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1 Introduction

The simplest, textbook version of inflation consists of a single canonical scalar field — the

inflaton — slowly rolling down a sufficiently flat potential. It is a common feature of these

models that the magnitude of non-Gaussianity is suppressed [1] well below the observable

level for any foreseeable future; see, e.g., [2].

Generically, in the low-energy inflationary effective field theory (EFT), there are ad-

ditional higher-derivative corrections to the canonical action [3], and one may wonder

whether these can impact non-Gaussianity in any significant way. For example, consider

the following Lagrangian

L =
√
−g
[
− 1

2
(∂φ)2 − V (φ) +

(∂φ)4

Λ4
+ . . .

]
, (1.1)

where V (φ) denotes the inflaton potential and the last term provides a higher-order cor-

rection in the derivative expansion, governed by the EFT cutoff Λ. The virtue of such

terms is that they do not renormalize the potential, while they do contribute to the non-

Gaussianity [4],

fNL ∼
φ̇0

2

Λ4
, (1.2)

where φ0 denotes the background expectation value of φ and fNL is the nonlinearity pa-

rameter of scalar perturbations [5]. It is clear from eq. (1.2) that having fNL ∼> 1 in this

model implies going beyond the (at least apparent) regime of validity of the low-energy

effective theory, which requires (∂φ)2 � Λ4. Therefore, unless the infinite number of

derivative operators in the ellipses of eq. (1.1) can be resummed, one cannot trust values

of non-Gaussianity greater than one. An example of such a resummation is provided by

Dirac-Born-Infeld (DBI) inflation [6, 7], where a higher-dimensional spacetime symmetry

(nonlinearly realized on φ) protects the coefficients of the leading derivative operators from

large quantum corrections. For a small speed of sound of scalar perturbations, c2s � 1, DBI

inflation predicts equilateral non-Gaussianity [8], with the amplitude f equilNL ∼ 1/c2s [7, 9].

– 1 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
7

In this article we propose a novel inflationary scenario where the energy density of the

early universe is dominated by the potential of a slowly-rolling scalar field, similarly to or-

dinary slow-roll theories. Yet, a definite set of higher-derivative interactions of the inflaton

become relevant, leading to observably large non-Gaussianity. Nevertheless, the theory is

predictive, since all the rest of the operators in the derivative expansion remain naturally

small in the full quantum theory. These properties follow from the weakly broken [10]

invariance under internal galileon transformations [11],

φ→ φ+ bµx
µ , (1.3)

which becomes exact in the limit MPl →∞. While not an exact symmetry in the presence

of gravity, (1.3) still significantly constrains the form of quantum corrections to the classical

aciton. We refer the reader to ref. [10] for a thorough discussion of the UV structure of

the theory.

While the symmetry (1.3) has appeared in a variety of physical contexts, ranging from

modified gravity [11–14] to scattering amplitudes [15], here we use it as a guideline for con-

structing largely UV-insensitive models of the early universe. The same symmetry underlies

the model of Galileon inflation [16] based on the covariant galileon [17] lagrangian.1 That

scenario is, however, very different from the one presented in this article because in ref. [16]

the background evolution is fully controlled by the higher-derivative operators, the poten-

tial being absent or negligible. This difference gives rise also to important consequences

for the dynamics of perturbations, as we will discuss in the section on non-Gaussianity.

To our knowledge, (1.3) is the only alternative to shift and DBI-like symmetries for pro-

tecting the coefficients of strongly-coupled higher-derivative operators against large quan-

tum corrections. Just like in DBI inflation, enhanced scalar non-Gaussianity is generically

associated with a reduced speed of sound of perturbations in our model; however, the

enhancement is much stronger compared to the DBI case, the amplitude of equilateral

non-Gaussianity growing as f equilNL ∝ 1/c4s for small c2s.

