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Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions.

Abstract

3D face reconstruction is a fundamental Computer Vi-

sion problem of extraordinary difficulty. Current systems of-

ten assume the availability of multiple facial images (some-

times from the same subject) as input, and must address

a number of methodological challenges such as establish-

ing dense correspondences across large facial poses, ex-

pressions, and non-uniform illumination. In general these

methods require complex and inefficient pipelines for model

building and fitting. In this work, we propose to address

many of these limitations by training a Convolutional Neu-

ral Network (CNN) on an appropriate dataset consisting of

2D images and 3D facial models or scans. Our CNN works

with just a single 2D facial image, does not require accurate

alignment nor establishes dense correspondence between

images, works for arbitrary facial poses and expressions,

and can be used to reconstruct the whole 3D facial geom-

etry (including the non-visible parts of the face) bypassing

the construction (during training) and fitting (during test-

ing) of a 3D Morphable Model. We achieve this via a sim-

ple CNN architecture that performs direct regression of a

volumetric representation of the 3D facial geometry from a

single 2D image. We also demonstrate how the related task

of facial landmark localization can be incorporated into the

proposed framework and help improve reconstruction qual-

ity, especially for the cases of large poses and facial ex-

pressions. Our training code for our unguided method, pre-

trained models and the voxelised training data is all avail-

able at http://aaronsplace.co.uk

1. Introduction

3D face reconstruction is the problem of recovering the

3D facial geometry from 2D images. Despite many years

of research, it is still an open problem in Vision and Graph-

ics research. Depending on the setting and the assumptions

made, there are many variations of it as well as a multitude

of approaches to solve it. This work is on 3D face recon-

struction using only a single image. Under this setting, the

problem is considered far from being solved. In this paper,

we propose to approach it, for the first time to the best of

our knowledge, by directly learning a mapping from pixels

to 3D coordinates using a Convolutional Neural Network

(CNN). Besides its simplicity, our approach works with to-

tally unconstrained images downloaded from the Web, in-

cluding facial images of arbitrary poses, facial expressions

and occlusions, as shown in Fig. 1.
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Motivation. No matter what the underlying assumptions

are, what the input(s) and output(s) to the algorithm are, 3D

face reconstruction requires in general complex pipelines

and solving non-convex difficult optimization problems for

both model building (during training) and model fitting

(during testing). In the following paragraph, we provide

examples from 5 predominant approaches:

1. In the 3D Morphable Model (3DMM) [2, 20], the most

popular approach for estimating the full 3D facial struc-

ture from a single image (among others), training in-

cludes an iterative flow procedure for dense image corre-

spondence which is prone to failure. Additionally, test-

ing requires a careful initialisation for solving a difficult

highly non-convex optimization problem, which is slow.

2. The work of [10], a popular approach for 2.5D recon-

struction from a single image, formulates and solves a

carefully initialised (for frontal images only) non-convex

optimization problem for recovering the lighting, depth,

and albedo in an alternating manner where each of the

sub-problems is a difficult optimization problem per se.

3. In [11], a quite popular recent approach for creating a

neutral subject-specific 2.5D model from a near frontal

image, an iterative procedure is proposed which entails

localising facial landmarks, face frontalization, solving

a photometric stereo problem, local surface normal esti-

mation, and finally shape integration.

4. In [23], a state-of-the-art pipeline for reconstructing a

highly detailed 2.5D facial shape for each video frame,

an average shape and an illumination subspace for the

specific person is firstly computed (offline), while test-

ing is an iterative process requiring a sophisticated pose

estimation algorithm, 3D flow computation between the

model and the video frame, and finally shape refinement

by solving a shape-from-shading optimization problem.

5. More recently, the state-of-the-art method of [21] that

produces the average (neutral) 3D face from a collection

of personal photos, firstly performs landmark detection,

then fits a 3DMM using a sparse set of points, then solves

an optimization problem similar to the one in [11], then

performs surface normal estimation as in [11] and finally

performs surface reconstruction by solving another en-

ergy minimisation problem.

Simplifying the technical challenges involved in the

aforementioned works is the main motivation of this paper.

