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Distributional approximations of (bi-) linear functions of sample variance-covariance matrices play a critical
role to analyze vector time series, as they are needed for various purposes, especially to draw inference on
the dependence structure in terms of second moments and to analyze projections onto lower dimensional
spaces as those generated by principal components. This particularly applies to the high-dimensional case,
where the dimension d is allowed to grow with the sample size n and may even be larger than n. We
establish large-sample approximations for such bilinear forms related to the sample variance-covariance
matrix of a high-dimensional vector time series in terms of strong approximations by Brownian motions
and the uniform (in the dimension) consistent estimation of their covariances. The results cover weakly
dependent as well as many long-range dependent linear processes and are valid for uniformly �1-bounded
projection vectors, which arise, either naturally or by construction, in many statistical problems extensively
studied for high-dimensional series. Among those problems are sparse financial portfolio selection, sparse
principal components, the LASSO, shrinkage estimation and change-point analysis for high-dimensional
time series, which matter for the analysis of big data and are discussed in greater detail.

Keywords: big data; change-points; data science and analytics; long memory; multivariate analysis;
portfolio analysis; principal component analysis; strong approximation; time series

1. Introduction

The estimation of high-dimensional variance-covariance matrices based on a vector time series
arises in diverse areas such as financial portfolio optimization, image analysis and multivariate
time series analysis in general. Of particular interest is the case that the dimension d = dn of the
time series grows even faster than the sample size n. Due to the lack of consistency of the sample
variance-covariance estimator with respect to commonly used norms such as the Frobenius norm,
various regularized modifications have been proposed and extensively studied within a high-
dimensional context. For example, banding and tapering estimators, recently studied by Bickel
and Levina [5] for Gaussian samples, may achieve consistency if logdn/n = o(1). Chen et al.
[11] establish bounds for thresholded sample covariance estimators for a high-dimensional vector
time series in terms of scaled Frobenius and spectral norms, allowing for non-stationarity and
dependence. The performance of shrinkage estimation, a widely used technique dating back to
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the seminal work of [36], has been investigated by [28] for i.i.d. samples of growing dimension
and further studied for the weak dependent case in [33]. For results on shrinkage estimation in
the frequency domain, we refer to [8].

However, often the estimation of the d2
n -dimensional variance-covariance matrix is an inter-

mediate step and one is mainly interested in the behavior of functions of the sample variance-
covariance matrix, especially quadratic and bilinear forms which naturally arise when study-
ing projection type statistics. In addition, one often needs distributional approximations of such
functions, in order to construct statistical decision procedures. Whereas consistency and perfor-
mance properties have been already investigated to some extent (see above), there are only a
few results about the asymptotic distribution theory in the sense of distributional convergence
(weak convergence) and strong approximations by Brownian motions, respectively, going be-
yond the classical results. Our framework allows to embed autocovariances and, in particular,
cross-autocovariances as well. To the best of our knowledge, there are no weak convergence
results addressing those issues within a high-dimensional framework, that is, for a large num-
ber of correlated time series. In some sense, close to the present paper are the following results
for fixed dimension and autocovariance matrices. Wu and Min [50] derived a CLT for a finite
number of sample auto-covariances assuming a linear process. For a one-dimensional context,
[52] study a central limit theorem (CLT), Portmanteau tests and simultaneous inference for a
growing number of lags based on a Gumbel type extreme value theory, see also the review [51]
and [21]. In [49], the estimation of autocovariances for long memory linear processes has been
discussed and studied in depth including the case of a finite number of lags starting at a large
lag kn with kn/n = o(1). Kouritzin [27], also working within a linear process framework, estab-
lished large-sample distributional asymptotics, based on strong approximations, of the sample
cross-covariance matrix for two time series. His assumptions are weak enough to cover the case
of long-range dependence as well.

The present paper builds upon the latter result by establishing strong approximations of bilin-
ear forms associated to the centered sample covariance matrix of a high-dimensional vector time
series. The result implies the validity of a central limit theorem (CLT) for scaled bilinear forms√

nv′
n[�̂n − E(�̂)]wn, where �̂n is the usual sample variance-covariance matrix and vn, wn are

weighting vectors. It turns out that dn may even grow faster than n.
Concerning the weighting (or projection) vectors, our results assume that they are uniformly

bounded in the �1-norm. Such projections naturally arise in many problems studied in the area of
high-dimensional statistics and probability: Sparse optimal portfolio selection, as recently stud-
ied by [9], deals with explicit construction of �1-bounded portfolios from historical data sets. The
same applies to several approaches of sparse principal component analysis, especially those of
[24,34] and [45], where �1-bounded principal components are constructed, in order to represent
high-dimensional data by only a few sparse projections. We discuss those applications in greater
detail in Section 5. We also illustrate how the results can be applied to obtain distributional ap-
proximations of shrinkage estimators of a high-dimensional covariance matrix. Last, we discuss
the application to detect the presence of a change-point. Such procedures analyze the data to
identify changes in the distribution and have been thoroughly studied for various second order
problems for time series. Of course, a change in a covariance γX(i, j) = E(X(i)X(j)), t ≥ 1, of a
vector time series can be analyzed by applying any method which is sensitive to location changes
to the sequence X

(i)
t X

(j)
t , t ≥ 1. Such methods are discussed in [4,18]. Detectors based on local
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linear estimators have been proposed by [39] and kernel detectors were studied by [37] and [38].
For methods based on characteristic functions we refer to [42] and the references therein.

The organization of the paper is as follows. Section 2 explains the general setting, discusses
its basic relationship to projection-based analyses and introduces the bilinear form of interest.
Notation, the specific model for the vector time series and its interpretation in terms of an infinite-
dimensional latent factor model as well as assumptions are introduced and discussed in Section 3.
Section 4 provides several results on strong approximations, which imply CLTs and functional
central limit theorems (FCLTs) in the sense of Donsker’s theorem. We also propose estimators for
the asymptotic variance parameters and show their consistency, uniformly in the dimension. Last,
Section 5 elaborates on several statistical problems to which our results are directly applicable.
Proofs of the main results are provided in an Appendix.

2. Projection-based analysis of high-dimensional time series

Let us assume that we observe d possibly dependent time series such that at time n we are given
the observations

Y
(ν)
1 , . . . , Y (ν)

n , ν = 1, . . . , dn,

where the dimension d = dn may grow with the sample size n, such that, as time proceeds, there
may be more and more time series available. Equivalently, we are given a time series of length n

of possibly dependent random vectors

Yni = (
Y

(1)
i , . . . , Y

(dn)
i

)′
, 1 ≤ i ≤ n,

of dimension dn, constituting the (n × dn)-dimensional data matrix Yn = (Y
(j)
i )1≤i≤n,1≤j≤dn .

We are interested in the second moment structure and thus assume E(Y
(j)
i ) = 0 for all j =

1, . . . , dn, i = 1, . . . , n and n ≥ 1. Our assumptions on the coordinate processes, basically that
they are linear processes with sufficiently fast decreasing coefficients, are weak enough to cover
the common framework of correlated ARMA(p,q)-processes and also allow for a wide class of
long-range dependent series.

Let us assume for a moment that Yn1, . . . ,Ynn is stationary, a condition that we shall relax
later, and let

Yn = (
Y (1), . . . , Y (dn)

)′

be a generic copy. For the analysis of such high-dimensional time series, the unknown variance-
covariance matrix

�n = E
(
YnY′

n

) = (
E

(
Y (ν)Y (μ)

))
1≤ν,μ≤dn

is of substantial interest, but difficult to estimate from past data, in particular if dn � n. It com-
prises the second-order information on the dependence structure of the dn variables. Any conclu-
sions on the correlation structure have to rely on estimators calculated from the time series, and
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inferential procedures require appropriate large-sample asymptotics. Let

�̂n = 1

n

n∑
i=1

YniY′
ni (2.1)

be the (dn × dn)-dimensional sample variance–covariance matrix with elements

σ̂νμ = 1

n

n∑
i=1

Y
(ν)
i Y

(μ)
i , ν,μ = 1, . . . , dn.

Before proceeding, let us observe that the above framework also covers the case of a univariate
time series {Zk : k ≥ 0} as an interesting special case. The embedding is given by

Yni = (Zi,Zi+1, . . . ,Zi+dn−1)
′, i = 1, . . . , n.

Then

σ̂νμ = 1

n

n∑
i=1

Zi+ν−1Zi+μ−1, 1 ≤ ν,μ ≤ dn.

It follows that the (h+ 1)th element of the first row of �̂n estimates γZ(h) = E(Z0Zh) using the
observations Z1, . . . ,ZT , where T = n + h, and can be written as

γ̃Z(h) = T

T − h
γ̂Z(h), γ̂Z(h) = 1

T

T −h∑
i=1

ZiZi+h,

for h = 0, . . . , T − 1. In a similar way, one may consider autocovariances and cross-covariances
of, say, rn time series {Z(l)

k : k ≥ 0}, l = 1, . . . , rn.
Estimators of �n are also needed and have to be evaluated in terms of their asymptotic laws

when interest focuses on the analysis of (a set of) linear combinations of Yn. Here Yn may be
a generic copy when the vector time series is strictly stationary or equal (in distribution) to Ynn

in the general case. Typical examples are convex combinations, contrasts and, more generally,
projections. Thus let

wn = (w1, . . . ,wdn)
′, n ≥ 1,

be a sequence of weights wj = wnj , not necessarily nonnegative, with uniformly bounded �1-
norm, i.e.

sup
n∈N

‖wn‖�1 = sup
n∈N

dn∑
ν=1

|wν | < ∞. (2.2)

The class of weighting vectors of the form wn = (w1,w2, . . . ,wdn)
′ for some sequence {wi :

i ∈ N} with
∑∞

i=1 |wi | < ∞ certainly satisfies the assumptions and covers, for example, the
case of averaging a finite number of coordinates. However, if wi > 0 holds for infinitely many
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i ≥ 1, then wi = o(1), as i → ∞. Hence, infinitely many coordinates are not really taken into
account. Allowing for weights that depend on the dimension dn substantially widens the scope.
Now, for example, one may average all coordinates by using the weights wni = 1/dn, for i =
1, . . . , dn. Although the dependence on the sample size n through the dimension dn may be of
primary importance for high-dimensional problems, several of our results even allow the weights
to depend on n.

