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Introduction

I Early panel data literature assumed cross sectionally
independent errors and slope homogeneity; and heterogeneity
across units was modelled by using unit-speci�c intercepts
only, treated as �xed or random.

I Cross-sectional error dependence was only considered in
spatial models, but not in standard panels. However, with an
increasing availability of data (across countries, regions, or
industries), panel literature moved from predominantly micro
panels, where the cross section dimension (N) is large and the
time series dimension (T ) is small, to models with both N
and T large, and it has been recognized that, even after
conditioning on unit-speci�c regressors, individual units, in
general, need not be cross-sectionally independent.



I Ignoring error cross-sectional dependence can have serious
consequences, and the presence of some form of
cross-sectional correlation of errors in panel data applications
in economics is likely to be the rule rather than the exception.
Cross correlations of errors could be due to omitted common
e¤ects, spatial e¤ects, or could arise as a result of interactions
within socioeconomic networks.

I Conventional panel estimators such as �xed or random e¤ects
can result in misleading inference and even inconsistent
estimators, depending on the extent of cross-sectional
dependence and on whether the source generating the
cross-sectional dependence (such as an unobserved common
shock) is correlated with regressors.

I The problem of testing for the extent of cross-sectional
correlation of panel residuals and modelling the cross-sectional
dependence of errors are therefore important issues.
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Types of cross-sectional (CS) dependence
I Let fxit , i 2 N, t 2 Zg be a double index process de�ned on
a suitable probability space and assume:

E (xt ) = 0, Var (xt ) = Σx ,

where xt = (x1t , x2t , ..., xNt )
0 and the elements of Σx , denoted

as σx ,ij for i , j = 1, 2, ...,N, are uniformly bounded in N,
namely jσx ,ij j < K .

I These assumptions could be relaxed, by considering
conditional expectations and variances, nonzero time-varying
means, and time-varying variances.

I Various summary measures of the matrix Σx have been
considered in the literature.

I The largest eigenvalue of Σx , denoted as λ1 (Σx ), has
received a great deal of attention in the literature, but
λ1 (Σx ) is di¢ cult to estimate when the cross section
dimension, N, is large compared to the time dimension, T .



I Chudik, Pesaran and Tosetti (2011) summarize the extent of
CS correlations based on the behavior of CS averages. Let
x̄wt = ∑N

i=1 wixit , where the weights w = (w1,w2, ...,wN )
0

satisfy the following �granularity�conditions:

kwk =
p
w0w = O

�
N�1/2

�
, and

wi
kwk = O

�
N�1/2

�
uniformly in i 2 N.

I fxitg is cross-sectionally weakly dependent (CWD) if for any
sequence of granular weights w, we have

lim
N!∞

Var (x̄wt ) = 0.

Otherwise, fxitg is cross-sectionally strongly dependent
(CSD).



I Bailey, Kapetanios and Pesaran (2012) characterize the
pattern of cross-sectional dependence further. Let wi = N�1,
for all i , and consider

Var (x̄t ) = Var

 
1
N

N

∑
i=1
xit

!
=

1
N2

N

∑
i=1

σx ,ii +
1
N2

N

∑
i=1

N

∑
j=1,j 6=i

σx ,ij| {z }
κx ,N

,

where jσx ,ij j < K and therefore 0 � Var (Nx̄t ) < KN2.
I The extent of cross-sectional dependence relates directly to
the term, κN , and Bailey et al. parametrize this term by an
exponent of cross-sectional dependence α 2 [0, 1] that
satis�es

lim
N!∞

N2�2ακx ,N = K for some constant 0 < K < ∞.



Spatial examples

I Leading examples of a cross sectionally dependent processes
are factor models or spatial models.

I Spatial models of the error vector ut = (u1t , u2t , ..., uNt )
0 can

be written as
ut = Rεt , εt � (0, IN )

I For instance, R = (IN � ρW)�1 �1/2, in the �rst order spatial
autoregressive model ut = ρWut +�1/2εt , where � is a
diagional matrix. It is easy to see that ut is CWD when row
and column matrix norms of R are both bounded.



Modelling cross-sectional dependence by a factor error
structure

I Consider the m factor model for fzitg

zit = γi1f1t + γi2f2t + ...+ γim fmt + eit , i = 1, 2, ...,N,

or, in matrix notations

zt = Γft + et , (1)

where ft = (f1t , f2t , ..., fmt )0, et = (e1t , e2t , ..., eNt )0, and
Γ= (γij ), for i = 1, 2, ...,N, j = 1, 2, ...,m, is an N �m
matrix of �xed coe¢ cients, known as factor loadings.



I The common factors, ft , simultaneously a¤ect all cross section
units, albeit with di¤erent degrees as measured by
γi = (γi1,γi2, ...,γim)

0.
I Examples of observed common factors that tend to a¤ect all
households and �rms consumption and investment decisions
include interest rates and oil prices. Aggregate demand and
supply shocks represent examples of common unobserved
factors.

I In multifactor models interdependence arises from common
correlated reaction of units to some external events. Further,
according to this representation, correlation between any pair
of units does not depend on how far these observations are
apart, and violates the distance decay e¤ect that underlies the
spatial interaction model.



Assumptions of exact factor model
I The following assumptions are typically made regarding the
common factors, f`t , and the idiosyncratic errors, eit .

I ASSUMPTION CF.1: The m� 1 vector ft is a zero mean
covariance stationary process, with absolute summable
autocovariances, distributed independently of eit 0 for all i , t, t

0,
such that E (f 2`t jΩt�1 ) = 1 and E (f`t fpt jΩt�1 ) = 0, for
` 6= p = 1, 2, ...,m.

