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The nonequilibrium Green’s function method is used to study the ballistic transport in metallic carbon
nanotubes when a current is injected from the electrodes with finite bias voltages. We reveal, both analytically
and numerically, that large loop currents circulating around the tube are induced, which come from a quantum-
mechanical interference and are much larger than the current along the tube axis when the injected electron is
resonant with a time-reversed pair of degenerate states, which are, in fact, inherent in the zigzag and chiral
nanotubes. The loop current produces large orbital magnetic moments, making the nanotube a molecular
solenoid.
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INTRODUCTION

Carbon nanotubes �CNTs� have remarkable electronic
properties related with their unique geometrical structure.1,2

For example, the way in which the graphene sheet is wound
into a cylinder determines whether CNTs are metals or
semiconductors.3,4 Recent advances have made the measure-
ments of electrical properties of individual single-wall CNTs
possible.5,6 Most recently, orbital magnetic moments of a
single-wall CNT have been detected, where the presence of
moment is deduced from the shift of energy levels in external
magnetic fields.7–9 Since the magnitude of magnetic mo-
ments estimated in the experiment is about ten times the
Bohr magneton, the CNT as a molecular solenoid has
attracted attention.

Semiclassically, the large orbital magnetic moments can
be understood as an effect of chiral currents, for which sev-
eral semiclassical calculations have been done based on
Boltzmann’s equation.10,11 However, the approach, being ap-
plicable when the transport is diffusive and lacks coherence,
cannot treat purely quantum-mechanical effects. Quantum-
mechanical treatments of magnetic properties of CNTs have
previously been given,12–15 but those studies have concen-
trated on the energy shift and moment of an isolated CNT in
external magnetic fields in equilibrium, so the currents and
the effects of electrodes have not been studied. Since ballistic
transport can be strongly affected by electrodes, we need to
take account of the influence of electrodes in CNTs, which is
exactly our motivation here. In the process, the quantum loop
current, a purely quantum-mechanical effect, has turned out
to be indeed large, which we study by making use of the
nonequilibrium Green’s function method.16

A loop current has been studied in the context of small
molecules placed between the scanning tunneling micro-
scope �STM� tip and the substrate. Specifically, Nakanishi
and Tsukada17 and Tsukada et al.18 have shown that a loop
current can be dramatically amplified when the energy of the
injected electron is resonant with degenerate eigenstates of
an isolated molecule. This mechanism should also be appli-
cable to CNTs, for which a special interest is the effect of
inherent degeneracies associated with wave functions travel-
ing clockwise and anticlockwise around the tube. We de-
velop a perturbation expansion of the nonequilibrium
Green’s function in the weak coupling between the conduc-
tor and electrodes. This serves to identify how the loop cur-

rent paths are determined in terms of phase variation of wave
functions. The peculiarity of the CNTs appears as their band
structure that can satisfy the condition for large orbital
magnetic moments.

We then numerically calculate the current distribution and
the magnitude of the orbital magnetic moments as a function
of the bias voltage, which confirms the analytic discussions.
The order of magnitude of the magnetic moment obtained in
the numerical calculation is consistent with the value esti-
mated in the experiment.7 Throughout this Brief Report, we
consider metallic CNTs in the absence of external magnetic
fields. CNTs are characterized by the chiral index �n1 ,n2� in
standard literatures,1,2 where CNTs are metals when n1−n2
�0 �mod3� or semiconductors otherwise.3,4 Here, we con-
centrate on the one-body problem.

FORMALISM

We employ the tight-binding model whose Hamiltonian is

H = HCNT + HCNT-electrode + Helectrode,

HCNT = − t �
�ij��CNT

�ci
†cj + cj

†ci� , �1�

HCNT-electrode = − t� �
p=s,d

�cp
†cp� + cp�

† cp� , �2�

Helectrode = − t� �
�ij��electrode

�ci
†cj + cj

†ci� . �3�

Here, HCNT is the tight-binding Hamiltonian for the single-
wall CNT, HCNT-electrode describes the connection between the
CNT and the electrodes, Helectrode describes the electrodes,
s ,s� ,d ,d� are the sites connecting the CNT and the elec-
trodes, and t , t� , t���0� are the respective transfer integrals
�see Fig. 1�a��. t, the transfer integral of CNT, is O�1 eV�,1
while we have taken t� for the electrodes to be large enough
so that their density of states is nearly constant �wide-band
limit� and t�, the hopping between CNT and electrodes to be
�t , t�. Here, we follow other theoretical literature in assum-
ing electrodes to be one dimensional for simplicity.

