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LARGE SAMPLE THEORY FOR STATISTICS OF
STABLE MOVING AVERAGES
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We study the limit behavior of the partial sums, sample variance, and periodogram of the stable moving average
process

x(t) =
∫
ψ(t + x)M(dx)

explored in Resnick, S., Samorodnitsky, G., and Xue, F. (1999). How misleading can sample ACF’s of stable MA’s
be? (Very!). Annals of Applied Probability, 9(3), 797–817. Each of these statistics has a rate of convergence involving
the “characteristic exponent” α, which is an unknown parameter of the model. Through the employment of self-
normalization, this number α can be removed from the limit distribution; the various limit distributions can then be
approximated via subsampling. As a result, statistical inference for the mean can be conducted without knowledge
(or explicit estimation) of α. New techniques, which are easily generalizable to a random field model, are presented
to prove these results.

Keywords: Please supplyQ2

1 INTRODUCTION

Within the literature of dependent, heavy-tailed stationary time series, the discrete time stochas-
tic process

X (t) =
∫

R

ψ(t + x)M (dx) (1)

has been studied in Resnick et al. (1999). Here, t is the integer index of the process, M is an α-
stable random measure andψ is a sufficiently regular real-valued function. In the above paper,
the authors investigate the asymptotics of the sample autocovariances; they obtain a stochastic
limit, and thereby conclude that the use of sample autocorrelation plots as a diagnostic for
m-dependence is dubious.

Inherent in many statistics of such a process (1) is the fact that the characteristic exponent
α is explicitly present in the rate of convergence to a nondegenerate distribution. Estimation
of the characteristic exponent is a difficult practical problem – the ubiquitous Hill estimator
for α has a bandwidth selection difficulty, namely the number of order statistics used in the
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computation is determined by the practitioner. In McElroy and Politis (2002), this issue was
addressed in the context of mean estimation via normalizing the sample mean with the sample
standard deviation, under an infinite order moving average model with heavy-tailed inputs. The
resulting self-normalized ratio’s rate of convergence no longer depended upon the hidden α,
which provided a fortuitous circumvention of the Hill estimator. Under the same infinite order
moving average model, a similar method was used to get the asymptotics of the self-normalized
periodogram in Klüppelberg and Mikosch (1993, 1994).

The paper at hand focuses on a different model (given by Eq. (1)) from that explored above,
which is more general with respect to dependence structure but more specific distributionally,
as the marginals are assumed to be α-stable, instead of merely being in an α domain of
attraction. Since the above stochastic process can model a large family of dependent, heavy-
tailed stationary time series, we have further studied the asymptotics of various statistics, such
as the sample mean, sample variance and periodogram. Although some of the results in this
direction were already known in Resnick et al. (1999), most of the material is new and all of
the proof techniques are completely original; indeed, the analyses employed here reveal much
of the structure of the stochastic process itself. These methods allow a fluid transition to higher
dimensional index sets, so that the theorems are valid for random field models as well.

This paper is organized as follows: the second section develops the “Representation Lemma”
and asymptotic results for the sample mean and sample variance, using new techniques. More-
over, these are demonstrated in Section 3 to be joint limit results using some intricate and
delicate arguments. By contrast, in the paper by Resnick et al. (1999), a different approach is
used to explore the sample covariance asymptotics. The fourth section gives an introduction
into the analysis of the periodogram, which can be normalized by the sample variance, thus
expanding and complementing the work of Klüppelberg and Mikoach (1992, 1993) with novelQ3

methodologies. Some applications, using subsampling methods, are given in the fifth section.

2 SAMPLE MEAN AND SAMPLE VARIANCE

2.1 The Model

Consider an α-stable random measure M with skewness intensity β(·) and Lebesgue control
measure dx defined on the space R; let ψ be a filter function in

Lδ :=
{

f : ‖ f ‖δδ :=
∫

R

| f (x)|δ dx < ∞
}
,

which is continuous and bounded for almost every x with respect to Lebesgue measure. Then
we may construct the following stochastic integral with respect to an α-stable random measure
M (see Samorodnitsky and Taqqu, 1994):

X (t) =
∫

R

ψ(x + t)M (dx) (2)

with t ∈ Z. The number δ is in (0, α) ∩ [0, 1]; α will be fixed throughout the discussion.
When we speak of the sample mean, then α > 1, but otherwise 0 < α < 2. Note that α = 2
corresponds to a Gaussian stochastic process, and has been extensively studied; many results
are similar, but for the sample variance (see below), there is a great difference between the
α < 2 andα = 2 cases. We will assume that the skewness intensity β(·) of the random measure
M has unit period, which is necessary for the stationarity of the process X (·).
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Intuitively, we may think of X as the convolution of ψ and M, in analogy with the infinite
order moving average of classical time series analysis. The resulting time series is strictly
stationary with dependence that extends over arbitrarily large lags (so long asψ , does not have
compact support; when ψ has compact support, the time series will only be m-dependent,
where m is the diameter of the support region), and thus it makes for an interesting and
relevant heavy-tailed model.

PROPOSITION 1 The model defined by Eq. (1) is well-defined and stationary. That is, for each
t, the random variable X (t) is α-stable with location zero (unless a = 1), constant skewness
and constant scale.

Proof From Samorodnitsky and Taqqu (1994), it follows that the scale of X (t) is

(∫
R

|ψ(t + x)|α dx

)1/α

= ‖ψ‖α < ∞

and the skewness is

( fR(ψ(t + x))〈α〉β(x) dx)

‖ψ‖αα
= (
∫

R
(ψ(x))〈α〉β(x) dx)

‖ψ‖αα
.

We use the notation a〈γ 〉 = sign(a)αγ . Since |β(x)| ≤ 1, the skewness is bounded between
−1 and 1. Note that stationarity follows from the translation invariance of Lebesgue measure,
and the periodicity of the skewness intensity β. Moreover this shows that the process is non-
degenerate unless ψ is zero almost everywhere (such filter functions we will not consider).

In the special case that α = 1, the location is nonzero, and is equal to

∫
R

ψ(x + t) log |ψ(x + t)β(x)|dx

which is finite and independent of t so long as β has unit period.

Example – Infinite Order Moving Averages If one takes the filter function to have a step
function form, i.e.,

ψ(·) :=
∑
j∈Z

ψj 1( j, j+1] (3)

for an appropriate sequence {ψj }, then a quick calculation yields, upon defining Z(s) :=
M(−s,−s + 1], the familiar infinite order moving average with i.i.d (independent and identi-
cally distributed) α-stable inputs:

X (t) =
∑
j∈Z

ψj Z(t − j). (4)

Since the filter function given in Eq. (3) is continuous almost-everywhere and appropriately
summable (we require that

∑
j |ψj |δ < ∞), this example is subsumed by the model (1). Exten-

sive work on examples of this type (with heavy-tailed input random variables) has been done
in Davis and Resnick (1985, 1986); see also McElroy and Politis (2002).



4 T. McELROY AND D. N. POLITIS

2.2 The Representation Lemma

Since a step function of the form (3) can approximate an arbitrary continuous function fairly
nicely (at least if the derivative is bounded), an obvious question is: to what extent does the pre-
vious example explain the more general model given by Eq. (1)? The following “Representation
Lemma” takes a step towards answering that question.

LEMMA 1 Define a new collection of random variables {X (t, j); j ∈ Z} by

X (t, j) :=
∫ j+1

j
ψ(x + t)M (dx) =

∫
R

1( j, j+1](x)ψ(x + t)M (dx) (5)

for any t ∈ Z (or any t ∈ R also works). Then X (t) is almost surely equal to
∑

j∈Z X (t, j).

Remark 1 This Representation Lemma will motivate and provide a whole new technique for
analyzing statistics of processes following Eq. (1). If we consider X (t, j − t), which is equal
in distribution to (∫ 1

0
|ψ(x + j)|α

)1/α

Z(t − j),

we see that the extent to which
∫ 1

0 |ψ(x + j)|α dx differs from ψαj is the extent to which our
model truly differs from an infinite order moving average.

Remark 2 This lemma, and the preceding discussion, can be generalized to a random field
scenario, where j and t belong to the d-dimensional integer lattice Zd .