The variance of the projection w′
nYn is given by w′

n�nwn and can be estimated nonparametri-

cally by the quadratic form Qn(wn) = w′
n�̂nwn, whose random fluctuations may severely affect

any inferential procedure related to w′
nYn. More generally, we shall study the bilinear form

Qn(vn,wn) = v′
n�̂nwn (2.3)

for weighting vectors vn and wn with uniformly bounded �1-norms in the sense of (2.2), which
corresponds to the estimator of the covariance of two projections v′

nYn and w′
nYn. Observe that

(2.3) also allows us to handle the case of weighted sums of subsets �̂I,J = {̂σij : i ∈ I, j ∈ J },
where I,J ⊂ {1, . . . , dn}.

It is worth mentioning that Qn remains bounded even for degenerate covariance matrices, if
vn and wn have uniformly bounded �1-norm, as can be seen if we put �n = σ11′, where here
and throughout the article 1 = (1, . . . ,1)′ ∈R

dn , leading to

∣∣Qn(vn,wn)
∣∣ = σ

∣∣v′
n11′wn

∣∣ = σ

∣∣∣∣∑
i

vni

∑
i

wni

∣∣∣∣ ≤ σ‖vn‖�1‖wn‖�1 .

Thus, the �1-norm condition is a natural one: It ensures that Qn maps products Uδ ×Uδ of δ-balls

Uδ =
{
{vn} : sup

n∈N
‖vn‖�1 ≤ δ

}
,

for δ > 0, onto bounded sets, for all covariance matrices with uniformly bounded entries, thus
including cases that correspond to perfectly correlated coordinates.

The behavior of projections for high-dimensional observations has also been studied by [14],
but from a different perspective. There it is shown that for large dimension d projections w′X are
asymptotically normal under weak assumptions by showing that, given a (non-random) sample
X1, . . . ,Xn and a unit vector w uniformly distributed on the d-dimensional unit sphere, the em-
pirical measure of the sample w′X1, . . . ,w′Xn converges weakly to a normal law, in probability.
Further, the joint distribution of two linear combinations, say, w′

dZ and v′
dZ, of a d-dimensional

random vector Z possessing a Lebesgue density and being standardized, i.e. E(Z) = 0 and
E(ZZ′) = idd , is bivariate normal in that sense with unit variances and covariance w′v. How-
ever, in that work the projection vectors are random and the data are assumed fixed (e.g., by
conditioning) and constrained to satisfy conditions that are satisfied by, for example, i.i.d. ran-
dom vectors of dimension dn with i.i.d. entries. Contrary, in this paper the projection vectors are
fixed and the observations random. Assuming a linear process framework, we provide Gaussian
approximations for the sample estimates of the variances of the projections.
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3. A framework for high-dimensional time series

Our results dealing with strong approximations of the bilinear forms introduced above rely on
some linear process framework. This section provides a careful introduction, discusses some in-
teresting properties and interpretations as well as introduces required notation and some prepara-
tory approximations used later.

3.1. Model and assumptions

Let {εk : k ∈ Z} be a sequence of independent random variables with mean zero, variances

σ 2
k = E

(
ε2
k

)
and uniformly bounded moments of the order (4 + δ),

sup
k

E|εk|4+δ < ∞, (3.1)

for some δ > 0, such that γk = Eε4
k and σ 2

k are finite, for all k ∈ Z.
We assume that the νth coordinate of Yn is given by

Y
(ν)
k = Y

(ν)
nk =

∞∑
j=0

c
(ν)
nj εk−j , k = 1, . . . , n, (3.2)

for coefficients {c(ν)
nj : j ∈ N0}, ν = 1, . . . , dn. We mainly have in mind the case that we observe,

at time n, the first n observations of dn sequences {Y (ν)
k : k ≥ 0}, ν = 1, . . . , dn, but our results

also allow for arrays {Y (ν)
nk : k ≥ 0, n ≥ 1}, since the coefficients may depend on n. Also notice

that in model (3.2) Y
(ν)
nk is well defined for k > n.

Model (3.2) implies that the cross-sectional as well as serial correlations have a specific struc-
ture, since

Cov
(
Y

(ν)
nt , Y

(μ)
nt

) =
∞∑

j=0

c
(ν)
nj c

(μ)
nj σ 2

t−j , (3.3)

Cov
(
Y

(ν)
nt , Y

(μ)
n,t+h

) =
∞∑

j=0

c
(ν)
nj c

(μ)
n,j+hσ

2
t−j , (3.4)

for h > 0, 1 ≤ ν,μ ≤ dn and all t . Consequently, the cross-sectional variance-covariance matrix
Var(Ynt ) is given by

�n[t] = Cn�C′
n =

∞∑
j=0

σ 2
t−j cnj c′

nj , � = diag
(
σ 2

0 , σ 2
1 , . . .

)
, (3.5)
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where Cn = (c
(ν)
nj )1≤ν≤dn,1≤j is the (dn × ∞)-dimensional matrix with column vectors cnj =

(c
(1)
nj , . . . , c

(dn)
nj )′, j ≥ 0. The lag h serial covariance matrix attains the representation

�n(h) = E
(
YntY′

n,t+h

) = Cn�
(
L−hCn

)′
,

where L denotes the lag operator that acts on all columns, i.e. L−1Cn = (c
(ν)
n,i+1)i≥0,1≤ν≤dn .

We shall impose the following condition on the decay of the coefficients c
(ν)
nj , which is similar

to the assumption imposed in [23], where it controls the principal component eigenvectors within
a factor model (also see our discussion below), and to condition (2.4) in [10], where it controls
the error terms of a panel time series model.

Assumption (A). The sequences {c(ν)
nj : j ∈ N0} satisfy

sup
n∈N

max
1≤ν≤dn

∣∣c(ν)
nj

∣∣2 � (j ∨ 1)−3/2−θ (3.6)

for some 0 < θ < 1/2.

Here and in the sequel an � bn stands for an = O(bn). Further, we shall write anm

n,m� bnm if
there exists a constant C such that anm ≤ Cbnm for all n,m.

Indeed, (3.6) covers not only short memory processes for which the covariances, say, rk =
E(X0Xk), are summable, that is,

∑
k |rk| < ∞, but also many long-range dependent series. An

example for the latter is fractionally integrated noise of order d ∈ (−1/2,1/4 − θ/2), that is, a
stationary solution of the equation

(1 − L)dXt = εt ,

where {εt } is a white-noise series, that is given by Xt = ∑∞
k=0 θkεt−k with coefficients

θk = 
(k + d)/(
(k + 1)
(d)) ∼ kd−1/
(d), see, for example, [40]. The growth condition
O(j−3/4−θ ) for some θ > 0 on the coefficients of the linear processes arises also in other works,
especially in [49] where the asymptotics of sample autocovariances of a linear process is studied.
The case that the coefficients are O(j−3/4L(j)) for some slowly-varying function L represents a
boundary case. Here one can obtain Gaussian limits for sample autocovariances, see [49], Theo-
rem 3, and [17] for i.i.d. Gaussian innovations, but then the convergence rate changes from n−1/2

to (n/L̄n)
−1/2 where L̄n = ∑n

i=1 L4(i)/i.

3.2. Some preparatory approximations

In the main proof, we shall study in detail the linear process
∑∞

j=0 cw
j εk−j , k ≥ 1, with coeffi-

cients

cw
j =

dn∑
ν=1

wνc
(ν)
j , j ≥ 0, (3.7)
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associated to a weighting vector wn. Behind our main results are martingale approximations
related to that linear process, whose definitions require the following quantities, which are con-
trolled under Assumption (A) by virtue of Lemma 3.1 given below. Let

f
(n)
0,j = f

(n)
0,j (vn,wn) =

dn∑
ν,μ=1

vνwμc
(ν)
j c

(μ)
j , j = 0,1, . . . , (3.8)

f
(n)
l,j = f

(n)
l,j (vn,wn)

(3.9)

=
dn∑

ν,μ=1

vνwμ

[
c
(ν)
j c

(μ)
j+l + c

(μ)
j c

(ν)
j+l

]
, l = 1,2, . . . ; j = 0,1, . . . ,

and

f̃
(n)
l,i = f̃

(n)
l,i (vn,wn) =

∞∑
j=i

f
(n)
l,j

(3.10)

=
∞∑
j=i

dn∑
ν,μ=1

vνwμ

[
c
(ν)
j c

(μ)
j+l + c

(μ)
j c

(ν)
j+l

]
, l, i = 0,1, . . . .

Clearly, the quantities f̃
(n)
l,i have the scaling property

f̃
(n)
l,i (s1vn, s2wn) = s1s2f̃

(n)
l,i (vn,wn) (3.11)

for arbitrary s1, s2 ∈ R.

Lemma 3.1. Suppose that vn,wn have uniformly bounded �1-norm in the sense of equa-
tion (2.2). Then Assumption (A) implies

sup
n∈N

∞∑
i=1

∞∑
l=0

(
f̃

(n)
l,i − f̃

(n)

l,i+n′
)2 ≤ C

(
n′)1−θ

, for all n′ = 1,2, . . . , (3.12)

sup
n∈N

n′∑
k=1

∞∑
r=0

(
f̃

(n)
r+k,0

)2 ≤ C
(
n′)1−θ

, for all n′ = 1,2, . . . , (3.13)

sup
n∈N

n′∑
k=1

∞∑
l=0

(
f̃

(n)
l,k

)2 ≤ C
(
n′)1−θ

, for all n′ = 1,2, . . . , (3.14)

where the constant may differ from line to line and depends on the weighting vectors only through
their �1-norms. There exist

α2
n = α2

n(vn,wn) ≥ 0, n ≥ 1, (3.15)
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such that

(
f̃

(n)
00

)2
n′∑

j=1

(
γm′+j − σ 4

m′+j

) +
n′∑

j=1

j−1∑
l=1

(
f̃

(n)
j−l,0

)2
σ 2

m′+j σ
2
m′+l − n′α2

n ≤ C
(
n′)1−θ

, (3.16)

for all n′,m′ = 0,1, . . . .