I ASSUMPTION CF.2: Var (eit jΩt�1 ) = σ2i < K < ∞, eit and
ejt are independently distributed for all i 6= j and for all t.
Speci�cally, maxi

�
σ2i
�
= σ2max < K < ∞.

I Assumption CF.1 is an identi�cation condition, since it is not
possible to separately identify ft and Γ. Under the above
assumptions, the covariance of zt conditional on Ωt�1 is
given by

E
�
ztz0t jΩt�1

�
= ΓΓ0 +V,

where V is a diagonal matrix with elements σ2i on the main
diagonal.



Approximate factor models
I The assumption that the idiosyncratic errors, eit , are
cross-sectionally independent is not necessary and can be
relaxed. The factor model that allows the idiosyncratic
shocks, eit , to be cross-sectionally weakly correlated is known
as the approximate factor model. See Chamberlein (1983).

I In general, the correlation patterns of the idiosyncratic errors
can be characterized by

et = Rεt ,

where εt = (ε1t , ε2t , ..., εNt )
0 s (0, IN ). In the case of this

formulation V = RR0, which is no longer diagonal, and further
identi�cation restrictions are needed.

I To this end it is typically assumed that the matrix R has
bounded row and column sum matrix norms (so that the
cross-sectional dependence of et is su¢ ciently weak) and the
factor loadings are such that limN!∞(N�1Γ0Γ) is a full rank
matrix.



Strong and weak common factors

I To ensure that the factor component of (1) represents strong
cross-sectional dependence (so that it can be distinguished
from the idiosyncratic errors) it is su¢ cient that the absolute
column sum matrix norm of kΓk1 = maxi2f1,2,...,Ng ∑N

j=1

��γij ��
rises with N at the rate N, which is necessary for
limN!∞(N�1Γ0Γ) to be a full rank matrix, as required earlier.

I The factor f`t is said to be strong if

lim
N!∞

N�1
N

∑
i=1
jγi`j = K > 0.

I The factor f`t is said to be weak if

lim
N!∞

N

∑
i=1
jγi`j = K < ∞.



Intermediate cases

I It is also possible to consider intermediate cases of semi-weak
or semi-strong factors. In general, let α` be a positive
constant in the range 0 � α` � 1 and consider the condition

lim
N!∞

N�α`
N

∑
i=1
jγi`j = K < ∞. (2)

I Strong and weak factors correspond to the two values of
α` = 1 and α` = 0, respectively. For any other values of
α` 2 (0, 1) the factor f`t can be said to be semi-strong or
semi-weak. It will prove useful to associate the semi-weak
factors with values of 0 < α` < 1/2, and the semi-strong
factors with values of 1/2 � α` < 1. In a multi-factor set up
the overall exponent of cross-sectional dependence can be
de�ned by α = max(α1, α2, ..., am).



I The relationship between the notions of CSD and CWD and
the de�nitions of weak and strong factors are explored in the
following theorem.

Theorem 1
Consider the factor model (1) and suppose that Assumptions
CF.1-CF.2 hold, and there exists a positive constant
α = max(α1, α2, ..., am) in the range 0 � α � 1, such that
condition (2) is met for any ` = 1, 2, ..,m. Then the following
statements hold:

(i) The process fzitg is cross-sectionally weakly dependent at a
given point in time t 2 T if α < 1, which includes cases of
weak, semi-weak or semi-strong factors, f`t , for ` = 1, 2, ...,m.

(ii) The process fzitg is cross-sectionally strongly dependent at a
given point in time t 2 T if and only if there exists at least
one strong factor.



I Consistent estimation of factor models with weak or
semi-strong factors may be problematic, as evident from the
following example.

Example 2
Consider the following single factor model with known factor
loadings

zit = γi ft + εit , εit � IID
�
0, σ2

�
.

The least squares estimator of ft , which is the best linear unbiased
estimator, is given by

f̂t =
∑N
i=1 γizit

∑N
i=1 γ2i

, Var
�
f̂t
�
=

σ2

∑N
i=1 γ2i

.

If for example ∑N
i=1 γ2i is bounded, as in the case of weak factors,

then Var
�
f̂t
�
does not vanish as N ! ∞, for each t. See also

Onatski (2012).

I Weak, strong and semi-strong common factors may be used
to represent very general forms of cross-sectional dependence.



Estimation and inference on large panels with strictly
exogenous regressors and a factor error structure

I Consider the following heterogeneous panel data model

yit = α0idt + β0ixit + uit , (3)

where dt is a n� 1 vector of observed common e¤ects, xit is
a k � 1 vector of observed individual-speci�c regressors on the
ith cross-section unit at time t, and disturbances, uit , have
the following common factor structure

uit = γi1f1t + γi2f2t + ...+ γim fmt + eit = γ0i ft + eit , (4)

in which ft = (f1t , f2t , ..., fmt )0 is an m-dimensional vector of
unobservable common factors, and γi = (γi1,γi2, ...,γim)

0 is
the associated m� 1 vector of factor loadings. The number of
factors, m, is assumed to be �xed relative to N, and in
particular m << N.



I The idiosyncratic errors, eit , could be CWD.
I The factor loadings, γi , could be either considered draws from
a random distribution, or �xed unknown coe¢ cients.