Proof of the Representation Lemma We will use the following useful notation throughout
this proof and the paper: let B = (0, 1] denote the half-open unit interval (if we are in Rd , then
let B = (0, 1]d), so that B + j is just the interval ( j, j + 1]. Now observe that for any m ∈ N,

∑
| j |≤m

X (t, j) =
∫

R

1(−m,m+1](x)ψ(t + x)M (dx) (6)

due to the linearity of the stochastic integral. Now the idea is to take the limit as m → ∞ on
both sides of Eq. (6). First we show that the sum of the series in Eq. (5) is finite almost surely.
If 1 < α < 2, then

E

∣∣∣∣∣∣
∑
j∈Z

X (t, j)

∣∣∣∣∣∣ ≤
∑
j∈Z

E|X (t, j)| =
∑
j∈Z

(∫
B

|ψ(x + t + j)|α dx

)1/α

cα,β(1),

where,

(cα,β (p))p = 2p−1�(1 − p/α)

p
∫∞

0 u−p−1 sin2 u du

(
1 + β2 tan2 απ

2

)p/(2α)
cos
( p

α
arctan

(
β tan

απ

2

))

as defined in, Samorodnitsky and Taqqu (1994, p. 18). This number is bounded above by
cα,1(1) < ∞. It remains to show that the sum is finite. By the Mean Value Theorem, there
exists a y ∈ B (which depends on t and j ) such that∫

B
|ψ(x + t + j)|α dx = |ψ(y + t + j)|α
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(in the d-dimensional case, this must be done iteratively for each coordinate). Therefore

∑
j∈Z

(∫
B

|ψ(x + t + j)|α dx

)1/α

=
∑
j∈Z

|ψ(y + t + j)| ≤ sup
x∈B

∑
j∈Z

|ψ(x + t + j)|,

which is finite, as demonstrated below. Now if α ≤ 1, then find δ < α stated in the assumptions
on ψ , and compute:

E



∣∣∣∣∣∣
∑
j∈Z

X (t, j)

∣∣∣∣∣∣
δ
 ≤

∑
j∈Z

E|X (t, j)|δ ≤
∑
j∈Z

(∫
B

|ψ(x + t + j)|α dx

)δ/α
(cα,1(δ))

δ.

Again the expectation is finite, since δ < α; as for the sum, note that exponentiation by α is
a concave function, so by an inverse application of Jensen’s inequality we obtain the upper
bound ∑

j∈Z

(∫
B

|ψ(x + t + j) dx

)δ
=
∑
j∈Z

|ψ(y + t + j)|δ

for some y ∈ B , again by the Mean Value Theorem. We show that this is finite (and by letting
δ = 1, we obtain the proof for the case above). Let A := {x ∈ B:

∑
j∈Z |ψ(x + j)|δ = ∞}.

Then ∫
R

|ψ(x)|δ dx =
∑
j∈Z

∫
B

|ψ(x + j)|δ dx ≥
∫

A

∑
j∈Z

|ψ(x + j)|δ dx = ∞ · λ(A),

where λ denotes Lebesgue measure. Sinceψ ∈ Lδ, the Lebesgue measure of the set A must be
zero. So the sum is finite almost everywhere, which can be modified to “everywhere” without
loss of generality by taking a continuous version. This establishes the almost sure finiteness of
the representation. From this it follows that

∑
| j |≤m

X (t, j)
a.s.−→
∑
j∈Z

X (t, j)

as m → ∞. On the other hand,

1(−m,m+1](x)ψ(· + t) −→ ψ(· + t)

in the space Lα for each t , so that∫
(−m,m+1]

ψ(x + t)M (dx)
P−→
∫

R

ψ(x + t)M (dx)

as m → ∞ (see Samorodnitsky and Taqqu, 1994). Finally, pick any ε > 0, and compute:

P



∣∣∣∣∣∣
∑
j∈Z

X (t, j)− X (t)

∣∣∣∣∣∣ > ε


 ≤ P



∣∣∣∣∣∣
∑
j∈Z

X (t, j)−
∑
| j |≤m

X (t, j)

∣∣∣∣∣∣ >
ε

2




+ P



∣∣∣∣∣∣
∑
| j |≤m

X (t, j)− X (t)

∣∣∣∣∣∣ >
ε

2


 −→ 0 + 0
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by the previous calculations, as m → ∞. This is true for each ε, so we obtain

P



∣∣∣∣∣∣
∑
j∈Z

X (t, j)− X (t)

∣∣∣∣∣∣ > 0


 = 0

which is almost sure equality. �

2.3 Convergence of the Sample Mean

Let us now proceed to the asymptotics of the scaled sample mean. The sample mean is
(1/n)

∑n
t=1 X (t), but we will multiply this by n1−1/α . Thus, we will consider the limiting

behavior of the scaled sample mean

Sn = n−1/α
n∑

t=1

X (t).

When the characteristic exponent α is greater than one, the limit theorems developed here
will later be put to a statistical use – since α > 1, the mean exists, and an estimator for
the mean will be constructed from Sn . Our result we believe to be novel, though perhaps
unsurprising; the interesting component may lie in the method of proof, which performs a
careful dissection of the underlying stochastic process. For ease of presentation, we restrict
ourselves to a one-dimensional index set, though all the proofs have been carefully established
in the higher-dimensional categories.

First, recall that n−1/α is the correct normalization for a sum of n i.i.d α-stable random vari-
ables, in that Sn has a non-degenerate limit as n → ∞. In fact, there is equality in distribution
to an α-stable for each n; we have recourse to asymptotics only in the more general case that
our data are drawn from the α-stable Domain of Normal Attraction, see McElroy and Politis
(2002) for a discussion. The major difference in our situation is the lack of independence.
However, due to the wonderful structure of the stochastic integral model, an α-stable limit is
still obtained, whose scale parameter depends intimately upon the filter function ψ .

THEOREM 1 Consider a time series generated from the model given by Eq. (1), where 0 <
α ≤ 2. Then the sample mean has an α-stable limit:

n−1/α
n∑

t=1

X (t)
L�⇒ S∞(α). (7)

The limit variable S∞(α) is α-stable, with scale and skewness parameters

(∫
B

|
(x)|α dx

)1/α

,

∫
B(
(x))

〈α〉β(x) dx∫
B |
(x)|α dx

,

respectively, where 
(x) :=∑j∈Zψ( j + x). If α �= 1 the location parameter is zero, but if
α = 1 we have the following value for the location:

− 2

π

∫
B

∑
j∈Z

ψ(x + j) log |ψ(x + j)|β(x) dx .
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If either α �= 1 orα = 1 andβ = 0, we can represent the limit variable as a stochastic integral:

S∞(α) =
∫

B

(x)M (dx).

Remark 3 In the Gaussian α = 2 case, this limiting scale is proportional to the standard
deviation, and its square easily works out to be

σ 2 = 1

2

∑
h∈Z

R(h),

where R(h) = 2
∫

R
ψ(x)ψ(x + h) dx is the covariance function of the process (so 2σ 2 is the

limiting variance). Although the codifference (which for α = 2 is just the covariance) for sym-
metric α-stable moving average processes tends to zero (see Theorem 4.7.3 of Samorodnitsky
and Taqqu, 1994), this is not sufficient to guarantee the finiteness of σ 2 – we must have recourse
to our L1 assumption on ψ .

Remark 4 When the model is symmetric, i.e. β(x) = 0 for all x , then the location parameters
are also zero for α = 1. It is only when asymmetry is present that we must distinguish the case
that α = 1.

Proof We begin with the representation lemma:

X (t) =
∑
j∈Z

∫
B+ j

ψ(x + t)M (dx) =
∑
j∈Z

∫
B+ j−t

ψ(x + t)M (dx) (8)

Notice that at the end of Eq. (8), we have made the change of discrete variable j �→ j − t ,
with the result that each summand has scale

σj =
(∫

B
|ψ(x + j)|α dx

)1/α

and skewness

βj =
∫

B(ψ(x + j))〈α〉β(x) dx

σαj
,

respectively. This trick is instrumental to the general thrust of our method. Now consider a
level m truncation of this sum, and take the scaled sample mean of this approximating model:

n−1/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ(x + t)M (dx) = n−1/α
n∑

t=1

∫ ∑
| j |≤m

1B+ j−tψ(x + t)M (dx).

The αth power of the scale of this object is

1

n

∫ ∣∣∣∣∣∣
∑
| j |≤m

n∑
t=1

1B+ j−tψ(x + t)

∣∣∣∣∣∣
α

dx = 1

n

∑
s∈Z

∫
B+s

∣∣∣∣∣∣
∑
| j |≤m

n∑
t=1

1B+ j−tψ(x + t)

∣∣∣∣∣∣
α

dx

= 1

n

∑
s∈Z

∫
B

∣∣∣∣∣∣
∑
| j |≤m

n∑
t=1

1B+ j−s−tψ(x + s + t)

∣∣∣∣∣∣
α

dx .

(9)
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Observe that we must have j − s − t = 0, or else the summand with that index will be zero
itself. Also, the integral is nonzero only for values of s between 1 − n − m and m. Assuming,
at this point, that n is significantly larger than m, we have n − 2m terms of the form

1

n

∫
B

|ψ(x − m)+ · · · + ψ(x + m)|α dx

and an additional 4m terms, all of which are different, but have a 1/n factor. These latter terms
being o(1), the former group adds up to

n − 2m

n

∫
B

|ψ(x − m)+ · · · + ψ(x + m)|α dx

which tends to ∫
B

∣∣∣∣∣∣
∑
| j |≤m

ψ(x + j)

∣∣∣∣∣∣
α

dx (10)

as n → ∞. Similar arguments show that the skewness parameter tends to

∫
B(
∑

| j |≤m ψ(x + j))〈α〉β(x) dx∫
B |∑| j |≤m ψ(x + j)|α dx

. (11)

Moreover, when α = 1, it can be shown that the location parameter converges to

− 2

π

∫
B

∑
| j |≤m

ψ(x + j) log |ψ(x + j)|β(x) dx . (12)

From this we may conclude the convergence in distribution

n−1/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx)
L�⇒ Sm

∞(α), (13)

where the limit Sm∞(α) is α-stable with scale, skewness and location parameters given by Eqs.
(10), (11) and (12), respectively. Note that, unfortunately, the mode of convergence cannot be
strengthened to probability; this would require that

