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Abstract. We calculate O(c~s) corrections to large Pr 

double photon production in hadronic collisions. We 
find that these corrections to the basic qq ~ 77 subpro- 
cess are important, preventing to describe double 
photon production on the basis of the leading logar- 
ithm approximation only. We give a phenomenolog- 
ical discussion of the results obtained at SPS, ISR and 
SpOS energies. In particular, we investigate how the 
effect of the intrinsic parton < ~c r )  may be disentangled 
from the perturbative contribution. We also calculate 
the aplanarity distribution characteristic of 3 jet events. 

I. Introduction 

Prompt 7 production in hadronic collisions has been 
emphasized [1,2] in recent years as providing a 
detailed test of QCD. It is thus natural to investigate 
2 - 7  production in the same theoretical context. As 
early as 1971, Berman et al. [3] discussed the QED 
annihilation subprocess q q ~ ? 7  which has the 
remarkable feature of being proportional to the 4th 
power of the quark charge. This observation stimu- 
lated further interest in studying and measuring 2 - 7  
production in hadronic collisions. 

This lowest order picture was investigated with the 
aim of getting informations on various fundamental 
features: 

(i) Quark charges: the integer charge models [4] 
predict considerably higher values than the standard 

q q ~ 77 subprocess with fractional charges. 

1 Laboratoire associ6 au Centre National de la Recherche 
Scientifique 

--(ii) The value of es: comparing 2 - V production, via 
qq--* 77, to single 7 inclusive production was proposed 
as a means of extracting ct s. Sticking to lowest order, 
this comparison is meaningful only if one gets rid of the 
less well-known QCD Compton q9 ~ q? contribution 
in single 7 production which involves the gluon 
structure function. This may be done by measuring 
differences of cross-sections such as ~ ( g - p ~ T x ) -  

a(g+p ~?x)  which isolates the QCD fusion diagram 

qft-- '79. 
--(iii) The primordial parton momentum might be 
estimated by investigating the PT balance of the 2 
opposite photons. 

(iv) The higher order box diagram 99--*7,/ was 
singled out as being a possibly important source of 
double photons in specific kinematic configurations 
[5]. 

An important piece of work remaining to be done is 
obviously to perform a detailed analysis, in the QCD 
framework, of the various contributions which should 

be considered in addition to qq~77 (and 99--*77)- 
Recently, the bremsstrahlung contributions where 
photons are radiated from final state partons such as 

qg ~ 7(q ~ 7), qq ~ ?(g ~ J ,  have been calculated [2] in 
terms of the so-called "anomalous" quark and gluon 
fragmentation functions into photon [6]: Dwq(Z, Q2) 

and D~/o(z, Q2). Due to the well-known behaviour of the 
D s: ~ a/~s(Q2), these anomalous terms contribute to 
the same order as qfl -~ 77 in the leading logarithm (LL) 
approximation. The largest contribution obviously 
comes from photons radiated off quarks; at SPS and 
ISR energies, it may be substantial in ~+p and pp 

collisions. 
This is not, however, the full story: what about 

beyond leading logarithm (BLL) contributions? The 
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aim of this paper is to analyze them, calculating the 

contributions of next-to-leading order diagrams: real 
emission diagrams qgl~?T9, qg~q?7  and virtual 

corrections to qq--*7?. 
Calculations are performed along the same line as 

for the corrections to the double inclusive cross-section 
a(?p~Thx) [7]. We shall consider the cross-section 

da/dpr, dyl dz where Pr,,  Yl label the transverse mom- 
entum and rapidity of the trigger 7 in the hadron 

hadron C M S  z is defined as: z = - P T d P r f P r ? ,  PT2 
being the transverse momentum of the opposite-side 
photon. (This definition of z reduces in the case of the 

Born term q~--,~,? and of bremsstrahlung contri- 

butions to the usual z = PrJPr,). We shall also calcu- 

late da/dpr,dyl  (:~min)= ~ (da/dpTldyldz) dz, 
Zmin 

summing on photons with z > Zmi.- 
We find that next-to-leading order diagrams con- 

tribute important corrections to the above defined 

cross-sections, with respect to qq-* 77, so that double 
photon production cannot be described on the basis of 

the LL approximation only. 
The choice of the variable z, to characterize the 

second photon, and of the corresponding observables 
is adapted to the experimental situation where one may 
look for photons which recoil against the photon 
trigger with a given fraction of its transverse momen- 
tum. It also has the advantage that the various effects to 
be studied have a different pattern when varying z: the 

basic qq--, 7~' sub-process has a contribution peaked at 
z = 1; the O(c~) corrections modify this picture, con- 
tributing substantially away from z = 1 (the LL contri- 
bution corresponding to qg--*7(q--*;~) also contributes 

at z 4= 1 but with smaller magnitude and different 

shape). 
In a recent preprint [8], Gilmour chooses to calcu- 

late the contribution ofqq --* )~Tg + virtual diagrams to 
the cross-section d~/d.Q~ d~ measuring the number of 

y's which recoil against a photon produced at angle 0a 
with respect to the initial beam, the 27 invariant mass 
being fixed to M 2 = rS. In this case, the specific pattern 
of O(G ) corrections disappears completely and the only 

prediction is the ratio of the correction to the lowest 
order term. There is no simple way to relate this 

prediction to ours. 
The discussion of points (i)-(iii) is better founded but 

more complex when considering BLL corrections. In 
particular extracting G goes through comparing the 

experimental ratio [a(Tc p ~ T y X ) - a O z + p - *  
yyx)] / [a(r t -p~yx) -aOz+p-*yx)]  to the theoret- 

ical estimate which takes the form r=(ct/G{Q2))(ro+ 
G(QZ)rl + O{a~)). Another consequence of the pre- 

sence of these large corrections is that the discussion of 

the intrinsic parton primordial (~cr) gets more deli- 
cate: one has to disentangle the effect of (~c r )  from the 

contribution of O(G) corrections in configurations 
when the 2 photons have unequal pr's; so that extract- 
ing the value of (KT) from a measure of the lack of 

balance of the 2 photon transverse momenta is no 

longer a simple task. 
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For completeness, we shall also calculate the 

aplanarity distribution: da/dpT , dy~ d lPoutl, character- 
istic of 3 jet events, where Pout is the momentum of the 
photon 72 perpendicular to the plane where the initial 
hadron and trigger photon momenta lie. 

Let us finally mention that the interest of studying 27 
production is updated by the fact it may provide an 

important background for rare events at very high 

energy colliders [9]. 

The outline of the paper is the following: the BLL 
calculation is presented in Sect. II which starts by 
recalling the main features of the LL calculation. 
Section III is devoted to numerical results and dis- 

cussion of the phenomenology at SPS, ISR and Spas 
energies. Section IV deals with the calculation of the 

Po,t distribution: da/dpr, dyldlPoutl. Section V is de- 
voted to the conclusion. 

II. Formalism: Leading Log and Beyond Leading 
Log Contributions 

The first part of this section will be devoted to recalling 
the main features of the calculation of the QED 
annihilation subprocess and of the other leading 

logarithm (LL) contributions associated to photon 
bremsstrahlung offpartons. The second part will dwell 

on the BLL calculation. 

1. QED Annihilation + LL Photon Bremsstrahlung 

These calculations have already been reported by 
Berger et al. [2]. Here we shall only consider single 

photon bremsstrahlung (double bremsstrahlung 
contributions are calculated in [2] and found as 

expected to be very small) and give the main formulae 
for completeness. 

We calculate the double inclusive cross-section for 

observing a large PT photon 71 with transverse momen- 
tum and rapidity Pr,, Y~ (in the CMS in the direction of 

the beam) together with a photon 72 in the opposite 
hemisphere, with fraction z of the trigger transverse 

momentum: z = PrjPr,; z may be larger than 1 if the 
trigger photon is radiated off final partons. 

In the case where the trigger photon is directly 

produced, the double inclusive cross-section is written, 
within the framework of the QCD improved parton 
model (neglecting primordial parton (~Cr)) as: 

da 
dpT,dyldz(hthz  --* 7 t 72 X) 

= 1 Z ~dx,  dx2 G,/h, (x,, O2)Gb/n2(x2, Q2) 
abd 

^da 
�9 s ~ ( a + b - - , 7 1  +d)D,2/a(z, QZ)b(~+{+a). (1) 

The Mandelstam variables of the hadronic reaction are 

defined as S = (Ph, +Phz) 2, T = (Ph, _p~,)2, U = (Ph2-- 
p~,,)2; for the subprocess, g=(p,+pb)  2, i '=(p , - -p~)  2, 
fi = (pb-- p~,) z SO that g = xl x2S, t = x 1T, fi= x2 U. The 
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q 

Y'a.~ "(~2 + 1 _~ =2 

Fig. 1. QED annihilation diagram qq-~Y7 

choice of Q2 is arbitrary at the LL level. We shall show 
below how this arbitrariness is partly removed by 
including BLL corrections. 