Further, if vn,wn, ṽn, w̃n, n ≥ 1, have uniformly bounded �1-norms, then there exist

β2
n = β2

n(vn,wn, ṽn, w̃n), n ≥ 1, (3.17)

with

f̃
(n)
0,0 (vn,wn)f̃

(n)
0,0 (̃vn, w̃n)

n′∑
j=1

(
γm′+j − σ 4

m′+j

)

+
n′∑

j=1

j−1∑
l=1

f̃
(n)
j−l,0(vn,wn)f̃

(n)
j−l,0(̃vn, w̃n)σ

2
m′+j σ

2
m′+l (3.18)

− n′β2
n(vn,wn, ṽn, w̃n)

n′,m′
� (

n′)1−θ
.

Remark 3.1. If the moments up to the order 4 are stationary such that γk = γ and σ 2
k = σ 2, say,

(3.16) is a consequence of (3.13) and

α2
n(vn,wn) = (

γ − σ 4)[f̃ (n)
0,0 (vn,wn)

]2 + σ 4
∞∑
l=1

[
f̃

(n)
l,0 (vn,wn)

]2
,

as well as

β2
n(vn,wn, ṽn, w̃n) = f̃

(n)
0,0 (vn,wn)f̃

(n)
0,0 (̃vn, w̃n)

(
γ − σ 4) + σ 4

∞∑
l=1

f̃
(n)
l,0 (vn,wn)f̃

(n)
l,0 (̃vn, w̃n).

Note also that, in general, (3.12)–(3.14) and (3.16) ensure that the quantities α2
n(vn,wn) and

β2
n(vn,wn, ṽn, w̃n) are bounded.
Suppose that the coefficients of the time series as well as the weighting vectors do not depend

on n, that is, c
(ν)
nj = c

(ν)
j , ν = 1,2, . . . , dn, j ≥ 0, and wnν = wν , vnν = vν , ν = 1,2, . . . . Since

then f̃
(n)
0,0 = ∑∞

j=0(
∑dn

ν=1[c(ν)
j ]2)2 and

∞∑
�=1

[
f̃

(n)
�,0 (vn,wn)

]2 =
∞∑

�=1

( ∞∑
j=0

dn∑
ν,μ=1

vνwμ

[
c
(ν)
j c

(ν)
j+� + c

(μ)
j c

(ν)
j+�

])2

,

we have αn(vn,wn) → α∗, as n → ∞. The limit α∗ is obtained by replacing formally dn by ∞.
Similarly, one obtains the convergence βn(vn,wn, ṽn, w̃n) → β∗, as n → ∞, and an explicit
formula for β∗.
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4. Asymptotics

For many sequences, Xn, n ≥ 1, of random variables, such as sums of i.i.d. random variables
with finite second moment, a strong approximation with rate holds true, that is, after redefining
the process on a new probability space, there exists a Brownian motion B(t), t ≥ 0, such that, on
that new space, ∣∣Xt − σB(t)

∣∣ = O
(
t1/2−λ

)
, for all t > 0,

a.s., as n → ∞, for some positive constant σ and a constant λ > 0. Results of this type date back
to the seminal work of [25,26] and have been extended and refined since then, in particular to
dependent sequences attaining values in a Hilbert space and martingales, see, for example, [32].
Such a strong approximation result also yields an approximation of the rescaled càdlàg process
n−1/2X�tn�, t ∈ [0,1], by the Brownian motion σB(t), t ∈ [0,1], and implies the FCLT, that is,
the weak convergence

n−1/2X�tn� ⇒ σB(t),

as n → ∞, where ⇒ signifies weak convergence in the Skorohod space D[0,1]. This, in turn,
implies the weak convergence of continuous mappings of n−1/2Xn(�n•�). Observe that when
Xn = ∑n

i=1 ξi is a sum of i.i.d. random variables with E(ξ2
1 ) < ∞, then we obtain the classical

Donsker theorem and, for t = 1, the CLT.
In order to obtain strong approximations for the bilinear form Q(vn,wn), we shall derive a

martingale approximation for a partial sum associated to Q(vn,wn), which eases the verification
of general conditions for sequences taking values in Hilbert spaces due to [32] to obtain a strong
approximation.

We need to introduce further notation. Define

�̂nk =
(

k∑
i=1

Y
(ν)
i Y

(μ)
i

)
1≤ν,μ≤dn

, (4.1)

�nk =
(

k∑
i=1

EY
(ν)
i Y

(μ)
i

)
1≤ν,μ≤dn

, (4.2)

for n, k ≥ 1. To be precise, our results shall deal with

Dnk = v′
n(�̂nk − �nk)wn, n, k ≥ 1, (4.3)

and the associated càdlàg processes

Dn(t) = v′
nn

−1/2(�̂n,�nt� − �n,�nt�)wn, t ∈ [0,1], n ≥ 1, (4.4)

and

D0
n(t) =Dn

(�nt�/n
) − �nt�/nDn(1), t ∈ [0,1], n ≥ 1. (4.5)

Observe that D0
n(t) does not depend on the true variance-covariance matrices {�nk : 1 ≤ k ≤ n}.

Processes of this form are therefore frequently used in change-point analysis, see, for example,
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[13] and [41]. If the dependence of the above quantities on vn,wn matters, we shall indicate this
in our notation and then write

Dnk(vn,wn),Dn(t;vn,wn),D0
n(t;vn,wn).

Recalling that �̂n = n−1�̂n,n, cf. (2.1) and (4.1),

Dn(1) = v′
n

√
n(�̂n − �n)wn, n ≥ 1,

is the centered and scaled version of the bilinear form Q(vn,wn), where

�n = E�̂n = 1

n

n∑
i=1

E(YniYni)
′.

If {Yni : 1 ≤ i ≤ n} is stationary, then �n simplifies to �n = E(Yn1Y′
n1).

For two weighting vectors vn and wn we may associate the martingales

M
(n)
k (vn,wn) = f̃

(n)
00 (vn,wn)

k∑
i=0

(
ε2
i − σ 2

i

) +
k∑

i=0

εi

∞∑
l=1

f̃
(n)
l,0 (vn,wn)εi−l , k, n ≥ 0, (4.6)

and the corresponding càdlàg processes

Mn(t;vn,wn) = n−1/2M
(n)
�nt�(vn,wn), t ∈ [0,1], n ≥ 1.

It turns out that, under the assumptions of the article, those martingales are close to Dnk(vn,wn)

and Dn(t;vn,wn), respectively, which is the key to obtain large-sample asymptotics in terms of
strong approximations to infer second order information, that is, variances and covariances, of
projections.

The following theorem shows that bilinear forms of uniformly bounded �1-projections satisfy
a strong approximation result that implies the functional central limit theorem and therefore also
the central limit theorem. Recall that to a standard Brownian motion Bn(t), t ∈ [0,∞), we may
define the rescaled version Bn(s) = n−1/2Bn(sn), s ∈ [0,1], which satisfies E(Bn(s)Bn(t)) =
min(s, t) for s, t ∈ [0,1]. For convenience, we shall denote Bn also by Bn and call it the [0,1]-
version of Bn.

Theorem 4.1. Suppose Yni , 1 ≤ i ≤ n, n ≥ 1, is a vector time series according to model (3.2)
that satisfies Assumption (A). Let vn and wn be weighting vectors with uniformly bounded �1-
norm in the sense of (2.2). Then, for each n ∈ N, there exists an equivalent version of Dnk(vn,wn)

and thus of Dn(t;vn,wn), t ≥ 0, again denoted by Dnk(vn,wn) and Dn(t;vn,wn), and a stan-
dard Brownian motion {Bn(t) : t ≥ 0}, which depends on (vn,wn), that is, Bn(t) = Bn(t;vn,wn),
both defined on some probability space (�n,Fn,Pn), such that for some λ > 0 and a constant Cn∣∣Dnt (vn,wn) − αn(vn,wn)Bn(t)

∣∣ ≤ Cnt
1/2−λ, for all t > 0 a.s., (4.7)
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and

max
k≤n

∣∣∣∣Dnk(vn,wn) − k

n
Dnn(vn,wn) − αn(vn,wn)

[
Bn(k) − k

n
Bn(n)

]∣∣∣∣ ≤ 2Cnk
1/2−λ (4.8)

for k ≤ n. If

Cnn
−λ = o(1), (4.9)

as n → ∞, this implies the strong approximation

sup
t∈[0,1]

∣∣Dn(t;vn,wn) − αn(vn,wn)Bn

(�nt�/n
)∣∣ = o(1), a.s., (4.10)

as n → ∞, for the [0,1]-version of Bn. Further,

max
k≤n

∣∣D0
n(k/n;vn,wn) − αn(vn,wn)B

0
n(k/n)

∣∣ = o(1), (4.11)

and

sup
t∈[0,1]

∣∣D0
n(t;vn,wn) − αn(vn,wn)B

0
n

(�nt�/n
)∣∣ = o(1), (4.12)

a.s., as n → ∞, where B0
n(t) = Bn(t) − tBn(1), t ∈ [0,1], denotes the Brownian bridge associ-

ated to the [0,1]-version of Bn.