∫ ∣∣∣∣∣∣n−1/α
n∑

t=1

∑
| j |≤m

1B+ j−tψ(x + t)− 1B

∑
| j |≤m

ψ(x + j)

∣∣∣∣∣∣
α

dx −→ 0, (14)

which is false (see Remark 5).
Now it remains to let m tend to infinity on both sides of the convergence (13). The right-

hand side converges in probability to S∞(α), the desired limit, since the respective parameters
converge; for the left-hand side, more subtle methods are necessary to interchange the limits
(see Brockwell and Davis, 1991). Taking the difference of the left-hand side with the scaled
sample mean yields

n−1/α
n∑

t=1

∑
| j |>m

∫
B+ j−t

ψ(x + t)M (dx)
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for which we compute its scale’s αth power (we measure the scale parameter, since a sufficient
condition for a stable random variable to tend to zero in probability, is that its scale parameter
tends to zero). First suppose that α > 1:

σα = 1

n

∫ ∣∣∣∣∣∣
∑
| j |>m

n∑
t=1

1B+ j−tψ(x + t)

∣∣∣∣∣∣
α

dx

≤ 1

n



∫ ∑

| j |>m

∣∣∣∣∣
n∑

t=1

1B+ j−tψ(x + t)

∣∣∣∣∣


α

dx



(1/α)α

≤ 1

n



∑
| j |>m

(∫ ∣∣∣∣∣
n∑

t=1

1B+ j−tψ(x + t)

∣∣∣∣∣
α

dx

)(1/α)

α

= 1

n



∑
| j |m

(
n∑

t=1

∫
B

|ψ(x + j)|α dx

)1/α


α

=


∑
| j |>m

(∫
B

|ψ(x + j)|α dx

)1/α


α

by using the triangle inequality and Minkowski inequality for integrals. Therefore the scale is

σ ≤
∑
| j |>m

(∫
B

|ψ(x + j)|α dx

)1/α

which converges to zero as m → ∞, independently of n, since the summation over all js is
finite (this was established in the proof of the Representation Lemma). As for the case that
α ≤ 1, the triangle inequality gives

σα = 1

n

∫ ∣∣∣∣∣∣
∑
| j |>m

n∑
t=1

1B+ j−tψ(x + t)

∣∣∣∣∣∣
α

dx

≤ 1

n

∫ ∑
| j |>m

∣∣∣∣∣
n∑

t=1

1B+ j−tψ(x + t)

∣∣∣∣∣
α

dx

= 1

n

∑
| j |>m

n∑
t=1

∫
B

|ψ(x + j)|α dx

=
∑
| j |>m

∫
B

|ψ(x + j)|α dx .

Again, by reference to calculations in the argument for the Representation Lemma, we see this
too tends to zero as m grows. Thus,

lim
m−→∞ lim sup

n−→∞
P



∣∣∣∣∣∣n−1/α

n∑
t=1

∑
| j |>m

∫
B+ j−t

ψ(x + t)M (dx)

∣∣∣∣∣∣ > ε


 = 0



10 T. McELROY AND D. N. POLITIS

for any ε > 0. This calculation allows us to swap the limits in m and n in Eq. (13), and hence

n−1/α
n∑

t=1

∫
ψ(x + t)M(dx)

L�⇒ S∞(α).

Lastly, it is easy to see, so long as α �= 1, that

S∞(α)
L=
∫

B

(x)M (dx)

(where
L= denotes equality in distribution) since the scale, skewness and location parameters

are identical. �

Remark 5 The mode of convergence stated in Theorem 1 cannot be strengthened to conver-
gence in probability. Consider the truncated model: convergence in probability requires that
line (14) hold, by Proposition 3.5.1 of Samorodnitsky and Taqqu (1994). Since, by a simple
calculuation,

n−1/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ(x + t)M (dx)

= op(1)+ n−1/α
n∑

t=1

∫
B−t

∑
| j |≤m

ψ(x + j + t)M (dx),

we may conclude that convergence in probability is equivalent to the statement that

∫
R

∣∣∣∣∣∣n−1/α
n∑

t=1

1B−t(x)
∑
| j |≤m

ψ(x + j + t)− 1B(x)
∑
| j |≤m

ψ(x + j)

∣∣∣∣∣∣
α

dx (15)

tends to zero as n → ∞. Now, Eq. (15) is actually equal to

∫
R

∣∣∣∣∣∣n−1/α
n∑

t=1

1B−t(x)
∑
| j |≤m

ψ(x + j + t)

∣∣∣∣∣∣
α

dx +
∫

R

∣∣∣∣∣∣1B(x)
∑
| j |≤m

ψ(x + j)

∣∣∣∣∣∣
α

dx

because of the disjoint supports of the two functions that compose the integrand. The latter
term certainly does not tend to zero as n increases, and hence convergence in probability is not
possible.

2.4 Convergence of the Sample Variance

We consider the appropriately scaled sample variance:

n−2/α
n∑

t=1

X2(t).

As before, notice the unusual rate, which only agrees with the usual sample variance statistic
in the case that α = 2. Moreover, no centering by the sample mean is considered. In fact, the
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above statistic is asymptotically the same (in probability) as a centered version so long as
α < 2; these ideas are developed more fully at the end of this section.

We should also point out, that the limit theorem below is already well-known, and has
been demonstrated in Resnick et al. (1999). However, the methods we use are somewhat
different, and will allow for a joint sample mean – sample variance convergence result. Since,
for a symmetric X (t), the random variable X2(t) is the product of a positive α

2 stable random
variable and an independent χ2 on one degree of freedom,1 we may expect the limit, in light
of Theorem 1, to be positive α/2 stable as well, with a scale parameter depending upon the
filter function ψ . This is indeed the case.

THEOREM 2 Consider a time series generated from the model given by (1), where 0 < α < 2.
Then the sample variance has a positively skewed α/2-stable limit:

n−2/α
n∑

t=1

X2(t)
L�⇒ C ·

∫
B

2(x)M̃ (dx), (16)

where 
2(x) :=∑j∈Zψ
2( j + x), and C is a constant only depending on α. The new random

measure M̃ is an α/2 stable random measure with skewness intensity one. The limit random
variable will have location zero and skewness one, and scale parameter

(∫
B

|
2(x)|α/2 dx

)2/α

.

Remark 6 Note that we have excluded the α = 2 case from this theorem. In fact, this case
operates in a completely different fashion, as the limit would be the deterministic variance
(assuming that the process has zero mean). For α < 2, the variance does not exist, and thus
the sample variance’s convergence to a random limit should not be surprising. Even under this
non-classical situation, self-normalization can still be carried out.

Proof In light of the fact that Theorem 1 was proved in generality for 0 < α < 1, this theorem
follows almost as a corollary. We begin with the following fact, which can be gleaned from
Propositions 2.1 and 4.3 of Resnick et al. (1999):

n−2/α
n∑

t=1

X2(t) = oP(1)+ n−2/α

(
Cα

Cα/2

)2/α n∑
t=1

∫
R

ψ2(x + t)M̃(dx) (17)

for constants Cα defined by

Cα :=
(∫

R

x−α sin x dx

)−1

.

1 According to samorodnitsky and Taqqu (1994, p. 21), any symmetricα-stable random variable X can be written as

X = √
AG,

where A is a positive, α/2 stable random variable and G is an independent standard Gaussian. Thus X2 is equal in
distribution to AG2.



12 T. McELROY AND D. N. POLITIS

In fact, (Cα/Cα/2)
2/α is the constant C appearing in line (16) of Theorem 2. Next, we apply

the Representation Lemma 1 to the stochastic process on the right-hand side of Eq. (17), with
filter function ψ2 and α/2 stable random measure M̃. As a result, we have:

n−2/α
n∑

t=1

∫
R

ψ2(x + t)M̃(dx) = n−2/α
n∑

t=1

∑
j∈Z

∫
B+ j−t

ψ2(x + t)M̃(dx).

So now considering the truncated version

n−2/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ2(x + t)M̃(dx),

we apply the methods of Theorem 1 to obtain its scale parameter’s convergence to


∫

B

∣∣∣∣∣∣
∑
| j |≤m

ψ2(x + j)

∣∣∣∣∣∣
α/2

dx




2/α

.

The skewness parameter is one, which is identical with the skewness parameter of the proposed
limit, and the location parameters are all zero since α/2 �= 1. Thus we have the truncated
convergence for each m:

n−2/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ2(x + t)M̃(dx)
L�⇒
∫

B

∑
| j |≤m

ψ2(x + j)M̃(dx)

so that we now need to let m → ∞. But the proof of this is as in Theorem 2. Therefore we
obtain the stated convergence in distribution. �

As a last note, we may wish to expand this theorem to include the α = 2 case. In order to
do this, we must “mean-correct” the scaled sample variance statistic; this has no effect on the
limit if α < 2, but if α = 2 we have almost sure convergence to the variance of the Gaussian
process. Actually, the mean-correction for α = 2 is not neccessary for a mean zero process;
therefore, let us consider a location-shifted model:

Z(t) := X (t)+ µ =
∫

R

ψ(x + t)M(dx)+ µ. (18)

This is the appropriate model for stable stationary dependent time series with nonzero location;
in fact, these theorems have the statistical application of location estimation.