1.1. Main contributions

We describe a very simple approach which bypasses

many of the difficulties encountered in 3D face reconstruc-

tion by using a novel volumetric representation of the 3D

facial geometry, and an appropriate CNN architecture that

is trained to regress directly from a 2D facial image to the

corresponding 3D volume. An overview of our method is

shown in Fig. 4. In summary, our contributions are:

• Given a dataset consisting of 2D images and 3D face

scans, we investigate whether a CNN can learn directly,

in an end-to-end fashion, the mapping from image pix-

els to the full 3D facial structure geometry (including the

non-visible facial parts). Indeed, we show that the answer

to this question is positive.

• We demonstrate that our CNN works with just a single

2D facial image, does not require accurate alignment nor

establishes dense correspondence between images, works

for arbitrary facial poses and expressions, and can be

used to reconstruct the whole 3D facial geometry bypass-

ing the construction (during training) and fitting (during

testing) of a 3DMM.

• We achieve this via a simple CNN architecture that per-

forms direct regression of a volumetric representation of

the 3D facial geometry from a single 2D image. 3DMM

fitting is not used. Our method uses only 2D images as

input to the proposed CNN architecture.

• We show how the related task of 3D facial landmark lo-

calisation can be incorporated into the proposed frame-

work and help improve reconstruction quality, especially

for the cases of large poses and facial expressions.

• We report results for a large number of experiments on

both controlled and completely unconstrained images

from the Web, illustrating that our method outperforms

prior work on single image 3D face reconstruction by a

large margin.

2. Closely related work

This section reviews closely related work in 3D face re-

construction, depth estimation using CNNs and work on 3D

representation modelling with CNNs.

3D face reconstruction. A full literature review of 3D

face reconstruction falls beyond the scope of the paper; we

simply note that our method makes minimal assumptions

i.e. it requires just a single 2D image to reconstruct the

full 3D facial structure, and works under arbitrary poses

and expressions. Under the single image setting, the most

related works to our method are based on 3DMM fitting

[2, 20, 28, 9, 8] and the work of [13] which performs joint

face reconstruction and alignment, reconstructing however

a neutral frontal face.

The work of [20] describes a multi-feature based ap-

proach to 3DMM fitting using non-linear least-squares op-

timization (Levenberg-Marquardt), which given appropri-

ate initialisation produces results of good accuracy. More

recent work has proposed to estimate the update for the

3DMM parameters using CNN regression, as opposed to

non-linear optimization. In [9], the 3DMM parameters are

estimated in six steps each of which employs a different



CNN. Notably, [9] estimates the 3DMM parameters on a

sparse set of landmarks, i.e. the purpose of [9] is 3D face

alignment rather than face reconstruction. The method of

[28] is currently considered the state-of-the-art in 3DMM

fitting. It is based on a single CNN that is iteratively ap-

plied to estimate the model parameters using as input the 2D

image and a 3D-based representation produced at the previ-

ous iteration. Finally, a state-of-the-art cascaded regression

landmark-based 3DMM fitting method is proposed in [8].

Our method is different from the aforementioned meth-

ods in the following ways:

• Our method is direct. It does not estimate 3DMM pa-

rameters and, in fact, it completely bypasses the fitting

of a 3DMM. Instead, our method directly produces a 3D

volumetric representation of the facial geometry.

• Because of this fundamental difference, our method is

also radically different in terms of the CNN architecture

used: we used one that is able to make spatial predictions

at a voxel level, as opposed to the networks of [28, 9]

which holistically predict the 3DMM parameters.

• Our method is capable of producing reconstruction re-

sults for completely unconstrained facial images from the

web covering the full spectrum of facial poses with arbi-

trary facial expression and occlusions. When compared

to the state-of-the-art CNN method for 3DMM fitting of

[28], we report large performance improvement.

Compared to works based on shape from shading [10,

23], our method cannot capture such fine details. However,

we believe that this is primarily a problem related to the

dataset used rather than of the method. Given training data

like the one produced by [10, 23], then we believe that our

method has the capacity to learn finer facial details, too.

CNN-based depth estimation. Our work has been in-

spired by the work of [5, 6] who showed that a CNN can be

directly trained to regress from pixels to depth values using

as input a single image. Our work is different from [5, 6]

in 3 important respects: Firstly, we focus on faces (i.e. de-

formable objects) whereas [5, 6] on general scenes contain-

ing mainly rigid objects. Secondly, [5, 6] learn a mapping

from 2D images to 2D depth maps, whereas we demonstrate

that one can actually learn a mapping from 2D to the full 3D

facial structure including the non-visible part of the face.