We shall consider the case where the hadrons h~, h 2 
are protons, antiprotons and pions. The definition of 
the partonic distributions will be discussed later on. 

la) QED Annihilation 

The contribution of q q ~ 7 7  (Fig. 1) is obtained by 
putting D~2/d(Z, Q 2 ) =  6(1-z)  in (1). Integrating on x~, 

we find: 

dr7 QED 1 a 

dpTflyadz n q -r/(s+v) 

dx 2 
"x zS + T { Gq/h' (x ~ , QZ)G q/n2 ( X 2, Q2) 

2 da 
+ Gq/h,(Xl, QZ)Gq/h~(x2, Q )} ~ ( q q ~ 7 7 ) ,  (2) 

with 

x 2 U 
x 1 - -  

xzS + T 

and 

da 2na2e: 1 (fi_+T_~ 

~ - ( q q ' 7 7 ) =  ~- N c \ t "  a / "  

Ib) Photon Bremsstrahlun9 

The single 7 bremsstrahlung processes are: 9 q ~  
?(q~v) and q ( l ~ 7 ( g ~ v )  (Fig. 2). They yield correc- 
tions which are of the same leading order as qq~77  
since the anomalous fragmentation functions behave 
as ~/~jQ2). For z < 1, the corresponding contribution 
is calculated using (1). The functions D~/q(z,Q 2) and 
D~/o(z ' Q2) describe the fragmentation of quarks and 
gluons into photons. They are calculable in QCD [6] 
and parametrizations of the LL expressions are avail- 
able [10]. 

In the case z >  1, corresponding to the trigger 
photon 71 being a bremsstrahlung photon, the double 
inclusive cross-section is given by 

da 
dpr ,dy l  dz (hi h2 ~ 7172X) 

g 

Fig. 2. The single ~ bremsstrahlung processes 

(:) �9 s ~ ( a  + b ~ 72 + d)D~,/a , Q2 

�9 O(z - 1)6(~ + t '+ a) (3) 

with ~= x lxzS ,  F=(p,--p~2)Z =(pb-- pa)Z= xaUz,  
fi = x l T z .  The QCD subprocess cross-sections 

da/d t (qg~qT)  and d a / d T ( q q ~ v g )  are given in Ap- 
pendix A. 

Due to the trigger bias effect, the contribution for 
z > 1 is much smaller than for z < 1. On the other 
hand, the gluon fragmentation into photon contributes 
little. 

As was pointed out by several authors [5], the higher 
order diagrams 99--*77 may lead to an important 
contribution in specific kinematic situations. Similarly 

to q q ~  77, it corresponds to equal PT configurations 
for the 2 photons. We refer the reader to [2] for useful 
formulae and postpone the discussion of this contri- 
bution to Sect. III. 

2. Beyond Leading Logarithm Contributions 

The technique of such calculations is inspired from the 
method we have already developed in calculating BLL 
corrections to the double inclusive cross-section 
da(~P-~hX)/dprdydx h for observing a large Pr photon 
together with a hadron h in the opposite hemisphere 
with fraction Xn of the trigger transverse momentum 
[7]. 

In the present case, we shall perform the calculation 
of BLL corrections corresponding to the higher order 
diagrams drawn in Fig. 3: qq~Y79+interference 
terms between lowest order and virtual O(~) correc- 

tion to q q ~ 7 7 ,  and qg~q77 .  
Let us start, as usual, from the parton model 

expression for the double inclusive cross-section: 

da ~ 

dpr, dyldZ 

where z is 

- 6 (1  - Z 

i=q,q 

~da 
�9 s ~ ( i  + l'"~ 71 + 72)6( ~ -[- i'q- ~), (4) 

defined in the CMS system as z - -  



462 

(o) 

q ( P ) Z Y ' ( k ' )  ~ :  ' ~ ) ' :  

+1= ~2 

+ 1..--~2 

g(u;) Y~ (k2) 

q(P) q(V) 

+1..-...2 

Fig. 3. a real and virtual O(G) diagrams with q~ initial partons, b 
real O(e~) diagrams with gq initial partons 

- -  PT2 "PrJP 2, and the G~ are bare par ton  distr ibution 

functions. Including par ton  cross-sections to order  G, 

corresponding to d iagrams of Fig. 3, leads to 

da da ~ dff 1 
v (5) 

d p r f l y l d z  - d p w , d y l d z  d p T , d y l d z '  

with 

da a 1 dx2 o o 
d p r , d y , d  z - -~ ~ IdX,~s-Gi/nl(Xl)G~/h~(X2) 

i=q,cl 

" ~  O(s + [+ a)k,~(~, {,, a, z) 

~dxx ~ G i / h ,  (xl)G2/h~(x2) 
o o 

*, "= , S 

" ~ O ( s  + t +  u)kij(s, t, u, z), (6) 

where k and k' refer to contr ibut ions of Figs 3a and b 

respectively, with q0 and q9 initial partons.  ~, is a short  

hand nota t ion  for ~,(tt2), /~ being an arbi t rary  scale 

introduced through dimensional  regularization, and 

will be used from now on. The expressions for k and k' 

contain singular terms which can be factored out and 

absorbed  in the bare distributions, building the scaling 

violating par tonic  distr ibutions which depend on a 

large factorizat ion scale Q2 [11]. F rom now on, we 
take p 2 =  Q2; the specific definition of Q2 will be 

discussed in Sect. III .  This procedure  leads to: 

da = da lee~ + da ~BLL~, (7) 
d p r , d y l d z  

where da ILL) is the full leading logar i thm contr ibut ion 

( Q E D  +bremss t r ah lung )  calculated in 1.) and the 
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beyond  leading logar i thm correct ion da taLL) is given 

by: 

4- t/rr(BLL) (8) d 0 "(BLL) = d 0"~ BLL) -- . ~qo ' 

and 

dff~ BLL) 1 

Z f d X 1  
dpTf lY l  dz ~i=q,F:l 

d x 2  X 
�9 ; Gi/h,( 1,QZ)G~/hz(XE,Q 2) 

S 

a~(Q2) 0(g + i '+  fi)K,~(~, {,, a, Q2, z), (9) 
2n 

where K is now free f rom singularities. An analogous 
(BLL) formula  holds for d%o . 

Let us introduce the variables V, W [12] to describe 
the hadronic  cross-section: W = - U/(S + T), V = 
1 + T/S. The par ton  process is described correspond-  

ingly by variables g, v, w. Expressing xl  and x2 in terms 

of v, w: 

V W  1 - V  
x l -  , x 2 -  , (10) 

vw 1 - /2  

equat ion (9) is easily rewritten as: 

d ff~ LL' 1 1 v 

d p r , d y l d Z - n .  4 ~ ~ dv 
lJTI i=q,(l VW 

1 

S dwxlGi/hl(Xl ,Q2) 
VW/v 

. X 2 Gr/h2 (X2 ' QZ)g/22 w(1 - 12) 

~s(O2) K "g 
" 2~  '~ ' v ' w ' z ' Q 2 ) "  (11) 

In the case of drr(BLL) kinematics is somehow com- ~ q g  

plicated by the lack of symmet ry  between quark and 

gluon. At the par ton  level, we shall define the kinema-  
tics as { = ( P o -  P~x) 2' /~ = (pq_p~,)2 so that  in the case 

where we consider the gluon in had ron  h2, relations 

(10) between x l ,  x2 and v, w should be replaced by: 

V W  1 - V  
-- X 2 -- , (12) 

X1 1 - -  V ~ UW 

~(BLL) we then write doqg as the sum of 2 terms: 

drr(BLL) 
-qo - da (1) (13) 

d p T , d y l d  z - +d~ 

with 

1 1 v 1 

d ~  s Jwdlv~w v d W X 1 G g / h l ( X l ' Q 2 )  
VT1 i=q,(t / 

.xzGi/h2(Xz,Q2)gv2w(1 ,G(Q2) 
-/2~ 2 ~  

K'oi( ~, /2, w, z, Q2), (14) 

where x l ,  x2 are given by (10) 
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and 

1 1 1 - V W  1 

E 
IJTli=q,71 1 - V  (1 -V) / v  

"xzGo/h~(X2 QZ)gvZw(1 ,G(Q2) , --V) 

�9 K',,(~, v, w, z, Q2), (15) 

where x~ and x2 are given by (12) 
In order to extract the genuine higher order correc- 

tions K~r and K'o, from the perturbative expressions of k~ 
and k'0,, one has to use the implications of factorization 
and as explained at length in [12, 7], introduce a choice 
of definitions for the distribution functions. 