COROLLARY 1 Consider a time series Z(t) generated from the model given by Eq. (18), where
0 < α ≤ 2. Then the mean-corrected scaled sample variance either has a positively skewed
α/2-stable limit, or converges almost surely to the variance of Z(t), that is,

n−2/α
n∑

t=1

(Z(t)− Z)2
L�⇒ C ·

∫
B

2(x)M̃(dx) if 0 < α < 2 (19)

or

n−2/α
n∑

t=1

(Z(t)− Z)2
a.s.−→ var(Z(0)) if α = 2.
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The limit random variable and the constant C in Eq. (19) above are defined in Theorem 2.
Also, Z = (1/n)

∑n
t=1 Z(t) denotes the sample mean.

Proof First we establish that the sample second moments of the location zero and location µ
time series have the same limit, as long as α < 2:

n−2/α
n∑

t=1

Z 2(t) = n−2/α
n∑

t=1

(X2(t)+ 2µX (t)+ µ2)

= n−2/α

(
n∑

t=1

X2(t)+ 2µ
n∑

t=1

X (t)+ nµ2

)

= n−2/α
n∑

t=1

X2(t)+ 2µn−2/α
n∑

t=1

X (t)+ µ2n1−2/α.

Notice that since α < 2 the exponent 1 − 2/α is negative. Now taking the difference of this
expression with n−2/α∑n

t=1 X2(t) yields

2µn−2/α
n∑

t=1

X (t)+ µ2n1−2/α

which tends to zero in probability, since
∑n

t=1 X (t) = OP (n1/α). This shows that

n−2/α
n∑

t=1

X2(t) = oP(1)+ n−2/α
n∑

t=1

Z 2(t)

as desired.
Next, we show that the sample variance for the location model is asymptotically the same

as the sample second moment:

n−2/α
n∑

t=1

(Z(t)− Z)2 = n−2/α
n∑

t=1

(X (t)− X)2

= n−2/α

(
n∑

t=1

X2(t)− nX
2

)

= oP(1)+ n−2/α

(
n∑

t=1

Z 2(t)− nX
2

)

so that

n−2/α
n∑

t=1

Z 2(t)− n−2/α
n∑

t=1

(Z(t)− Z)2 = n−2/αnX
2 + oP(1)

= 1

n

(
n−1/α

n∑
t=1

X (t)

)2

+ oP(1)

= OP

(
1

n

)
−→ 0

as desired.



14 T. McELROY AND D. N. POLITIS

In the case that α = 2, it is well known that

1

n

n∑
t=1

(Z(t)− Z)2
a.s.−→ var(Z(0)).

Now the variance is twice the squared scale for α = 2 stable random variables – in this case
the scale is simply (∫

R

|ψ(x)|α dx

)1/α

=
√∫

R

ψ2(x) dx;

therefore the variance var(Z(0)) is

2
∫

R

ψ2(x) dx . �

3 SELF-NORMALIZED SAMPLE MEAN

We now move forward to a more ambitious goal – to describe the joint asymptotics of sample
mean and sample variance. If Theorems 1 and 2 can be sensibly concatenated into a joint
convergence result, then certain continuous functions – such as the quotient – of the sample
mean and square root sample variance can be approximately determined. In terms of motivation,
we remind the reader that classically, the division of sample mean minus the true mean by the
square root of an estimate of variance allows us the freedom of not “pre-determining” the scale.
In the case of heavy-tailed distributions, this self-normalization procedure cannot remove
the limit distribution’s dependence upon certain unknown model parameters; nevertheless,
it is a beneficial procedure, since it effectively removes the characteristic exponent α from
the rate of convergence, thereby providing us with a genuine

√
n-convergent statistic. To be

more specific, the rates n−1/α and n−2/α of growth for scaled sample mean and scaled sample
variance respectively will cancel in the quotient.

The paper of Logan et al. (1973) first obtained joint weak convergence results for the
sample mean and sample second moment, for an i.i.d α-stable model. However, the quotient’s
limit was not a well-known random variable; even deriving a closed form expression for the
probability density function of a generic stable random variable is still an open problem (for
most characteristic exponents). Without knowledge of the limit quantiles, it is not possible
to form confidence intervals for the mean. Subsampling methods offer a practical solution of
these difficulties; see Politis et al. (1999). A full discussion will be given in the latter section on
applications, but the basic idea is to use subsampling to approximate the limit distribution itself.
When this procedure is valid (e.g., it certainly works for m-dependent time series, and more
generally holds for strong mixing processes), it provides a practical method for constructing
approximate confidence intervals for the mean. This is the statistical context in which we wish
to view the subsequent theorem.

To fix ideas, we consider the location model (18) introduced just before Corollary 1. Thus
the centered scaled sample mean is

n1−1/α(Z − µ) = n−1/α
n∑

t=1

(Z(t)− µ),
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which is actually identical with the uncentered scaled sample mean Sn for the location zero
model. In order to include the α = 2 case, it is appropriate to center the scaled sample variance,
as discussed earlier.

THEOREM 3 Consider a time series generated from the model given by (18), where 0< α ≤ 2;
ifα = 1, we assume in addition thatβ = 0. Then the centered sample mean and mean-corrected
sample variance converge jointly in distribution to stable limits:(

n−1/α
n∑

t=1

(Z(t)− µ), n−2/α
n∑

t=1

(Z(t)− Z)2(t)

)

L�⇒
(∫

B

(x)M(dx),C ·

∫
B

2(x)M̃(dx)

)
. (20)

For α = 2 we must replace the second component of the limit by var(Z(0)). The same notations
as in Theorems 1 and 2 have been used.

Remark 7 It may seem odd at first that the filter functions of the limit random variables are
supported on the unit cube. The unit periodicity of
 and
2 is due to the fact that the integers
index our process X (t).

Proof Observe that it is sufficient to examine(
n−1/α

n∑
t=1

X (t), n−2/α
n∑

t=1

X2(t)

)

in view of Corollary 1. As mentioned in Remark 5, the modes of convergence cannot be
strengthened from distribution to probability – the latter mode would have facilitated the
immediate proof of this theorem, as a joint convergence in probability. The absence of such a
firmer result has promulgated a deeper investigation of the stochastic structure.

As a preliminary remark, note that this theorem is well-known for independent random
variables (i.e., when ψ is supported in the unit interval) (see Logan et al., 1973); and also
for linear combinations of such (i.e., when ψ is a step function) (see McElroy and Politis,
2002). The basic concept of this proof is to cut apart the stochastic process until a k-dependent
sequence is revealed, for which joint convergenceof sample mean and sample variance is valid,
and then to paste the process back up again.

We begin with a valuable lemma, which is an easy corollary of some results of Davis and
Hsing (1995). First, note that by definition a random vector X is α-stable if for any positive
constants A, B and a constant vector D

AX(1) + BX(2) L= (Aα + Bα)1/αX + D,

where X(1) and X(2) are independent copies of X. See, Samorodnitsky and Taqqu (1994, p. 58)
for additional details.

LEMMA 2 Let k be any positive integer, and suppose X1, . . . , Xn is a k-dependent stationary
time series, such that {X1, . . . , Xk} forms an α-stable random vector for some characteristic
exponent α ∈ (0, 2). If α = 1, we also assume that the random variables are symmetric. Then(

n−1/α
n∑

t=1

Xt , n−2/α
n∑

t=1

X2
t

)
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converges jointly in distribution to (S, S̃), where S is an α-stable random variable, and S̃ is a
positively skewed α/2-stable random variable.

Proof Since {Xh, . . . , Xh+k−1} is a stable random vector for all h by stationarity, we have
(letting h = 1)

lim
λ−→∞ λ

αP

[
‖X‖ > λ,

X
‖X‖ ∈ A

]
= C̃α�‖·‖(A)

by Theorem 4.4.8 of Samorodnitsky and Taqqu (1994), whence the notation is taken: X =
{X1, . . . , Xk}, ‖ · ‖ is some norm on Rk , and A is a Borel set in the space S‖·‖

d – the unit sphere
under the topology generated by the norm ‖ · ‖. C̃α is a positive constant, and the measure�‖·‖
is related to the spectral measure � of the random vector X. Substituting λ = tn1/α for some
t > 0 and xn = n1/α , we obtain

lim
n−→∞ n P

[
‖X‖ > txn,

X
‖X‖ ∈ A

]
= t−αC̃α�‖·‖(A).

