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Using a finite-difference time-domain method, we study the band-structure and transmission properties of

three-dimensional metallodielectric photonic crystals. The metallodielectric crystals are modeled as perfect

electrical conducting objects embedded in dielectric media. We investigate two different lattice geometries: the

face-centered-cubic ~fcc! lattice and the diamond lattice. Partial gaps are predicted in the fcc lattice, in excel-

lent agreement with recent experiments. Complete gaps are found in a diamond lattice of isolated metal

spheres. The gaps appear between the second and third bands and their sizes can be larger than 60% when the

radius of the spheres exceeds 21% of the cubic unit cell size. A possible fabrication scheme for this structure

is proposed and transmission calculations are performed. @S0163-1829~96!02040-1#

I. INTRODUCTION

Recently there has been a drive by experimental groups to
incorporate metals into all-dielectric photonic crystals.1–3 In
particular, Brown and McMahon have recently demonstrated
the existence of a large photonic band gap along the ~111!
direction of a face-centered-cubic ~fcc! structure composed
of metal spheres embedded in dielectric media.2 As transmis-
sion experiments were performed along only one direction,
the possible omnidirectional nature of this gap was not de-
termined. Theoretical support would be very useful in the
determination of the completeness of the photonic gap and
ultimately in the design and optimization of metallodielectric
photonic crystals with large omnidirectional gaps.

Metals, however, offer new challenges for the theoretical
investigation of photonic band-gap materials. Among several
approaches in recent years,4–8 three-dimensional cal-
culations4,5,8 concentrate only on structures with spatial peri-
ods comparable to the plasma wavelength, which usually lies
in the ultraviolet region. In this particular frequency range,
dispersion and absorption effects must be taken into account
in order to obtain the correct electromagnetic response. How-
ever, instead of working in the range of the plasma fre-
quency, we have chosen to investigate the existence of pho-
tonic band gaps in metallodielectric structures in the
microwave region, which is several orders of magnitude
lower than the plasma frequency. Our choice was motivated
by recent experiments in the microwave region1–3 where
metals are essentially lossless and can be accurately modeled
as perfectly electrical conductors.

In this paper. we apply simple schemes based on finite-
difference time-domain ~FDTD! methods to calculate both
the photonic bands and the associated field distribution of
perfect crystals. The FDTD methods are also used to obtain
transmission spectra through finite-thickness samples in or-
der to make direct comparisons with experiments. After a
brief description of the computational methods in Sec. II, we
will present results for a variety of fcc and diamond crystals
in Sec. III.

II. COMPUTATIONAL METHOD

Finite-difference time-domain methods are widely used in
analyzing interactions between electromagnetic waves and

complex structures containing dielectric and/or metallic
objects.9 The general procedure involves approximating
Maxwell’s equations in real space using finite differences,
imposing appropriate boundary conditions, and explicitly
time marching the fields to obtain the direct time-domain
response, from which a wide variety of information can be
extracted.

For simplicity, we use Yee’s discretization scheme to
solve Maxwell’s curl equations.10 All field variables are de-
fined on a rectangular grid. Electric and magnetic fields are
temporally separated by one-half time step. In addition, they
are spatially interlaced by half a grid cell. Based on this
scheme, center differences in both space and time are applied
to approximate Maxwell’s equations. Since all grid cells are
rectangular in shape, arbitrary geometries are approximated
by staircases. The validity and limitations of staircase ap-
proximations are discussed in Ref. 11.

Inside the metallic objects, all electric-field components
are set to zero at each time step, since every electric-field
component vanishes in a perfect conductor. With the metal-
dielectric interface placed at the integer grid plan in Yee’s
lattice, the tangential components of the electric field and the
normal component of the magnetic field vanish at the inter-
face. The correct boundary condition is therefore ensured.

In order to compute the field at any given grid point, we
must know the value of the field at every adjacent point on
the grid. With a finite computational cell, information from
nodes outside the cell is not available. Fields at the nodes on
the boundaries therefore have to be updated using boundary
conditions. Depending on the purpose of the simulation, ei-
ther absorbing or periodic boundary conditions are applied.
This and other aspects of the computational methods specific
to either transmission or band-structure calculations are dis-
cussed below.

