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A b s t r a c t .  Increasingly, fuzzy partitions are being used in multivariate clas- 
sification problems as an alternative to the crisp classification procedures com- 
monly used. One such fuzzy partition, the grade of membership model, parti- 
tions individuals into fuzzy sets using multivariate categorical data. Although 
the statistical methods used to estimate fuzzy membership for this model are 
based on maximum likelihood methods, large sample properties of the estima- 
tion procedure are problematic for two reasons. First, the number of incidental 
parameters increases with the size of the sample. Second, estimated param- 
eters fall on the boundary of the parameter space with non-zero probability. 
This paper examines the consistency of the likelihood approach when estimat- 
ing the components of a particular probability model that  gives rise to a fuzzy 
partition. The results of the consistency proof are used to determine the large 
sample distribution of the estimates. Common methods of classifying individ- 
uals based on multivariate observations at tempt  to place each individual into 
crisply defined sets. The fuzzy partition allows for individual to individual 
heterogeneity, beyond simply errors in measurement, by defining a set of pure 
type characteristics and determining each individual's distance from these pure 
types. Both the profiles of the pure types and the heterogeneity of the indi- 
viduals must be estimated from data. These estimates empirically define the 
fuzzy partition. In the current paper, this data is assumed to be categorical 
data. Because of the large number of parameters to be estimated and the 
limitations of categorical data, one may be concerned about whether or not 
the fuzzy partition can be estimated consistently. This paper shows that  if 
heterogeneity is measured with respect to a fixed number of moments of the 
grade of membership scores of each individual, the estimated fuzzy partition is 
consistent. 
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i .  Introduction 

This paper examines the consistency of maximum likelihood estimates of a 
discrete grade of membership (GOM) model. The GOM model has been pro- 
posed by Woodbury and Clive (1974) and Woodbury et al. (1978) as a method 
for modeling heterogeneity in high dimensional discrete multivariate data. Indi- 
vidual heterogeneity is accounted for by estimating a set of grade of membership 
scores for each individual. These grade of membership scores reflect each indi- 
vidual's heterogeneity by characterizing the individual relative to a set of "pure 
type" conditions. Since the GOM scores can be any value in a bounded range of 
values no individual is required to be in a cluster as in discriminant analysis. This 
flexibility has proven extremely useful as regards modeling the high dimensional 
discrete multivariate data associated with a wide range of studies as illustrated 
by Woodbury and Manton (1982), Clive et al. (1983), Manton et al. (1985, 1987), 
Vertrees and Manton (1986), Berkman et al. (1989) and Blazer et al. (1989). 

Though proving useful in a number of empirical contexts, there has not pre- 
viously been a formal demonstration of the statistical properties of the GOM 
parameter estimates. Although the procedure is based on maximum likelihood 
methods, determining its large sample statistical properties involves resolving the 
issues posed by the properties of the model. First, the number of parameters es- 
timated increases with sample size. Explicitly each individual has an individual 
specific set of GOM scores that must be estimated. Hence, one can not expect 
such properties as consistency or asymptotic normality of parameter estimates 
without some kind of restrictions as noted by Neyman and Scott (1948). Second, 
the GOM scores are bounded within a simplex so that many estimates frequently 
take values on the boundaries. This can cause difficulties in the usual arguments 
for maximum likelihood estimates which assume the existence of a derivative in 
an open neighborhood of the true parameters (see Lehman (1983)). In this pa- 
per, we show that by suitably selecting a metric, and generalizing the results of 
Kiefer and Wolfowitz (1956), asymptotically consistent estimates of the pure type 
parameters can be obtained. From this result, the large sample distribution of 
the estimated pure type parameters is derived following the arguments of Moran 
(1971) and Chant (1974). 

The GOM model differs from classical discrete multivariate procedures in that 
the model can be considered as generating a fuzzy partition. For example cluster 
analysis and discriminant analysis are based upon traditional crisply defined sets. 
The GOM model assumes that each individual is a "fuzzy" member of any set; the 
membership being determined by the grade of membership scores of the individual. 
The theory of fuzzy sets has proven to be a good foundation upon which to model 
uncertainty. Examples of such models of uncertainty are given by Klir and Folger 
(1988). However, unlike many applications of fuzzy sets where uncertainty is an 
outcome of either stochasticity in the data, incomplete information or linguistic 
system, or "chaotic" determinism, the GOM model assumes that the population 
of individuals is intrinsically fuzzy. That is, the individuals are very heteroge- 
neous with this heterogeneity being the result of a continuously weighted convex 
combination of a few pure type characteristics. Thus, the methods presented here 
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can be used to empirically determine grade of membership scores for certain fuzzy 
partitions using discrete data. 