Now let  be a random variable concentrated on S‖·‖
d with distribution C̃α�‖·‖; then we have

lim
n−→∞ n P

[
‖X‖ > txn,

X
‖X‖ ∈ A

]
= t−αP[ ∈ A]

which implies that X is “jointly regulary varying” with index α, as defined in Davis and
Hsing (1995). Now from example 5.4 of Davis and Hsing (1995), we see that the conditions
of their Theorem 3.1 are satisfied; therefore, the assumptions of their example 5.3 are met, and
we obtain the desired joint convergence with the choice r = 2, for values of α in (0, 1) ∪ (1, 2).
The joint convergence result in example 5.3 will also hold true if the marginal distribution is
symmetric, since that will ensure that the term ESn(0, 1] in line (3.2) of Davis and Hsing (1995,
p. 895) will be zero. �

With this lemma in hand, we now proceed with the proof of our theorem. Consider the
truncated model, as in Theorem 1; we define W (t) as follows:

W (t) :=
∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx)

so that W (1), . . . ,W (n) are stationary (they are identically distributed α-stable random
variables with scale σj = (

∫
B |ψ(x + j)|α dx)1/α and skewness

∫
B(ψ(x + j))<α>β(x) dx/σαj

and (2m + 1)-dependent. It is easy to see that W = {W (1), . . . ,W (n)} forms a strictlyα-stable
random vector, for any n. In fact, a sufficient condition for this is given by Theorem 2.1.5 of
Samorodnitsky and Taqqu (1994) – for coefficients b1, . . . , bn , the dot product

∑n
t=1 bt W (t)

is strictly α-stable with scale


∫
∥∥∥∥∥∥

n∑
t=1

bt

∑
| j |≤m

1B+ j−t(x)ψ(x + t)

∥∥∥∥∥∥
α

dx




1/α

and skewness ∫
(
∑n

t=1 bt
∑

| j |≤m 1B+ j−t(x)ψ(x + t))<α>β(x) dx∫ |∑n
t=1 bt

∑
| j |≤m 1B+ j−t(x)ψ(x + t)|α dx

,
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and location zero (either α �= 1, which implies location zero, or α = 1 and β = 0, which
likewise implies location zero). Applying Lemma 2 with k = 2m + 1, we obtain

(
n−1/α

n∑
t=1

W (t), n−2/α
n∑

t=1

W 2(t)

)
L�⇒(Sm

∞(α), S̃m
∞(α)). (21)

The m subscript on the limit random variables reminds us that this result is for the truncated
model; we have yet to let m tend to infinity. By restricting to the first component in Eq. (21)
above, we see that in distribution

Sm
∞(α) =

∫
B

∑
| j |≤m

ψ(x + j)M(dx)

which tends in probability to
∫

B 
(x)M(dx) as m → ∞, as demonstrated in the proof of
Theorem 1. The analysis of W 2(t) requires considerably more scrutiny.

Asymptotics of the Second Component First we square out W (t) and obtain

W 2(t) =
∑
| j |≤m

(∫
B+ j−t

ψ(x + t)M(dx)

)2

+
∑
i �= j

(∫
B+i−t

ψ(x + t)M(dx)

)(∫
B+ j−t

ψ(x + t)M(dx)

)
;

here we introduce the notation V( j, t) := ∫B+ j−t ψ(x + t)M(dx) for brevity. Thus considering
the whole normalized sum, we have:

n−2/α
n∑

t=1

W 2(t) = n−2/α
n∑

t=1

∑
| j |≤m

V 2( j, t)+ n−2/α
n∑

t=1

∑
i �= j

V (i, t)V ( j, t).

The first term is, up to terms that are oP(1), equal to

C · n−2/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ2(x + t)M̃(dx)

using Proposition 4.3 of Resnick et al. (1999) – it holds for each j , and therefore for the
sum over the finite collection of js. C is the same constant that appeared in the proof of
Theorem 2 – it is no way changed (or dependent on j ), since it only depended on α and not
on the underlying filter function. As seen in the proof of Theorem 2, the above term converges
weakly to C

∫
B

∑
| j |≤m ψ

2(x + j)M̃(dx). The second term tends to zero in probability – let us
consider one choice of i �= j . Since the indices are distinct, V (i, t) and V ( j, t) are independent
random variables, for each t , since the support of their filter functions are disjoint. A Markov
Inequality argument can be used to show negligibility: choose a positive δ ≤ 1 such that
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α ∈ (δ, 2δ). For instance, if α ∈ (1, 2) select δ = 1; if α ∈ (0, 1], select δ = (2/3)α. If α = 2,
we use a separate argument. Now the δth absolute moment is

E

∣∣∣∣∣n−2/α
n∑

t=1

V (i, t)V ( j, t)

∣∣∣∣∣
δ

= n−2(δ/α)E

∣∣∣∣∣
n∑

t=1

V (i, t)V ( j, t)

∣∣∣∣∣
δ

≤ n−2(δ/α)
n∑

t=1

E |V (i, t)|δE |V ( j, t)|δ

= n1−2δ/α · (E |V (0, 0)|δ)2 −→ 0

by the Markov Inequality and choice of δ. But if α = 2, we have

1

n

n∑
t=1

V (i, t)V ( j, t)
a.s.−→ E[V (i, t)V ( j, t) = 0

by the Strong Law of Large Numbers, and our location zero assumption on our model. In
summary, we have

n−2/α
n∑

t=1

W 2(t) = oP(1)+ n−2/α
n∑

t=1

∑
| j |≤m

∫
B+ j−t

ψ2(x + t)M̃(dx),

and we already know the weak limit of the right-hand side – namely

S̃m
∞(α) = C

∫
B

∑
| j |≤m

ψ2(x + j)M̃(dx)

holds in the distributional sense.
As a final step, we must demonstrate the relation of convergence (21) to the asymptotics of

(n−1/α∑n
t=1 X (t), n−2/α∑n

t=1 X2(t)). In particular, we examine

n−1/α
n∑

t=1

X (t)− n−1/α
n∑

t=1

W (t)

and show that the limit as m tends to infinity of the limit superior as n → ∞ in probability
of the difference is zero; this was already verified in the proof of Theorem 1. Turning to the
scaled sample second moment, we have

n−2/α
n∑

t=1

X2(t)+ oP(1) = C · n−2/α
n∑

t=1

∫
R

ψ2(x + t)M̃(dx)

= C · n−2/α
n∑

t=1

∑
j∈Z

∫
B+ j−t

ψ2(x + t)M̃(dx)

by Proposition 4.3 of Resnick et al. (1999) and the representation lemma. The difference
of C · n−2/α∑n

t=1

∑
j∈Z

∫
B+ j−t ψ

2(x + t)M̃(dx) with n−2/α∑n
t=1 W 2

t is (again, up to oP (1)
terms)

C · n−2/α
∑
| j |>m

n∑
t=1

∫
B+ j−t

ψ2(x + t)M̃(dx),
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which is adequately controlled, as exhibited in the proof of Theorem 2. Hence(
n−1/α

n∑
t=1

X (t), n−2/α
n∑

t=1

X2(t)

)
L�⇒ lim

m−→∞(S
m
∞(α), S̃m

∞(α)).

Now it is easy to see that (Sm∞(α), S̃m∞(α)) is jointly equal in distribution to


∫

B

∑
| j |≤m

ψ(x + j)M(dx),C ·
∫

B

∑
| j |≤m

ψ2(x + j)M(dx)


,

which converges in probability as m → ∞ to(∫
B

(x)M(dx),C ·

∫
B

2(x)M̃(dx)

)

as desired. �

Our next consideration, which closes the discussion of sample mean and sample variance,
is a corollary that provides the application of location inference. Generally we are interested
in the sampling distribution of a root, which is some function of a parameter and its estimator.
Here we consider the root µ̂− µ, where µ̂ is some estimate of the parameter µ; knowledge
of the quantiles of the root’s distribution facilitates the construction of confidence intervals. If
we consider Z̄ as our estimator µ̂ of the unknown location µ, then µ̂ is consistent as long as
α > 1, in which case the corollary below can be used to construct confidence intervals for µ.

COROLLARY 2 Consider a time series generated from the model given by Eq. (18), where
0 < α ≤ 2. Let σ̂ 2 be the sample variance, and σ̂ its square root, i.e.

σ̂ =
√√√√ 1

n − 1

n∑
t=1

(Z(t)− Z̄)2.

Then the following standardized root Tn(µ) has a nondegenerate weak limit. When 0 < α < 2
(if α = 1, we also assume that β = 0), we have

Tn(µ) := Z̄ − µ

σ̂/
√

n
L�⇒

∫
B 
(x)M(dx)√

C · ∫B 
2(x)M̃(dx)
. (22)

If α = 2, the whole denominator in Eq. (22) should be replaced by
√

var(Z(0)). The same
notations as in Theorems 1 and 2 have been used.

Proof We begin with some algebra:

Z̄ − µ

σ̂/
√

n
=

√
n
√

n − 1

n

∑n
t=1(Z(t)− µ)√∑n
t=1(Z(t)− Z̄)2

=
√

1 − 1

n

n−1/α∑n
t=1(Z(t)− µ)√

n−2/α
∑n

t=1(Z(t)− Z̄)2
.
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The
√

1 − 1/n can be ignored in the face of n’s approach to infinity; now applying the functional
f (x, y) = x/

√
y to the result (20) and invoking the continuous mapping theorem produces

the desired conclusion. �

This result is valid for α ≤ 1, but in this case it is of little use, as Z̄ is not consistent for µ.
Note finally that we cannot assume detailed knowledge of the limit distribution in Corollary 2,
and thus computing its quantiles is only a theoretical possibility. In the final section of the
paper, we explore how subsampling methods can estimate the limit distribution’s quantiles.