2a) Definition of the Partonic Distributions 

In the case of qq~yyg,  the singular terms which we 
encounter and which should be subtracted and absor- 
bed in the bare distributions are associated with the 
quark and antiquark distributions. 

On the other hand, in the case of qg~qTY, the 
singular terms are linked to the quark fragmenting into 
photon and to the quark distribution. 

Let us briefly recall the difference between the 2 usual 
conventions for the definition of the parton distri- 
butions inside the nucleon�9 In deep inelastic scattering, 
the quark distribution in the nucleon, calculated 
perturbatively to order G is written as: 

0~ 1 1 

Gq/p(x, Q2) = GO/p(X) + ~_S ~dy~dz6(zy_ x) 
ZT[ '0  0 

�9 {G~ Q2) + GO/p(y)Hqo(Z, Q2)}, (16) 

where Hqq (Hqo) are given [13] by the sum of a singular 
term and of a finite O(~s) contribution*: 

O~s 2 1 a s 
~Hqqq(Z, Q ) = - ~P~q(Z)  

(4~# 2 "~ F ( 1 -  e) 
+ + 

qg (17) 

The non singular O(G) term depends on the choice of 
the factorization convention�9 The non universal con- 
vention [13, 14] requiring that all higher order correc- 
tions to the deep inelastic scattering structure function 
F z are absorbed in the definition of the parton 

distributions, leads tof~q ~ 0 [13]. On the other hand, 
q0 

the universal convention [16] corresponds tO fqq = O. 
qg 

The choice of the non universal convention is conve- 
nient for quark distributions extracted from deep 
inelastic data in the LL approximation. Concerning 
the anomalous fragmentation functions of quarks and 
gluons into photons, we use in (1) and (3) the available 
parametrization [10] to theoretical leading logarithm 

* The mass singularities are regularized by working in the dimen- 

sional regularization [15] scheme with the number  of space- t ime 

dimensions n = 4 - 2e 
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QCD expressions [6]. Therefore, to order ~s, we 
consistently remove the collinear singularities, in the 
perturbative calculations by factorizing the 

distribution: 

- 2 1 ~ n , , / / 4 g / ' t z ' ~  e F ( 1 - - g )  
] (18) 

2b) Extracting the BLL Correction from Perturbative 
Expressions 

Comparing (5) and (7) and using (16)-(18), we write 
down the relations implied by factorization between 
K(K') and the perturbative expressions k(k'): 

~s g A 
qq (S'U' W ' Z '  Q~2) 

O~ s 
- 2 ~  kq~(~, v, w , z )  

qqkl- w '0/ 

" dv \ l  

~ Hqq(W, ~ - z) (19) 2~ Q 2 ) ~  (ws'v)6(1 " 

Similarly, we find: 

�9 

G ( 1 -  dtT~ t ivH~q(Z, Q2) (g, v)6(1 - w) 
2g ) 

( 1 d a  q+q~+7 
- ~ - - G . ( w . & )  =-  ( w ~ , v ) 6 ( 1 - z )  , 

J Z7[ ( D W  a t )  

(20) 

where zl = 1/(1 - v + vw). 
The n dimensional expressions for the various Born 

terms (da/dv)(s, v) appearing in (19) and (20) may be 
found in Appendix A. Notice in (20) the singular term 
3(zl - z) corresponding to collinear kinematics for the 

trigger photon Yl radiated off the final quark. 
Let us finally remark that the total spectrum given 

by (7) using (19) and (20) does not depend o n  Q2 t o  

order ~: this is a result of factorization [11]. For 
instance, the Q2 dependence of the scaling violating 

distributions, expressed to order ~s through (16) is 
cancelled by a corresponding term in Kq~ (19). The 
distributions which enter (7) have, however, an implicit 
Q2 dependence to all orders in as which leaves us 
with a Q2 dependence of the final result. Although 
cancelling a large part of the arbitrariness in the choice 
of Q2, compared to the LL approximation, the inclu- 
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sion of BLL corrections does not completely remove it. 
This will be discussed later on in Sect. III. 

2c) Calculation o f  k and k' 

The variable z describes the double inclusive cross- 
section both at the hadronic and at the partonic level. 
We may write the perturbative expression k as the sum 

of O(as) virtual elastic and real inelastic partonic cross- 
sections: 

1 do-Virtual 

~k(~ ,  v, w, z) = v dv ( ~ , v ) b ( 1 - w ) b ( 1 - z )  

1 dr7 q+q~'+y+g 
+ (g , v ,w , z )O(1 -w) ,  (21) 

v d v d w d z  

and similarly for k': 

as , I d a  ~ 
~ k ( g , v , w , z ) =  (g,v,w,z)O(1 - w ) .  (22) 

v d v d w d z  

The inelastic contribution is obtained by integrating 
the matrix element squared corresponding to real 
diagrams drawn in Fig. 3 on appropriate phase-space 

(see Appendix B). In addition to singular functions in w, 
it contains singular functions in z: 6(1 - z), (1/(1 - z))+ 

�9 0(1 - z )  . . . .  and 6(zl - z), (1/(zi - z))+ O(zl - z) . . . .  in 
the case of q g ~ q y y .  The overall result is therefore 
rather involved. We shall treat k and k' separately, 
leaving technical details for Appendix B. 

i) Calculation of  the Inelastic Diayram q q ~ Y Y g  

contribution. It follows closely [7]. The invariants a~, b~ 

in terms of which the squared matrix element I M~ol 2 is 
calculated are defined as usual: 

al = p'kl ,  b i = p ' . k i ,  (23) 

with p'p'  = a 1 + a 2 + a 3 = ba + b 2 + b 3 = ~/2. Notice 

that a ~ - i ' / 2 ,  b ~ = - - ~ / 2 ,  a 2 + a 3 = ( ~ + t ) / 2  , b2+ 
b 3 = (g + fi)/2 and g + i '+ fi = (k 2 + k3) 2 = s 2 . 

It is easy to obtain IMqolZ= IM(qq---,?yg)l 2 from 
[M(y q--* yqg) l 2 by crossing applied to (36) of [7]. (The 

colour factor for the colour and spin averaged matrix 
element squared is now Ce/Nc.)  

Analogously to [7], it is convenient to define 

(p .p ' ) (k l .k2)- (k~.p)(p ' .k2)- (p .k2)(k l .p ' )  
Z =  

2(k~ "p)(k~ .p') 

(P" n')(kx'k2) - ( k i 'P ) (P"  k 2 ) -  (n'kz)(kx" n') 
(24) 

2(k~.P)(k~ .P') 

(where P = Phi, P' = Ph2), which is nothing else than z = 
- Pr~ "PrffP~l in a frame in which the incident hadrons 
are collinear and define the longitudinal axis 

(z = PrffPr: in the case of 2 ~ 2 kinematics as in part 1 
of this section). 

By keeping z > 0, we avoid the singularities due to a 2 
and b2 which vanish when z = 0. The requirement z > 0 

also constrains P2 to lie in the opposite hemisphere 
with respect to Yl. 
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We may define m such that z =- m.k2:m = (gkl + [p' + 
ap)ffa and m 2 = - ~ / { a ,  m . k l = - I  , m ' p = m p ' = O ,  

which leads to z = 1 - m . k  3. The variable z may thus be 
larger than 1 (recoiling 72 balanced by Yl + gluon). The 
maximum value of z is calculated in Appendix B: 

l l-_vw 

The n dimensional phase-space integrations which lead 
to da/dvdwdz are worked out in Appendix B. 

ii) Virtual Gluon Corrections to the Basic qgl-*77 

Subprocess. The O(G) virtual correction is obtained as 
the interference term of the Born diagrams (Fig. 1) and 
of the virtual diagrams of Fig. 3a. We show in 
Appendix A how starting from the corresponding 
expression for y q ~ y q  given in [7], we may perform 
appropriate crossing in order to get* (d~rvirtual/dv) (g, v): 

do.virtual 
dv (~,v)= aS Ce F ( 1 - e )  A 

2 n N c F(1 - 2e) F(s' 
v, 8) 

V ) 4 1  
.~(4n/~2Y[(__2 +l'~(1--v+~_ v +~ 

/ / l  --12 V x 2 2 

+ 3 1 n ( 1 - - v ) ) + 2 + 2 1 n v  + 2 I n ( I - v )  

3(1 ( v ) 2 
+ v - V ) ( l n v - l n ( 1 - v ) ) +  2 + ~  In v 

+ (2  + 1 vV) ln2(1  - v)}, (26) 

where 

V(g,v ,e)_2na2e~l~2 ~ 1 ( 4n/t 2 )~. 