2. Notation and definitions 

The following notation will be used to define the model: 

J = number of categorical variables observed on each individual 
Lj = number of levels or categories of the j - th  categorical variable 

(Lj _~ 2 for all j )  
Xijl = binary random variable taking the value 0 if the i-th individual 

did not have response level l for the j - th  categorical variable and 
1 otherwise 

n = number of individuals in the sample 

i 1 

Pijl ----probability that the i-th individual will make the l-th level 
response to the j - th  categorical variable 

Akjt = probability that an individual of pure type k will make response 
l to the j - th  categorical variable 

K = number of pure types (see below) 
J 

r = K ~ ( L y -  1). 
5=1 

When J is large, few, if any, of the individuals are likely to have all of the 
characteristics represented by a pure type. Most will have characteristics (i.e., 
response probabilities) which are a combination of the various pure type probabil- 
ities. Explicitly, we define the grade of membership model as parameterizing the 
probabilities Pijz as 

K 

(2 .1)  = g kak z, 
k=l  

Lj K 
where )~kjz >_ 0, gik ~ 0, ~~d=l : 1 and ~-~-k=l gik ---- 1. In this model K is assumed 
known and represents the number of "pure type" characteristics. It is assumed 
that (2.1) is unique in g and A using, for example a singlar value decomposition 
representation. 

The set of unknown parameters gik are the grade of membership (GOM) scores 
or mixing coefficients. The gik may be interpreted as the proportion of pure type 
k present in individual i. The gik parameters should not be confused with the 
mixing proportions of a discrete mixture model. In the mixture model the mixing 
proportions represent the a priori probabilities that the random variable is sampled 
from the population with the associated probability mass function. 

In the current model, the gik values represent the degree of membership of the 
i-th individual to the k-th pure type. As pointed out by Singer (1989), these are not 
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probabilities associated with the sampling scheme or the response categories, even 
though ~ k  gik = 1 still holds. This will be illustrated below by contrasting the 
structure of the GOM and discrete mixture likelihoods for multinomial variables. 

Conditional upon the values of gik, we assume that an individual's responses 
are independent of all other individual's response. Additionally, we assume that, 
again conditional on 9~k, the responses of an individual for all categorical variables 
are jointly independent, within an individual. Thus the Xijl random variables have 
a product multinomial distribution. The likelihood, conditional on the values 9ik 
may be written 

(2.2) L = 1~ I hi(Xi,  ~, gi), 
i=l  

v ILJ  pX~kl where hi(Xi,)~, gi) = I]jd=l 111=1 ijt , and where pijz satisfies (2.1). The vector 
is of length r and contains the parameters Akjt. The vectors Xi and gi contain the 
variables Xijl and g~k, respectively, for all values of j and l and for a fixed value 
of i. By definition, the probability mass function hi assigns non-zero mass to only 
a finite number of values of x. Thus hi is bounded for all values of ~ and gi. 

In the fully parameterized form (2.2) may be written as 

(2.3) L = n H gik)~kj~ • 
j l " k 

In contrast, the multinomial form of the discrete mixture model, with classification 
probability Pk is 

(2.4) L = Pk H H Akjz " 
j 1 

We see that the structure of the two models, for the same data, are mathemati- 
cally distinct with the response assumed independent only within the K discrete 
mixtures. 

We assume that for individual i the k-th grade of membership score, the 
gik value, is the k-th component of the realization of the random vector ~i = 
(~il, .. -, ~i/<), i = 1, 2 , . . . ,  where ~i are jointly independent and identically dis- 
tributed. In this paper consistency is with respect to the distribution of these 
random variables. In this regard we will need the following notation and defini- 
tions. 

1. ~ is the parameter space of values A. gt is the direct product of the 
Lj-simplexes for j = 1, 2 , . . .  ~ J which contains its boundaries. 

2. F is the space of all K-dimensional distribution functions of ~ = 
(~1,. . . ,  ~K) such that for every distribution function G E F, 

K 
i. ~ k = l  ~k = 1, a.s.  dG. 

ii. ~i > 0, i = 1 , . . . , K ,  a.s.  dG. 
iii. G has at most a countable number of points with probability greater than 

zero. 
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3. 3  ̀denotes the pair (A, G) where 3  ̀E f l x  F. The parameter 3̀ 0 e fl x F will 
be assumed to be the true parameter in the sense that  A0 obtains and that Go is 
the true distribution of ~, of which the gik's are realizations. 