A. Transmission calculations

While the methods described above can be applied to
study propagation of electromagnetic waves in arbitrary
structures, we are primarily concerned here with transmis-
sion of normally incident plane waves through a slab of pho-
tonic crystal, since the transmission can be directly measured
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by experiments.2 A schematic of the computational cell is

shown in Fig. 1. A slab of photonic crystal is placed in the

middle of the cell with its top and bottom surfaces normal to

the z direction. Plane waves propagating along the z axis are

generated by exciting a plane of identical dipoles in phase.

On the other side of the crystal, the field amplitude, is moni-

tored at a single point, marked ‘‘detector’’ in Fig. 1.

Mur’s second-order absorbing boundary conditions12 are

used at the top and bottom edges of the computational cell.

Plane waves hitting these boundaries get absorbed. On all

other boundaries, we use periodic boundary conditions. By

placing one unit cell of a slab of photonic crystal in the

computational cell, we can simulate plane waves normally

incident upon a slab with infinite extent in the x and y direc-

tions.

Instead of studying the steady-state response, one fre-

quency at a time, we choose to send a single pulse of light

with a wide frequency profile. The incident amplitude is cali-

brated at the detector point by running a simulation without

the crystal. Simulations are then performed with the crystal

present, the amplitude at the detector describing the transmit-

ted wave. The transmitted and incident amplitudes are then

transformed into the frequency domain using fast Fourier

transformations. The transmission coefficients are deter-

mined by taking the square of the ratio between the two

amplitudes.

B. Band-structure calculations

Time domain simulations can also be used to obtain band-
structure information. The computational domain is chosen
to be a unit cell of the infinite crystal. Fields at nodes outside
the domain are related to fields inside by Bloch’s condition

E~r1a,t !5e ik•aE~r,t !, ~1!

where r is the position vector of a node in the domain, a is a
lattice vector, and k is the wave vector. After the initial ex-
citation, fields oscillate in a steady state that is a linear com-
bination of several eigenstates with the same wave vector k.
Frequencies of these eigenstates can be obtained by a Fourier
transformation of the time-domain amplitude at a given
point. The resulting spectrum is composed of a discrete set of
peaks, where each peak corresponds to an eigenfrequency.
Similar methods have been used in determining phonon dis-
persion in semiconductors13 and in calculating various elec-
tromagnetic wave properties in ordered and disordered di-
electric structures.14

Modes in the computational cell are excited using one or
several point dipole sources with Gaussian frequency-profile
amplitudes. The oscillation period and the width of the
Gaussian are chosen such that the excitation spectrum covers
the frequency range of interest. In determining the band
structure, we use a short pulse in time that excites a wide
frequency range. Both the dipoles and the point where the
field is recorded are placed away from all the symmetry
planes, so that modes with different symmetries can be ex-
cited and recorded in one simulation. Instead of exciting sev-
eral modes simultaneously using a pulse with a wide spectral
range, we can also use a narrow source ~i.e., long duration in
time! to selectively excite only one eigenstate at a specific
frequency. The symmetry of the steady state can further be
specified by placing the dipoles in appropriate symmetrical
configurations.

As discretization is performed on a rectangular lattice, a
natural choice for the computational domain is rectangular.
For fcc lattices, a cubic unit cell is employed, which contains
four fcc primitive cells. As Eq. ~1! only determines the phase
relations between different cubic cells, the band structure
obtained is a folded version for the underlying fcc lattice. To
obtain unfolded band structures we need to specify the phase
relation across different primitive cells. This is achieved by
placing a dipole in each of the four primitive cells. The di-
poles are separated by a fcc lattice vector, the relative phase
between them satisfying Bloch’s theorem.

We study convergence of the methods by comparing the
size of the gap for a given structure with different density of
grid points. A detailed convergence study and specific ex-
amples of the above methods are presented below.

III. RESULTS AND DISCUSSIONS

A. fcc structures

We study a fcc structure proposed by Brown and
McMahon.2 The structure is constructed by stacking several
layers of Teflon ~e52.1!, each layer containing a triangular
lattice of cylindrical air holes with a metal sphere inserted in
each hole. The layers are stacked along the ~111! direction in
a staggered fashion with an ABC repeating unit. The thick-

FIG. 1. Schematic of the computational cell used in the trans-

mission calculation.
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ness of the slab and the lattice constant of the triangular

arrays are chosen to form a fcc lattice. A detailed description

of the structure is found in Ref. 2.