For one-dimensional �1D� electrodes, the retarded
and advanced Green’s functions GR,A�E�= �E−H± i��−1
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�where � ��� is assigned to R �A�� can be cast into a form16

GR,A�E� = �E − HCNT − �R,A�−1,

�R,A = �s
R,A + �d

R,A,

�p
R,A = − �te±ikina0cp

†cp �p = s,d� ,

where �= �t��2 / �tt�� characterizes the sample-electrode cou-
pling, and kin the Bloch’s wave number for the incident elec-
tron having an energy E=−2t� cos�kina0� with a0 the lattice
constant of the conductor and electrodes. This reduces the
problem to the sample alone, with the effects of electrodes
contained in the self-energy �R,A.

We can perform perturbation expansions in terms of the
weak coupling �. Since nonperturbative effects often arise in
resonance phenomena, here we adopt the eigenfunction ex-
pansion method16 that can take nonperturbative corrections
into account. In this formalism we express the Green’s func-
tion as GR�r1 ,r2�=�� 	�

R�r1�	�
A*�r2� / �E−E��, where 	�

R,A�r�
are the eigenfunctions of the non-Hermitian operators
HCNT+�R,A that form a biorthonormal set. The current Iij

flowing from site i to j is given by Iij =	
d


s dE Jij�E�, where

s and 
d are the chemical potentials of the source and drain
electrodes, respectively. The current density Jij per unit en-
ergy is calculated as

Jij�E� =
4e

h
Im�HijGji

n �E�� , �4�

where Gn is the nonequilibrium Green’s function defined by
the usual Green’s functions as Gn=GR�inGA with
�in= i��s

R−�s
A� at zero temperature.16,17 These currents gen-

erate an orbital magnetic moment M= 1
2 	dr r� j�r�

= 1
2��ij� Iijri�r j.
Let us consider the case where the incident electron is

resonant to doubly degenerate states 	1 ,	2 with an eigenen-
ergy ��. In the degenerate perturbation theory, the zeroth-
order 	1

R �=	1
A� and 	2

R �=	2
A�, having E1,2=��+�1,2

R with
�1,2

R the eigenvalues of 2�2 �R, can be written as
�	1±	2� /
2, respectively, where we fix 	1,2 as the time-
reversed pair with 	1=	2

*�	� and choose the overall phase
of 	� so that �	��s��2+ �	��d��2 be real. The Green’s func-
tion becomes

GR�i, j� �
	1

R�i�	1
A*�j�

E − E1
+

	2
R�i�	2

A*�j�
E − E2

= 2�Re�	��i��Re�	��j��
E − �� − �1

R +
Im�	��i��Im�	��j��

E − �� − �2
R  .

�5�

Here, we have only retained the term related to the resonant
states �, which is valid as long as the splitting, ��t, of the
degenerate levels due to the self-energy is smaller than the
interval across the adjacent energy level ��1 meV/L �
m�
for CNTs �Ref. 2��, i.e., ��10−3 /L �
m� for CNTs with
t�1 eV.

From Eqs. �4� and �5�, we end up with

Jij
��E� �

16e

h
Im��	��s��2�

�t2�E − ���Im��1
R − �2

R�
�E − �� − �1

R�2�E − �� − �2
R�2

�Im�	��i�	�
*�j�� .

This expression can also be derived by using the results of
Nakanishi and Tsukada.17 We can see that the E dependence
of the current density Jij

� is mainly determined by the factor
�E−��� / ��E−��−�1

R�2�E−��−�2
R�2�. This function exhibits

an asymmetric peak �with width �� and height �1/�, see
Fig. 1�b��, which is why the integration across the peak re-
sults in a finite net current. Sasada and Hatano19 has inter-
preted the asymmetric resonance shape for the transmission
coefficient as Fano effect, i.e., an interference between con-
tinuous states in electrodes and discrete states in a conductor.
So the present case may be called a Fano effect extended to
loop currents.