2 The model

The theory we wish to study below is defined as a combination of an inflationary potential

and the four Lagrangian terms [10], which, barring the factors of
√
−g, can be written

as follows

L2 = Λ4
2G2(X) , (2.1)

L3 = Λ4
2G3(X)[Φ] , (2.2)

L4 = M2
PlG4(X)R+ 2Λ4

2G
′
4(X)

(
[Φ]2 − [Φ2]

)
, (2.3)

L5 = M2
PlG5(X)GµνΦµν − 1

3
Λ4
2G
′
5(X)

(
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

)
. (2.4)

1Note that the covariant galileon is a particular case of more general theories with WBG invariance,

obtained by setting G2(X) ∝ X, G3(X) ∝ X2 and G4(X) ∝ X2 in eqs. (2.1)–(2.4).

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
7

Here, Φ is a matrix, consisting of second derivatives of the inflaton, Φµ
ν ≡ ∇µ∇νφ/Λ3

3,

and the brackets [. . .] denote the trace operator. Moreover, Ga are arbitrary dimensionless

functions of the dimensionless variable2 X ≡ −gµν∇µφ∇νφ/Λ4
2. For simplicity, we will

assume that these functions can be Taylor-expanded around zero, Ga(X) =
∑∞

n=0 c
(n)
a Xn.

Furthermore, the two scales in the theory are related to each other as Λ4
2 = MPlΛ

3
3, so that

the smaller of these, Λ3, can be regarded as the genuine cutoff of the underlying low-energy

EFT (we assume MPl is the parametrically highest scale in the problem).

In the limit MPl → ∞, the Lagrangian terms in (2.1)–(2.4) reduce to the galileons

of ref. [11], which are exactly invariant (up to a total derivative) under (1.3). In this

limit, there is a non-renormalization theorem, according to which the galileon operators

are not corrected, at least perturbatively, by quantum loops [18]. For a finite Planck

mass, the operators (2.1)–(2.4) break the galileon symmetry, but only weakly [10]. The

defining property of the theories with weakly broken invariance under (1.3) is a general-

ization of the non-renormalization theorem of ref. [18], which renders the quantum cor-

rections to the coefficients c
(n)
a suppressed by positive (integer) powers of the tiny ratio

Λ3/MPl [10]. In addition, these theories belong to the so-called Horndeski class of scalar-

tensor models [19], characterized by second-order equations of motion both for the scalar

and the metric [20–22].

It has been shown in ref. [10] that the properties of the theories with weakly broken

galileon symmetry imply the possibility of a moderately coupled, yet predictive, regime

characterized by

X =
φ̇20
Λ4
2
∼< 1 , Z ≡ Hφ̇0

Λ3
3
∼< 1 , (2.5)

for a homogeneous φ-profile on a FRW background with the Hubble rate H. From now

on, X will be understood as evaluated on the background solution. Despite the moderate

coupling, quantum corrections are under control when the scalar background profile satis-

fies (2.5) — even in the case that these inequalities are saturated — and the predictions of

the classical theory can be trusted.

3 The slow-roll backgrounds

As noted above, we will be interested in the potentially-dominated models of inflation,

characterized by weakly broken invariance under the galileon transformations (we will refer

to these models as ‘WBG’ inflation below). These are governed by the following Lagrangian

L =
√
−g
[
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ) +

5∑
i=2

Li + . . .

]
, (3.1)

where, since we have extracted the canonical scalar and graviton kinetic terms, G2 is

assumed to start at least quadratic in X, while G3 can have a linear piece. From now on

we will set G4 = G5 = 0 for the sake of simplicity; generalization to the case of nonzero

2We use the ‘mostly plus’ signature for the metric.
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G4 and G5 is straightforward and will be commented on where appropriate. The ellipses

in (3.1) denote an infinite number of other operators, present in the low-energy effective

theory. We will assume that the potential V (φ) satisfies the ordinary slow-roll conditions,

εV � 1 and |ηV | � 1, where the (potential-based) slow-roll parameters εV and ηV are

defined as

εV ≡
M2

Pl

2

(
V ′

V

)2

, ηV ≡M2
Pl

V ′′

V
. (3.2)

The previous analysis of quantum loops, leading to the non-renormalization theorem sum-

marized above, has concentrated on the case with a vanishing potential [10]. It is straight-

forward to show that the same results remain intact also in the presence of a nonzero, but

sufficiently flat V (φ), satisfying (3.2).