Using the method described in Sec. II A, we calculate

transmission coefficients of normally incident plane waves

through a crystal that contains one ABC repeating unit, in

conformity with the experiments. In Fig. 2 the results are

compared to experimental data, which were obtained using a

cubic unit cell size of 0.43 in. Our simulations show the

existence of a large gap extending from 9 to 23 GHz, with a

maximum rejection of 22 dB, and the occurrence of a smaller

gap between 5 and 9 GHz, all in excellent agreement with

experiment. The rapid oscillations in the experimental spec-

trum are due to noise in the measurement.

We compute the band structure for the crystal using the

method described in Sec. II B. A 32332332 cell is used for

the calculation. We obtain the band-structure plot by analyz-

ing the spectrum for each k point. The spectra at G, L , and X

are shown in Fig. 3~a! as examples. The band structure is

plotted in Fig. 3~b!, with the wave vector at the L point

parallel to the axis of the air cylinders. A large gap exists

along this direction between the frequencies f 50.42c/a and

0.77c/a . In the specific case where the lattice constant a is

equal to 0.43 in., the gap occurs between 11.5 and 21.2 GHz,

in agreement again with the transmission experiments. The

small discrepancy between the frequencies at the edges of

the gap arises from the finite size of the experimental sample.

The maxima in the transmission spectrum at the edges of the

gap do not correspond exactly with the position of the band

edges for the infinite crystal. The smaller gap at lower fre-

quency finds no corresponding gap in the band structure in

the infinite crystal. It is probably due to a Fabry-Perot oscil-

lation in the finite-size sample. Figure 3~b! clearly shows that

there is no omnidirectional gap for this crystal. The gap

along the L direction does not extend to the directions of U

and W .

B. Diamond structure

To search for a metallodielectric photonic crystal with an
omnidirectional gap we consider a diamond lattice of metal
spheres. The diamond lattice is a natural choice since large
photonic band gaps have been predicted in all-dielectric
crystals with a diamond structure.15 A schematic of a dia-
mond lattice is shown in Fig. 4. The radius of the spheres can
be varied to tune the photonic bands. The spheres do not
overlap with each other if the radius is smaller than 0.2165a ,
where a is the size of the cubic unit cell. We focus our
attention on nonoverlapping spheres, as unconnected spheres
prevent long-range conduction currents. Such currents would
contribute to undesirable Ohmic losses that increase rapidly
with frequencies.

1. Band structure

The band structure is shown in Fig. 5 for the specific case
where the radius is equal to 0.21a . The spheres are embed-

FIG. 2. Transmission spectra through a slab of a fcc metallodi-

electric photonic crystal. The solid line is obtained from theoretical

calculation; open circles are data points. The broken line corre-

sponds to experimental results, as described in Ref. 2.

FIG. 3. ~a! Spectral amplitude at several k points for the fcc

metallodielectric photonic crystal. ~b! Bands for the same fcc struc-

ture. Each dot corresponds to a peak in the spectral amplitude at a

specific k point.
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ded in Teflon ~e52.1!. The bands are calculated using a 64
364364 grid. We find that there exists a full photonic band
gap in which electromagnetic waves are forbidden to propa-
gate in any direction. The lower edge of the gap is located at
the W point of the second band and the upper edge is located
at the X point of the third band. The gap covers the fre-
quency range between 0.43c/a and 0.68c/a . The lower band
is almost entirely flat along the X-U and the W-X lines on
the surface of the first Brillouin zone. The size of the gap,
defined as the gap width to midgap frequency ratio ~dv/vg!,
exceeds 45%, which is significantly larger than the biggest
gap ever reported in conventional all-dielectric photonic
crystals.