4. For fixed integer R, 6n(' , ' )  is defined on f~ x F as 6n(3`~,72) = 
2i--1 l a r c t an / [  i) arctanA(2i)l ~- ~ lifl(all!"a~ (2) . - - I ~ - ~  I~ where the second sum is 

K taken over all K-tuples of non-negative integers (al,.. . ,  aK) such that ~ k = l  aK <_ 
R, and where #(i~...a K is the raw moment defined as ~t(ai2. . .aK ~_. Eo~ la2~2a2 . . .  ~KaK' 
i = l o r 2 .  

5. The marginal probability mass function is defined as 

I 3`) = f h(x, ),, 

By construction the function h(x I 7) does not depend on i. 
6. Define w(x I% P) = suph(x  1"~'), where the supremum is taken over all 

values 7 t ~ D x F for which 5R(% 3`t) > r. 
7. For fixed p and fixed R define the set A(p) as A(p) = {all 3' such that 3  ̀E 

f~ x F and ~n(% ~'0) > P}. 
8. f' is the completion of F under 

d2(G1, a 2 )  ~ - ~ l # ( a l l ! . . a .  K (2) I - -  ~ t a l " ' a N  • 

That is [' contains the limits of all Cauchy sequences as measured using d2(., .). 

DEFINITION 1. "Tn is called the maximum likelihood estimate of 3  ̀if A and 
fi~l...ak are chosen such that the likelihood given in equation (2.2) is maximized 

K 
subject to the conditions of equation (2.1), and that ~-~-k=l ak _< R. 

The maximum likelihood estimate ~n approximates the underlying distrubu- 
tion function G only up to R-th order raw moments. As one would expect, this 
means that consistency of the maximum likelihood estimate is defined only in the 
sense of ~R(', "). The index n in "~n refers to the number of individuals. 

DEFINITION 2. Condition 1 holds for C c D x P if 7 c C implies that 

Pr°b~°{ h(xl3')h~[~-0) - 1 } < 1 .  

3. Preliminary results 

The proof of consistency of ~/,~ is beused on the argument given by Kiefer and 
Wolfowitz (1956). In order to apply this argument, however, the following results 
will be needed. 

Clearly 6n(', ") is a semimetric on f~ x F. This follows since every G in F is 
a distribution function with support equal to the direct product space defined in 
Definition 1, above, all moments of G C F exist. Any two elements of F are equal 
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with respect to d2(., .) if all raw moments of degree R or less are equal. Hence two 
elements in F may be different in their moments  of degree greater than  R and still 
be zero distance apart  using the metric d2(-, .). 

Let C be the set of all Cauchy sequences in F with respect to d2(., -). If G c C 
then there exists at least one sequance G,~, m = 1, 2 , . . .  such tha t  G,~ E F and 
l i m , ~  d2(G,~, G) = O. 

The relation 6o(G, G') = l i m m - ~  d2(G,~, G~) defines an equivalence class in 
C, where G, G ~ are the limits of the sequences G,~ c F and G ~  E F, rn = 1, 2 , . . . .  
A typical set in this equivalence class is E c  C C where there exists a sequence 
G,~ E F such tha t  50(G,~, G) = 0. By considering constant  sequences, i.e., G,~ = 
Gi for all m and fixed i, then we see that  the equivalence classes in C contain those 
distributions in G which have the same moments  up to order R. Let G be the set 
of equivalence classes of C defined by (50(.,.). Then from a well known theorem 
regarding metric spaces (e.g., see Maddox (1970), p. 28) we have 

LEMMA 3.1. ~ × F is a complete metric space. 

Note tha t  the metric for ft × [' is 6R(', .) defined above where the distribution 
used in the definition is any element from the relevant equivalence class. Nora- 
tionally we will say tha t  ~/E f~ × f" if ~ E f t  and G C E C ['. 

Wi th  a complete metric space, we wish to examine convergence of the marginal 
probability mass functions h(x ] "y). The major  result needed is the following 
continuity type result. 

LEMMA 3.2. Every sequence off~m, {Ym : %,~ E f~ x F} such that 6o ( ~/m, ~/* ) --~ 
0 as m --~ oc implies that h(x ]~,~) ~ h(x I "Y*), where 7" E f~ × F. 

PROOF. Recalling the definition of h(x I 7) we have 

By the boundedness of h(. , . ,  .) over the range of integration we have 

By Lemma 3.1 

= / " "  jf(k,~-+~olim h(x ,A(m) ,~))dG*(~l , . . . ,~K) .  