Clearly, (4.10) implies∣∣Dn(1;vn,wn) − αn(vn,wn)Bn(1)
∣∣ = o(1), a.s., (4.13)

as n → ∞, i.e. Dn(1;vn,wn) is asymptotically N (0, α2
n(vn,wn)), suggesting the standardized

statistic

D∗
n(vn,wn) = α−1

n (vn,wn)Dn(1;vn,wn),

which is asymptotically standard normal by (4.13), to draw statistical inference on the covariance
of two projections v′

nYn and w′
nYn. By virtue of the scaling property (3.11), which carries over to

αn(vn,wn), D∗
n(vn,wn) depends on the weighting vectors vn and wn only through the associated

unit vectors v∗
n = vn/‖vn‖ and w∗

n = wn/‖wn‖.
For vn = wn we obtain the asymptotic normality of the statistic

α−1
n (vn,vn)

√
n
[
V̂ar

(
v′
nYn

) − v′
n�nvn

]
which allows to draw inference on the variance of the projection πn = v′

nYn of Yn onto span{vn}.
Estimation of the asymptotic variance parameter is discussed below.

Clearly, it is of interest to project onto, say K , vectors vn1, . . . ,vnK , as discussed in greater
detail in Section 5.2. The following generalization to a finite number of bilinear forms provides
the required multivariate extension.
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Recall that B(t), t ≥ 0, is a Brownian motion in R
K with covariance matrix V > 0, if

B(t) = V1/2B0(t) for a standard Brownian motion, that is, B0(s) ∼ N (0, sIK) and E[(B0(s) −
B0(t))(B0(s) − B0(t))

′] = (s − t)IK for 0 ≤ s ≤ t . This means, B(t) is a Gaussian process with
independent increments, E(B(s)B(t)′) = min(s, t)V, s, t ≥ 0, and thus B(t), t ≥ 0, is character-
ized by V = E(B(1)B(1)′). The latter still makes sense if V is singular.

Theorem 4.2. Let {vnj ,wnj : 1 ≤ j ≤ K} be weighting vectors of dimension dn satisfying con-
dition (2.2). Then, under the assumptions of Theorem 4.1, there exists a K-dimensional Brown-
ian motion {B(n)(t) : t ∈ [0,1]} with coordinates Bni = Bn(t;vni,wni), t ∈ [0,1], i = 1, . . . ,K ,
characterized by

E
(
Bn(1;vni,wni)Bn(1;vnj ,wnj )

) = β2
n(vni,wni,vnj ,wnj ),

for 1 ≤ i, j ≤ K with i �= j and E(B2
n(1;vni,wni)) = α2

n(vni,wni), for i = 1, . . . ,K , such that∥∥(
Dn(t;vni,wni)

)K

i=1 − (
Bn

(�nt�/n;vni,wni

))K

i=1

∥∥ = o(1), (4.14)

a.s., as n → ∞, where ‖ • ‖ denotes an arbitrary vector norm on R
K .

Having in mind the application of the above result to change-point detection, see Section 5.4,
the following corollary dealing with the frequently used maximally selected CUSUM statistic is
of interest.

Corollary 4.1. Suppose that Yn1, . . . ,Ynn is a dn-dimensional vector time series following
model (3.2) which satisfies Assumption (A). Let vn and wn be weighting vectors with uniformly
bounded �1-norm in the sense of (2.2). Then, after redefining the series on a new probability
space, there exist standard Brownian motions Bn on [0,1], such that∣∣∣max

k≤n

∣∣Dn(k/n;vn,wn)
∣∣ − αn(vn,wn)max

k≤n

∣∣Bn(k/n)
∣∣∣∣∣ = o(1), (4.15)

and ∣∣∣max
k≤n

∣∣D0
n(k/n;vn,wn)

∣∣ − αn(vn,wn)max
k≤n

∣∣B0
n(k/n)

∣∣∣∣∣ = o(1), (4.16)

for the Brownian bridge B0
n associated to Bn, a.s., as n → ∞.

We conjecture that the strong approximation (4.7) holds with the rate O(n−λ), i.e. one can
select a universal constant C in (4.7), such that in turn the strong approximations (4.10)–(4.16)
would hold with the rate O(n−λ) as well. This is also plausible from the following more general
result which provides us with a strong approximation with that rate when weighting over the
sample sizes with �1-bounded weights: Attach to each sample size n a weight λn such that∑∞

n=1 |λn| < ∞. Define

Dk

({vn,wn}
) =

∞∑
n,m=1

λnλmv′
n(�̂nmk − �nmk)wm, k ≥ 1, (4.17)
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where

�̂nmk =
∑
i≤k

YniY′
mi and �mnk = E(�̂nmk) (4.18)

for n,m ≥ 1, based on the full set of observations {Y (ν)
i : 1 ≤ ν < dn,1 ≤ i ≤ n,n ≥ 1}. At this

point it is worth recalling that in model (3.2) the dn coordinate processes of Yni are well defined
for all i ≥ 1. For fixed k, Dk({vn,wn}) depends on the array {Y (ν)

ni , i ≤ k,1 ≤ ν ≤ dn,n ∈ N}.
Notice that Dnk(vn,wn), defined in (4.3), appears as a special case of (4.17). We may define the
following càdlàg process associated to (4.17)

DN

(
t; {vn,wn}

) = N−1/2D�Nt�
({vn,wn}

)
, t ∈ [0,1], (4.19)

for some sample size N (which can be equal to n).
We have the following general large sample approximation result.

Theorem 4.3. Let {vn} and {wn} be two sequences of weighting vectors with uniformly bounded
�1-norm in the sense of (2.2). Assume that {Y (ν)

i : 1 ≤ ν < ∞,1 ≤ i ≤ n,n ≥ 1} follows model
(3.2) and satisfies Assumption (A). Let {λn} be weights with

∑∞
n=1 |λn| < ∞. Then there exist

constants α({vn,wn}), λ > 0 and C (not depending on the sample size), such that for equivalent
versions and a standard Brownian motion B on [0,∞), defined on a new probability space,∣∣Dt

({vn,wn}
) − α

({vn,wn}
)
B(t)

∣∣ ≤ Ct1/2−λ, (4.20)

a.s., for all t > 0, leading to the strong invariance principle with rate,

sup
t∈[0,1]

∣∣DN

(
t, {vn,wn}

) − α
({vn,wn}

)
B

(�Nt�/N)∣∣ ≤ CN−λ, (4.21)

a.s., for the [0,1]-version of B , where C is the same constant as in (4.20) and may depend on
the sequence {λn}.

It remains to discuss how one may estimate the asymptotic variance parameters α2 = α2(v,w)

and β2 = β2(vr ,wr ,vs ,ws) arising in the strong approximations. For a sequence of lag trunca-
tion constants m = mn, n ≥ 1, and weights {wmh : h ∈ Z,m ∈N} define the estimator

α̂2
n = α̂2

n(d) = 
̂n(0) + 2
m∑

h=1

wmh
̂n(h), (4.22)

where


̂n(h) = 1

n

n−h∑
i=1

[
Y

(v)
i Y

(w)
i − μ̂(v,w)

n

][
Y

(v)
i+|h|Y

(w)
i+|h| − μ̂(v,w)

n

]
, |h| < n,

with μ̂
(v,w)
n = n−1 ∑n

j=1 Y
(v)
j Y

(w)
j and Y

(v)
i = v′Yi = ∑∞

j=0 c
(v)
j εi−j , i ≥ 1, with weights c

(v)
j =

(
∑d

ν=1 c
(ν)
j vj ), j ≥ 0. At this point, we consider the dimension as a further parameter, such that

Y
(v)
i , 
̂h = 
̂h(d) and α2 = α2(d) depend on the dimension d .
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More generally, the covariance parameters β2(r, s) = β2(r, s;d) = β2(vr ,wr ;vs ,ws), 1 ≤
r, s ≤ K , arising in Theorem 4.2 can be estimated by

β̂2
n(r, s) = β̂2

n(r, s;d) = 
̂(r,s)
n (0) + 2

m∑
h=1

wmh
̂
(r,s)
n (h), (4.23)

where m = mn is a lag truncation sequence and


̂(r,s)
n (h) = 1

n

n−h∑
k=1

[
Yk(vr )Yk(wr ) − μ̂n(r)

][
Yk+|h|(vs)Yk+|h|(ws) − μ̂n(s)

]
, |h| < n,

with μ̂n(r) = n−1 ∑n
j=1 Yj (vr )Yj (wr ), for 1 ≤ r, s ≤ K .

For the weights, we impose the following standard assumptions.

(W1) wmh → 1, as m → ∞, for all h ∈ Z.
(W2) 0 ≤ wmh ≤ W < ∞ for some constant W , for all m ≥ 1, h ∈ Z.

Typically, the weights are defined by a kernel function w via wmh = w(h/bm) for some band-
width parameter b = bm. Examples are the truncated kernel, ktr (x) = 1(|x| ≤ 1) with b = m+ 1,
or Bartlett’s estimator given by the triangular weight function w(x) = (1−x)1(|x| ≤ 1), see [31]
and [2] amongst others.

Jirak [22] has studied estimation of long run variance parameters associated to d → ∞ non-
linear time series, based on results of [48]. Those results are not applicable to our general setting,
since the coefficients of the linear processes Y

(v)
i depend on n if d = dn. The following theorem

provides the L1-consistency, uniformly over d and a possibly infinite number of weighting vec-
tors, as long as they are taken from an �1-bounded set. This yields the consistency of α̂2

n(dn) for
a growing dimension dn → ∞, since

E
∣∣̂α2

n(dn) − α2(dn)
∣∣ ≤ sup

d∈N
E

∣∣̂α2
n(d) − α2(d)

∣∣,
without a constraint on the growth of dn, thus going beyond the known results.