2. Nature of the gap

In the metallodielectric systems studied above, the metal-
lic spheres form impenetrable cores for electromagnetic
waves. The field amplitudes for both the upper and the lower
bands therefore are entirely distributed in the uniform dielec-
tric. This behavior is in sharp contrast to conventional all-
dielectric photonic crystals. In conventional crystals, the gap
originates from the difference in field distribution between a
low-frequency ‘‘dielectric’’ band, which has most of its dis-
placement field concentrated in the high-dielectric region,
and a high-frequency ‘‘air’’ band, which has its field pen-
etrating more into the low-dielectric region.16

To probe into the origin of the gap in metallodielectric
systems we choose to study the field distributions of the
normal modes at the X point in the lower and upper bands.
Each eigenmode is selectively excited by using sources with
a narrow spectral width, performed by oscillating the dipole
sources at a given frequency for a long duration. The spectra
of the resulting steady states are shown in Fig. 6~a!. Each
spectrum contains only one peak, indicating the presence of
a single eigenstate. The cross section of the power density in
the magnetic fields is shown along the ~110! plane in Fig.
6~b! for both the lower and the upper bands. We see that, in
the lower band, the field is extended throughout the open
region in the lattice, while in the upper band, the field is

mostly localized at the narrow region between the nearest-
neighbor metal spheres.

The large frequency difference between the two modes
can be explained using the variational theorem in electro-
magnetism, as described in Ref. 17:

v2
5

*dr
1

e
u“3Hu2

*dr H2 . ~2!

Equation ~2! links the mode frequency with the spatial varia-
tion in the magnetic-field distribution. The band associated
with the more extended magnetic field has a lower fre-
quency, while the band with the more localized magnetic
field has a higher frequency. The origin of the large gap is
thus related to the sharp contrast in the spatial variation of
the field distribution.

FIG. 4. Schematic of a diamond structure with nonoverlapping

metallic sphere on each lattice site.

FIG. 5. ~a! Spectral amplitude at several k points for the dia-

mond structure of metallic spheres with r50.21a . The spheres are

embedded in Teflon ~e52.1! ~b! Band diagram for the same dia-

mond structure. Each dot corresponds to a peak in the spectral

amplitude at a specific wave vector.
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3. Convergence

We study the convergence of our method by calculating

the size of the gap at the X point using four different grid

spacings (ds): a/32, a/64, a/96, and a/128. The calcula-

tions are performed on four structures with different radii
and the results are plotted in Fig. 7. For each structure the

size of the gap increases with the grid density; however, the

rate of convergence decreases as the spheres come closer to

touching.

The convergence behavior is related to the field distribu-

tion of the eigenmodes, which has significant components in

the area between the spheres. An accurate sampling of the

fields in this region is important in order to obtain the precise

frequency value and the gap size. This region, however, be-

comes smaller as the radius of the spheres increases, requir-

ing a higher density of grid points for adequate sampling.

In using a finite-difference scheme to solve Maxwell’s

equations two types of errors occur. One type is caused by
approximating the curls of the fields with a centered differ-
ence on the grid, while the other type comes from the stair-
case approximation for the metallic structure. In the first
case, the error scales as (ds!2, where ds is the grid spacing.9

In the second case, the error originates from the uncertainty
in representing the size of the air region between the nearest-
neighbor spheres, which scales as ds . Consequently, the in-
accuracy in the frequency or the gap size also scales as ds .
The overall error in computing the size of the gap is a com-
bination of both errors. We can therefore determine the size
of the gap for each individual structure by fitting the results
on a second-order polynominal with arguments ds and by
extrapolating it to the limit where ds→0, as shown in Fig. 7.

4. Structural variations

We make a systematic examination of the photonic band
structure as a function of the radius of the spheres. Calcula-
tions are performed using four different grid spacings and the
results are plotted in Fig. 7. The extrapolated gap size for
each structure is also shown. The gap increases rapidly as the
spheres become larger and can be much greater than 60%
when the radius exceeds 0.21a .

In the case where the radius exceeds 0.2165a , the spheres
overlap and form a connected metallic network. As expected,
when this occurs, the bands below the gap vanish leaving a
gap from zero-frequency up to a cut-off frequency f c . In the
specific case where r5022a , the cut-off frequency is f c

50.45c/a .