I We distinguish between the homogenous coe¢ cient case
where βi = β for all i , and the heterogenous case where βi
are random draws from a given distribution. In the latter case,
we assume that the object of interest is the mean coe¢ cients
β = E (βi ).

I When the regressors, xit , are strictly exogenous and the
deviations υi = βi � β are distributed independently of the
errors and the regressors, the mean coe¢ cients, β, can be
consistently estimated using pooled as well as mean group
estimation procedures. But only mean group estimation will
be consistent if the regressors are weakly exogenous and/or if
the deviations are correlated with the regressors/errors.



I The assumption of slope homogeneity is also crucially
important for the derivation of the asymptotic distribution of
the pooled or the mean group estimators of β. Under slope
homogeneity the asymptotic distribution of the estimator of β
typically converges at the rate of

p
NT , whilst under slope

heterogeneity the rate is
p
N.

I We review the following estimators:
I The Principal Components (PC) approach proposed by
Coakley, Fuertes and Smith (2002) and Bai (2008)

I The Common Correlated E¤ects (CCE) approach proposed
by Pesaran (2006) and extended by Kapetanios, Pesaran and
Yagamata (2011), Pesaran and Tosetti (2011) and Chudik,
Pesaran and Tosetti (2011).



Principal components estimators

I PC approach implicitly assumes that all the unobserved
common factors are strong by requiring that N�1Γ0Γ tends to
a positive de�nite matrix

I Coakley, Fuertes and Smith (2002) consider the panel data
model with strictly exogenous regressors and homogeneous
slopes (i.e., βi = β), and propose a two-stage estimation
procedure:

1. PCs are extracted from the OLS residuals as proxies for the
unobserved variables.

2. The following augmented regression is estimated

yit = α0idt + β0xit +γ0i f̂t + εit , for i = 1, 2, ...,N; t = 1, 2, ...,T ,
(5)

where f̂t is an m� 1 vector of principal components of the
residuals computed in the �rst stage.



I The resultant estimator is consistent for N and T large, but
only when ft and the regressors, xit , are uncorrelated.

I Bai (2008) has proposed an iterative method which consists of
alternating the PC method applied to OLS residuals and the
least squares estimation of (5), until convergence. In
particular, to simplify the exposition suppose αi = 0. Then
the least squares estimator of β and F is the solution of:

β̂PC =

 
N

∑
i=1
XiMF̂Xi

!�1 N

∑
i=1
XiMF̂ yi ,

1
NT

N

∑
i=1

�
yi �Xi β̂PC

� �
yi �Xi β̂PC

�0
F̂ = F̂V̂,

where Xi = (xi1, xi2, ..., xiT )
0, yi = (yi1, yi2, ..., yiT )

0,

MF̂ = IT � F̂
�
F̂F̂

0��1
F̂0, F̂ =

�̂
f1, f̂2, ..., f̂T

�0
, and V̂ is a

diagonal matrix with the m largest eigenvalues of the matrix

∑N
i=1

�
yi �Xi β̂PC

� �
yi �Xi β̂PC

�0
arranged in a decreasing

order.



I The solution β̂PC , F̂ and γ̂i =
�
F̂0F̂
��1

F̂0
�
yi �Xi β̂PC

�
minimizes the sum of squared residuals function,

SSRNT =
N

∑
i=1
(yi �Xiβ� Fγi )

0 (yi �Xiβ� Fγi ) ,

where F = (f1, f2, ..., fT )
0.

I This function is a Gaussian quasi maximum likelihood function
of the model and in this respect, Bai�s iterative principal
components estimator can also be seen as a quasi maximum
likelihood estimator, since it minimizes the quasi likelihood
function.



I Bai (2008) shows that such an estimator is consistent even if
common factors are correlated with the explanatory variables.
Speci�cally, the least square estimator of β obtained from the
above procedure, β̂PC , is consistent if both N and T go to
in�nity, without any restrictions on the ratio T/N. When in
addition T/N ! K > 0, β̂PC converges at the rate

p
NT ,

but the limiting distribution of
p
NT

�
β̂PC � β̂

�
does not

necessarily have a zero mean. Nevertheless, Bai shows that
the asymptotic bias can be consistently estimated and
proposes a bias corrected estimator.

I A shortcoming of the iterative PC estimator is that it requires
the determination of the unknown number of factors (PCs) to
be included in the second stage, since estimation of m can
introduce a certain degree of sampling uncertainty into the
analysis.



Common Correlated E¤ects estimators

I Pesaran (2006) suggests the CCE approach, which consists of
approximating the linear combinations of the unobserved
factors by cross section averages of the dependent and
explanatory variables, and then running standard panel
regressions augmented with these cross section averages.

I Both pooled and mean group versions are proposed, depending
on the assumption regarding the slope homogeneity.

I Under slope heterogeneity the CCE approach assumes that
β0i s follow the random coe¢ cient model

βi = β+ υi , υi � IID(0,Ωυ) for i = 1, 2, ...,N,

where the deviations, υi , are distributed independently of
ejt , xjt , and dt , for all i , j and t.



I The following model for the individual-speci�c regressors in
(3) is adopted

xit = A0idt +
0
i ft + vit , (6)

where Ai and i are n� k and m� k factor loading matrices
with �xed components, vit is the idiosyncratic component of
xit distributed independently of the common e¤ects ft 0 and
errors ejt 0 for all i , j , t and t 0. However, vit is allowed to be
serially correlated, and cross-sectionally weakly correlated.