I '(1 -- 8) k~v(1 -- v) 

Adding virtual and real contributions in (20), one 
readily verifies that the singular terms proportional to 
1/82 cancel. 

iii) The Calculation of  the Inelastic Diagrams qg--* 

qYY Contribution is done with the same matrix ele- 

ment as y q ~ y q g  [7] (up to the colour factor 1/(N~c- 1) 
for the completely colour and spin averaged 

matrix element squared). With a~ = p.ki,  bi = p"ki  (see 

Fig. 3b), we notice that p.p' = a i - a 2 - a 3 = - - b  1 + 

b2 + b 3 ,  al =g/2, a 2 = - a / 2 ,  b3 = ( g +  F+a)/2=s2/2.  
The definition of the variable z is changed however 

with respect to the Compton case since we now observe 
both photons. This leads to z = m.k  3 = 1 -  m.p' with 

m = (gk 2 § t p  § a k l ) / t a  and m'k  1 = m'p = O, m ' k  2 = 

--1. 

Integrating on phase space, collinear singularities 

associated with b~ = 0, b 2 = 0 are encountered corre- 
sponding respectively to singularities at z = I and z = 

z 1 = 1 / (1 -  v + vw). This last one which corresponds 

* As for Yq ~ 7q, there are no uv divergences. No  counter terms are 

needed 
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to collinear kinematics for the trigger 7x radiated from 

the final quark, is new with respect to the Compton 

case. So that the singularity structure of k' is somehow 

more complicated than for k (see Appendix B). (In this 

case there are no 1/e 2 terms at the level of inelastic 

contribution, in the absence of associated virtual 

terms.) 

We may now use (19) and (20) in order to calculate 

Kqq and Kqo, verifying that all singular 1/e terms cancel, 

leading, as expected, to finite BLL corrections. 

2d) Calculation of Double Inclusive Cross-Sections 

Using expressions (8)-(15) we obtain the (BLL) correc- 

tions to da/dpr~ dy~ dz. Due to the singular structure of 
K and K', these are, however, distributions in z, 

containing, as displayed in Appendix B, terms such as 

6(1 - z), 

( ' )  0(1 - z), O(z - 1), 6(z 1 - z), 
+ + 

"(zll  Z)+ 0(Z1 --Z)'(Z~Zl)+ 0(z- "71) .... 

These distributions are, of course, smoothed out as 

soon as the experimental resolution is taken into 

account. We shall thus define physical double inclusive 
cross-sections as: 

do- ~...~ do- 
~ ( ~ ' m i n ) =  - I dz dpT~dyxd z, (27) 

Zmin 
and 

do. 

dPr~ d y t d z ~d' 
Z) 

1 z . a ~ / 2  do. 

=-- d z ~_ !z/2dZ'dpr~ d y l dz , 

1 F do. ( z + ~ - )  
Az  LdOr, dyl 

1 dpT~dyl 

where A z defines some chosen binning, ~min is an 

arbitrary experimental cut and Zmax is the maximum 
value of z in the available phase-space. 

For :~mi, < 1, in order to use (27) (28), we have 
however to take care of the fact that the distributions 

1 / ( 1 - z ) + ,  1/(z t - z ) +  are defined in the integration 

range 0 < z < 1 and 0 < z < z 1 respectively. It is conve- 

nient to introduce more general distributions: 

(1/(1-z))~m~, such that 

f lz)dz  _ i II ) II1) az 
imJi.(1 -- Z)~mi, ~mi, 1--Z 

with 1/(1 - z)+ = 1/(1 - Z)~m~ + In (1 - Z m i n ) ~ ( l  - -  z) 

and similarly for 1/(z~ - z )+ .  For Zmi, > 1, the distri- 

bution 1/(z-1)+ 0 ( z - l )  is simply replaced by 
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1 / ( z - l )  which produces terms proportional to 

ln(~mi,-  1). 

These substitutions make explicit the presence of 

logarithmic singularities when i m i . ~  1"4-0, which 

indicates a breakdown of the perturbative approach; 

for Zmi . close to 1, these large logarithms should be 

resumed to all orders. 

III. Numerical Results 

We begin this section by describing the structure 

functions we use in our numerical calculations, as well 

as the factorization conventions we adopt when com- 

puting the BLL corrections. The scale in the structure 

functions and in the coupling constant 

12n 
~s(Q 2) - Q2,  A = 0.2 GeV, (29) 

251n~g 

is 

Q2 = p 2 .  (30) 

We postpone to the end of this section the discussion of 

the arbitrariness in the choice of the scale. 

For  the proton, the valence and sea quark distri- 

butions are taken from [ 17], and the gluon distribution 
from [18]. For the quark and gluon distributions 

within the pion, we use the parametrization given by 

Owens (set I of [19]). 

Since the proton distributions* are obtained from 

LL fits to the data [18,20], we have to use, for 

consistency, expression (17) with fqq and fqo given in 

[14]. For the pion, we adopt the same convention. The 

fragmentation functions D~/q and Dv/o are borrowed 
from Nicolaidis [10]. 

1. n - p ~ T X  at SPS energy 

The cross-section**da(~mi, = 0.5)/dprdy for the reac- 

tion n -  p ~ 77X is shown in Fig. 4 as a function of Pr 

at E~.AB = 300 GeV. The dotted curve is the Born con- 

tribution, whereas the full curve shows the totally 

corrected spectrum (Born + Box + LL + BLL contri- 

butions). The relative importance of the Box, LL and 

BLL contributions is shown in Fig. 5 where the ratios 

Box/Born, LL/Born and BLL/Born are plotted. The 

BLL/Born ratio is large and almost constant with Pr, 

whereas the Box and LL contributions are smaller and 

fastly decreasing with increasing Pr. Therefore in these 

energy and PT ranges, the BLL contribution is the most 
important correction to the Born term. 

It is interesting to look at the cross-section variation 

with z or 5mi n at fixed Pr; the integrated BLL correction 

daBLL(2mi,)/dprdy is shown in Fig. 6 and the differen- 

q=val 
* Strictly speaking, it is the definition F a = ~ Gq(x, Q2) which is 
used in [17,18]; this corresponds to a minor change in the functions 

f, p l  
** Pr and y is a shorthand notation for Pr, and Yl 
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Born term (fully corrected: Born + Box + LL + BLL contributions) 
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Fig. 5. Ratios Box/born (dotted), LL/Born (dashed), BLL/Born (full) 

as functions of PT for n-p--* yyX, El,  b = 300 GeV, y = 0 
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Fig. 6. do(i~i,)/dydpr as a function of ~?m~,, at pr=4 GeV/c for 

n - p ~ y T X  , E[~b=300 GeV, y = 0 .  The full curve is the total 

BLL contribution, the dotted curve corresponds to gq-*YYq, the 

dashed curve to the LL contributions 
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Fig. 7. do(Az)/dprdydz as a function of z at Pr = 4  GeV/c for 

n-P*yTX, E[~b= 300 GeV, y = 0  with bins dz=0.1 .  The full curve 

is the BLL contribution; the dashed curve is the contribution 

Born + BLL in the bin around z = 1 

tial spectrum da~LL(Az)/dprdydz (28) in Fig. 7 for 
PT = 4 GeV/c, For  this value of Pr and for s < 1, we 

obtain da  B~ (s pb/GeVZ/e 2. We 
notice that the integrated cross-sections strongly varies 

with Zm~,; on Fig. 6 the correction blows up when ~mi. 

goes to 1. This is due to the presence of the logarithmic 
singularities in the BLL corrections as discussed in 
Sect, II. Therefore our calculation to order O(cq) 

becomes no more reliable for Zm~. tOO close to 1 (when 
JdaaLL(y, ml,)/dpr dy] ~ daB~ ). We shall dis- 

cuss this limitation when considering the differential 

spectrum. 
Also shown on Fig. 6 are the LL contribution 

(dashed curve) and the contribution (dotted curve) to 

the BLL corrections coming from the "Compton 
graphs" (9q--* ~'q) alone; this latter is small. 

Let us finally notice that the BLL corrections are not 

sensitive to the inclusion or not of the functions ~ ( z )  in 

(17) (since they vary by less than 10%). 

The differential BLL correction is shown for a 
binning A z = 0.1 in Fig. 7; the correction is negative at 

z = 1. When the Born term is added, we get the dashed 
curve which is, together with the full line at z # 1, the 

fully corrected cross-section. (We have neglected the 
Box and LL contributions, the latter being non 

negligible only at small z). Without BLL corrections, 
we would get a large peak at z = 1 due to the Born term. 