From the form of h(x,  A(m), ~) we have 

lira h(x, ~(n) ~) = h(x, )t*, ~), 
r~ - ~ e x J  

where Gm -+ G* and A(~) -+ A*, using the metric 6R(., .). Setting ~/* -- (~*, G*) E 
17 × F the result follows. 
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4. Identifiability and consistency 

Before we can show consistency, we must first show whether or not the distri- 
bution can be uniquely identified. The need for identifiability is the major reason 
for generating the metric space F with the metric d2 (', '), The marginal probability 
mass function h(x I "/) is identifiable provided that dR(71,72) # D, implies that 
h(x I 71) ~ h (~  I 72) for at least one value of x. From the definition of h(x I 7), 
we may write 

J Lj [, K "~ Xijz 

h(31i 1"~) = / ' ' ' / j~=ll~=l~k~=l,~kjl~ik ) da i (~ l , . . . , ~K) .  

This may be rewritten as 

K K K j Lj J Lj 

. . . . . . . . .  I I  
kl=l  kj=l kd=l j = l  1=1 j = l  /=i 

Note that in both of these equations the distribution functions Gi, are identical 
over values of i. We index them to keep track of the fact that  we have different 
combinations of xijz possible. For fixed i and j ,  xijz has only one non-zero value 
over values of l, and this value is unity. Therefore, from equation (4.1) we see that 
the largest moments of ~k in specifying h(x I 9) are of degree J. Put  in symbols 

(4.2) h(z 
K K K 

= " Z " 
kl=l  kj=l ka=l 

where a(kl, k2 , . . ,  kd) is a function of the/~kjt values and b(kl, k2,...,  ka) is one 
of the degree J moments of ({1 ' • "~K). Both are functions of the particular values 
of x. From this result, we will set R = J for the remainder of the paper. 

By inspection one can see that if J = 2, Lj = 2, j = 1, 2 and K = 2, there 
are four ~ values and two moments in the set of equations. However, there are 
only four different values of h(x I 3') generated by varying the values of xijt. 
Hence the function h(x ] 7) for these conditions is not identifiable. If the value 
of J is increased to three, the mlmber of parameters is increased to nine (six 
values and three moments). The number of different h(x I 7) values is eight; 
again no identifiability. For J = 4, however, the number of h(x ] 7) values 
(and consequently the number of equations generated) is 16 and the number of 
parameters and moments total only 12. 

In general, the nmnber of equations formed by h(x t 7) by varying the entries 

of x is [I~=1Lj. The number of ~ parameters is r = Ky~,jJ=I(Li - 1). The number 
of moments of the (iA, of degree J or less is (J + K - 1)!/J!(K - 1)! - 1. Hence, 
one cannot expect the model to be identifiable unless 

J J ( j + K  - 1)! 
H L J  > K Z ( L j - i ) +  J ! (K-1 ) !  
j=l j = l  

. 
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If this inequality is satisfied we will assume that  the model is identifiable. Under 
this assumption, we will now examine consistency of the maximum likelihood 
estimates. 

LEMMA 4.1. Let Condition 1 hold for f t x  F D C. Then for every 7 E C 

lim Elog  w(X 1 7,p) 
p--,o h(X [ 70) 

where the limit of p is restricted to 7 E C. 

< 0  

PROOF. The proof follows Kiefer and Wolfowitz ((1956), pp. 892-893). 

LEMMA 4.2. If Condition 1 holds for A(p), there exists a number b(p) = b, 
0 < b < 1 and an N - -  N(e,p)  such that for n > N, 

Pr°bT° / sup 1-[i~1 h(Xi I 7) } 
t~A(o~ [ L ~  j(x~ 1 70) > b'~ < ~ 

PROOF. The proof follows Wolfowitz (1949). 

THEOREM 4.1. Let ~n denote the maximum likelihood estimates of 7 with 
respect to f t x  F for the GOM model. Then ~/~ is consistent. 

PROOF. (Proof follows Wald's (1949) Theorem 2) From Lemma 4.2, we 
know that for all n > N 

ProbTo { supTcA(p) l~in--1 h(Xi [ 7) } 
I-[in=l h(Xi 17o) < an 

> l - s ,  

where h = h(p), 0 < h(p) < 1. Let E be the event that  a sequence of maximum 
likelihood estimates x/n has a limit point 7* where 6(70, 7*) > c. This means 

n T~ 

sup 1-[h(x~lT')>_ 1-Ih(x~ I~/n) 
"ffCA(p) i=1  i=1  

for infinitely many n. This corresponds to 

supTeA(p ) I-[in=l h(Xi 17) > 1-[in=l h(Xi I #n) > 1 
1-IL~ h(X~ 1 ~o) - I]~nl h(X, I ~o) - 

for infinitely many n. This last inequality comes from the definition of the max- 
imum likelihood estimate. Thus from Lemma 4.2, this event E has probability 
zero. Hence the result. 
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5. Applications 

Theorem 4.1 shows that the estimates of Akjz are consistent as n increases. In 
addition, following Kiefer and Wolfowitz (1956), a corollary to this theorem can be 
proved which shows that the estimate of the distribution of { is also "consistent." 
However, "consistency" here means that the estimated first R moments of the 
distribution of { approach the first R moments that define the equivalence classes 
in F. In general, the asymptotic behavior of the estimates of these moments will 
follow standard results for maximum likelihood estimates. However, the estimates 
of ,~ are more complicated since many of the "likelihood" estimates fall on the 
boundary of the parameter space (i.e., are either 0 or 1). In this section we will 

examine the large sample properties of the estimates Akjz. 