For the flat FRW ansatz, ds2 = −dt2 + a2(t)d~x2, the two Friedmann equations that

follow from (3.1) read

3M2
PlH

2 = V − Λ4
2X

[
1

2
+
G2

X
− F (X,Z)

]
, (3.3)

2M2
PlḢ = −Λ4

2XF (X,Z) + 2MPlXG
′
3φ̈0 , (3.4)

where H ≡ ȧ/a and the function F (X,Z) ≡ 1 + 2G′2− 6ZG′3 has been introduced for later

convenience. Moreover, in the slow-roll regime the homogeneous equation of motion of φ

reduces to

3Hφ̇0F (X,Z) ' −V ′(φ0) . (3.5)

We are interested in a regime where higher-derivative operators in (3.1) become important,

while the quantum corrections are still under control. To this end, we assume Z ∼ 1,

which also fixes the magnitude of the parameter X. Indeed, from the definition of X and

Z, eq. (2.5), it follows that
√
X = Λ2

2Z/(MPlH); making use of eq. (3.4), one immediately

obtains X ∼
√
ε, where ε ≡ −Ḣ/H2.

Note the order-unity slowly varying function of time F (X,Z) in eqs. (3.3)–(3.5), which

is strictly one in canonical slow-roll inflation. Apart from this minor modification, all the

equations that describe the background solution are similar to those of ordinary slow-roll

models (up to corrections of higher order in εV and ηV ). In particular, unlike e.g. the

DBI case, the usual flatness conditions εV � 1 and |ηV | � 1 need to hold for sustaining

the quasi-de Sitter phase in our model. It is precisely for this reason that we refer to it

as “slow-roll”.

Inflationary models based on particular subsets of the Lagrangian terms in (2.1)–

(2.4), G-inflation and Galileon-inflation, have been studied in refs. [16, 23] respectively.

However, these references have focused on kinetically-driven inflation, corresponding to

Λ4
2 ∼ M2

PlH
2 and X ∼ Z ∼ 1 in our notation3 (see also table 1 below). This results in

several differences. For example, while in the model presented here, just as in slow-roll

models, there is a built-in mechanism for ending inflation (when the inflaton rolls down

3These references have also considered the “Vainshtein” regime Z � 1, in which case the structure of

the EFT has been studied in [24, 25].
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sufficiently low on the potential), and e.g. for the monomial potentials the scalar tilt ns is

generically related to the number of inflationary e-folds in the standard way, ns−1 ∼ 1/N ,

all these features are absent from the model discussed in ref. [16].

At the level of perturbations, our scenario is of course very different from canonical

slow-roll inflation; for example, unlike the latter, the scalar perturbations become strongly

coupled at an energy scale parametrically smaller than MPl, something we discuss in greater

detail below.

It follows from the Friedmann equations that the contributions from the derivative

operators in (3.1) to the inflationary energy density and pressure are proportional to X ∼√
ε. One may wonder therefore, whether loop corrections can outweigh these contributions

for small values of ε. For Z ∼ 1, the leading quantum corrections to the background stress

tensor scale as ∼ Λ4
3 [10]. This should be much smaller than Λ4

2

√
ε, which implies a lower

bound on the slow-roll parameter, ε� (H/MPl)
2. This is the same bound on ε as the one

that arises from requiring quantum fluctuations of the inflaton to be small [26, 27].

4 Non-gaussianity

Inflationary theories can be conveniently studied in a model-independent way using the

EFT for inflationary perturbations [28, 29].4 To this end, we decompose the metric in the

ADM variables,

ds2 = −N2dt2 + γij
(
N idt+ dxi

) (
N jdt+ dxj

)
, (4.1)

and work in the unitary gauge, where the constant-time hypersurfaces are chosen to coincide

with those of uniform φ. The perturbed quantities are defined as δN ≡ N − 1, and δK ≡
K − 3H, where K denotes the trace of the extrinsic curvature of equal-time hypersurfaces.