The BLL correction widens the peak while decreasing 
its height. 

The corresponding curves for Pr = 2 GeV/c are 

shown in Figs 8 and 9. In Fig. 8 the contribution of the 
Box diagram (dotted line) is also included. These 
various contributions are now of the order of the Born 
term (dashed-dotted line) 

As remarked already in Sect. II, when Zmin is close to 
Zml. ~-- t an infrared sensitive region is approached. The 
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Fig. 8. Same as on Fig. 6 but  for PT = 2 GeV/c; the dot ted  (dash- 
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Fig. 9. Same as on Fig. 7, but for Pr  = 2 GeV/c  

BLL correction (Fig. 9) becomes negative and even 

larger in magnitude than the Born term. In the extreme 

limit of almost perfect resolution A z ~ 0 at z = 1, the 

leading behaviour of the differential cross-section (28) 

may be derived as 

dpTdydz ~7~o' Az d~rdYL 1-2~'Cvlnz 

+ O (cq In ~2z). (31) 

As it is familiar from other processes a double logar- 

ithm due to soft gluon emission [21] appears, indicat- 

ing that finite order perturbation theory breaks down 

for this specific configuration. Therefore resummation 

techniques have to be applied. When summing just the 

double logs (with fixed %) an exponential damping by 

exp [ -  2%/rt C r In 2 (A z/2)] of the above cross-section 

is to be expected. But because of this suppression semi- 

o 
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Fig. 10. Same as Fig. 9 but  wi th  a different b inn ing  Az  = 0.2. The 

dot ted  curve is the Born + Box + BLL con t r ibu t ion  in the bin 

a r o u n d  z = 1 

hard gluon emissions have to be taken into account 

and resummed, as it was first pointed out by Parisi and 

Petronzio [22] for the case of the transverse momen-  

tum distribution in the Drel l -Yan process. Corre- 

spondingly a sensible and non-vanishing da(Az)/ 
dprdydz at z = 1 would result even for very small 

values of A z. 
Since in this paper we concentrate on the O(~s) terms 

only, we consequently have to demand that the binning 

in A z does not become too small in order to prevent the 

breakdown of the finite order calculation. For the case 

with p r = 2  GeV/c (Fig. 9) the value A z = 0 . 1  is 

evidently too small. A larger binning is therefore 

required. Figure 10 shows the result for A z = 0.2. The 

prediction is now reliable, but a sharp resolution in z is 

lost. The dotted line in Fig. 10 is obtained by adding the 

Box term. 

Up to now, we have not taken into account the 

smearing due to the primordial transverse momentum 

KT of the incident partons. This latter also widens the 

Born term peak. It is therefore not easy to disentangle 

the smearing effect from the BLL corrections. 

We can estimate the effect of the primordial smear- 

ing on the Born contribution with the following simple 

model. The unsmeared Born term behaves as d aB~ 
6(1 -- z). Including parton primordial x r we obtain 

d~a~ ~ 6(P'T/PT -- Z) = 5((pr -- XTx)/PT -- Z) where 
the momenta  are defined in Fig. 11; we only consider 

the smearing in the scattering plane with ~CT~ being the 

sum of the parton transverse momenta.  We describe 

the effective XT distribution by 

dN Ae_A~Tx_~)2e A~,, (32) 
dK r 

which takes into account a few hundred Mev shift in 

the ~cr~ distribution due to the trigger bias. This yields 

d~r . . . . . .  d d N da B~ 

dz Tz 

/Ae-P~AI'-~-~/Pr (33) 
"qrc 
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Fig. 11. Primordial parton (~cr) 

Therefore the smeared Born term has a gaussian z- 

distribution which peaks at :~ = 1 - ~/Pr with a width 

at half-maximum 

6z = 2 . 3 6 / ~ .  (34) 

For  ( x 2 ) = l / A = . 5  GeVZ/c 2 [23] and pT=4 
GeV/c, we get fiz = 0.3 which is of the order of the 

perturbative width of Fig. 7. Notice that 6 z decreases as 

1/pr, which implies that the primordial x r effect is 

completely hidden at large Pr by the perturbative 

effect�9 
It is now clear that for a large binning with A z >> 6z, 

the effect of the smearing is negligible and the observed 

differential cross-section da(Az)/dprdydz can be 
directly compared to the perturbative calculation�9 On 

the other hand, to observe the primordial xr, we need 

a situation such that Wp<<fz, where Wp is the width of 

the perturbative peak at half maximum; then the width 

of the observed peak ofda(A z)/dpr dy dz around z = 1 

will mainly be due to the smearing. It seems however 

that the condition Wp << 6z is difficult to realize�9 Let us 

for instance consider the case with Pr = 4 GeV/c and a 
small binning of Az = 0.08, in order to get a good 

resolution of the perturbative peak (Fig. 12), still 

remaining in the validity domain of the O(~,) calcul- 

ation. This latter has a width Wp-~ 0.2 which is not 
small compared to the non-perturbative width 

6z"0.3. It is therefore difficult to disentangle the 

perturbative from the non-perturbative effect. 

2. pp--* 7yX at x/s = 63 GeV 

Turning now to pp scattering at ISR energy, we expect 

a structure of the corrections quite different from the 

n -  p case, because the relative importance of the quark- 

gluon initiated subprocesses is increased compared to 

the quark-antiquark one. We indeed verify, in Fig. 13, 

that the qg--*YTq correction has almost the same 

absolute value as the qgl-*YT9 correction, but with 

opposite sign. As a result, the total BLL correction is 

small. The LL terms are no more negligible and give an 

important contribution to the low z part of the 

differential spectrum (Fig. 14). In that figure, it is the 

total differential spectrum (Born + Box + L L +  

BLL) which is shown. 

With respect to the observation of the primordial x r,  
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Fig. 13. da(Ymi.)/dprdy is a function of ~m~, for pp--*yyX at pr=8 
GeV/c, y =0,  x/S = 63 GeV. The full (dotted) curve is the total 

(gq ~ YTq) BLL contribution; the dash-dotted (dashed) curve ?s the 

Born (LL) contbibution 

the situation is similar to that of the n - p ~ y y x  
reaction: the perturbative width is of the order of the 

non-perturbative one. 

3. p~--*TyX at x/s = 540 GeV 

At the collider energy and at Pr = 30 GeV/c, the 
predicted pattern of the corrections (Fig. 15) is similar 

to the one observed at SPS energy and PT = 4 GeV/c 

for n-p-,TyX. The cross-sections are however very 

small, because of the large value of Pr. 
It can be seen in Fig. 16 (where the Box and LL 

contributions are not included) that the perturbative 

width is rather large (Wp ~ 0.17) compared to the non- 

perturbative one (6 z = 0.04)�9 Therefore the observation 
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Fig. 14. da(dz)/dprdydz as a function of z for pp--*~,TX, at pr= 8 
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Box + LL + BLL) spectrum 
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Fig. 15. da(imi.)/dprdy as a function z-~i. for pp~,TX at pr=30 
GeV/c, y = 0, ~/S = 540 GeV. The full (dashed) curve is the BLL (LL) 
contribution. The dotted curve is the box-diagram contributions 

of  da(A z)/dprdydz would be a clear test of  the BLL 

corrections. 

4. Sensitivity with Respect to the Scale Q2 

Let us conclude this section by a discussion on the 

arbitrariness in the choice of the scale Q2 which 

appears in the structure and fragmentat ion functions. 

At the LL  level, this choice is arbitrary and some 

popular  choices are Q2 =p2, g, 2gt~/(g2+~ + u~). 

Once the BLL corrections are included, this choice is 

still arbitrary, but  there is now a compensat ion be- 

tween the Born + LL terms and the BLL terms. To 
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Fig. 16. dtr(Az)/dprdydz for pP~77X, pT=30 GeV/c, y=0,  
x/S = 540 GeV. Same conventions as Fig. 7. (Box and LL contri- 
butions are not shown) 

demonstra te  this compensation,  let us study the dif- 
ferential spectrum of the n-p---*7~X reaction da(A z= 

.1)/dprdydz in the bin a round  z = 1.(p T = 4  GeV/c 

and E = 300 GeV). Choos ing  the scale Qz = Cp~. and 

varying C between 0.5 and 16. (Notice that we keep Q2 

= p2 fixed in the coupling constant  ~s(Q2)), we find the 

Born contr ibut ion decreases by 40%, the BLL contri- 

but ion changes from - 1 . 4 6 . 1 0  -6  l~b/GeV2/c 2 to 

0.50" 10 -6 #b/GeV/c  2 whereas the total cross-section 

varies by 25%. 