4 SELF-NORMALIZED PERIODOGRAM

4.1 The Heavy-Tailed Periodogram

Let us now address the next major thrust of this paper: the periodogram. In classical time
series analysis, when the random variables have finite variance, the spectral density is defined
to be the Fourier Transform of the autocovariance sequence. For a sample of size n, this is
estimated by the periodogram – the Discrete Fourier Transform of the sample autocovariance
function – and evaluated at frequencies of the form 2π j/n for j = 0, 1, . . . , n − 1. The formula
can be reduced (if we remove centerings) to

∣∣∣∣∣n−1/2
n∑

t=1

X (t)e−itω

∣∣∣∣∣
2

for frequencies ω ∈ (0, 2π] and i = √−1. Typically this estimator of 2π times the spectral
density is smoothed over a band of neighboring frequencies to obtain consistency.

When heavy-tails are present in the data, we can no longer define the spectral density,
since the autocovariance sequence does not exist. In the case of linear processes, a theory for
heavy-tailed spectral densities has been developed – see Klüppelberg and Mikosch (1992,
1993). Here we will be interested in the asymptotics of the heavy-tailed periodogram, whichQ3

is defined to be

I (ω) := n−2/α

∣∣∣∣∣
n∑

t=1

X (t)e−itω

∣∣∣∣∣
2

. (23)

Notice that the rate n−1 has been replaced by n−2/α – this is the appropriate rate of convergence
to a non-degenerate limit distribution.

Given the results in the classical and linear heavy-tailed models, we do not expect a non-
random limit. In fact, we cannot easily separate the limit into a product of a stochastic term
and constants containing information about the data’s periodicities:

THEOREM 4 Consider the locationless model given by (1), and let 0 < α < 2. The heavy-
tailed periodogram I (ω), for any ω ∈ 2πQ, converges in distribution to a non-degenerate
limit. In particular, let Sj = ∫B ψ(x + j)M(dx); then

n−2/α

∣∣∣∣∣
n∑

t=1

X (t)e−itω

∣∣∣∣∣
2

L�⇒(γ 2
c + γ 2

s )

∣∣∣∣∣∣
∑
j∈Z

e−i jωSj

∣∣∣∣∣∣
2

, (24)
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where γc and γs are constants defined as follows:

γc = g−1/α

(
g−1∑
h=0

| cos hω|α
)1/α

, γs = g−1/α

(
g−1∑
h=0

| sin hω|α
)1/α

,

where ω = 2πu/g for u and g relatively prime. In the above, Q denotes the set of rational
numbers.

Remark 8 A similar result has been established by Klüppelberg and Mikosch (1992); they lookQ3

at an infinite order moving average model, and consider joint results for multiple periodicities
of various types. The Klüppelberg – Mikosch setting corresponds to the case where ψ is a
step function ψ =∑j∈Z 1B + j
j ; hence Sj = ψjM(B) for all j , and the limit in Eq. (24)
reduces to

((γcM(B))
2 + (γsM(B))

2)

∣∣∣∣∣∣
∑
j∈Z

e−i jωψj

∣∣∣∣∣∣
2

; (25)

compare with Theorems 2.5 and 5.2 of the aforementioned paper. The second term in the above
product (25) is |∑j∈Z e−i jωψj |2, which is actually related to a heavy-tailed analogue of the
spectral density (for details, see Section 4.3).

Remark 9 To formulate this result in the context of random fields, we consider sampling the
data from a rectangular subset K of the d-dimensional integer lattice Zd . Now the random
measure, filter functions, and skewness intensity are defined on Rd . If we let K be the
cube (0, n1] × · · · × (0, nd ] = intersected with the integer lattice Zd , the total number of
observations is N = n1 × · · · × nd . We use the following shorthand for sums:

n∑
t=1

X (t) =
n1∑

t1=1

· · ·
nd∑

td =1

X (t1, . . . , Xd).

Let us consider periodogram ordinates ω = (ω1, . . . , ωd) – we need a scalar argument for the
exponential function in the Fourier transform, so we take the dot product of t and ω, which
will be denoted by t ′ω. So the heavy-tailed periodogram is defined as follows:

I (ω) := N−2/α

∣∣∣∣∣
n∑

t=1

X (t)e−it ′ω
∣∣∣∣∣
2

Then the result of Theorem 4 can be extended to random fields, so long as each frequency
component ωi is a rational multiple of 2π . The resulting limit will be a constant times∣∣∣∣∣∣

∑
j∈Zd

e−i j ′ωSj

∣∣∣∣∣∣
2

with Sj = ∫B ψ(x + j)M(dx).

Proof As indicated in the statement of the theorem, we will consider ω of the form 2πu/g
where u and g are relatively prime integers, and g is positive. First, observe that

n−2/α

∣∣∣∣∣
n∑

t=1

X (t)e−itω

∣∣∣∣∣
2

=
(

n−1/α
n∑

t=1

X (t) cos tω

)2

+
(

n−1/α
n∑

t=1

X (t) sin tω

)2

.
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Thus, it is sufficient to establish the joint convergence of the portions n−1/α∑n
t=1 X (t) cos tω

and n−1/α∑n
t=1 X (t) sin tω. Using the representation lemma, we have

n−1/α
n∑

t=1

X (t) cos tω = n−1/α
n∑

t=1

∑
j∈Z

cos tω
∫

B+ j−t
ψ(x + t)M(dx), (26)

n−1/α
n∑

t=1

X (t) sin tω = n−1/α
n∑

t=1

∑
j∈Z

sin tω
∫

B+ j−t
ψ(x + t)M(dx). (27)

By simple trigonometry, the first line is equal to

n−1/α
∑
j∈Z

cos jω
n∑

t=1

cos(t − j)ω
∫

B+ j−t
ψ(x + t)M(dx) (28)

− n−1/α
∑
j∈Z

sin jω
n∑

t=1

sin(t − j)ω
∫

B+ j−t
ψ(x + t)M(dx)

and the second line is

n−1/α
∑
j∈Z

sin jω
n∑

t=1

cos(t − j)ω
∫

B+ j−t
ψ(x + t)M(dx) (29)

− n−1/α
∑
j∈Z

cos jω
n∑

t=1

sin(t − j)ω
∫

B+ j−t
ψ(x + t)M(dx).

At this point we need a computational lemma:

LEMMA 3 Fix m, and let f and h each be either cosine or sine. Then

n−1/α
∑
| j |≤m

f ( jω)
n∑

t=1

h((t − j)ω)
∫

B+ j−t
ψ(x + t)M(dx)

= oP(1)+ n−1/a
n∑

t=1

h(tω)
∫

B−t

∑
| j |≤m

f ( jω)ψ(x + t + j)M(dx).

Proof of Lemma The αth power of the scale of the difference is simply

1

n

∫ ∣∣∣∣∣∣
∑
| j |≤m

f ( jω)


 n∑

t=1

h((t − j)ω)1B+ j−t(x)ψ(x + t)

−
n+ j∑

t=1+ j

h((t − j)ω)1B+ j−t(x)ψ(x + t)



∣∣∣∣∣∣
α

dx

≤ 1

n

∫ ∑
| j |≤m

∑
t∈Kj,n

1B+ j−t(x)|ψ(x + t)|


α

dx,
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where Kj,n = {n + 1, . . . , n + j} ∪ {1, . . . , j} for j positive, and {n + j + 1, . . . , n} ∪ {1 +
j, . . . , 0} for j negative. Thus there are a finite number of terms of the form 1B+ j−t(x)|ψ(x +
t)|; hence the expression tends to zero as n tends to infinity. �

If we now apply Lemma 3 to the truncated versions of lines (28) and (29), we obtain, up to
oP(1) terms,

n−1/α
n∑

t=1

cos tω
∫

B−t

∑
| j |≤m

cos jωψ(x + t + j)M(dx)

− n−1/α
n∑

t=1

sin tω
∫

B−t

∑
| j |≤m

sin jωψ(x + t + j)M(dx) (30)

and

n−1/α
n∑

t=1

cos tω
∫

B−t

∑
| j |≤m

sin jωψ(x + t + j)M(dx)

+ n−1/α
n∑

t=1

sin tω
∫

B−t

∑
| j |≤m

cos jωψ(x + t + j)M(dx) (31)

respectively. Now let us introduce the notations

Wc(t) :=
∫

B−t

∑
| j |≤m

cos jωψ(x + t + j)M(dx)

Ws(t) :=
∫

B−t

∑
| j |≤m

sin jωψ(x + t + j)M(dx)

which have scale parameters


∫

B

∣∣∣∣∣∣
∑
| j |≤m

cos jωψ(x + j)

∣∣∣∣∣∣
α

dx




1/α


∫

B

∣∣∣∣∣∣
∑
| j |≤m

sin jωψ(x + j)

∣∣∣∣∣∣
α

dx




1/α

;

hence Wc(1), . . . ,Wc(n) and Ws(1), . . . ,Ws(n) form iid collections! Due to assumptions onω,

n−1/α
n∑

t=1

cos tωWc(t) = g−1/α
g−1∑
h=0

cos hω

(
n

g

)−1/α∑
t∈Ah

Wc(t),
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where Ah = {t : 1 ≤ t ≤ n, t mod g = h}. A similar formula holds for Ws ; employing these
observations in Eqs. (30) and (31) yields

g−1/α
g−1∑
h=0


cos hω

(
n

g

)−1/α∑
t∈Ah

Wc(t)− sin hω

(
n

g

)−1/α∑
t∈Ah

Ws(t)




g−1/α
g−1∑
h=0


cos hω

(
n

g

)−1/α∑
t∈Ah

Ws(t)+ sin hω

(
n

g

)−1/α∑
t∈Ah

Wc(t)




respectively. It is easy to demonstrate (use the Cramer–Wold device) that the vector

(
n−1/α

n∑
t=1

Wc(t), n−1/α
n∑

t=1

Ws(t)

)

converges in distribution, for any m, to the vector


∫

B

∑
| j |≤m

cos jωψ(x + j)M(dx),
∫

B

∑
| j |≤m

sin jωψ(x + j)M(dx)


 .