I Equations (3), (4) and (6) can be combined into the following
system of equations

zit =
�
yit , x0it

�0
= B0idt +C

0
i ft + ξit ,

where ξit =
�
eit + β0ivit , v

0
it

�0
,

Bi = ( αi Ai )
�
1 0
βi Ik

�
, Ci = ( γi Γi )

�
1 0
βi Ik

�
.



I Consider the weighted average of zit , zwt =
N
∑
i=1
wizit , using

the weights wi satisfying the granularity conditions:

zwt = Bwdt +Cw ft + ξwt ,

where Bw =
N
∑
i=1
wiBi , Cw =

N
∑
i=1
wiCi , ξwt =

N
∑
i=1
wi ξit .

I Assume that Rank(Cw ) = m � k + 1 (this condition can be
relaxed). We have

ft = (CwC
0
w )
�1Cw

�
zwt �B

0
wdt � ξwt

�
.

I Under the assumption that eit�s and vit�s are CWD processes,
it is possible to show that

ξwt
q.m.! 0, which implies ft � (CwC

0
w )
�1Cw

�
zwt �B

0dt
�
q.m.! 0,

as N ! ∞, where C = limN!∞(Cw ) = eΓ� 1 0
β Ik

�
,eΓ = [E (γi ),E (Γi )] and β = E (βi ).



I Therefore, the unobservable common factors, ft , can be
approximated by a linear combination of observed e¤ects, dt ,
the cross section averages of the dependent variable, ȳwt , and
those of the individual-speci�c regressors, xwt .

I When the parameters of interest are the cross section means
of the slope coe¢ cients, β, we can consider two alternative
estimators, the CCE Mean Group (CCEMG) estimator and the
CCE Pooled (CCEP) estimator.

I Let Mw be de�ned by

Mw = IT �Hw (H
0
wHw )

�H0w ,

where Hw = (D,Zw ), and D and Zw are, respectively, the
matrices of the observations on dt and zwt = (ywt , x0wt )0.



The CCEMG estimator
I The CCEMG is a simple average of the estimators of the
individual slope coe¢ cients

β̂CCEMG = N
�1

N

∑
i=1

β̂CCE ,i ,

where
β̂CCE ,i = (X

0
iMwXi )�1X0iMw yi .

I Pesaran (2006) shows that, under some general conditions,
β̂CCEMG is asymptotically unbiased for β, and, as
(N,T )! ∞,

p
N(β̂CCEMG � β)

d! N(0,ΣCCEMG ),

where ΣCCEMG = Ωv . A consistent estimator of ΣCCEMG , can
be obtained by adopting the non-parametric estimator:

Σ̂CCEMG =
1

(N � 1)
N

∑
i=1
(β̂CCE ,i � β̂CCEMG )(β̂CCE ,i � β̂CCEMG )

0.



The CCEP estimator
I The CCEP estimator is given by

β̂CCEP =

 
N

∑
i=1
wiX0iMwXi

!�1 N

∑
i=1
wiX0iMw yi .

I Under some general conditions, Pesaran (2006) proves that
β̂CCEP is asymptotically unbiased for β, and, as (N,T )! ∞, 

N

∑
i=1
w2i

!�1/2 �
β̂CCEP � β

�
d! N(0,ΣCCEP ),

where ΣCCEP = Ψ��1R�Ψ��1,

Ψ� = lim
N!∞

 
N

∑
i=1
wiΣi

!
, R� = lim

N!∞

"
N�1

N

∑
i=1
w̃2i (Σi ΩυΣi )

#
,

Σi = p lim
T!∞

�
T�1X0iMwXi

�
, and w̃i =

wiq
N�1 ∑N

i=1 w
2
i

.



I A consistent estimator of Var
�

β̂CCEP

�
, denoted bydVar �β̂CCEP

�
, is given by

dVar �β̂CCEP

�
=

 
N

∑
i=1
w2i

!�1
Σ̂CCEP =

 
N

∑
i=1
w2i

!�1
Ψ̂
��1
R̂�Ψ̂

��1
,

where

Ψ̂
�
=

N

∑
i=1
wi

�
X0iMwXi
T

�
,

R̂� =
1

N � 1
N

∑
i=1
w̃2i ∆i∆

0
i , where ∆i =

�
X0iMwXi
T

�
(β̂CCE ,i � β̂CCEMG ).

I The rate of convergence of β̂CCEMG and β̂CCEP is
p
N when

Ωυ 6= 0. Note that even if βi were observed for all i , then the
estimate of β = E (βi ) cannot converge at a faster rate thanp
N. If the individual slope coe¢ cients βi are homogeneous

(namely if Ωυ = 0), β̂CCEMG and β̂CCEP are still consistent
and converge at the rate

p
NT rather than

p
N.



I Advantage of the nonparametric estimators Σ̂CCEMG and
Σ̂CCEP is that they do not require knowledge of the weak
cross-sectional dependence of eit (provided it is su¢ ciently
weak) nor the knowledge of serial correlation of eit .

I An important question is whether the non-parametric variance
estimatorsdVar �β̂CCEMG

�
= N�1Σ̂CCEMG anddVar �β̂CCEP

�
can be used in both cases of homogenous and heterogenous
slopes.

I As established in Pesaran and Tosetti (2011), the asymptotic
distribution of β̂CCEMG and β̂CCEP depends on nuisance
parameters when slopes are homogenous (Ωυ = 0), including
the extent of cross-sectional correlations of eit and their serial
correlation structure.