Theorem 4.4. Assume (W1) and (W2) and suppose that c
(ν)
nj = c

(ν)
j for ν = 1,2, . . . , j ≥ 0,

n ≥ 1, satisfy the decay condition

sup
1≤ν

∣∣c(ν)
j

∣∣ � (j ∨ 1)−(1+δ) (4.24)

for some δ > 0. Suppose that εk are i.i.d. with maxk E|εk|8 < ∞ and assume that m = mn → ∞
with m2/n = o(1), as n → ∞. If v,w are weighting vectors with ‖v‖�1,‖w‖�1 < ∞, then

sup
d∈N

E
∣∣̂α2

n(d) − α2(d)
∣∣ → 0. (4.25)

Further, if v�,w�, � ≥ 1, are weighting vectors with uniformly bounded �1-norm, i.e.

sup
1≤�

max
{‖v�‖�1,‖w�‖�1

} ≤ Cv,w < ∞,
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for some constant Cv,w , then

sup
1≤r,s

sup
d∈N

E
∣∣β̂2

n(r, s;d) − β2(r, s;d)
∣∣ → 0, (4.26)

as n → ∞.

Suppose that the dimension is a random variable, D, and drawn according to some (prior)
probability measure Q on N, such that D and {Yni} are independent, and statistical inference is
conducted given D = d . A natural measure to evaluate the estimator α̂2

n(D) in this setting is the
expected mean deviation,

EMD
(̂
α2

n(D)
) =

∫
E

∣∣̂α2
n(d) − α2(d)

∣∣dQ(d).

Theorem 4.4 readily implies EMD(̂α2
n(D)) → 0, as n → ∞.

5. Applications

The results of the present paper have direct applications to several problems and procedures,
respectively, which are extensively studied for high-dimensional time series, especially for big
data. They contribute novel large-sample approximations for making inference based on the cor-
responding statistics, usually projections.

5.1. Optimal portfolio selection

The problem of optimal portfolio selection, dating back to Markowitz’ seminal work, see [30],
is an intrinsically high-dimensional problem. We are given a usually large number dn of assets
and associated returns Rn = (R

(1)
n , . . . ,R

(dn)
n )′ corresponding to the time period [n − 1, n] with

mean vector μ and covariance matrix � = (σij )ij . Let us assume that the asset return vector
time series satisfies the standing assumptions of the paper. Since σij is the covariance between
the return of asset i and asset j , 1 ≤ i, j,≤ dn, it is not restrictive, by the very nature of the
problem, to assume that the entries of � neither depend on n nor dn. Suppose that an investor
holds at time n − 1 the position wnj in asset j , where wnj > 0 represents a long position and
wnj < 0 a short position. W.l.o.g. we may assume that the initial value (capital) at time n − 1

equals V = ∑dn

j=1 wnj = 1, such that the value at time instant n is w′
nRn. A classical formulation

of the portfolio optimization problem is to minimize the risk, defined as the variance, associated
to the portfolio return w′

nRn at time n, that is, to consider the problem

min
wn

Var
(
w′

nRn

) = w′
n�wn, subject to w′

n1 = 1,

whose solution is known to be wn = (1′�−11)−11′�−1. Here 1 is the n-vector with unit entries.
Obviously, if that optimal solution satisfies the no-short-sales condition wn ≥ 0, then ‖wn‖�1 =
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w′
n1 = (1′�−11)−11′�−11 = 1, such that the optimal portfolio has uniformly bounded �1-norm.

The mean-variance formulation adds a constraint on the target mean portfolio return and thus
considers the problem

min
wn

w′
n�wn, subject to w′

n1 = 1,w′
nμ = μ0

for some μ0. The solution is

wn = c − μ0b

ac − b2
�−11 + μ0a − b

ac − b2
�−1μ

with a = 1′�−11, b = 1′�−1μ and c = μ′�−1μ. Based on estimates of �−1 and μ from past
data, one calculates the optimal portfolio which is then held until the next rebalancing. If the
dimension is large, inverting the sample covariance matrix may result in substantial numerical
instability and becomes impossible if the dimension is larger than the sample size. Shrinking
is a commonly applied approach for regularization, in order to obtain a stable and invertible
estimator, see [28], amongst others. (We also refer to our Section 5.3 for more on this.) It is
worth mentioning that adding a non-negativity constraint (i.e., no-short-sales) has been observed
to have a similar regularizing effect, see [19].

To obtain sparse portfolios, [9] proposed to add an �1-constraint. To discuss their approach,
let us assume that we are given an additional independent learning sample (r

(j)
t )t,j , 1 ≤ j ≤ dN ,

1 ≤ t ≤ N , of size N of returns for the same assets, such that in particular dN = dn, which is
used to estimate the optimal weighting vector. Markowitz’ problem is equivalent to

min
wn

E
(∣∣μ0 − w′

nRn

∣∣2)
, subject to w′

nμ = μ0,w′
n1 = 1,

which suggests the following empirical version

min
wn

n−1‖μ01 −XNwn‖2
�2

, subject to w′
nμ̂N = μ0,w′

n1 = 1, (5.1)

where XN = (r
(j)
t )t,j is the N × dn dimensional data matrix of returns with rows r′

t =
(r

(1)
t , . . . , r

(dn)
t ), t = 1, . . . ,N , and μ̂N = N−1 ∑N

t=1 rt , see [9], Formula 1. These authors ex-
amine the �1-regularized version of (5.1),

min
wn

n−1‖μ01 −XNwn‖2
�2

+ ρ‖wn‖�1, subject to w′
nμ̂n = μ0,w′

n1 = 1,

for some regularization parameter ρ > 0. Whereas for large values of ρ the classical solution is
recovered, smaller values lead to effective �1-penalization and sparse portfolio vectors with only
relatively few active positions.

5.2. Projections onto lower-dimensional subspaces, sparse principal
components and the LASSO

A primary goal of multivariate statistical analysis and an indispensable tool to investigate big
data is to project high-dimensional data onto lower-dimensional subspaces. Therefore, the re-
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sults of this paper directly address various approaches that are based on �1 projection vectors
to ensure sparse representations of the high-dimensional data. In particular, the results apply to
the recently proposed methods of [24,34,46] for sparse principal component analysis and the
LASSO, see [43].

Recall that for L vectors w(k)
n , k = 1, . . . ,L, of dimension dn we may define the linear mapping

πn :Rdn →R
dn ,

πn = PnP′
nYn, Pn = [

w(1)
n , . . . ,w(L)

n

]
,

onto the associated linear subspace span{w(k)
n : k = 1, . . . ,L}, which is the orthogonal projection

if the w(k)
n are orthonormal. Otherwise, the latter is given by Pn(P′

nPn)
−P′

n, where A− denotes a
generalized inverse of a square matrix A. In both cases, inferential procedures for πn can be based
on the asymptotics of the dimension-reducing statistic P′

nYn, such that our results apply, provided
the projection vectors in use and the vector time series satisfy our assumptions. However, in
general, the columns of P′

n and Pn(P′
nPn)

−P′
n, respectively, do not necessarily satisfy the uniform

�1-condition.
One may apply the following ad hoc approach to transform each vector w(j)

n such that it satis-
fies an �1-constraint ‖w(j)

n ‖�1 ≤ c, j = 1, . . . ,L, for some preassigned constant c, by calculating

the �1-constrained optimal projection of w(j)
n onto span{w(j)

n },
max

u
u′w(j)

n subject to ‖u‖2
�2

≤ 1,‖u‖�1 ≤ c,

whose solution is known to be

w̃(j)
n = S

(
w(j)

n , δ
)
/
∥∥S

(
w(j)

n , δ
)∥∥

�2
.

Here S(a, δ) = sgn(a)(|a| − δ)+ is the soft-thresholding function, x+ = x if x > 0 and = 0
otherwise, and δ ≥ 0 is chosen such that ‖S(w(j)

n , δ)‖�1 = c, see [46], Lemma 2.2 and [34].
Imposing �1-constraints is also the basic idea behind most approaches to define a sparse princi-

pal component analysis for high-dimensional data, which aims at determining lower-dimensional
subspaces generated by �1-vectors in such a way that they explain a large part of the variation
in the observed data and also provide low-rank approximation of the data matrix. Let Xn be a
n × dn-dimensional data matrix with centered columns corresponding to an independent sample
of size n of the variables Y (1), . . . , Y (dn), whose columns are assumed to be centered. The simpli-
fied component technique-lasso (SCoTLASS) approach of [24] defines the first sparse principal
component as a solution of the optimization problem

max
v

v′X ′
nXnv, subject to ‖v‖2

�2
≤ 1,‖v‖�1 ≤ c.

Further sparse components are obtained by maximizing the same objective function under above
constraints and the additional constraints that the further component is orthogonal to the previous
components. In this way, after L steps we obtain L orthogonal �1-vectors.

In a similar way, [46] propose a sparse principal component analysis by solving, for the first
component, the penalized matrix decomposition problem (PMD) with �1-constraints,

max
u,v

u′X ′
nXv, subject to ‖v‖�1 ≤ c,‖u‖2

�2
≤ 1,‖v‖2

�2
≤ 1.
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Observing that for fixed v the solution is given by u = Xnv/‖Xnv‖�2 , the first sparse principal
component of PMD with �1-constraints also solves SCoTLASS, see [46], page 525. However,
the PMD approach does not constrain the further components to be orthogonal, so that it differs
from SCoTLASS. Closely related is the sparse PCA (SPCA) method of [34]. They consider the
problem to determine a regularized low-rank matrix approximation,

min
u,v

∥∥X − uv′∥∥2
F

+ pρ(v), ‖u‖�2 = 1,

for several penalty terms pρ(v) including the case ρ‖v‖�1 , for some ρ > 0.
The LASSO, see [43] and [44], is a well established approach to determine �1-sparse coeffi-

cient vectors in a high-dimensional linear regression model

Yt = X′
t β0 + εt , E(εt |Xt ) = 0, t = 1, . . . , n,

where the conditional expectation E(Yt |Xt ) = X′
t β0 is the L2-optimal predictor for Yt given Xt .