The action in eq. (3.1) (with G4 = G5 = 0) can be expanded to the cubic order in

perturbations in the following way [30]

S =

∫
d4x
√
−g
[
M2

Pl

2
R−M2

PlḢ
1

N2
−M2

Pl(3H
2 + Ḣ)

+
M4

2

2
δN2 +M4

3 δN
3 − M̂3

1 δKδN + M̂3
2 δKδN

2

]
,

(4.2)

where M2, M3, M̂1 and M̂2 are functions of time of canonical dimension one. In terms of

the functions G2 and G3 introduced in eqs. (2.1) and (2.2), these are

M4
2 = −2Λ4

2X

[
3ZG′3 + 6ZXG′′3 − 2XG′′2 − Y G′3

]
,

M4
3 = −2Λ4

2X

[
3XG′′2 +

2

3
X2G′′′2 − Z

(
4G′3 + 11XG′′3 + 2X2G′′′3

)
+ Y G′3

]
,

M̂3
1 = −2

Λ4
2X

H
ZG′3 , M̂3

2 = −2
Λ4
2X

H
Z
(
2G′3 +XG′′3

)
,

(4.3)

4One of the virtues of this approach is that it takes advantage of the fact that the perturbations can be

weakly coupled even if the background solution is strongly coupled. As a result, one can keep full control

over the fNL > 1 regime, see the discussion in the end of the present section.
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Inflationary model |M2
PlḢ| |M4

2 | |HM̂3
1 |

Canonical slow-roll ε ∼ 0 ∼ 0

DBI [6, 7] ε � ε ∼ 0

Ghost [31, 32] ε ∼ 0 ∼ 1 ∼ 0

Galileon [16, 23] ε ∼ 0 ∼ 1 ∼ 1

Slow roll WBG ε ∼ ε ∼ ε

Table 1. Magnitudes of the quadratic operators in (4.2) in units of M2
PlH

2 in various inflationary

models.

where Y ≡ φ̈0/Λ
3
3. One can see from (4.3), that approximate invariance under galileon

transformations imposes the following (radiatively stable) hierarchy among the various

EFT coefficients:

M4
2 ∼M4

3 ∼M2
PlḢ, M̂3

1 ∼ M̂3
2 ∼

M2
PlḢ

H
. (4.4)

This is in stark contrast to what happens e.g. in solely shift-symmetric theories, where

the coefficients that stem from higher-derivative operators such as M̂3
1 and M̂3

2 , are

much stronger suppressed. The latter hierarchy motivates to define the dimensionless,

order-one coefficients

α1,3 ≡ −
M4

2,3

2M2
PlḢ

, α2,4 ≡ −
M̂3

1,2H

2M2
PlḢ

, (4.5)

convenient for describing the parameter space of the theories at hand. The magnitude of

the EFT coefficients in (4.4) is different from all the other single-field models of inflation,

as summarized in table 1 and it is what characterises the phenomenology of the model.

At sufficiently high energies (encompassing the Hubble scale), the dynamics of scalar

perturbations is fully dominated by the dynamics of the adiabatic mode π, defined through

φ(~x, t) = φ0 (t+ π(~x, t)) [28, 29]. In the decoupling limit corresponding to this regime, the

scalar part of the action (4.2) reads

Sπ =

∫
d4x a3 (−M2

PlḢ)

[
(1 + α1)

(
π̇2 − c2s

(∂π)2

a2

)
+ (α2 − α1) π̇

(∂π)2

a2

− 2(α1 + α3)π̇
3 + 2

α2 − α4

H
π̇2
∂2π

a2
+
α2

H

(∂π)2∂2π

a4

]
,

(4.6)

where the speed of sound is

c2s ≡
1 + α2

1 + α1
. (4.7)

It follows from eq. (4.7) that if, for whatever reason, the parameter α2 happens to be

close to −1, one can have strongly subluminal scalar perturbations. Most importantly, the

approximate galileon invariance guarantees that such an ‘accidental’ arrangement of the
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parameters is respected by loop corrections. This is qualitatively different from how the

small c2s arises in models such as DBI inflation, as we discuss in detail below.5

It is worth stressing at this point that the operators in the last line of (4.6) can be

rewritten in terms of those in the second line via a perturbative field redefinition [33].