ANALYTIC EXPRESSION FOR THE CURRENT AND THE
MAGNETIC MOMENT

When we integrate Jij
��E� to obtain Iij

�, we can replace the
range 
dE
s with −�E�, since Jij

� is negligible
outside the peak. By taking care of E dependences in kin and
�1,2

R as well, we obtain

Iij
� =

8e

q

t2��

t�
Im��	��s��2�

� Im��1
R���� − �2

R�����
��1

R���� − �2
R*�����2

�Im�	��i�	�
*�j�� + O��� . �6�

Since �R��, the leading term of Iij
� is ��0. This is to be

contrasted with a nondegenerate resonant state �, for which
the corresponding expression involves the factor
Im�	��i�	�

*�j��, but this must vanish in the absence of exter-
nal magnetic fields, so the current is small �O����. For the
degenerate case, Iij

� � Im�	��i�	�
*�j�� indicates that currents

flow along the direction in which the phase of 	� varies. So
this implies that a cylindrical conductor, with a standing
wave along the axis and a propagating wave around the tube,
should have currents circulating around the tube that is much
larger than the component flowing along the axis.

From Eq. �6�, the magnetic moment along the tube axis
generated by the current becomes

FIG. 1. �Color online� �a� A nanotube attached to 1D electrodes
is schematically shown. The arrows represent the quantum loop
current. �b� A typical asymmetric peak of the current density Jij

� vs
energy.
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�M��z =
2e

q

t

t�
��

Im��	�
*�s�	��d��2�

��	��s��2 + �	��d��2�2�
�ij�

Im�	��i�	�
*�j��

��ri � r j�z + O��� . �7�

The total magnetic moment is the sum over the resonant
states which are relevant to transport. While M� is propor-
tional to the resonant energy level ��, this is only valid for
1D electrodes with Eq. �3�, so the specific form should de-
pend on the detail of the electrodes. In addition, we note that,
while one might expect that edge states, which are known to
exist in a finite carbon nanotube with a flat dispersion on the
Fermi energy,20 may have an important effect on the mag-
netic moment, the contribution from edge states is negligible
for 1D electrodes since M����, as shown in Eq. �7�.

Equation �7� contains a factor Im���	�
*�s�	��d��2�, which

gives M��sin�2k�
� R�� if we assume, for a heuristic purpose,

a simple plane-wave form around the circumference 	��s�
=	�

*�d�= �	��s��exp�ik�
� R� /2�, where k�

� is the wave number
around the tube of the state �, R is the radius of the tube, and
� is the angle subtended by the two electrodes, as shown in
Fig. 1�a�. Only when the electrodes are attached asymmetri-
cally ���0� does the loop current arise, which immediately
resolves a puzzle one might have on the symmetry: how a
specific sense of rotation of the circulating current can arise
when the cylindrical conductor has no structural chirality �as
in zigzag or armchair CNTs�.

The above expression for M contains another factor,
Im�	��i�	�

*�j���sin�k�
� ���i�−��j���, where we set 	��r�

= �	��r��eik�
�

��r� with � the coordinate along the circumfer-
ence. This factor expresses that loop currents are generated
due to interference between the doubly degenerate states.
Since these resonant states �encircled in Fig. 2� that partici-
pate in electronic transport lie near �F=0, the range of the
value of k� is determined by the band structure of the con-
ductor in general. In particular, the metallic CNTs with
�n1−n2��0 �mod 3� have2 �see Fig. 2�

k� = �0, �n1 − n2�/n � 0 �mod 3�: armchair CNT

±
2�

3a
, �n1 − n2�/n � 0 �mod 3�: zigzag CNT, �

where n is the greatest common divisor of �n1 ,n2� and a the
length of the translational vector along the circumference.

Thus, armchair CNTs with k�=0 should have nearly zero
magnetic moments, which is contrasted with zigzag CNTs
for which magnetic moments are large. Chiral CNTs can
have either �n1−n2� /n�0 or �0 �mod 3�, so even chiral
structures, which may naively seem to guarantee a molecular
solenoid, can have large moments only when the dispersion
is correct.

So we conclude that large loop currents arise when we
have �i� time-reversed pair of degenerate states, �ii� asym-
metrically attached source and drain electrodes, and �iii�
k��0.