Given some estimator β̂n of the unknown coefficient vector β0 ∈ Rd , the linear projection
πn(X) = X′β̂n is used to predict the outcome of the response for some (future) observed X.
The LASSO minimizes the �1-constrained least squares criterion,

β �→
n∑

t=1

(
Yt − X′

t β
)2

, ‖β‖�1 ≤ c,

for some bound c > 0 for the �1-norm, such that the resulting estimator β̂n is �1-sparse. Con-
sequently, our results can be applied to draw inference on the variance of the LASSO-based
prediction πn(X) = X′β̂n, provided the regressor vector time series satisfies the assumptions of
this article. Among the diverse applications where the prediction of the response in the presence
of a large number of correlated explanatory variables is of interest, is the analysis of genetic
association studies, see [1] for its basic analysis and [6] for nonparametric tests and further dis-
cussion. In such studies the regressors are gene expression data and the response is a phenotype.
A sparse coefficient vector with only a few nonvanishing entries may allow to identify (groups
of) genes which are associated to the phenotype.

5.3. Shrinkage estimation

In many applications, from a statistical point of view, when estimating the common variance-
covariance matrix �n of a stationary vector time series Yn1, . . . ,Ynn of dimension dn, one has
an interest to regularise �̂n to improve its (finite-sample) properties such as its mean-squared
error E[‖�̂ − �n‖2

F ] or its condition number, defined to be the ratio of its largest to its smallest
eigenvalue. This is of particular interest if one needs an invertible estimator of �n. One well-
established possibility to regularise �̂n ([29,33]) is to consider a shrinkage estimator defined by
a linear (in fact a convex) combination of �̂n with a well-conditioned “target”. Already in the
population, for situations where the dimensionality dn is in the order magnitude of the sample
size n, shrinkage of the high-dimensional variance-covariance matrix �n towards a target, sim-
ilarly to ridge regression, can reduce a potentially large condition number. This is achieved by
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reducing the dispersion of the eigenvalues of �n around its “grand mean” μn := d−1
n tr�n: large

eigenvalues are pulled down towards μn, small eigenvalues are lifted up to μn. Improvement of
the mean-squared error E[‖�̂ − �n‖2

F ] is achieved via a potentially tremendous variance reduc-
tion (due to stabilisation via regularisation), even if obviously a bias is introduced by adding a
deliberately misspecified shrinkage target of low complexity (but high regularity) which usually
underfits the true underlying variance-covariance matrix.

A comparatively straightforward, but in practice often well working, choice of the target is a
multiple of the dn-dimensional identity matrix In ([15,29]). Other choices consist in specifying,
for example, in a context of an economic time series panel, a given or a latent factor which de-
scribes the “mean-behaviour” of the panel well in terms of a low-dimensional and hence very
stable approximation to the high-dimensional panel structure ([7,28]). Similarly, adding a para-
metric estimator of small complexity to the fully nonparametric sample estimator as in [16],
follows the same aforementioned paradigm of reducing variance by adding a (model) bias.

The success of this approach, quite naturally, lies in the correct specification of the shrinkage
weight Wn, the proportion with which the shrinkage target enters into the convex combination:
obviously it has to be the higher the less regular the given variance-covariance matrix. More
specifically, in the above mentioned literature, a theory of optimal choice of Wn has been deliv-
ered, for various scenario, by minimising the mean squared error between the shrunken estimator
�s

n and the true variance-covariance matrix �n. Hence, let

�s
n = �s

n(Wn) = (1 − Wn)�̂n + WnμnIn,

which shrinks the sample covariance matrix towards the shrinkage target μnIn. In the population,
the optimal shrinkage weight is derived as

W ∗
n = argmin

Wn∈[0,1]
d−1
n E

[∥∥�s
n(Wn) − �n

∥∥2
F

]
,

leading to the MSE-optimally shrunken matrix �∗
n = �s

n(W
∗
n ). A closed form solution can be

derived as

W ∗
n = E

[‖�̂ − �n‖2
F

]
/E

[‖μnIn − �̂n‖2
F

]
,

where one observes the trade-off between the distance of �̂n towards �n (being large in case of
a badly conditioned sample covariance matrix) and the distance of the sample estimator to the
shrinkage target. This choice leads to a true improvement on the level of the mean-squared error:

E
[∥∥�∗

n − �n

∥∥2
F

]
< E

[‖�̂n − �n‖2
F

]
.

It is obvious that our distributional results of Section 4 can be directly applied to the shrunken
matrix �s

n, provided the stationary vector time series Yn1, . . . ,Ynn satisfying (3.2) and Assump-
tion (A), this being the first step in the direction of some inference theory for this kind of shrink-
age estimators (which is still lacking in the literature). In practice, the population quantities μn

and W ∗
n need to be replaced by some estimators. In the situation of disposing of independent

copies of the sampled data, a possibility is to use those, quite analogously to Section 5.2 and
many other “statistical learning situations”, in order to construct these estimators μ̂n and Ŵn.
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Then, the discussed results on inference on �∗
n continue to hold (conditionally on the “learning

sample”).

5.4. Change-point analysis

Change-point analysis is concerned with the detection and analysis of possible structural changes
in the distribution of observations and the determination of the time points of their occurence
called change-points. For general methodological overviews we refer to [13,40], the recent re-
view [18] and the references given in these papers, amongst others. In view of Theorem 4.1 and
Corollary 4.1, we are in a position to study an a posteriori (off-line) change-in-variance problem
for the variance of a projection w′

nYn due to a change in the covariance structure. Off-line proce-
dures are conducted after having observed the full sample and aim at testing for the presence of a
change-point within the sample. In case that such a change-point test rejects the null hypothesis
of no change, one is interested in estimating the location of the change-point as well. A test for
the change in the covariance matrix has been also proposed by [20], but only for independent
Gaussian random vectors. For a fixed number of time series see [3].

Suppose that under the null hypothesis of no change Yn1, . . . ,Ynn forms a dn-dimensional
mean zero stationary vector time series with variance-covariance matrix �

(0)
n and satisfying the

assumptions of Corollary 4.1. Our change-point model is formulated in terms of the sequence of
variances of the projections which are determined by the variance-covariance matrices

�n[i] = Cov(Yni), 1 ≤ i ≤ n.

Under the change-point alternative hypothesis, we assume that this sequence is equal to �
(0)
n up

to the change-point q ∈ {1, . . . , n− 1} and changes for i > q in such a way that for appropriately
selected wn satisfying the uniform �1-condition (2.2),

σ 2
n (i) = Var

(
w′

nYni

) = w′
n�n[i]wn

changes from σ 2
n0 = w′

n�
(0)
n wn to some different value σ 2

n1 �= σ 2
n0 and then remains constant

again. The applications discussed above in Sections 5.1 and 5.2 provide examples for the selec-
tion of the projection vector. However, it can also be chosen in order to analyze certain elements
of the variance-covariance matrix.

An appropriate change-point test statistic directly suggested by our results for the case of
known �

(0)
n is given by

Vn = max
k≤n

∣∣α−1
n Dn(k/n)

∣∣ = max
k≤n

n−1/2α−1
n

∣∣w′
n

(
�̂nk − k�(0)

n

)
wn

∣∣,
cf. (4.1) and (4.2). Corollary 4.1 now provides us with the asymptotic null distribution,

max
k≤n

∣∣α−1
n Dn(k/n)

∣∣ ∼n→∞ sup
t∈[0,1]

∣∣B(t)
∣∣,

that is needed to determine critical values in order to devise such a test. Critical values c1−α ,
α ∈ (0,1), can be easily calculated using the well known explicit formula for the d.f. of
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supt∈[0,1] |B(t)|, see, for example, [35]. If αn is unknown, it can be estimated by α̂n0 from a
learning sample of size n0 ≥ n, which satisfies the no-change null hypothesis and the assump-
tions of Theorem 4.4, using the first n time series. Assuming that such a learning sample is given
is, however, standard in the change-point literature, see, for example, [12] where it has been
named non-contamination assumption. We now reject the no-change null hypothesis in favor
that a change has occured, if Vn > c1−α . In this case, the unknown (first) change-point, that is,
the onset, is estimated canonically by

k̂n = min
{
k ≤ n : ∣∣Dn(k/n)

∣∣ ≥ ∣∣Dn(�/n)
∣∣, � = 1, . . . , n

}
.

If �
(0)
n is unknown, one may rely on D0

n defined in (4.5) and use the test statistic

V 0
n = α−1

n max
k≤n

∣∣D0
n(k/n)

∣∣ H0∼n→∞ sup
t∈[0,1]

∣∣B0(t)
∣∣,

where B0 is a Brownian bridge on [0,1]. Again, αn can be replaced by our estimator if it is
unknown, using a learning sample satisfying the assumptions of Theorem 4.4.

Appendix: Proofs

Proof of Lemma 3.1. The assertions follow from

sup
n∈N

(
cw
j

)2 = sup
n∈N

(
dn∑

ν=1

wνc
(ν)
j

)2

≤ sup
n∈N

max
1≤j≤dn

∣∣cν
nj

∣∣2‖wn‖2
�1

and [27], Remark 3.2. �

Proof of Theorem 4.1. Notice that we have

Dnk(vn,wn) = v′
n(�̂n,k − �n,k)wn

=
dn∑

ν,μ=1

vνwμ

∑
i≤k

[
Y

(ν)
i Y

(μ)
i − EY

(ν)
i Y

(μ)
i

]

=
∑
i≤k

{
dn∑

ν,μ=1

vνwμY
(ν)
i Y

(μ)
i −

dn∑
ν,μ=1

vνwμEY
(ν)
i Y

(μ)
i

}

leading to the representation

Dnk(vn,wn) =
∑
i≤k

[
Yni(vn)Yni(wn) − EYni(vn)Yni(wn)

]
(A.1)
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with linear processes

Yni(vn) =
∞∑

j=0

c
(v)
nj εi−j , Yni(wn) =

∞∑
j=0

c
(w)
nj εi−j , (A.2)

w.r.t. {εt } given by the coefficients

c
(v)
nj =

dn∑
ν=1

vνc
(ν)
nj , c

(w)
nj =

dn∑
ν=1

wνc
(ν)
nj ,

for j ≥ 0 and n ≥ 1. We may now follow the method of proof of [27], however, we have to take
into account that the above processes depend on n.

