination with a cut [1,+∞) along the

real axis. The polylogarithms fulfill the following relations

∂u Lin(eiu) = i Lin−1(eiu) , Lin(eiu) = i

∫ u

+i∞
Lin−1(eiu

′
) du′ . (D.4)

The functions Lin(eiu) are periodic under u→ u+ 2π and have branch cut discontinuities

along the vertical line [0,−i∞) and its images. For 0 < Reu < 2π, polylogarithms satisfy

the following inversion formulæ18

Li0(eiu) + Li0(e−iu) = −1

Li1(eiu)− Li1(e−iu) = −iu+ iπ

Li2(eiu) + Li2(e−iu) =
u2

2
− πu+

π2

3

Li3(eiu)− Li3(e−iu) =
i

6
u3 − iπ

2
u2 +

iπ2

3
u .

(D.5)

One can find the formulæ in the other regions by periodicity.

18The inversion formulæ in the domain −2π < Reu < 0 are obtaind by sending u→ −u.
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