IV. The P o u t  Distribution 

When discussing higher order  Q C D  contributions to 

h l h2 ~ 7172 X one is naturally led to predict hadronic  

jets in the final state in addit ion to the two photons,  and 

therefore non-coplanar  two-pho ton  events should be 

observed. The dominan t  subprocesses responsible for 

this are qCl~7Tg (Fig. 3a) and qg~7~q (Fig. 3b). 

Consequent ly  the expected rates are of order ~s. 

In more  detail, we present results for the aplanari ty 

distribution to be measured in terms of Pout, which is 

the m o m e n t u m  of the pho ton  72 perpendicular to the 

plane defined by the trigger pho ton  71 and the incident 

hadron.  Since the photons  should be in opposite 

hemispheres we require as before a cut on z =  

- Pr, 'Pr2/p2,  > imi,- For  Pout different from zero, the 
differential cross-section is then expressed in terms of  

the inelastic squared matrix elements IM(q~l~77g)l 2 
and IM(qg~),7q)l 2 described in Sect. II  (but here 
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Fig. 18. da/dpTdydlpo~,l for p ~ y y X  as a function of IPo~,l, 
~/S = 630 GeV, Pr = 30 GeV/c, y = 0 and z~i, = 0.5 

evaluated for e = 0): 

dtr(hlh 2 --* ~ 172X) 

dprdydlPout[ 

= 2 I ~ I d y '  f dzO(ko)6(k 2) 

Zmin 

2 2 PT 
~./~,(Xx, Q )G~/~(~,Q )(4~? 

a,b=q,g 

IM(a+b-+y~(pr ,y )+ Ta(pr~ = - zPT,Po~t,Y') 

+ c(k))l 2. (35) 

Resulting Pout distributions, are shown in Fig. 17 and 

18. These distributions diverge when IPo, tl = 0  and 
would need some regularization procedure. We thus 

expect our results not to be reliable for too small I Pout[. 

At SPS energies the reactions n - p ~ 7 7 x  and p p ~ 7 7 x  

P. Aurenche et al.: Large Pr Double Photon Production 

are compared at two values of the trigger Pr, Pr = 3 

and 6 GeV/c, and ~min = 0.5 (Fig. 17): the shape of the 

Pout dependence is the same, but the magnitudes of the 

cross-sections differ considerably, since n - p  is domi- 

nated by qgt~Tyg,  whereas p p ~ y ~ x  by q g ~ y y q .  In 

both cases we find an average value ( IPout [ ) -0 .5  

GeV/c (for 1Pout I > 0.2 GeV/c). 
When increasing the energy, and the PT of the trigger 

photon, the Pout distribution becomes broader. An 

example is given in Fig. 18 for p # ~ 7 7 X  at SpaS and 

Pr = 30 GeV/c. The corresponding average is 

(Ipoud) ~- 1.5 GeV/c, for [Pout[ > 0.5 GeV/c. 

IV. Conclusion 

We have presented a complete calculation of the large 

Pr double photon production in hadronic collisions. 

The emphasis is put on O(~s) corrections which turn 

out to be more important  than the leading logarithm 

contributions associated to bremsstrahlung photons. 

We choose to calculate z distributions 

da/dpTdydz (hlh2--*7172 X )  (z 2 = -- PT,'Pr2/PT,), which 
show specific pattern for the various contributions: 

Born, leading logarithm and beyond leading logarithm 

contributions. Roughly speaking, the BLL correction 

widens the peak associated with the Born term q ~ ~ 7 Y 

and decreases its height. We discuss, in detail, the 

structure of the corrections, showing in particular that, 

to order ~s, one is led to define smeared distributions 

with resolution A z or integrated distributions for z 

larger than a minimum experimental cut. In this last 

case, the ratio BLL/Born may be quite l a rge - -o f  the 

order of 50% in n - p  collisions. 

We give a rapid discussion of the primordial parton 

momentum ( x r ) ,  showing that the hope to measure it 

from the lack of PT balance of the 2 photons is 

destroyed by the importance of the perturbative correc- 

tions. This discussion should, however, be supplemen- 

ted, in order to compare theory to data, by a detailed 

calculation of the smearing effect due to ( x T ) .  This 

would in particular tell us the magnitude of the 

associated "enhancement factor" for the observed 

distributions; with the now conventional value ( x ~ )  

--~0.5 (GeV/c) 2, this, even at relatively low PT ~ 2 

GeV/c, should not be larger than 2, decreasing rapidly 

with PT. In the range of pr  where it is safe to neglect 

( x r ) ,  the measure of z distributions would provide a 

very interesting test of QCD (quark charges, value of 

~ . . . ) .  Finally, we also calculated aplanarity distri- 

butions characteristic of O(~) 3 jet configurations. 

Appendix A 

The cross-section for the subprocess q + q ~ 7  + 7 is 

given in 4 - 2e dimensions by 

do "q+~+7 1 2 4 

(g,v) = ~ c ~  e~F(g,v,e)To, (A.1) 
dv 

where v = 1 + i'/~ 
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with 

1 ( 4n/~2 "~ ~ 
F(g, v, e) = ~n-#2~F(ls - e ~  \ ~  -~v).] ' (A.2) 

and 

T0 = (1 - e,((1 - ~ ) ( U  + l ~ v )  -- 2e) .  (A.3, 

For q + c]-o 7 + g, the cross-section is written as: 

daq+q'r+~ C F  2 
(g, V) = ~caO~eq V (g, v, e) To. (A.4) 

dv 

For q + g ~ q + Y, let us define as usual ?= (Pa - p~)2, 
then 

daq+o~q+~ 
C 2 ctcqe2F(~,v,e)T'o, (A.5) 

dv (g, v) = N 1 

with 

T~ (l e)(  (l e) l + v2 ) ' = - - - - + 2 e  . (A.6) 
v 

Let us now indicate how (26) is obtained. We start from 
(34) of [7] which we write under a convenient form for 
crossing as: 

d f f  y+ q ~ '+ q  ots F(1 - -  /;) 2 4- 

dv ( g , v ) = ~ C F F ( l _ 2 e ) o e  eq 

:F(S, v, e) Re (~r f, fi)) (A.7) 

where ~r is a real analytic function given by: 

(~, t, a) 

= \  _ - - ~ - ] [ _ _ ~ - \ - ~  ~ ( 1 - 2 1 n ~ ) ) - - ~ 3  

+ - 3 + l n  ~ + 4 1 n  
- ~ a  u 

-- 7z2(2 + ~ ) - -  2 -  3 ~ l n ~ -  6 1 n ~ -  21n t 

_ + )ln 2 a 2 ? g 2 ? 

We may now write, performing the crossing g~--~?(with 
an overall minus sign since crossing a fermion line: 

d o  "virtual 0~ s Cv F ( 1 -  e) 2 4- 

d ~ ( g ,  v) . . . . . .  c~ eq 2n NcF(1  -- 2e) 

�9 F(:~,v ,e)Re[-d(~:~,a)] .  (A.9) 

yielding (26). 

A p p e n d i x  B 

The reader will be often referred to Appendix C of [7], 
which works out the method for calculations which are 

dealt with here. 
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1. Technical Points Related to the Calculation of 
k(g, v, w, z) 

The constrained 3-particle phase-space (v, w and z are 
fixed) is written, in n dimensions: 

. d"kl d"k2 d"k3 
(CPS)3 = J ( 2 ~ '  ( 2 ~  1 (2g) n-1 

-(2n)"fi"(p + p' -- kl - k2 - k3) 

�9 6 + (k2) 6+ (k2) 6+ ( k 2 ) b ( v _  1 _ A )  

"~(w+Z )̂~(z-m'k2). (B.1) 

It is calculated by going to the rest frame of k 2 + k 3 in 
which we choose p, p', k 1 in such a way that they lie in 
the plane of the n th and n - 1  th components of the 

momentum. Thus: 

k 2 = --~-~2(1 . . . . .  cos 02 sin 01, cos 01) 

k 3 = ~ 2 ~ 2  (1 . . . . .  - cos 02 sin 01, - cos 01), (B.2) 

with s2 = (k2 + k3) 2 = gv(1  - w)  and where the dots 
indicate n -  3 unspecified momenta which can be 
integrated over. We chose the axis so that 

m = ( ~  1/2 
\ ~ /  (sh X, 0 . . . . .  0, ch Z) (B.3) 

w _ ~ l -  v) 
with th X = ~/  i ~ v w "  

gv 
~ ( 1 , 0  . . . . .  0, sin ~k, cos ~) 