Thirdly, [5, 6] use a multi-scale approach by processing im-

ages from low to high resolution. In contrast, we process

faces at fixed scale (assuming that this is provided by a face

detector), but we build our CNN based on a state-of-the-art

bottom-up top-down module [15] that allows analysing and

combining CNN features at different resolutions for even-

tually making predictions at voxel level.

Recent work on 3D. We are aware of only one work

which regresses a volume using a CNN. The work of [4]

uses an LSTM to regress the 3D structure of multiple ob-

ject classes from one or more images. This is different from

our work in at least two ways. Firstly, we treat our recon-

struction as a semantic segmentation problem by regressing

a volume which is spatially aligned with the image. Sec-

ondly, we work from only one image in one single step,

regressing a much larger volume of 192× 192× 200 as op-

posed to the 32 × 32 × 32 used in [4]. The work of [26]

decomposes an input 3D shape into shape primitives which

along with a set of parameters can be used to re-assemble

the given shape. Given the input shape, the goal of [26] is

to regress the shape primitive parameters which is achieved

via a CNN. The method of [16] extends classical work on

heatmap regression [24, 18] by proposing a 4D representa-

tion for regressing the location of sparse 3D landmarks for

human pose estimation. Different from [16], we demon-

strate that a 3D volumetric representation is particular ef-

fective for learning dense 3D facial geometry. In terms of

3DMM fitting, very recent work includes [19] which uses a

CNN similar to the one of [28] for producing coarse facial

geometry but additionally includes a second network for re-

fining the facial geometry and a novel rendering layer for

connecting the two networks. Another recent work is [25]

which uses a very deep CNN for 3DMM fitting.

3. Method

This section describes our framework including the pro-

posed data representation used.

3.1. Dataset

Our aim is to regress the full 3D facial structure from a

2D image. To this end, our method requires an appropriate

dataset consisting of 2D images and 3D facial scans. As our

target is to apply the method on completely unconstrained

images from the Web, we chose the dataset of [28] for form-

ing our training and test sets. The dataset has been produced

by fitting a 3DMM built from the combination of the Basel

[17] and FaceWarehouse [3] models to the unconstrained

images of the 300W dataset [22] using the multi-feature

fitting approach of [20], careful initialisation and by con-

straining the solution using a sparse set of landmarks. Face

profiling is then used to render each image to 10-15 differ-

ent poses resulting in a large scale dataset (more than 60,000

2D facial images and 3D meshes) called 300W-LP. Note

that because each mesh is produced by a 3DMM, the ver-

tices of all produced meshes are in dense correspondence;

however this is not a prerequisite for our method and unreg-

istered raw facial scans could be also used if available (e.g.

the BU-4DFE dataset [27]).

3.2. Proposed volumetric representation

Our goal is to predict the coordinates of the 3D vertices

of each facial scan from the corresponding 2D image via

CNN regression. As a number of works have pointed out
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Figure 2: The voxelisation process creates a volumetric rep-

resentation of the 3D face mesh, aligned with the 2D image.

(see for example [24, 18]), direct regression of all 3D points

concatenated as a vector using the standard L2 loss might

cause difficulties in learning because a single correct value

for each 3D vertex must be predicted. Additionally, such

an approach requires interpolating all scans to a vector of a

fixed dimension, a pre-processing step not required by our

method. Note that similar learning problems are encoun-

tered when a CNN is used to regress model parameters like

the 3DMM parameters rather than the actual vertices. In

this case, special care must be taken to weight parameters

appropriately using the Mahalanobis distance or in general

some normalisation method, see for example [28]. We com-

pare the performance of our method with that of a similar

method [28] in Section 4.

To alleviate the aforementioned learning problem, we

propose to reformulate the problem of 3D face reconstruc-

tion as one of 2D to 3D image segmentation: in particular,

we convert each 3D facial scan into a 3D binary volume

Vwhd by discretizing the 3D space into voxels {w, h, d},

and then assigning the value of 1 to all points enclosed by

the 3D facial scan, and 0 otherwise. That is Vwhd is the

ground truth for voxel {w, h, d} and is equal to 1, if voxel

{w, h, d} belongs to the 3D volumetric representation of the

face and 0 otherwise (i.e. it belongs to the background).

The conversion is shown in Fig. 2. Notice that the process

creates a volume fully aligned with the 2D image. The im-

portance of spatial alignment is analysed in more detail in

Section 5. The error caused by discretization for a randomly

picked facial scan as a function of the volume size is shown

in Fig. 3. Given that the error of state-of-the-art methods

[21, 13] is of the order of a few mms, we conclude that dis-

cretization by 192× 192× 200 produces negligible error.