Let Fm = σ(εi : i ≤ m), m ≥ 1. It is easy to check that, for any fixed n ∈ N, the r.v.s.

M(n)
m (vn,wn) = f̃

(n)
0,0 (vn,wn)

m∑
k=0

(
ε2
k − σ 2

k

) +
m∑

k=0

εk

∞∑
l=1

f̃
(n)
l,0 (vn,wn)εk−l , m ≥ 0,

satisfy E(M
(n)
m (vn,wn)|Fm−1) = M

(n)
m−1(vn,wn), for m ≥ 0, thus forming a martingale array

{M(n)
m (vn,wn) : m ∈N, n ∈ N} with associated martingale differences

M
(n)

n′+m′(vn,wn) − M
(n)

m′ (vn,wn)

= f̃
(n)
0,0 (vn,wn)

n′+m′∑
k=m′+1

(
ε2
k − σ 2

k

) +
n′+m′∑

k=m′+1

εk

∞∑
l=1

f̃
(n)
l,0 (vn,wn)εk−l ,

for n′,m′ ≥ 0. Put

D
(n)

n′,m′(vn,wn) =
m′+n′∑

k=m′+1

[
Yk(vn)Yk(wn) − EYk(vn)Yk(wn)

]
, m′, n′ ≥ 0 (A.3)

and consider the decomposition

D
(n)

n′,m′(vn,wn) = M
(n)

n′+m′(vn,wn) − M
(n)

m′ (vn,wn) + R
(n)

n′,m′(vn,wn), m′, n′ ≥ 0.

In order to justify the approximation of D
(n)

n′,m′(vn,wn) by the martingale differences defined

above, it suffices to show that supn E[R(n)

n′,m′(vn,wn)]2 tends to 0 sufficiently fast, as n′,m′ → ∞.
Using the representation [27], (4.3), repeating the arguments in [27] leading to the bounds in
(4.8), (4.9) and (4.10) therein and noting that those bounds are uniform in n ≥ 1, we obtain

E
(
R

(n)

n′m′(vn,wn)
)2 n′,m′

� (
n′)−1−θ

.
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and, for each n ∈N, ∥∥E
[(

D
(n)

m′n′(vn,wn)
)2|Fm′

]∥∥
1

n′,m′
� (

n′)−1−θ
.

This approximation in L2 with a rate allows for very general conditions for the validity of a strong
approximation. Again, we may follow the arguments given by [27], by verifying the following
sufficient conditions due to [32]. In terms of an array ξ

(n)
k , k = 1, . . . , n, of r.v.s., Philipp’s result

is as follows. Let G(n)
m = σ(ξ

(n)
i : i ≤ m). If

S
(n)

n′,m′ =
m′+n′∑

k=m′+1

ξ
(n)
k , m′, n′ ≥ 0, (A.4)

satisfies:

(I) ‖E(S
(n)

n′,m′ |G(n)

m′ )‖1
m′,n′
� (n′)1/2−ε , a.s., for some ε > 0,

(II) there exists an α2
n ≥ 0 such that ‖E[(S(n)

n′,m′)2|G(n)

m′ ] − n′α2
n‖1

n′,m′
� (n′)1−ε , a.s., for some

ε > 0,
(III) supk≥0 E|ξ (n)

k |4+δ < ∞ for some δ > 0,

then there exists a process {S̃(n)

n′ : n′ ≥ 0} and a standard Brownian motion {B̃(n)
t : t ≥ 0} on some

probability space (�̃, F̃, P̃ ), such that {S̃(n)

n′ : n′ ≥ 0} d= {S(n)

n′,0 : n′ ≥ 0} and for some λ > 0

∣∣S̃(n)
�t� − αnB̃

(n)
t

∣∣ t� t1/2−λ,

for all t > 0 P̃ -a.s. Putting, for fixed n ≥ 1,

ξ
(n)
k = ξ

(n)
k (vn,wn) = Yk(vn)Yk(wn) − E

(
Yk(vn)Yk(wn)

)
, (A.5)

G(n)
m = Fm (since the ξ

(n)
k are Fk-measurable) and repeating the arguments of [27], we see that,

by virtue of Assumption (A), (I)–(III) hold true, which establishes the existence of a standard
Brownian motion, Bn(t), t ∈ [0,∞), such that for some constant Cn and some universal λ > 0∣∣Dnt − αnBn(t)

∣∣ ≤ Cnt
1/2−λ,

for all t > 0, a.s. Denoting the standard Brownian motion on [0,1] associated to Bn, t �→
n−1/2Bn(tn), t ∈ [0,1], again by Bn, we obtain

sup
t∈[0,1]

∣∣n−1/2Dn,�nt� − αnBn

(�nt�/n
)∣∣ ≤ Cnn

−λ,

which establishes (4.10) and (4.13), provided Cnn
−λ = o(1). It also follows that, for each fixed n,

the conditional variance of M
(n)

m′+n′ − M
(n)

m′ satisfies

∥∥E
[(

M
(n)

m′+n′(vn,wn) − M
(n)

m′ (vn,wn)
)2|Fm′

] − n′α2
n

∥∥
1

n′,m′
� (

n′)1−θ/2 (A.6)
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and (cf. [27], (4.22))

∥∥E
[(

D
(n)

n′,m′(vn,wn)
)2|Fm′

] − n′α2
n(vn,wn)

∥∥
1

n′,m′
� (

n′)1−θ/2 (A.7)

as well as ∣∣E(D
(n)

n′,m′(vn,wn)
2 − n′α2

n(vn,wn)
∣∣ n′,m′

� (
n′)1−θ/2

. (A.8)

The constants appearing in (A.6), (A.7) and (A.8) depend on the weighting vectors only through
their �1-norms, as a consequence of equations (4.22)–(4.26) in [27] and Lemma 3.1. �

Recall that for a K-dimensional mean zero random vector Z with variance-covariance ma-
trix W, say, the covariance operator C(u) = E(u′ZZ), u ∈ R

K , can be identified with the linear
mapping R

K �→ L(RK ;R), u �→ u′W, u ∈ R
K , induced by the variance-covariance matrix W,

where L(A,B) denotes the set of linear mappings A → B .

Proof of Theorem 4.2. Put

Dnk = (
Dnk(j)

)K

j=1 = (
v′
nj (�̂n,k − �n,k)wnj

)K

j=1

and notice that

Dnk =
∑
i≤k

ξ
(n)
i , ξ

(n)
i = (

Yni(vnj )Yni(wnj ) − EYni(vnj )Yni(wnj )
)K

j=1.

Also put S(n)

n′,m′ = ∑m′+n′
k=m′+1 ξ

(n)
k , m′, n′ ≥ 0. For the Euclidean space RK equipped with the usual

inner product and the induced vector �2-norm, the conditions (I) and (III) are easily checked. For
instance, Jensen’s inequality yields

E
∥∥E

(
S(n)

n′,m′ |Fm′
)∥∥

�2
≤ √

KC
(
n′)1−θ

for some constant C which does not depend on n′,m′, n and {(vnj ,wnj ) : j = 1, . . . ,K}. Intro-
duce the conditional covariance operator

C
(n)

n′,m′(u) = E
(
u′S(n)

n′,m′S
(n)

n′,m′ |Fm′
)
, u ∈R

K.

and the covariance operator

T (n)(u) = E
(
u′B(n)B(n)

)
, u ∈ R

K.

Noting that T (n)(u) = ∑K
j=1 uj (Cov(Bn1,Bnj ), . . . ,Cov(BnK,Bnj ))

′, we have to check the re-
maining condition:

(II) E‖(n′)−1C
(n)

n′,m′ − C(n)‖ n′,m′
� (n′)−θ , for some covariance operator C(n).
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Here the norm is the operator norm defined as ‖L‖ = supu∈RK,‖u‖=1 |u′L(u)| for a linear operator
L : RK →R

K . It follows that (II) holds true with C(n) = T (n), if for i = 1, . . . ,K∥∥E
[(

D
(n)

n′,m′(i)
)2|Fm′

] − n′α2
n(vni,wni)

∥∥
L1

n′,m′
� (

n′)1−θ/2

and for i, j = 1, . . . ,K with i �= j

∥∥E
[
D

(n)

n′,m′(i)D
(n)

n′,m′(j)|Fm′
] − n′β2

n(vni,wni,vnj ,wnj )
∥∥

L1

n′,m′
� (

n′)1−θ/2
. (A.9)

The last fact follows by a lengthy but straightforward calculation using (3.18). �

Proof of Theorem 4.3. The proof is similar to the proof of Theorem 4.1 and [27] having ob-
served the following crucial facts. We have

Dk

({vn,wn}
) =

∑
i≤k

[
Yi

({vn}
)
Yi

({wn}
) − E

(
Yi

({vn}
)
Yi

({wn}
))]

,

for the linear processes Yi({vn}) = ∑∞
j=0 c

(v)
j εi−j , i ≥ 1, and Yi({vn}) = ∑∞

j=0 c
(w)
j εi−j with

coefficients c
(v)
j = ∑∞

n=1 λn

∑dn

ν=1 vνc
(ν)
nj and c

(w)
j = ∑∞

n=1 λn

∑dn

ν=1 wνc
(ν)
nj for j ≥ 0, which do

not depend on the sample size. Since
∑

n |λn| < ∞,

(
c
(v)
j

)2 �
( ∞∑

n=1

|λn|
)2

sup
n≥1

(
dn∑

ν=1

vνc
(ν)
nj

)2

� (j ∨ 1)−3/2−θ/2,

i.e. Assumption (A) is satisfied. This completes the proof. �

Proof of Theorem 4.4. First, observe that Y
(v)
k Y

(w)
k , k ≥ 1, as well as Y

(vr )
k Y

(wr )
k Y

(vs )
k+hY

(ws)
k+h ,

k ≥ 1, are strictly stationary for any fixed r, s and h. Their dependence on d will be suppressed in
notation. It follows from the proof of Theorem 4.1 and [27], page 351, that α2 can be represented
as

α2 = lim
N→∞ Var

(
1√
N

N∑
k=0

[
Y

(v)
k Y

(w)
k − E

(
Y

(v)
1 Y

(w)
1

)])
.