I However, it can be shown that the robust non-parametric
estimatorsdVar �β̂CCEMG

�
anddVar �β̂CCEP

�
are consistent

when the regressor-speci�c components, vit , are independently
distributed across i .



I The CCE continues to be applicable even if the rank condition
is not satis�ed. This could happen if, for example, the factor
in question is weak, in the sense de�ned above. Another
possible reason for failure of the rank condition is if the
number of unobservable factors, m, is larger than k + 1,
where k is the number of the unit-speci�c regressors included
in the model.

I In such cases, common factors cannot be estimated from cross
section averages. However, the cross section means of the
slope coe¢ cients, βi , can still be consistently estimated, under
the additional assumption that the unobserved factor loadings,
γi , are independently and identically distributed across i , and
of ejt , vjt , and gt = (d0t , f 0t )0 for all i , j and t. No assumptions
are required on the loadings attached to the regressors, xit .

I Advantage of the CCE approach is that it does not require an
a priori knowledge of the number of unobserved common
factors.



I Further advantage of the CCE approach is that it yields
consistent estimates under a variety of situations:

I Kapetanios, Pesaran and Yagamata (2011) consider the case
where the unobservable common factors follow unit root
processes and could be cointegrated.

I Pesaran and Tosetti (2011) prove consistency and asymptotic
normality for CCE estimators when feitg are generated by a
spatial process.

I Chudik, Pesaran and Tosetti (2011) prove consistency and
asymptotic normality of the CCE estimators when errors are
subject to a �nite number of unobserved strong factors and an
in�nite number of weak and/or semi-strong unobserved
common factors, provided that certain conditions on the
loadings of the in�nite factor structure are satis�ed.



I In a Monte Carlo (MC) study, Coakley, Fuertes and Smith
(2006) compare ten alternative estimators for the mean slope
coe¢ cient in a linear heterogeneous panel regression with
strictly exogenous regressors and unobserved common
(correlated) factors. Their results show that, overall, the mean
group version of the CCE estimator stands out as the most
e¢ cient and robust.

I These conclusions are in line with those in Kapetanios,
Pesaran and Yagamata (2011) and Chudik, Pesaran and
Tosetti (2011), who investigate the small sample properties of
CCE estimators and the estimators based on principal
components. The MC results show that PC augmented
methods do not perform as well as the CCE approach, and can
lead to substantial size distortions, due, in part, to the small
sample errors in the number of factors selection procedure.



Estimation and inference on large dynamic panel data
models with a factor error structure

I Consider the following heterogeneous dynamic panel data
model

yit = λiyi ,t�1 + β0ixit + uit , (7)

uit = γ0i ft + eit , (8)

for i = 1, 2, ...,N; t = 1, 2, ...,T . It is assumed that jλi j < 1,
and the dynamic processes have started a long time in the
past.

I Fixed e¤ects and observed common factors (denoted by dt
previously) can also be included in the model. They are
excluded to simplify the notations.

I The problem of estimation of panels subject to cross-sectional
error dependence becomes much more complicated once the
assumption of strict exogeneity of the unit-speci�c regressors
is relaxed.



I As before, we distinguish between the case of homogenous
coe¢ cients, where λi = λ and βi = β for all i , and the
heterogenous case, where λi and βi are randomly distributed
across units and the object of interest are the mean
coe¢ cients λ = E (λi ) and β = E (βi ).

I This distinction is more important for dynamic panels, since
not only the rate of convergence is a¤ected by the presence of
coe¢ cient heterogeneity, but, as shown by Pesaran and Smith
(1995), pooled least squares estimators are no longer
consistent in the case of dynamic panel data models with
heterogenous coe¢ cients.

I It is convenient to de�ne the vector of regressors
ζit = (yi ,t�1, x

0
it )
0 and the corresponding parameter vector

π i =
�
λi , β

0
i

�0
so that (7) can be written as

yit = π0
i ζit + uit .



I We review the following estimators:
I Quasi Maximum Likelihood Estimator (QMLE) proposed
by Moon and Weidner (2010a,b).

I Extension of the Principal Components (PC) approach to
dynamic heterogenous panels proposed Song (2013)

I Extension of the Common Correlated E¤ects (CCE)
approach to dynamic heterogeneous panels by Chudik and
Pesaran (2013b).



QMLE approach

I Moon and Weidner (2010a,b) assume π i = π for all i and
develop a Gaussian QMLE of the homogenous coe¢ cient
vector π:

π̂QMLE = argmin
π2B

LNT (π) ,

where B is a compact parameter set assumed to contain the
true parameter values, and the objective function is the pro�le
likelihood function.

LNT (π) = min
fγi g,fftg

1
NT

N

∑
i=1
(yi � Ξiπ � Fγi )

0 (yi � Ξiπ � Fγi ) ,

where

Ξi =

0BBB@
yi1 x0i ,2
yi ,2 x0i ,3
...

...
yi ,T�1 x0iT

1CCCA



I Both π̂QMLE and β̂PC minimize the same objective function
and therefore, when the same set of regressors is considered,
these two estimators are numerically the same, but there are
important di¤erences in their bias-corrected versions and in
other aspects of the analysis of Bai and the analysis of Moon
and Weidner (MW).

I MW allow for more general assumptions on regressors,
including the possibility of weak exogeneity, and adopt a
quadratic approximation of the pro�le likelihood function,
which allows the authors to work out the asymptotic
distribution and to conduct inference on the coe¢ cients.

I MW show that π̂QMLE is a consistent estimator of π, as
N,T ! ∞ without any restrictions on the ratio T/N.