Given our volumetric facial representation, the problem

of regressing the 3D coordinates of all vertices of a facial

scan is reduced to one of 3D binary volume segmentation.

We approach this problem using recent CNN architectures

from semantic image segmentation [14] and their exten-

sions [15], as described in the next subsection.
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Figure 3: The error introduced due to voxelisation, shown

as a function of volume density.

3.3. Volumetric Regression Networks

In this section, we describe the proposed volumetric re-

gression network, exploring several architectural variations

described in detail in the following subsections:

Volumetric Regression Network (VRN). We wish to

learn a mapping from the 2D facial image to its correspond-

ing 3D volume f : I → V. Given the training set of 2D

images and constructed volumes, we learn this mapping us-

ing a CNN. Our CNN architecture for 3D segmentation is

based on the “hourglass network” of [15] an extension of the

fully convolutional network of [14] using skip connections

and residual learning [7]. Our volumetric architecture con-

sists of two hourglass modules which are stacked together

without intermediate supervision. The input is an RGB im-

age and the output is a volume of 192 × 192 × 200 of real

values. This architecture is shown in Fig. 4a. As it can

be observed, the network has an encoding/decoding struc-

ture where a set of convolutional layers are firstly used to

compute a feature representation of fixed dimension. This

representation is further processed back to the spatial do-

main, re-establishing spatial correspondence between the

input image and the output volume. Features are hierarchi-

cally combined from different resolutions to make per-pixel

predictions. The second hourglass is used to refine this out-

put, and has an identical structure to that of the first one.

We train our volumetric regression network using the

sigmoid cross entropy loss function:

l1 =

W∑

w=1

H∑

h=1

D∑

d=1

[Vwhd log V̂whd+(1−Vwhd) log(1−V̂whd)],

(1)

where V̂whd is the corresponding sigmoid output at voxel

{w, h, d} of the regressed volume.

At test time, and given an input 2D image, the network

regresses a 3D volume from which the outer 3D facial mesh

is recovered. Rather than making hard (binary) predic-

tions at pixel level, we found that the soft sigmoid output is

more useful for further processing. Both representations are

shown in Fig. 5 where clearly the latter results in smoother

results. Finally, from the 3D volume, a mesh can be formed
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(a) The proposed Volumetric Regression Network (VRN) accepts as input an RGB input and directly regresses a 3D volume completely

bypassing the fitting of a 3DMM. Each rectangle is a residual module of 256 features.
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(b) The proposed VRN - Guided architecture firsts detects the 2D projection of the 3D landmarks, and stacks these with the original

image. This stack is fed into the reconstruction network, which directly regresses the volume.
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(c) The proposed VRN - Multitask architecture regresses both the 3D facial volume and a set of sparse facial landmarks.

Figure 4: An overview of the proposed three architectures for Volumetric Regression: Volumetric Regression Network (VRN),

VRN - Guided and VRN - Multitask.

by generating the iso-surface of the volume. If needed, cor-

respondence between this variable length mesh and a fixed

mesh can be found using Iterative Closest Point (ICP).

VRN - Multitask. We also propose a Multitask VRN,

shown in Fig. 4c, consisting of three hourglass modules.

The first hourglass provides features to a fork of two hour-

glasses. The first of this fork regresses the 68 iBUG land-

marks [22] as 2D Gaussians, each on a separate channel.

The second hourglass of this fork directly regresses the 3D

structure of the face as a volume, as in the aforementioned

unguided volumetric regression method. The goal of this

multitask network is to learn more reliable features which

are better suited to the two tasks.

VRN - Guided. We argue that reconstruction should

benefit from firstly performing a simpler face analysis task;

in particular we propose an architecture for volumetric re-

gression guided by facial landmarks. To this end, we train

Figure 5: Comparison between making hard (binary) vs soft

(real) predictions. The latter produces a smoother result.

a stacked hourglass network which accepts guidance from

landmarks during training and inference. This network has

a similar architecture to the unguided volumetric regression

method, however the input to this architecture is an RGB

image stacked with 68 channels, each containing a Gaussian

(σ = 1, approximate diameter of 6 pixels) centred on each



Figure 6: Some visual results from the AFLW2000-3D

dataset generated using our VRN - Guided method.

of the 68 landmarks. This stacked representation and archi-

tecture is demonstrated in Fig. 4b. During training we used

the ground truth landmarks while during testing we used a

stacked hourglass network trained for facial landmark local-

isation. We call this network VRN - Guided.