To examine the large sample properties of the estimates ~kjl we need the 
following definitions 

0 
Oi 

B1 

Wrn 

= vector of A values and all raw moments of Go of degree _< R 
= i-th element of 0 
= i-th element of the maximum likelihood estimate of 8 
= index set of length p 

= event that Ore, m E Iv, is set to a boundary value (e.g. zero) 
in the estimation process 

= O if m ~ I v 
= l i f m E I  v 

f i (x ,  O) = h(x, A, gi), where gi satisfy the constraints on the sample 
moments of degree < R 

n Olog . . . .  
"~- /t--l/2 E -~mJ i [x ,  U) 

= (w101,..., wpOp) r 
= (YI(O),. . . ,  Yp(O)) T 

_ 0 2 log f l  (x, O) 

OOiO0~ } k 
= matrix formed by striking out the rows of C corresponding 

to each m C I 
= matrix formed 

corresponding 

rm(e) 

 o(I) 
Y(O) 

C 

C12(I) 

c22(r) 

Cl1(I) 

Zl( / )  

Z2(I) 

by striking out the columns of Cl1(I)  
to each m E I 

= matrix formed by striking out the rows and columns of C 
corresponding to each m ~ I 

= vector formed from the vector n l /2 (O  - O) by striking out entries 
corresponding to m ~ I 

= vector formed from the vector nl/2(0 - O) formed by striking out 
all entries corresponding to each m C I. 

Define vectors YI(I)  and Y~(I) from Y(8) similar to the definition of ZI(I)  and 

Z2(I) and YI(I)  and Y2(I) defined similarly from Y(0). 
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LEMMA 5.1. Conditional on the event B(I) ,  the vector n-1/2C22(I)Z2(I) is 
distributed asymptotically as a normal random vector with mean c T  (I)A2(I) and 
variance C2,2(I). 

PROOF. (This proof follows the logic presented in Chant (1974)) Since 
f ( x ,  O) represents a discrete density function, we have 

EY(O)  = O, EY(O)  yT(O) = C. 

Thus, by the central limit theorem n - 1 / 2  YI(I )  is asymptotically distributed as 
a normal random variabnle with mean 0 and covariance matrix C11(I). We may 

expand the vector Y(0) as 

(5.1) r ( o )  = Y(O) - c z  + z r R n z ,  

where from Theorem 4.1, Z T R n  Z goes to zero in probability (see Lehman (1983), 
p. 415). Under the event B(I) ,  Ore, m c I, is set to zero. Thus 

(5.2) YI(I) < 0 and Y2(I) = 0. 

Thus (5.2) implies that asymptotically 

T(I)  = YI(I)  - CI(1)ZI(I)  -- C12(I)Z2(I) < 0 

Y2( I) - c T  ( I) ZI ( I) - C22(I)Z2(I) = O. 

and 

Hence, 
C22(I)Z2(I) = Y2(I) - c T ( I ) Z I ( I )  • 

As a result, the marginal distribution of C22(I)Z2(I) is asymptotically a normal 
with mean cT( I )A2( I )  and covariance C22(I), since 9?1(I ) = 0 by definition. 
Hence the result. 

To remove the conditional component on B(I),  arguments similar to those 
given in Self and Liang (1987) are required. 

6. C o n c l u s i o n  

In this paper we have demonstrated consistency for the estimates of the struc- 
tural parameters of a "fuzzy partition" model and for the moments of the dis- 
tribution of individual "nuisance" parameters. The proof is obtained by defining 
the metric so that identifiable "packets" of information increase with sample size. 
The fact that no explicit distribution need be specified for the individual nuisance 
parameters makes the model extremely flexible in representing high dimensional 
discrete response data. Given recent rapid increases in computational power this 
general strategy promises to be an increasingly fruitful area for the development 
of new methods of modeling large multivariate data sets where heterogeneity is 
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present. The results of this paper provide a statistical justification for modeling 
this type of data using fuzzy partitions. 
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