This simply amounts to using the linear equation of motion in (4.6). After straightforward

manipulations, one finds6

S(3)
π =

∫
d4x a3 (−M2

PlḢ)

[
γ1π̇

(∂π)2

a2
+ γ2π̇

3

]
. (4.8)

The two operators in (4.8) are precisely those appearing in the decoupling limit of DBI

theories and the bispectrum they produce is close to the equilateral shape [8]. The genuine

difference arises once the magnitude of non-Gaussianity is concerned: instead of the f equilNL ∼
1/c2s behaviour characteristic of DBI inflation [9], in theories with weakly broken galileon

symmetry non-Gaussianity scales as f equilNL ∼ 1/c4s in the small-c2s limit. The latter scaling

is due to the last operator in (4.6), whose precise contribution to the three-point function

of the curvature perturbation ζ reads [16, 34]7

Bζ(k1, k2, k3) = − 1

16

H8

A2

α2

1 + α1

1

c10s

k21(k21 − k22 − k23)

kt(k1k2k3)3

×
(

1 +

∑
i>j kikj

k2t
+ 3

k1k2k3
k3t

)
+ 2 perms .

(4.9)

Here, A denotes the normalization of the π-kinetic term in the decoupling limit, A ≡
(−M2

PlḢ)(1+α1). The amplitude of non-Gaussianity can be directly read off from eq. (4.9)

f equilNL =
5

18

k6∗Bζ(k∗, k∗, k∗)

∆2
ζ∗

=
65

162

α2

1 + α1

1

c4s
, (4.10)

where ∆ζ ≡ k3Pζ(k) = H4/(4Ac3s) is the dimensionless power spectrum, evaluated at a

fiducial momentum scale k∗. A significantly reduced speed of sound, α2 ' −1 (see eq. (4.7)),

implies a negative fNL . However, due to the strong dependence of fNL on cs, even slightly

subluminal perturbations can produce a sizeable amount of non-Gaussianity; for example,

a 10 % tuning of the α2 parameter can give rise to f equilNL ' −70 for α1 = 1 and α2 = −0.9.

5In the limit X → 0, using eq. (4.3) with G4 = G5 = 0 in eq. (4.5), one finds α1 = 3α2. This gives a

negative kinetic term to π for α2 ' −1. The parameter X need not be very small, however; it is of order

X ∼
√
ε ' a few× 0.1 in e.g. slow-roll models with monomial potentials. Moreover, the relation α1 = 3α2

no longer holds for G4 6= 0 or G5 6= 0.
6Explicitly, the coefficients γ1 and γ2 read

γ1 ≡ (c2s − 1)

(
1 +

2

c2s

)
+ (1 + c2s)α1 ,

γ2 ≡ 2

(
1− 1

c2s

)(
2 +

1

c2s

)
+

2

c2s
(α1 − 2α4) + 2α1 − 2α3 .

7We follow the standard definition of the comoving curvature perturbation, gij = a2e2ζδij . The three-

point function is defined as 〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = (2π)3δ(3)
(∑

i
~ki
)
Bζ(k1, k2, k3), and kt ≡ k1 + k2 + k3.
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We stress that such a tuning is not ‘unnatural’ as a result of the non-renormalization

theorem outlined above.

Note that since at the zeroth order in the slow-roll parameter ε Galileon inflation [16]

describes a perfect de Sitter space, small speed of sound requires |HM̂3
1 /M

4
2 | ∝ c2s . Non-

Gaussianity in this model scales as fNL ∝ M̂3
1 /c

4
s in the small c2s limit, which effectively

implies fNL ∼ 1/c2s [35, 36], in contrast to (4.10). This is no longer true once L4 and L5

are included, in which case fNL ∝ c−4s also in Galileon inflation.8

If the theory (4.6) is to be predictive, it is crucial that π is weakly coupled at energies

of the order of the inflationary Hubble rate, Λ? � H, where Λ? is the energy scale at which

perturbative unitarity is violated in the 2 → 2 scattering of π. In the c2s � 1 limit, Λ? is

set by the last interaction term in the action (4.6), and is estimated as9 Λ? ∼ Λ3c
11/6
s . For

α1 ' 1 and α2 ' −1, using the experimental value ∆ζ ' 5π2 × 10−9, one finds

Λ3
? ∼

O(50)∣∣f equilNL

∣∣ (8H)3 . (4.12)

Even for the largest f equilNL compatible with the current observational bounds [5], the

strong coupling scale is fairly above H, but well below the symmetry breaking scale [41],

Λ3
b ∼ O(5)

∣∣f equilNL

∣∣Λ3
?.