Since the size of Ah is approximately n/g, we can use the above observation with Slutsky’s
Theorem to establish the joint convergence


cos hω

(
n

g

)−1/α∑
t∈Ah

Wc(t), sin hω

(
n

g

)−1/α∑
t∈Ah

Wc(t),

cos hω

(
n

g

)−1/α∑
t∈Ah

Ws(t), sin hω

(
n

g

)−1/α∑
t∈Ah

Ws(t)




L�⇒

| cos hω|

∫
B

∑
| j |≤m

cos jωψ(x + j)Mh(dx),

| sin hω|
∫

B

∑
| j |≤m

cos jωψ(x + j)Mh(dx),

| cos hω|
∫

B

∑
| j |≤m

sin jωψ(x + j)Mh(dx),

| sin hω|
∫

B

∑
| j |≤m

sin jωψ(x + j)Mh(dx)




which holds jointly in h = 0, . . . , g − 1, due to the independence of the summands in the sets
Ah . To clarify, this is a weak convergence of vectors with 4g components. The measures Mh
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are independent versions of the original measure M. If we sum this convergence over h and
divide by g1/α , we obtain


g−1/α

g−1∑
h=0

cos hω

(
n

g

)−1/α∑
t∈Ah

Wc(t), g−1/α
g−1∑
h=0

sin hω

(
n

g

)−1/α∑
t∈Ah

Wc(t),

g−1/α
g−1∑
h=0

cos hω

(
n

g

)−1/α∑
t∈Ah

Ws(t), g−1/α
g−1∑
h=0

sin hω

(
n

g

)−1/α∑
t∈Ah

Ws(t)




L�⇒

g−1/α

(
g−1∑
h=0

| cos hω|α
)1/α ∫

B

∑
| j |≤m

cos jωψ(x + j)M(dx),

g−1/α

(
g−1∑
h=0

| sin hω|α
)1/α ∫

B

∑
| j |≤m

cos jωψ(x + j)M(dx),

g−1/α

(
g−1∑
h=0

| cos hω|α
)1/α ∫

B

∑
| j |≤m

sin jωψ(x + j)M(dx),

g−1/α

(
g−1∑
h=0

| sin hω|α
)1/α ∫

B

∑
| j |≤m

sin jωψ(x + j)M(dx),




using the fact that
∑g−1

h=0 | f (h)| ∫ φ(x)Mh(dx) equals (
∑g−1

h=0 | f (h)|α)1/α ∫ φ(x)M(dx) in
distribution. The constants in front of the limit vector’s components are the same coefficients
γc and γs defined in the statement of the theorem. If we apply the continuous mapping
(w, x, y, z) �→ (w − z, y + x) to the above convergence, we have


g−1/α

g−1∑
h=0


cos hω

(
n

g

)−1/α∑
t∈Ah

Wc(t)− sin hω

(
n

g

)−1/α∑
t∈Ah

Ws(t)


 ,

g−1/α
g−1∑
h=0


cos hω

(
n

g

)−1/α∑
t∈Ah

Ws(t)+ sin hω

(
n

g

)−1/α∑
t∈Ah

Wc(t)






L�⇒

γc

∫
B

∑
| j |≤m

cos jωψ(x + j)M(dx)− γs

∫
B

∑
| j |≤m

sin jωψ(x + j)M(dx),

γc

∫
B

∑
| j |≤m

sin jωψ(x + j)M(dx)+ γs

∫
B

∑
| j |≤m

cos jωψ(x + j)M(dx)


 ;

of course we recognize the left hand side as the truncation of

(
n−1/α

n∑
t=1

X (t) cos tω, n−1/α
n∑

t=1

X (t) sin tω

)
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up to oP(1) terms. At this point we let m tend to ∞ as in the proof of Theorem 1; the only
difference here is the presence of trigonometric terms, which have absolute value bounded by
one, and hence are easily dealt with. Recalling that Sj = ∫B ψ(x + j)M(dx), we have proved

(
n−1/α

n∑
t=1

X (t) cos tω, n−1/α
n∑

t=1

X (t) sin tω

)

L�⇒

γc

∑
j∈Z

cos jωSj − γs

∑
j∈Z

sin jωSj, γc

∑
j∈Z

sin jωSj + γs

∑
j∈Z

cos jωSj


 .

This is the desired goal; now we may apply the mapping (x, y) �→ (x2 + y2) to obtain

n−2/α

∣∣∣∣∣
n∑

t=1

X (t)e−itw

∣∣∣∣∣
2

L�⇒(γ 2
c + γ 2

s )

∣∣∣∣∣∣
∑
j∈Z

e−i jwSj

∣∣∣∣∣∣
2

after some algebraic simplification of the right hand side. �

4.2 Adjustments for Location

Note that this theorem is proved for the “locationless model.” If we wish to consider the
location model Z(t) = X (t)+ µ, things are a bit different. The periodogram would then be

∣∣∣∣∣n−1/α
n∑

t=1

Z(t)e−itw

∣∣∣∣∣
2

=
∣∣∣∣∣n−1/α

n∑
t=1

X (t)e−itw + µn−1/α
n∑

t=1

e−itw

∣∣∣∣∣
2

;

as long as ω �= 0, the second summand above tends to zero as n → ∞, since |∑n
t=1 e−itw| ≤

2/|1 − e−iw|. If, as is common in practice, we evaluate the periodogram at frequencies of
the form ω = 2π j/n, for j �= 0, then the second term is actually equal to zero for every n.
However, when ω = 0 we obtain

n2−2/α |Z̄ |2 =
∣∣∣∣∣n−1/α

n∑
t=1

X (t)+ µn1−1/α

∣∣∣∣∣
2

which is asymptotically the same as |n−1/α∑n
t=1 X (t)e−itw |2 if and only if α ≤ 1; otherwise

the whole thing diverges – compare with Brockwell and Davis (1991, Proposition 10.3.1).
The other possibility is to define a centered periodogram:

∣∣∣∣∣n−1/α
n∑

t=1

(Z(t)− Z̄)e−itw

∣∣∣∣∣
2

.

For ω = 0, this centered periodogram is zero; otherwise we have

∣∣∣∣∣n−1/α
n∑

t=1

X (t)e−itw − n−1/α
n∑

t=1

(Z̄ − µ)e−itw

∣∣∣∣∣
2
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and the second term is n−1/α X̄
∑n

t=1 e−itw which is OP (n−1) for ω �= 0. Thus, for ω �= 0,
this centered periodogram is asymptotically equivalent to the periodogram for the locationless
model, and exactly equivalent if ω is chosen to be of form 2π j/n. The centered periodogram
seems to be the better choice, at least from the perspective of asymptotic theory.

4.3 Normalizing the Periodogram

We now develop some α-stable spectral density theory as an interpretation of the limit result
in Theorem 4. Throughout this section, we will not concern ourselves with normalizations
by 2π . Now, an alternative definition for the periodogram is the Fourier Transform of the
sample autocovariance sequence. For stationary data, it is equivalent to transform the sample
autocorrelation sequence; the formula is

∑
h∈Z

e−ihw

(∑n
t=1 X (t)X (t + h)∑n

t=1 X2(t)

)
. (32)

For heavy-tailed infinite-order moving averages, it is well-known that the sample
autocorrelation at lag h is actually consistent for the number∑

j∈Zψjψj+h∑
j∈Zψ

2
j

,

even though the covariances are infinite – see Davis and Resnick (1986) for a derivation of
the root’s asymptotic distribution. For light-tailed infinite-order moving averages, the spectral
density works out to be ∑

h∈Z

e−ihw

∑
j∈Zψjψj+h∑

j∈Zψ
2
j

, (33)

i.e., the transform of the autocorrelation sequence. In analogy with this, the heavy-tailed
spectral density can be defined by Eq. (33) when there is an infinite-order moving average model
for the data. We observe that no theory for the Fourier transform of the sample autocovariance
sequence can be developed in the heavy-tailed case, since those statistics will always have a
random limit. In consequence of this, we are constrained to examine the Fourier transform of the
sample autocorrelations. Now, rewriting Eq. (32), we obtain the self-normalized periodogram,
which is the quotient of the usual periodogram and the sample variance:

IN (ω) := |∑n
t=1 X (t)e−itw |2∑n

t=1 X2(t)
. (34)

Klüppelberg and Mikosch (1993) first derived the asymptotic distribution of the above self-
normalized periodogram under an infinite-order moving average model, and discovered a
random limit. In a subsequent paper (Klüppelberg and Mikosch, 1994), it was demonstrated that
smoothing over a nearby band of frequencies, as in the classical lightly-tailed case, produces
a consistent estimate of the heavy-tailed spectral density given by Eq. (33). We now propose
some extensions of this theory to our stable integral model.