3.4. Training

Each of our architectures was trained end-to-end using

RMSProp with an initial learning rate of 10−4, which was

lowered after 40 epochs to 10−5. During training, ran-

dom augmentation was applied to each input sample (face

image) and its corresponding target (3D volume): we ap-

plied in-plane rotation r ∈ {−45◦, ..., 45◦}, translation

tz, ty ∈ {−15, ..., 15} and scale s ∈ 1 − {−0.15, ..., 0.15}
jitter. In 20% of cases, the input and target were flipped

horizontally. Finally, the input samples were adjusted with

some colour scaling on each RGB channel.

In the case of the VRN - Guided, the landmark detection

module was trained to regress Gaussians with standard de-

viation of approximately 3 pixels (σ = 1).

4. Results

We performed cross-database experiments only, on 3 dif-

ferent databases, namely AFLW2000-3D, BU-4DFE, and

Florence reporting the performance of all the proposed

Table 1: Reconstruction accuracy on AFLW2000-3D, BU-

4DFE and Florence in terms of NME. Lower is better.

Method AFLW2000-3D BU-4DFE Florence

VRN 0.0676 0.0600 0.0568

VRN - Multitask 0.0698 0.0625 0.0542

VRN - Guided 0.0637 0.0555 0.0509

3DDFA [28] 0.1012 0.1227 0.0975

EOS [8] 0.0971 0.1560 0.1253

networks (VRN, VRN - Multitask and VRN - Guided)

along with the performance of two state-of-the-art methods,

namely 3DDFA [28] and EOS [8]. Both methods perform

3DMM fitting (3DDFA uses a CNN), a process completely

bypassed by VRN.

Our results can be found in Table 1 and Figs. 7 and

8. Visual results of the proposed VRN - Guided on some

very challenging images from AFLW2000-3D can be seen

in Fig. 6. Examples of failure cases along with a visual

comparison between VRN and VRN - Guided can be found

in the supplementary material. From these results, we can

conclude the following:

1. Volumetric Regression Networks largely outperform

3DDFA and EOS on all datasets, verifying that directly

regressing the 3D facial structure is a much easier prob-

lem for CNN learning.

2. All VRNs perform well across the whole spectrum of

facial poses, expressions and occlusions. Also, there are

no significant performance discrepancies across differ-

ent datasets (ALFW2000-3D seems to be slightly more

difficult).

3. The best performing VRN is the one guided by detected

landmarks (VRN - Guided), however at the cost of higher

computational complexity: VRN - Guided uses another

stacked hourglass network for landmark localization.

4. VRN - Multitask does not always perform particularly

better than the plain VRN (in fact on BU-4DFE it per-

forms worse), not justifying the increase of network

complexity. It seems that it might be preferable to train

a network to focus on the task in hand.

Details about our experiments are as follows:

Datasets. (a) AFLW2000-3D: As our target was to

test our network on totally unconstrained images, we firstly

conducted experiments on the AFLW2000-3D [28] dataset

which contains 3D facial meshes for the first 2000 images

from AFLW [12]. (b) BU-4DFE: We also conducted ex-

periments on rendered images from BU-4DFE [27]. We

rendered each participant for both Happy and Surprised ex-

pressions with three different pitch rotations between −20
and 20 degrees. For each pitch, seven roll rotations from

−80 to 80 degrees were also rendered. Large variations in

lighting direction and colour were added randomly to make

the images more challenging. (c) Florence: Finally, we
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Figure 7: NME-based performance on in-the-wild ALFW2000-3D dataset (left) and renderings from BU-4DFE (right). The

proposed Volumetric Regression Networks, and EOS and 3DDFA are compared.
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Figure 8: NME-based performance on our large pose ren-

derings of the Florence dataset. The proposed Volumetric

Regression Networks, and EOS and 3DDFA are compared.

conducted experiments on rendered images from the Flo-

rence [1] dataset. Facial images were rendered in a similar

fashion to the ones of BU-4DFE but for slightly different

parameters: Each face is rendered in 20 difference poses,

using a pitch of -15, 20 or 25 degrees and each of the five

evenly spaced rotations between -80 and 80.