NUMERICAL RESULTS FOR CARBON NANOTUBES

We now move on to the numerical calculation to confirm
the analytical discussions above. We have calculated the cur-
rent and the magnetic moment for various types of CNT
directly from Eq. �4� for t� / t=0.2 and t� / t=2 with �=0.02.
Figure 3�a� shows typical doubly degenerate eigenstates in a
zigzag CNT, while the current density resonant to the state is
depicted in Fig. 3�b�. We can immediately see that the cur-
rent circulating around the tube is much larger than the one
flowing along the axis, which endorses the discussion above.

Figure 4�a� shows the total current flowing along the axis
of the CNT as the function of the bias voltage. We can see
that the current along the axis is nearly discretized, which is
due to the resonant tunneling from a 1D electrode through
the discrete electron levels existing at regular intervals in a
CNT. Figure 4�b� shows the total current circulating around
the tube versus bias voltage, which is indeed larger than the
current along the axis with a ratio ��−1�1. The behavior
consists of steps, but this time the increment of the current is
not constant. This is attributed to the fact that the contribu-
tion to the current �or the orbital magnetic moment� from a
pair of resonant eigenstates � differs from pair to pair
����, Eq. �7�, for 1D electrodes�.

FIG. 2. �Color online� Band structure against k� for typical �a�
zigzag or �b� armchair CNTs. The vertical dashed lines indicate
discrete k� points. The horizontal line represents the energy of the
incident electron. FIG. 3. �Color online� �a� Typical doubly degenerate �in black

and red� eigenfunctions with an eigenenergy of 0.419 522t in a
zigzag CNT with �n1 ,n2�= �18,0� and L=11a0 /
3. � and � indi-
cate the sign and the amplitude of the wave function. The dashed
line indicates how the honeycomb lattice is wound into a tube. �b� A
typical current distribution which is resonant to the state illustrated
in �a�. The size of the colored arrows indicates the magnitude of the
current density, while the black arrows indicate the source and drain
electrodes.
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EVALUATION OF THE MAGNETIC MOMENT

Let us finally estimate the order of magnitude of the or-
bital magnetic moment in CNTs. From Eq. �7�, M�

��e /����Ra0. Around the Fermi energy, a CNT has a cone-
like dispersion with ��= �1 meV/L �
m���� ��=1,2 , . . . �.
Summing over the energy levels between 
s=Vbias
and 
d=0, we obtain M =�� M��10−3
B�L �
m�
� �Vbias �meV��2� �R /a0�. This amounts to M �10
B for
L�1 
m, Vbias�30 meV, and R�10a0. We also consider
the magnetic field Bind generated by the circulating currents.
We must satisfy M ·Bind=M�
0 /2�R��M /�R2���t for the
energy shift due to this to be negligible. If we combine this

with the previous condition, we have to have
�L �
m��2�R /a0�−1 �Vbias �eV��4���10−3 �L �
m��−1 for
t�1 eV. For Vbias and R assumed above, the above set of
inequalities is satisfied for L�1 
m.

DISCUSSIONS

Here, we have concentrated on the one-body problem.
The effects of the electron-electron interaction appear in,
e.g., Coulomb blockade5,6 and Tomonaga-Luttinger liquid
state.21 So we need to take the interaction into account to
describe the real systems more accurately, which is a future
problem. Another point is that, although the self-induced
magnetic field is small as mentioned above, some CNTs have
large magnetic susceptibility,12 so its effect may be an inter-
esting problem. Also assumed is that each electrode touches
only one atom of the CNTs. We have checked that the loop
current is not significantly affected even when each electrode
touches more than one atoms in the CNT.

Although orbital magnetic moments of CNTs come to be
detected indirectly from the shift of energy levels in external
magnetic fields, some direct experimental observation is de-
sirable. We may be able to use the STM �Ref. 22� to probe
the loop current or attach electrodes to CNT ropes or
“forest”23 to detect the overall magnetization. For the latter,
some statistical average may have to be involved.
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FIG. 4. �Color online� Calculated total current flowing �a� along
the axis and �b� around the tube versus the bias voltage in a zigzag
CNT, for which we have chosen smaller �n1 ,n2�= �3,0� for clarity
with L=20a0 /
3 with the same asymmetry �R�� in the electrodes
as in Fig. 3�b�. Note the different vertical scales.
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