FIG. 6. Field distribution of two eigenstates in the diamond

structures. Shown here are the two states at the edge of the gap at

the X point. ~a! Spectral amplitude. ~b! Plot of the power density in

the magnetic field on the ~110! plane. In both cases, the top panels

correspond to the state at the lower edge of the gap; the bottom

panels correspond to the state at the upper edge of the gap.

FIG. 7. Size of the gap at the X point as a function of grid

spacing for four structures with r50.177a , 0.20a , 0.21a , and

0.2165a . For each structure a parabola is fitted and extrapolated to

the limit where ds/a→0.
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5. Fabrication

One possible approach for fabricating the diamond struc-
ture is to stack dielectric slabs, as proposed by Brown and
McMahon for the fcc structure.2 As an example, we assume
Teflon slabs with e52.1. A square lattice of cylindrical air
holes with a lattice constant of 0.70a can then be drilled on
each side of the slab to house the metallic spheres. The holes
on either side of the slab are shifted by 0.35a with respect to
each other. Each slab has a thickness of 0.25a . The holes
have a diameter of 0.42a and a depth of 0.21a . The holes on
either side intersect each other. Each hole on one side of the
slab is half filled with a metallic sphere of radius 0.21a . The
slabs are then stacked along the ~100! direction in an ABCD

staggered fashion so that the spheres extending beyond the
surface of any given slab coincide with the holes at the bot-
tom of the above slab. Such an arrangement of spheres gen-
erates a diamond lattice. The final step of the fabrication
process would consist in covering the upper and the lower
surfaces with a slab that is half as thick as the other ones,
with an array of holes on only one side.

Photonic bands along some special directions are shown
in Fig. 8~a!. The degeneracy between the X and Z points is
broken by the presence of the air cylinders. The wave vector

at the Z point is normal to the slabs. The gap at Z extends
from frequency f 50.54c/a to 0.72c/a , which yields a gap of
28.5%. The transmission normal to the slab through two cu-
bic unit cells is shown in Fig. 8~b!. The maximum rejection
is 14 dB, or 7 dB per lattice constant, occurring at a fre-
quency of 0.64c/a , which is close to the midgap frequency.

In order to prevent the nearest-neighbor spheres from
touching, Brown has suggested filling the air voids in the
cylinders with resin.18 Since resin has a higher dielectric con-
stant ~e52.5!, the frequencies decrease in both the upper and
lower bands. The lower band, however, is affected more
strongly since the associated electric fields are concentrated
between the spheres.19 As a result, the gap widens signifi-
cantly to a size of 53%, extending from frequency
f 50.39c/a to 0.67c/a , as shown in Fig. 9~a!. The maximum
rejection also increases to 31 dB, or 15.5 dB per lattice con-
stant, with the same sample containing two cubic unit cells
@Fig. 9~b!#.

IV. SUMMARY

We have successfully applied a FDTD method to obtain
both the band-structure and the transmission properties of
metallodielectric photonic crystals. Excellent agreement is

FIG. 8. Band diagram and transmission for a diamond structure

of metallic spheres with radius r50.21a embedded in Teflon ~e

52.1!. The spheres are surrounded by air cylinders. ~a! Band dia-

gram for directions G-L , G-X , and G-Z . ~b! Transmission through

two cubic unit cells along the Z direction.

FIG. 9. Band diagram and transmission for a diamond structure

of metallic spheres with radius r50.21a embedded in Teflon ~e

52.1!. The spheres are surrounded by cylinders filled with resin

~e52.5!. ~a! Band diagram for directions G-L , G-X , and G-Z . ~b!

Transmission through two cubic unit cells along the Z direction.
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obtained between our theory and available experimental data
on a fcc structure. We further predict that a diamond lattice
of metallic spheres will give rise to an omnidirectional pho-
tonic band gap, the size of which can be larger than the size
of the gap in conventional all-dielectric photonic crystals.
We propose a possible fabrication scheme for these struc-
tures and compute the transmission spectra that could be
used for a direct comparison with experiments.

Note added in proof. We computed the size of the gap in
the diamond structure with a grid spacing ds of a/256 for
r50.2/a . The extra point was added to Fig. 7 after the ex-

trapolation. The point lies directly on top of the curve, which
validates our extrapolation schem.
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