Therefore α2 is the long-run variance parameter associated to the time series ξk = Y
(v)
k Y

(w)
k −

E(Y
(v)
1 Y

(w)
1 ), k ≥ 1, and α̂2

n is the Bartlett type estimator calculated from the first n observations.
Analogously, by virtue of (A.9),

β2(r, s) = E
[
ξ1(r)ξ1(s)

] + 2 lim
N→∞

N∑
h=1

N − h

N
E

[
ξ1(r)ξ1+h(s)

]
,

where ξk(�) = Yk(v�)Yk(w�) − E[Y1(v�)Y1(w�)], k ≥ 1, for � = 1,2, . . . . Put 
h = 
h(r, s) =

h(r, s;d) = E(ξ1(r)ξ1+|h|(s)), h ∈ Z. Using |c(vr )

j | ≤ ‖vr‖�1 sup1≤ν |c(ν)
j | = O(‖vr‖�1(j ∨
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1)−(1+δ)) and |c(vr )
j+h| ≤ ‖v‖�1 sup1≤ν sup0≤h |c(ν)

j+h| = O(‖vr‖�1h
−(1+δ)), for h ≥ 1, a lengthy

but straightforward calculation shows that

sup
1≤r,s

sup
d∈N

∣∣β2(r, s;d)
∣∣ ≤ sup

1≤r,s

sup
d∈N

∑
h∈Z

∣∣
h(r, s;d)
∣∣ < ∞. (A.10)

Next, introduce the coupling dependence measure

δp

({Zi : i ∈N0}, n
) = ∥∥Zn − Z′

n

∥∥
Lp

,

p ≥ 1, for a time series Zn = Z(εn, εn−1, . . .), where Z′
n = Z(εn, . . . , ε1, ε

′
0, ε−1, . . .) with ε0

d=
ε′

0 such that ε′
0 is independent from {εk}. Since Y

(v)
i is a causal linear process with coefficients

c
(v)
j = ∑d

ν=1 vνc
(ν)
j , we have ‖Y (v)

k ‖L8 ≤ ‖ε0‖L8‖v‖�1

∑∞
j=0 sup1≤ν |c(ν)

j | ≤ c and by (4.24)

δ8
({

Y
(v)
i

}
, k

) = ∥∥Yk − Y ′
k

∥∥
L8

≤ E|ε1|8‖v‖�1 sup
1≤ν

∣∣c(ν)
k

∣∣ = O
(
(k ∨ 1)−(1+δ)

)
such that

∑∞
k=0 δ8({Y (v)

i }, k) ≤ C < ∞, for constants c,C < ∞ not depending on d and uni-
formly over ‖v‖�1 ≤ Cv,w . Further

δ4
({ξi}, k

) = ∥∥Y
(v)
k Y

(w)
k − (

Y
(v)
k Y

(w)
k

)′∥∥
L4

≤ ∥∥Y
(v)
k

∥∥
L8

∥∥Y
(w)
k − Y

(w)
k

′∥∥
L8

+ ∥∥Y
(w)
k

∥∥
L8

∥∥Y
(v)
k − Y

(v)
k

′∥∥
L8

= O
(
δ8

({
Y

(v)
i

}
, k

) + δ8
({

Y
(w)
i

}
, k

))
leading to

∑∞
k=0 δ4({ξi}, k) ≤ C1 < ∞ for some constant C1, uniformly over d ∈ N and

‖v‖�1,‖w‖�1 ≤ Cv,w . Last, analogously we obtain

δ2
({

ξi(r)ξi+h(s)
}
, k

) = O
(
δ8

({
Y

(v)
i

}; k) + δ8
({

Y
(w)
i

}; k))
leading to

∑∞
k=0 δ2({ξi(r)ξi+h(s)}, k) < C2 for a constant C2, uniformly over d ∈N and 1 ≤ r, s.

Define


̃h(r, s) = 1

n

n−h∑
i=1

ξi(r)ξi+h(s).

Due to the above estimates of the dependence coupling measures, we can apply [47], Theorem 1,
and obtain

sup
d∈N

E
(
n
[

̃h(r, s;d) − E

(

̃h(r, s;d)

)])2 ≤ C3(n − h) (A.11)

for some constant C3 < ∞ not depending on h or m, uniformly over ‖v‖�1 ≤ Cv,w , such that

sup
1≤r,s

sup
d∈N

max|h|≤mn

∥∥
̃h(r, s;d) − E
(

̃h(r, s;d)

)∥∥
L2

≤ C4n
−1/2,
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for some constant C4 < ∞. Observe that 
̂h(r, s) = 1
n

∑n−h
i=1 (ξi(r) − ξn(r))(ξi+h(s) − ξn(s)),

where ξn(�) = n−1 ∑n
j=1 ξj (�), � = 1,2, . . . , and

n
[

̂h(r, s) − 
̃h(r, s)

] = −ξn(r)

n−h∑
j=1

ξj+h(s) − ξn(s)

n−h∑
j=1

ξj (r) + ξn(r)

n∑
j=1

ξj (s).

Using the Cauchy–Schwarz inequality, we thus obtain nE|
̂h(r, s)− 
̃h(r, s)| = O(1) uniformly
over h ≤ m, d ∈N and 1 ≤ r, s. It follows that

sup
1≤r,s

sup
d∈N

m max|h|≤m
E

∣∣
̂h(r, s;d) − 
̃h(r, s;d)
∣∣ = O(m/n) = o(1),

which implies, by boundedness of the weights,

sup
1≤r,s

sup
d∈N

E

∣∣∣∣ ∑
|h|≤m

wmh
̂h(r, s;d) −
∑

|h|≤m

wmh
̃h(r, s;d)

∣∣∣∣ = o(1),

as n → ∞. Hence, it suffices to show the result for β̃2
n(r, s;d) = ∑

|h|≤m wmh
̃h(r, s). Using the

representation β2(r, s;d) = ∑
h∈Z 
h(r, s;d), we obtain the decomposition

β̃2
n(r, s;d) − β2(r, s;d) = An(r, s;d) + Bn(r, s;d) + Cn(r, s;d) + Dn(r, s;d),

where

An(r, s;d) =
∑

|h|≤m

wmh

[

̃h(r, s;d) − E

(

̃h(r, s;d)

)]
,

Bn(r, s;d) =
∑

|h|≤m

wmh

[
E

(

̃h(r, s;d)

) − 
h(r, s;d)
]
,

Cn(r, s;d) =
∑

|h|≤m

[wmh − 1]
h(r, s;d), Dn(r, s;d) = −
∑

|h|>m


h(r, s;d).

First, observe that sup1≤r,s supd∈N |Dn(r, s;d)| = o(1) by (A.10). Fubini and (A.11) yield

sup
1≤r,s

sup
d∈N

E
∣∣An(r, s;d)

∣∣ ≤ sup
1≤r,s

sup
d∈N

∫
Z

wmhE
∣∣
̃h(r, s;d) − E
̃h(r, s;d)

∣∣1(|h| ≤ m
)
dπ(h)

≤ 2Wm sup
1≤r,s

sup
d∈N

max|h|≤m
E

∣∣
̃h(r, s;d) − E
̃h(r, s;d)
∣∣ = o(1)

as n → ∞, since m2/n = o(1) by assumption. Here dπ denotes the counting measure on Z.
Further,

E
∣∣Bn(r, s;d)

∣∣ ≤
∫

wmh

∣∣(n − h)/n − 1
∣∣∣∣
h(r, s;d)

∣∣1(|h| ≤ m
)
dπ(h),
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where the integrand is o(1) point-wise in h and bounded by the (uniformly over d ∈ N and
1 ≤ r, s) π -integrable function 2W |
h(r, s;d)|, such that sup1≤r,s supd∈N E|Bn(r, s;d)| = o(1),
as n → ∞, follows. Similarly, sup1≤r,s E|Cn(r, s;d)| = o(1), as n → ∞, uniformly in d ∈N, by
(A.10) and (W1). Hence, the assertion follows. �
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in panel data. J. Statist. Plann. Inference 143 955–970. MR3011306

[11] Chen, X., Xu, M. and Wu, W.B. (2013). Covariance and precision matrix estimation for high-
dimensional time series. Ann. Statist. 41 2994–3021. MR3161455

[12] Chu, C.-S.J., Stinchcombe, M. and White, H. (1996). Monitoring structural change. Econometrica 64
1045–1065.

http://www.ams.org/mathscinet-getitem?mr=1106513
http://www.ams.org/mathscinet-getitem?mr=2572452
http://www.ams.org/mathscinet-getitem?mr=3008012
http://www.ams.org/mathscinet-getitem?mr=2485008
http://www.ams.org/mathscinet-getitem?mr=2300907
http://www.ams.org/mathscinet-getitem?mr=2430251
http://www.ams.org/mathscinet-getitem?mr=2498723
http://www.ams.org/mathscinet-getitem?mr=3011306
http://www.ams.org/mathscinet-getitem?mr=3161455


2328 A. Steland and R. von Sachs
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