We close this section with a remark concerning the regime of validity of the decoupling

limit. For the small values of the speed of sound we are interested in, one should be

careful with mixing terms that involve spatial derivatives. For example, consider the δNδK

operator in eq. (4.2). The most important mixing of scalar modes with gravity that arises

from this operator is suppressed by a factor of ε/c2s compared to the π-kinetic term at

horizon crossing. Therefore, the validity of the decoupling limit analysis requires that

c2s ∼> ε hold, which puts an upper bound (fNL ∼< 1/ε2) on the amplitude of non-Gaussianity

attainable within the decoupling limit.

5 Discussion

In ‘ordinary’ inflationary theories, the statistical properties of perturbations are mostly

determined by operators with the least number of derivatives, i.e. (∂φ)2n or, in the EFT

8Refs. [37–39] have explored the space of theories that includes the theories studied in this paper.

However, these works have concentrated on the opposite regime, Z � 1, which from our standpoint is

theoretically unjustified due to large quantum corrections. As a result, the f equil
NL ∝ 1/c4s behaviour for

G4 = G5 = 0 has not been noticed in those papers as well. See ref. [40] for other interesting effects,

associated with weakly broken galileon invariance that have gone previously unnoticed in the literature.
9The power c

11/6
s can be obtained as follows: looking at the action (4.6), one can cast the kinetic term

of the π field in a Lorentz-invariant form via rescaling time t → t/cs, so that the canonically normalized

field in the rescaled coordinates is πc =
√
M2

PlḢcs π. The two-by-two scattering of πc from an exchange

diagram involving the last vertex in (4.6) reads

A ∝
~k6

M2
PlH

2Ḣc5s
=

~k6

Λ6
3c

5
s

. (4.11)

The momentum strong coupling scale is thus |~k?| ∼ Λ3c
5/6
s , which translates into the following frequency

strong coupling scale Λ? = |~k?|cs = Λ3c
11/6
s .
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language, by operators of the form (δN)n. The prototype example of this is provided by

theories such as DBI (or ghost [31, 32]) inflation, where the background can be consistently

strongly coupled, with an infinite number of operators of the above type becoming relevant

for its dynamics. In the EFT of eq. (4.2), this corresponds to the large coefficient M4
2 or,

equivalently, to α1 � 1 in the notation of eq. (4.5), and implies a parametrically suppressed

speed of sound, c2s ' 1/α1, see eq. (4.7) (higher-derivative operators are effectively negligible

in DBI inflation, so one can set α2 ' 0). Despite the strong coupling, the symmetries of

DBI theories protect the structure of the Lagrangian from large quantum corrections. This

mechanism of obtaining strongly sub-luminal scalar perturbations has been extensively

studied in the literature (see, e.g., [7, 9, 41–43]) and provides an attractive way of generating

large equilateral non-Gaussianity in single-field inflation.

In this work we have proposed an alternative scenario that allows for strongly sub-

luminal scalar perturbations within a well-defined low-energy EFT. Our model relies on

moderate coupling, i.e. αi ∼ 1, as a result of which more than one operator in eq. (4.2)

become large enough to affect the scalar perturbations significantly. In the simplest real-

ization considered above, the scalar two- and three-point functions are determined by the

operators δN2 and δNδK. Instead of the α1 � 1, α2 � 1 case characteristic of DBI infla-

tion, our mechanism relies on an adjustment of the order-unity α1 and α2, which results

in a somewhat reduced speed of sound in (4.7). The theories we have studied in this work

not only allow for such an adjustment, but also provide a way to protect it against loop

corrections. The central reason behind the robustness of the classical theory is the weakly

broken galileon symmetry [10], which inherits the remarkable quantum properties of the

galileon operators [11], exactly invariant under (1.3). Our model completes the classifica-

tion of single-field inflationary theories with (sub)luminal perturbations according to the

magnitudes of quadratic operators in the EFT of inflation, see table 1.
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