P = 2 ~ / s 2  

kl g(1 - v + vw) " " ~k") 
- 2,Fs~) (1,0 . . . . .  0, sln~ ,cos (a.4) 

P' _ g(1 -vw)(1 ,  0, . . . ,  0, - sin ~, cos ~k), 
2,/s2 

~ / 1 - w  
with cos 0 = th Z, sin 0 = 1 - vw' 

l + v - - v w  
cos ~k" -- cos I~, 

1 - - v + v w  

1 - - v - - v w  . 
sin ~" - 1 - -  v + vw sin ~k. (B.5)  

Formula (B.1) leads to: 

(CPS)3 : 8(2n) 5 k g ,] F ( 1 - 2 e )  \ g v w O - v ) ]  
/ t  

.v-,(1 _ w)-~S dOl dO2(sin 0x)1-2~ 
0 

�9 (sin 02)- 2~ fi (z - re'k2) (B.6) 
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Integrating o n  81 is trivial since z = �89 (1 - cos 8~ coth ;0 
_ 1 (1 _+ coth)0. The result is: which also shows Zma ~ - ~  

min 

(CPS)3 - 8 (~ )  5 \ g - ]  r ( 1  - 2c) \Rvw(1 - v) 
] 

�9 e(v, w, z)~dO2(sin 82)- 2+ (B.7) 
0 

with 

c ( v , w , z ) = v - ~ ( 1 - w ) - ~ 2 ~  w) 

" [ 1 - w + 4 w ( 1 - v ) z ( 1 - z )  ] - vw (B.8) 

Let us now discuss the integrals which appear when 
integrating [M 12 o v e r  02. For simplicity, we define the 
quantity 

~t 

J = c(v, w, z) ~ d 82 (sin 82)- 2~1M 12 (B.9) 
0 

which can be expressed in terms of standard integrals 
to be classified in 3 types: 
(i) Non singular integrals (z > 0) which may be straight- 
forwardly calculated, using, for instance, the method 
developed in [7, Appendix C (C.12)]. One example is 
the integral 

JA2 =e(v,w,z)~dO2(sin82)_2~ 1 4n 1 (B.10) 
o a 2 ,~v z 

(ii) Singular integrals in the variable z only, at z = 1. 
Similarly to the case treated in [7, Appendix C (C.14)], 
the integral 

1 
J A a = c(v, w, z)~d82 (sin 82)- 2~ , (B.11) 

0 a 3 

is expressed in terms of singular distributions: 

4n -~ 1 J A a = ~ v  V ( - -W)-~[(--~-- lnZmax)6(1--  Z) 

80  - z) O(z -  1) 7 
-t- (1 - z ) +  I- (z  - -  1)+ J '  

where 1/ (z -  1)+ is defined by 

~m~, f(z) ~m**f(z)--f(1) 

! ( z - - l )+ - -  ! z - ~ i  

(B.12) 

(B.13) 

(iii) Singular integrals in both variables z and w Let us 
treat in detail the case of 

7t 

133 =c(v ,w,z)~d82(s in82)-2"  1 
0 a363 (B.14) 

which takes the form: 

4 4 22~ 
133 gv g(1 - vw) c(v' w, z) 1 + cos 81 cos ~k 

I (a, b), 

(B.15) 
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with cos 0a = th Z (1 - 2z) and 

i ( s i n  8 2 )  - 2 e  

I (a ,b )=2  -2~ d82 l + a + b c O s 8 2 '  (B.16) 

where a = cos 01 cos ~, b = sin 01 sin ~. Defining 
a ' =  sin ~b/2 sin 01/2 and b '=  cos ~,/2 cos 01/2 with 
b ' z -  a ' 2 =  (1 - z ) t h  Z, we may write l(a,b) under the 
symmetric form: 

/~l 0 (a '2 + b'2) 2e 
I (a, b) = 2 [a'2 -- b'211 +2" 

1 4a'2 b 'z "~ 

�9 v 5 - e , - ~ , l - ~ ; ( a , 2 + b , ~ ) ~  ) ,  (B.17) 

where Io = F(1 - 2e)/F2(1 - e) = 1 + 82 (r~2/6) + O(e 3) 
and F is the usual hypergeometric function [24]. So 
that 133 may be finally written under the form: 

4 4  ( 1 ) 1+~ 

133 gV~(1 vw) V r~ o 1--W 

�9 1 l + 2 e  

V2z-z g(v, w, z) 

"F(�89 - e, - e, 1 -e;  h(v, w, z)), (B. 18) 

with 

g(v, w, z) = (w(1 - v ) ) - '  

- [ 1  - w + 4 w ( 1  - v ) z ( 1  - z ) ] - ~  

- [ 1  - w + 2 w ( 1  - v)(1  - z ) ]  2~ 

(1 - v w ) ( 1  - w )  

(1 - w)  + 2 ( 1  - z ) w ( 1  - v)'  ( B . 1 9 )  

and where the argument h(v,w,z) of the hypergeo- 
metric function is equal to 0 when w goes to 1 in which 
case F(�89 - e ,  1 --e; 0)= 1 and equal to 1 when z 
goes to 1 with F(�89 - e ,  1 - e ;  1)= 2-~(1 + O(eZ)). 

In order to express 133 in terms of usual distri- 
butions, we define it by its action on a test function 
f(w, z) introducing 

~v~(1 -- VW)v~dwdzi33f(w,z), 
3 / 3 3  - -  4 (B.20) 

which may be cast out into 

"~33 = 11 + I2 (B.21) 

with 

11_ gv~(14 4 VW) ve~dwdzI33(f(w,z)-f(w, 1)), (B.22) 

and 

i 2=svg (1 -vw)  
4 4 v ~dwdz133f(w, 1). (B.23) 

The first integral is treated straightforwardly and we 
are led to study 12 which may be written as: 

i dw Zmax ~I ~V w,z)F 
12= ( l - -w) l ~ f ( w ' l )  S dz ou~, (B.24) 

o I1 - z l  1+2~ " 
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Using [7] 

~dOldO2(sinO1)l_Z,(sinO2)_2e 1 
0 a 3 b 3  

_ 4 4 ~m.f ltlog F 

~v~(l - VW) z~,~ - w)l 1 - zl 1 +2, 

4 4 ( ~I . tp " x - l - "  

�9 l + e  eL i /  cos ~- +O(e  3) , (B.25) 

with sin2 ~0/2 = (1 - w)/(l - vw), we get 

Zm~. lrloOF 
! dZl lZTI  ~+z~ - ~e (1- -vw)  

"('--w~-~(Ikl--vwf \ + e 2 L i 2 ( c ~  

o I ( l - - v w ) ( l - w )  
--lrI o ~ dZ l _  z D1 + O ( e ( 1 - w ) ) ,  

Zmin  

(B.26) 

with D1 = 1 - w + 2(1 - z)w(1 - v). After some algebra, 

the final result is: 

16n -,. f,, f O(1-z) 
133 = g21J(l --V W) ~ 10 l t l  --  V W) LtD~ ~ ) +  

O(z--1) 7+6(l__z)p 1 - v w .  t h x + c o t h z  

-~ ( O l ( z -  1))+ J L -  1 - w  m ~2- 

+ v ( - : - l n ( 1 - - v w ) +  2 I n ( I - w ) )  

- ( 1 -  v ) ( ( ~  + l n ( , -  v ) ) ( 1  _ ~ ) +  

_ 2 ( ln (1  - w)) l n ( ( l - v w ) l ( 1 - v ) ) ) ]  

k 7--w )+ + i ~ 7  

+ 6 ( 1 -  z)&(1- w)/27 + 2~ln (1 
i 

where 1/(DI(1 - z ) ) +  is defined by 

i ,  f(z) ~, f ( z ) - f ( 1 )  
a z  - - - -  - j a z  - - - - - -  

o (Ol(1 - z))+ 0 DI(1 -- z) 

and 1/(Dl(z--1))+ analogously: 

==, ,  _z?,d/(z):-io) 
S d~ 1 (Dx(z -  1))+ 7 Dl(z - 1) 

2. Calculation of k' (g, v, w, z) 

We now turn to the calculation of integrals corre- 

sponding to g + q --* ? + Y + q. We shall adopt  the same 
labels and conventions for the momenta  than in 