I To derive the asymptotic distribution of π̂QMLE , MW require
T/N ! {, 0 < { < ∞, as N,T ! ∞, and assume that the
idiosyncratic errors, eit , are cross-sectionally independent.



I MW show that
p
NT (π̂QMLE �π) convergences to a normal

distribution that is not centered around zero. The nonzero
mean is due to two types of asymptotic bias:

I the �rst is due to the heteroskedasticity of the error terms, as
in Bai (2009), and

I the second source of bias is due to the presence of weakly
exogenous regressors.

I Authors provide consistent estimators of each component of
the asymptotic bias.

I Regarding the tests on the estimated parameters, MW
propose modi�ed versions of the Wald, the likelihood ratio,
and the Lagrange multiplier tests. Modi�cations are required
due to the asymptotic parameter bias.



I Using MC experiments MW show that their bias corrected
QMLE preforms well in small samples.

I Same as in Bai (2009), the number of factors is assumed to
be known and therefore the estimation of m can introduce a
certain degree of sampling uncertainty into the analysis.

I To overcome this problem, MW show, under somewhat more
restrictive set of assumptions, that it is su¢ cient to assume
an upper bound mmax on the number of factors and conduct
the estimation with mmax principal components so long as
m � mmax.



PC approach

I Song (2013) extends Bai�s (2009) approach to dynamic panels
with heterogenous coe¢ cients. The focus of Song�s analysis is
on the estimation of unit-speci�c coe¢ cients π i =

�
λi , β

0
i

�0
.

I Song proposes an iterated least squares estimator of π i , and
as in Bai (2009) shows that the solution can be obtained by
alternating the PC method applied to the least squares
residuals and the least squares estimation of
yit = λiyi ,t�1 + β0ixit + uit until convergence.

I The least squares estimator of π i and F is the solution to the
following set of non-linear equations

π̂ i ,PC =
�
Ξ0iMF̂Ξi

��1
Ξ0iMF̂ yi , for i = 1, 2, ...,N,

1
NT

N

∑
i=1
(yi � Ξi π̂ i ,PC ) (yi � Ξi π̂ i ,PC )

0 F̂ = F̂V̂.



I Song establishes consistency of π̂ i ,PC when N,T ! ∞
without any restrictions on T/N. If in addition T/N2 ! 0,
Song shows that π̂ i ,PC is

p
T consistent, but derives the

asymptotic distribution only under some additional
requirements including the cross-sectional independence of eit .

I Song does not provide theoretical results on the estimation of
the mean coe¢ cients π = E (π i ), but considers the mean
group estimator,

π̂s
PCMG =

1
N

N

∑
i=1

π̂ i ,PC ,

in a Monte Carlo study.
I Results on the asymptotic distribution of π̂s

PCMG are not yet
established in the literature, but results of Monte Carlo study
presented in Chudik and Pesaran (2013b) suggest thatp
N (π̂s

PCMG �π) is asymptotically normally distributed with
mean zero and a covariance matrix that can be estimated
nonparametrically in the same way as in the case of the
CCEMG estimator.



CCE approach
I The CCE approach as it was originally proposed in Pesaran
(2006) does not cover the case where the panel includes a
lagged dependent variable or weakly exogenous regressors.

I Chudik and Pesaran (2013b, CP) extends the CCE approach
to dynamic panels with heterogenous coe¢ cients and weakly
exogenous regressors.

I The inclusion of lagged dependent variable amongst the
regressors has three main consequences for the estimation of
the mean coe¢ cients:
1. The time series bias, which a¤ects the individual speci�c
estimates and is of order O

�
T�1

�
.

2. The full rank condition becomes necessary for the
consistent estimation of the mean coe¢ cients (unless the
factors in ft are serially uncorrelated).

3. The interaction of dynamics and coe¢ cient heterogeneity leads
to in�nite lag order relationships between unobserved
common factors and cross section averages of the observables
when N is large.



I CP show that there exists the following large N distributed lag
relationship between the unobserved common factors and
cross section averages of the dependent variable and the
regressors, zwt = (ywt , x0wt )

0,

Λ (L) Γ̃
0ft = zwt +Op

�
N�1/2

�
,

where as before Γ̃ = E (γi , Γi ).
I The existence of a large N relationship between the
unobserved common factors and cross section averages of
variables is not surprising considering that only the
components with the largest exponents of cross-sectional
dependence can survive cross-sectional aggregation with
granular weights.

I The decay rate of the matrix coe¢ cients in Λ (L) depends on
the heterogeneity of λi and βi and other related distributional
assumptions.



I Assuming Γ̃ has full row rank, i.e. rank
�
Γ̃
�
= m, and the

distributions of coe¢ cients are such that Λ�1 (L) exists and
has exponentially decaying coe¢ cients yields following
unit-speci�c cross-sectionally augmented auxiliary regressions,

yit = λiyi ,t�1 + β0ixit +
pT

∑
`=0

δ0i`zw ,t�` + eyit , (9)

where zwt and its lagged values are used to approximate ft .
I The error term eyit consists of three parts: an idiosyncratic
term, eit , an error component due to the truncation of
possibly in�nite distributed lag function, and an Op

�
N�1/2�

error component due to the approximation of unobserved
common factors based on large N relationships.

I CP consider the least squares estimates of π i =
�
λi , β

0
i

�0
based on the cross sectionally augmented regression (9),

denoted as π̂ i =
�

λ̂i , β̂
0
i

�0
, and the mean group estimate of

π = E (π i ) based on π̂ i , denoted as bπMG =
1
N ∑N

i=1 π̂ i .