Error metric. To measure the accuracy of reconstruc-

tion for each face, we used the Normalised Mean Error

(NME) defined as the average per vertex Euclidean distance

between the estimated and ground truth reconstruction nor-

malised by the outer 3D interocular distance:

NME =
1

N

N∑

k=1

||xk − yk||2
d

, (2)

where N is the number of vertices per facial mesh, d is

the 3D interocular distance and xk,yk are vertices of the

grouthtruth and predicted meshes. The error is calculated

on the face region only on approximately 19,000 vertices

per facial mesh. Notice that when there is no point cor-

respondence between the ground truth and the estimated

mesh, ICP was used but only to establish the correspon-

dence, i.e. the rigid alignment was not used. If the rigid

alignment is used, we found that, for all methods, the error

decreases but it turns out that the relative difference in per-

formance remains the same. For completeness, we included

these results in the supplementary material.

Comparison with state-of-the-art. We compared

against state-of-the-art 3D reconstruction methods for

which code is publicly available. These include the very re-

cent methods of [28], called 3DDFA, and [8], called EOS 1.

5. Importance of spatial alignment

The 3D reconstruction method described in [4] regresses

a 3D volume of fixed orientation from one or more images

using an LSTM. This is different to our approach of taking

a single image and regressing a spatially aligned volume,

which we believe is easier to learn. To explore what the

repercussions of ignoring spatial alignment are, we trained

a variant of VRN which regresses a frontal version of the

face, i.e. a face of fixed orientation as in [4] 2.

Although this network produces a reasonable face, it is

capable of capturing diminished expression, and the shape

for all faces appears to remain almost identical. This is very

noticeable in Fig. 9. We also show a numeric comparison

in Fig. 7 (left), as VRN without alignment. We believe that

this further confirms that spatial alignment is of paramount

importance when performing 3D reconstruction in this way.

1For EOS we used a large regularisation parameter λ = 5000 which we

found to offer the best performance for most images. The method uses 2D

landmarks as input, so for the sake of a fair comparison a stacked hourglass

for 2D landmark detection was trained for this purpose. Our tests were

performed using v0.12 of EOS.
2 We also attempted to train a network using the code from [4] on down-

sampled versions of our own volumes. Unfortunately, we were unable to

get the network to learn anything.



Figure 9: Result from VRN without alignment (second

columns), and a frontalised output from VRN - Guided

(third columns).

6. Ablation studies

In this section, we report the results of experiments aim-

ing to shed further light into the performance of the pro-

posed networks. For all experiments reported, we used the

best performing VRN - Guided.

Effect of pose. To measure the influence of pose on the

reconstruction error, we measured the NME for different

yaw angles using all of our Florence [1] renderings. As

shown in Fig. 10, the performance of our method decreases

as the pose increases. This is to be expected, due to less of

the face being visible which makes evaluation for the invis-

ible part difficult. We believe that our error is still very low

considering these poses.

Effect of expression. Certain expressions are usually

considered harder to accurately reproduce in 3D face re-

construction. To measure the effect of facial expressions

on performance, we rendered frontal images in difference

expressions from BU-4DFE (since Florence only exhibits a

neutral expression) and measured the performance for each

expression. This kind of extreme acted facial expressions

generally do not occur in the training set, yet as shown in

Fig. 11, the performance variation across different expres-

sions is quite minor.

Effect of Gaussian size for guidance. We trained a VRN

- Guided, however, this time, the facial landmark detector

network of the VRN - Guided regresses larger Gaussians

(σ = 2 as opposed to the normal σ = 1). The performance

of the 3D reconstruction dropped by a negligible amount,

suggesting that as long as the Gaussians are of a sensible

size, guidance will always help.
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Figure 10: The effect of pose on reconstruction accuracy in

terms of NME on the Florence dataset. The VRN - Guided

network was used.
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Figure 11: The effect of facial expression on reconstruction

accuracy in terms of NME on the BU-4DFE dataset. The

VRN - Guided network was used.

7. Conclusions

We proposed a direct approach to 3D facial reconstruc-

tion from a single 2D image using volumetric CNN regres-

sion. To this end, we proposed and exhaustively evaluated

three different networks for volumetric regression, report-

ing results that show that the proposed networks perform

well for the whole spectrum of facial pose, and can deal

with facial expressions as well as occlusions. We also com-

pared the performance of our networks against that of recent

state-of-the-art methods based on 3DMM fitting reporting

large performance improvement on three different datasets.

Future work may include improving detail and establishing

a fixed correspondence from the isosurface of the mesh.
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