Appendix C of [7], so that the subprocess 9 ( k l ) +  
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q(p)~7(k2)+Y(k3)+q(p' ) is described by the same 
matrix element as in [7] (up to a colour  factor). We 

have 

p=g(1-vw) /2x /~2  (1,0 . . . . .  0, sin ~, cos ~k) 

ka=~v/Zx/~2 (1,0 . . . . .  0, - s i n  ~ ,cos  ~,) (B.28) 

k2=~(1 -v+vw) /2x /~2  (1,0, . . .  ,0, sin ~b", cos ~9"), 

and 

p ' =  x/~22/2 (1 . . . . .  cosO2sinOl,cosO1) 

k3=x/~z/2  (1, . . . , --cosOzsinO1,-cosO1).  (B.29) 

In the present case, where we observe the 2 photons,  (as 
opposed to pho ton-quark  in [7])  the variable z is 
defined by 

1 + cos 01 coth Z 
z = m.k 3 = 1 - m.p' = , (B.30) 

2 

where m = (g/{~)ll2 (sh X, 0 , . . .  ,0, ch Z) 

The constrained phase-space takes the same form as 

in (B.7). The collinear singularities, encountered when 

integrating on Oz, corresponding to bl ,  b2 = 0 corre- 

spond to singularities in z: z = 1 and z = zl = 1 / ( 1 -  
v + vw) respectively. As above, let us consider integrals 
with various singular behaviours: 
i) Integrals which involve singularities at z = 1 are 

treated in the s tandard way. For  instance 
/r 

JB1 = c(v, w, z) S d 02 (sin 02)-e 1 o b1-1' (B.31) 

is trivially seen to be equal to JA  a (given by (B.12)) 
ii) Let us examine integrals which involve singularities 

at z = Zl. An example is 

it  

J B 2  = c(v,w,z)SdOz(sinO2)_ ~ 1 o b~2' (B.32) 

which may be written: 

4 
J B2 - ~(1 - v + vw) c(v' w, z) 22` l(d, ~), (B.33) 

with 

" (sin 02)- 2, (B.34) 
I(ti, b)= 2-Z ' !  dOz 1 - ~ -  ~cosO z' 

where d = cos 01 cos ~k", ~ = sin 01 sin ~b". In t roducing 

4' = sin ~"/2 cos 01/2 and b ~ = cos ~0"/2 sin 01/2 
with b ' 2 -  a '2 = (Zl - z ) t h  X, we find 

zclo (E 2 + b"2)  2 '  
l(fi,~) 2 la'2 -- ~'211+2e 

1 4 d 2 t 7  '2 \ 

�9 F ~ -- 8, -- 8, 1 -- 8;(t~,2 _t_ ~,2)2 ) ,  (B.35) 

so that  

4 

JB2 -- g(1 -- v + vw) z~l~ v-~(1 - w)- '~(v, w, z) 

1 
�9 F i lzl_zll+2~ (~-~,-~,l-~;g(v,w,z)), (B.36) 



474 

where 

O(v, w, z) = (w(1 - v))-" { (1 - w + 4w(1 - v)z(1 - z))-" 

�9 (1 - w + 2w(1 - v ) ( 1  +v-vw)zx(z  1 - z )  

-- 4vw(1 - v)(1 - w)z2)2~}, (B.37) 

and the a rgument  h- of the hypergeometr ic  functions 

goes to 1 when z is equal  to zl .  Similarly to (B.12), we 

obta in  JB 2 in terms of the distr ibutions 3(z - Zx)... : 

4n 
JB2 g(1 - v + vw) I~ W) - e  

. { 3 ( z _ z O ( _ ! _ l n ( 1  _ z ; : , ) )  

+ 1 

(B.38) 

iii) In order  to calculate integrals such as 

1 ~ (sin02)-2~ (B.39) 
J B 2 W = c ( v ' w ' z ) ~ - - w ! d O 2  b2 

we have to deal with the same prob lem as above  (B.18) 

of disentangling singularities in z and w. The integral 

J B 2 W is writ ten as: 

4hi o 1 
J B z W -  V -~ 

g(1 - v + v w )  (1 - -w)  1+~ 

1 

"lz I _zll+Z~J(v'w'z) 

�9 F(�89 - e, - e, 1 - e; h-(v, w, z)) (B.40) 

As in (B.23), we are led to calculate 

1 dw Zm-~'nloO(V,W,z)F 
I3=! ( l_w) l+J (W,  Zx) ! ~ + 2 ~  (B.41) 

Using the same trick as in (B.25), we find: 

{ J B  2 W = g(1  - v + vw) I ~  v - ~  - -  -13(le -- w) 

" [ ( l ~ z ) +  -~(ln-(!-z,~\ 1 - z  ]+-e  lln~Zzl 

+ \l--wJ+[_(z~-z)+ ~-(z -Za) ~ 

w,,,, z,+,,zxz,[ 

�9 ( l n  ( 1 - -  : f  w - - I n (  1 - z m i " ~  1 ~ "  (B.42) 

+ \  ]+ zl / 1 - w J J  

iv) A new situation, as compa red  to previous Sect. 1 of  

this appendix  occurs when integrals have bo th  sin- 

gularities z = 1 and  z = z~. This is the case for 

st 

i 1 2 = c ( v , w , z ) ! d O 2 ( s i n 0 2 ) _ 2 ,  1 
btb2 
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= 1 l { 1 - v - v w j B 2 + J B 1  } 
g (1 -v ) l+w(1-2z )  v 

(B.43) 

Using 

l + w ( 1 - 2 z )  ~ + 1 - w  ~ + 

1 1 

1 - w f - z  

, ( , )  
l + w ( 1 - - 2 z )  ~ + 1- -w ~ + 

1 1 

1 - - W Z - - Z  

, 1 ,  
1 + w ( 1 - 2 z )  + 2wS--zl + 

1 1 1 

2 w S - z S - z  1 

1 ( m )  1 ,  ( 1 )  
1 + w ( 1 - - 2 z )  + 2wS--z I + 

1 1 1 

+ 2 w 5 -  z 5 - -  z 1' (B.44) 

where ~ = (1 + w)/2w, we find 

8n 1 
1"12 - -  g2 U(1 - -  v) I~ - w)-~ 

+ 3 ( z - 1 ) [ - - e l - l n z m . x ]  

+ 0 ( l - z )  l - z ) +  5 - z  

+ z 1 0 ( z - l ) +  O(zl-z) 
+ + 

+ O(z-zO+ O(z-zx) l -w" 
+ 

(B.45) 

Notice that  in the calculation /-12 appears  always 

multiplied by ( l - w ) .  The term O(1-z)/5-z is not  

singular since 5 > 1. On the other  hand, for the term 

O(z- z 1)/5-z, it should be r emarked  that, except when 

w = 1, 5 is always lying in the interval [1,Za]. 

3. In tegrat ing on z 

As stated in Section II, we shall integrate the final result 

for da/dpr 1 dy I dz over z in the interval [Smin, 5re.x] or  
bins A z. We m a y  perform this integrat ion before 

integrat ing on v and w so that  we shall deal with 

integrat ing in the interval [Zmin, Zmax(U, W)']. 
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The distributions which appear in the calculation of 
k and k' are, however, defined in intervals [0, 1] or 

[0,zl] and [1, Zmax] or [z 1 ,Zmax]. Let us first discuss the 
case when fmin < 1. It is convenient to define distri- 
butions in the interval [Zmi., 1] or [Zmi,, Zi] and make 
the following substitutions*: 

(,) (1) 
= + In(1 - -  Zmin)~i(1 - -  2") 

,) (o,) , = + l - - w  1( f - z  -b l ( i  - - Z )  zrnin 

. r ( 1 -  + / ' -  w" l  
"m L v) + i 

�9 6(1 --z), 

where 1/(1 -z)2,~. is defined by 

!,dz(1 f(z) = i d / ( z ) - f ( 1 )  
~. 1 z 

- -  Z)~mi n Zml n - -  

and 1/(DI(1 -z) ) :~ .  is similarly defined by 

i .  f(z) 1[ �9 f(z)--f(1) 
a z  . . . .  a a z - - - - .  

4.,. (DI(1 - z))~mi. Zmin Ol(1 -- z) 

In the same fashion 
1/(zl -z)+ should be replaced by: 

(1) 
= + 6 ( Z l  - z ) l n ( z l  - Zmi.) 

+ 77mi n 

with 1/(z i -Z)em~ ~ defined by 

7 _ 7 U 

If Zmin > 1, integrals corresponding to expressions 
proportional to 0 (1 - z )  go to 0. When i) Zrnin <Z1, 

integrating between ;?~in and z . . . .  one should replace 
(1 / (z- I ) )+ by 1 / ( z - l ) a n d  1/(Dl(z-1))+ by 
1/Dt(z- 1); when ii) Y~i, > zl, integrals correspond- 
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ing to expressions proportional to O(zl - z) go to 0, and 
1/(z- zO+ should be replaced by 1/(z- zl). 
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