I CP show that bπ i and bπMG are consistent estimators of π i

and π , respectively assuming that the rank condition is
satis�ed and (N,T , pT )! ∞ such that p3T /T ! {,
0 < { < ∞, but without any restrictions on the ratio N/T .

I The rank condition is necessary for the consistency of bπ i

because the unobserved factors are allowed to be correlated
with the regressors. If the unobserved common factors were
serially uncorrelated (but still correlated with xit), then bπMG

is consistent also in the rank de�cient case, despite the
inconsistency of bπ i , so long as factor loadings are
independently, identically distributed across i .

I The convergence rate of bπMG is
p
N due to the heterogeneity

of the slope coe¢ cients. CP show that bπMG converges to a
normal distribution as (N,T , pT )! ∞ such that
p3T /T ! {1 and T/N ! {2, 0 < {1,{2 < ∞.

I The ratio N/T needs to be restricted for conducting
inference, due to the presence of small time series bias.



I In the full rank case, the asymptotic variance of bπMG is given
by the variance of π i alone. When the rank condition does
not hold, but factors are serially uncorrelated, then the
asymptotic variance depends also on other parameters,
including the variance of factor loadings.

I In both cases the asymptotic variance can be consistently
estimated non-parametrically as before.

I Monte Carlo experiments in Chudik and Pesaran (2013b)
show that extension of the CCE approach to dynamic panels
with a multi-factor error structure performs reasonably well (in
terms of bias, RMSE, size and power).

I This is particularly the case when the parameter of interest is
the average slope of the regressors (β), where the small
sample results are quite satisfactory even if N and T are
relatively small (around 40).



I The situation is di¤erent if the parameter of interest is the
mean coe¢ cient of the lagged dependent variable (λ), where
the CCEMG estimator su¤ers form the well known time series
bias and tests based on it tend to be over-sized, unless T is
su¢ ciently large.

I To mitigate the consequences of this bias, Chudik and
Pesaran (2013b) consider application of half-panel jackknife
procedure (Dhaene and Jochmansy, 2012), and the recursive
mean adjustment procedure (So and Shin, 1999), both of
which are easy to implement.

I The proposed jackknife bias-corrected CCEMG estimator is
found to be more e¤ective in mitigating the time series bias,
but it can not fully deal with the size distortion when T is
relatively small.

I Improving the small T sample properties of the CCEMG
estimator of λ in the heterogeneous panel data models still
remains a challenge to be taken on in the future.



Further extensions of the CCE approach

I The application of the CCE approach to static panels with
weakly exogenous regressors (namely without lagged
dependent variables) has not yet been investigated in the
literature.

I Monte Carlo study by Chudik and Pesaran (2013a) suggests
for this case that:

I The CCE mean group estimator performs very well (in terms of
bias and RMSE) for T > 50 (for all values of N considered).
Also tests based on this estimator are correctly sized and have
good power properties. These results are obtained in
experiments where the rank condition does not hold.

I The CCE pooled estimator, in contrast, is no longer consistent
in the case of weakly exogenous regressors with heterogenous
coe¢ cients, due to the bias caused by the correlation between
the slope coe¢ cients and the regressors.



Tests of error cross-sectional dependence

I Consider the following panel data model

yit = ai + β0ixit + uit , (10)

where ai and βi for i = 1, 2, ...,N are assumed to be �xed
unknown coe¢ cients, and xit is a k-dimensional vector of
regressors.

I We provide on overview of alternative approaches to testing
the cross-sectional independence or weak dependence of the
errors uit .

I We consider both cases where the regressors are strictly and
weakly exogenous, as well as when they include lagged values
of yit .



I The literature on testing for error cross-sectional dependence
in large panels follow two separate strands, depending on
whether the cross section units are ordered or not. In what
follows we review the various attempts made in the literature
to develop tests of cross-sectional dependence when the
cross-section units are unordered.

I In the case of cross section observations that do not admit an
ordering, tests of cross-sectional dependence are typically
based on estimates of pair-wise error correlations (ρij ) and are
applicable when T is su¢ ciently large so that relatively
reliable estimates of ρij can be obtained.

I An early test of this type is the Lagrange multiplier (LM) test
of Breusch and Pagan (1980) which tests the null hypothesis
that all pair-wise correlations are zero. This test is based on
the average of the squared estimates of pair-wise correlations,
and under standard regularity conditions it is shown to be
asymptotically (as T ! ∞) distributed as χ2 with
N(N � 1)/2 degrees of freedom.



I The LM test tends to be highly over-sized in the case of
panels with relatively large N.

I In the remainder, we review the various attempts made in the
literature to develop tests of cross-sectional dependence when
N is large.

I When N is relatively large and rising with T , it is unlikely to
matter if out of the total N(N � 1)/2 pair-wise correlations
only a few are non-zero. Accordingly, Pesaran (2013) argues
that the null of cross-sectionally uncorrelated errors, de�ned by

H0 : E (uitujt ) = 0, for all t and i 6= j , (11)

is restrictive for large panels and the null of a su¢ ciently weak
cross-sectional dependence could be more appropriate since
mere incidence of isolated dependencies are of little
consequence for estimation or inference about the parameters
of interest, such as the individual slope coe¢ cients, βi , or
their average value, E (βi ) = β.



I Let ûit be the OLS estimator of uit de�ned by

ûit = yit � âi � β̂
0
ixit ,

with âi , and β̂i being the OLS estimates of ai and βi , based
on the T sample observations, yt , xit , for t = 1, 2, ...,T .

I Consider the sample estimate of the pair-wise correlation of
the residuals, ûit and ûjt , for i 6= j

ρ̂ij = ρ̂ji =
∑T
t=1 ûit ûjt�

∑T
t=1 û

2
it

�1/2 �
∑T
t=1 û

2
jt

�1/2 .



I It is known that, under the null (11) and when N is �nite,
p
T ρ̂ij

a� N(0, 1),

for a given i and j , as T ! ∞, and T ρ̂2ij is asymptotically
distributed as a χ21.

I Consider the following statistic

CDLM =

s
1

N(N � 1)
N�1
∑
i=1

N

∑
j=i+1

�
T ρ̂2ij � 1

�
. (12)



I Based on the Euclidean norm of the matrix of sample
correlation coe¢ cients, (12) is a version of the Lagrange
Multiplier test statistic due to Breusch and Pagan (1980).

I Frees (1995) �rst explored the �nite sample properties of the
LM statistic, calculating its moments for �xed values of T and
N, under the normality assumption. He advanced a
non-parametric version of the LM statistic based on the
Spearman rank correlation coe¢ cient.

I Dufour and Khalaf (2002) have suggested to apply Monte
Carlo exact tests to correct the size distortions of CDLM in
�nite samples. However, these tests, being based on the
bootstrap method applied to the CDLM , are computationally
intensive, especially when N is large.



I An alternative adjustment to the LM test is proposed by
Pesaran and Ullah and Yamagata (2008), where the LM test
is centered to have a zero mean for a �xed T . These authors
also propose a correction to the variance of the LM test.

I The basic idea is generally applicable, but analytical bias
corrections can be obtained only under the assumption that
the regressors, xit , are strictly exogenous and the errors, uit
are normally distributed. The adjusted LM statistic is now
given by

LMAdj =

s
2

N(N � 1)
N�1
∑
i=1

N

∑
j=i+1

(T � k) ρ̂2ij � µTij
vTij

,

where µTij and vTij depends on T , k, and fxitg and their
expressions are provided in Pesaran and Ullah and Yamagata
(2008).

I LMAdj is asymptotically N(0, 1) under H0, when T ! ∞
followed by N ! ∞.



I The application of the LMAdj test to dynamic panels or panels
with weakly exogenous regressors is further complicated by
the fact that the bias corrections depend on the true values of
the unknown parameters and will be di¢ cult to implement.
The implicit null of LM tests when T and N ! ∞, jointly
rather than sequentially could also di¤er from the null of
uncorrelatedness of all pair-wise correlations.

I To overcome some of these di¢ culties Pesaran (2004) has
proposed a test that has exactly mean zero for �xed values of
T and N. This test is based on the average of pair-wise
correlation coe¢ cients

CDP =

s
2T

N(N � 1)

 
N�1
∑
i=1

N

∑
j=i+1

ρ̂ij

!
.



I As N,T ! ∞ in any order, CDP tends approximately to a
standardized normal. One important advantage of the CDP
test is that it is applicable also to autoregressive
heterogeneous panels, even for a �xed T , so long as uit are
symmetrically distributed around zero. The CD test can also
be applied to unbalanced panels.

I Pesaran (2013) extends the analysis of CDP test and shows
that the implicit null of the test is that of weak cross-sectional
dependence and it depends on the relative expansion rates of
N and T .

I In particular, using the exponent of cross-sectional
dependence, α, developed in Bailey, Kapetanios and Pesaran
(2011) and discussed above, Pesaran shows that when
T = O (Nε) for some 0 < ε � 1 the implicit null of the CDP
test is given by 0 � α < (2� ε) /4. This yields the range
0 � α < 1/4 when N,T ! ∞ at the same rate such that
T/N ! { for some �nite positive constant {, and the range
0 � α < 1/2 when T is small relative to N.



I For larger values of α, as shown by Bailey, Kapetanios and
Pesaran (2011), α can be estimated consistently using the
variance of the cross-sectional averages.

I Monte Carlo experiments reported in Pesaran (2013) show
that the CD test has good small sample properties for values
of α in the range 0 � α � 1/4, even in cases where regressors
are weakly exogenous.



I Other statistics have also been proposed in the literature to
test for zero contemporaneous correlation in the errors uit .

I Using results from the literature on spacing discussed in Pyke
(1965), Ng (2006) considers a statistic based on the qth

di¤erences of the cumulative normal distribution associated to
the N(N � 1)/2 pair-wise correlation coe¢ cients ordered
from the smallest to the largest, in absolute value.

I Building on the work of John (1971), and under the
assumption of normal disturbances, strictly exogenous
regressors, and homogenous slopes, Baltagi, Feng and Kao
(2011) propose a test of the null hypothesis of sphericity,
de�ned by HBFK0 : ut � IIDN

�
0, σ2uIN

�
. Joint assumption of

homoskedastic errors and homogenous slopes is quite
restrictive in applied work and therefore the use of the JBFK
statistics as a test of cross-sectional dependence should be
approached with care.



Conclusions

I We have characterized the cross-sectional dependence as weak
or strong, and de�ned the exponent of cross-sectional
dependence, α.

I We have also considered estimation and inference on large
panels with a factor error structure. We have distinguished
between panels with strictly exogenous regressors and dynamic
panels.

I Last but not least, we have provided an overview of the
literature on tests of error cross-sectional dependence when N
is large and units are unordered.
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