According to Corollary 5.2 of Resnick, Samorodnitsky, and Xue (1999), the sample auto-
correlations of the process X (t) converge to a constant limit if and only if the filter function
satisfies the following condition∑

j∈Z

ψ(x + j)ψ(x + j + h) = ρ(h)
∑
j∈Z

ψ2(x + j) (35)
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for almost every x ∈ B and some number ρ(h). When condition (35) holds, then the sample
autocorrelations are consistent for the number ρ(h). As a remark, it is easily verified that ψs
of step function form, as in line (3), satisfy this condition, and we obtain in that case

ρ(h) =
∑

j∈Zψjψj+h∑
j∈Zψ

2
j

.

Taking this as our starting point, we define the α-stable spectral density for an α stable moving
average model given by Eq. (1) with filter function ψ satisfying condition (35) to be

fα(ω) =
∑
h∈Z

e−ihwρ(h). (36)

It is desirable to obtain the consistency of an appropriately smoothed self-normalized
peridogram for the α-stable spectral density. In Klüppelberg and Mikosch (1994), these results
were obtained for a heavy-talled moving average model; the theorem below delineates progress
toward establishing a similar result for the general stable moving average case.

THEOREM 5 Under the locationless model given by (1) with 0 < α < 2, the self-normalized
periodogram IN (ω), for any ω ∈ 2πQ, converges in distribution to a non-degenerate limit:

|∑n
t=1 X (t)e−itw |2∑n

t=1 X2(t)
L�⇒
( γ 2

c + γ 2
s )

∣∣∣∑j∈Z e−i jwSj

∣∣∣2
C
∫

B 
2(x)M̃(dx)
. (37)

The notation is the same as that defined in previous theorems.

Remark 10 Recall that for the scaled sample mean Sn , we constructed a normalized version
Tn(µ) in Corollary 2, and thereby removed its explicit dependence on a from the root;
Theorem 5 achieves the same objective for the periodogram I (ω) by producing IN (ω). As
mentioned in Section 4.2, we can replace the variables X (t) by Z(t) in the formula for the
periodogram without affecting the asymptotic distribution (though with some difficulties at
ω = 0). Likewise, the sample variance is asymptotically the same when Z(t) is substituted for
X (t) (so long as α < 2), so it follows that the Theorem above also holds true for the locationless
model (18).

PROPOSITION 2 The limit random variable in Theorem 4 can be decomposed into the α-stable
spectral density and an error term:

∣∣∣∑j∈Z e−i jwSj

∣∣∣2
C
∫

B 
2(x)M̃(dx)
= fα(ω)+ ε(ω).

The error term ε(ω) is a complicated term, involving the Fourier transform of many random
variables (see the proof of the proposition).

Remark 11 Future work must focus on obtaining joint convergence results for the self-
normalized periodogram over a band of frequencies, as in Klüppelberg and Mikosch (1993,
1994), and smoothing the result to remove the ε(ω) term. There is some evidence that the
random variable ε(ω) is symmetric about zero. The hope is to construct a smoothed self-
normalized periodogram which is consistent for fα(ω) when condition (35) is met.
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Proof of the Theorem Returning to Eq. (26) in Theorem 4, we see that

n−1/α
n∑

t=1

∑
| j |≤m

cos tω
∫

B+ j−t
ψ(x + t)M(dx)

= g−1/α
g−1∑
h=0

cos hω

(
n

g

)−1/α∑
t∈Ah

∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx).

As observed previously, the sum of the t’s in Ah is over a collection of identically distributed
(2m + 1)-dependent stable random variables. Now we need a simple lemma.

LEMMA 4 If the strictly stable random variables Y (1), . . . ,Y (n) form a stationary and
k-dependent sequence, then (n−1/α∑n

t=1 cos tωY (t), n−2/α∑n
t=1 cos2 tωY 2(t)) converges to

some limit, where ω ∈ 2πQ.

Proof of Lemma If we let ω = 2πu/g as before, the joint vector is equal to


g−1/α

g−1∑
h=0

cos hω

(
n

g

)−1/α∑
t∈Ah

Y (t), g−2/α
g−1∑
h=0

cos2 hω

(
n

g

)−2/α∑
t∈Ah

Y 2(t)




which has characteristic function

E exp


iθg−1/α

g−1∑
h=0

cos hω

(
n

g

)−1/α∑
t∈Ah

Y (t)

+ ivg−2/α
g−1∑
h=0

cos2 hω

(
n

g

)−2/α∑
t∈Ah

Y 2(t)




=
g−1∏
h=0

E exp


iθg−1/α cos hω

(
n

g

)−1/α∑
t∈Ah

Y (t)

+ ivg−2/α cos2 hω

(
n

g

)−2/α∑
t∈Ah

Y 2(t)




−→
g−1∏
h=0

E exp{iθg−1/α cos hωSh + ivg−2/α cos2 hωS̃h}

= E exp

{
iθg−1/α

g−1∑
h=0

cos hωSh + ivg−2/α
g−1∑
h=0

cos2 hωS̃h

}

for some (Sh, S̃h), 0 ≤ h < g. The convergence follows from Lemma 2. �
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Of course, the same result will hold with sine instead of cosine; hence, considering the
truncated model, we obtain the joint convergence of


n−1/α

n∑
t=1

cos tω
∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx),

n−2/α
n∑

t=1

cos2 tω


∑

| j |≤m

∫
B+ j−t

ψ(x + t)M(dx)




2

,

n−1/α
n∑

t=1

sin tω
∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx),

n−2/α
n∑

t=1

sin2 tω


∑

| j |≤m

∫
B+ j−t

ψ(x + t)M(dx)




2
 .

At this point we are not concerned with what the limit is – we will be able to deduce it later.
Applying the mapping (w, x, y, z) �→ (w, y, x + z) yields the joint convergence of


n−1/α

n∑
t=1

cos tω
∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx),

n−1/α
n∑

t=1

sin tω
∑
| j |≤m

∫
B+ j−t

ψ(x + t)M(dx),

n−2/α
n∑

t=1


∑

| j |≤m

∫
B+ j−t

ψ(x + t)M(dx)




2


using the fact that cos2 tω + sin2 tω = 1. We have already dealt with the first and second
components in the proof of Theorem 4, whereas the third component tends to

C
∫

B

∑
| j |≤m

ψ2(x + j)M(dx)

as in the proof of Theorem 2. Next, let m tend to infinity, and we obtain the joint convergence of

(
n−1/α

n∑
t=1

cos tω
∫
ψ(x + t)M(dx),

n−1/α
n∑

t=1

sin tω
∫
ψ(x + t)M(dx), n−2/α

n∑
t=1

X2(t)

)
.

Finally applying the mapping (x, y, z) �→ (x2 + y2)/z concludes the proof by the continuous
mapping theorem. �
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Proof of the Proposition The proof mainly consists in defining the error term ε(ω) and
organizing the material appropriately. Define γ (h) to be an analogue of the covariance of the
process:

γ (h) =
∑
j∈Z

Sj Sj+h

for any h ∈ Z. Then simple arithmetic yields

∣∣∣∣∣∣
∑
j∈Z

e−i jwSj

∣∣∣∣∣∣
2

=
∑
h∈Z

e−ihwγ (h).

Now we expand γ (h), collecting the diagonal and off-diagonal terms of the resulting double-
integral:

γ (h) =
∫

B

∫
B

∑
j∈Z

ψ(x + j)ψ(y + j + h)M(dx)M(dy)

L�⇒ C ·
∫

B

∑
j∈Z

ψ(x + j)ψ(x + j + h)M̃(dx)

+
∫ ∫

x �=y

∑
j∈Z

ψ(x + j)ψ(y + j + h)M(dx)M(dy)

which we shall name D(h) and D′(h) respectively. It follows from condition (35) that

D(h) = ρ(h) · D(0)

almost surely, since D(h) − ρ(h)D(0) has scale parameter zero. Putting this together, the limit
of the self-normalized periodogram is

∣∣∣∑j∈Z e−i jwSj

∣∣∣2
C · ∫B 
2(x)M̃(dx)

=
∑

h∈Z e−ihwγ (h)

D(0)
=
∑
h∈Z

e−ihw D(h)

D(0)
+
∑
h∈Z

e−ihw D′(h)
D(0)

=
∑
h∈Z

e−ihwρ(h)+ ε(ω)

almost surely, where we define ε(ω) to be
∑

h∈Z e−ihwD′(h)/D(0). This completes the proof
of the proposition. �

5 STATISTICAL APPLICATIONS

5.1 Mixing Properties

This final section of the paper describes how subsampling methods may be used for practical
application of the results of the previous sections. The idea is to use the subsampling distribution
estimator – which is calculated from the data–as an approximation of the limit distribution of our
root; this yields approximate quantiles for the root’s sampling distribution, and thus confidence
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intervals for the parameter of interest can be formed. For more details and background on these
methods, see the book Subsampling (Politic et al., 1999).

Strong mixing is a condition on the dependence structure which is sufficient to insure the
validity of the subsampling theorems. The strong mixing assumption requires that αX (k) → 0
as k → ∞; here αX (k) := supA,B |P[A ∩ B] − P[A]P[B]|, where A and B are events in
the σ -fields generated by {Xt , t ≤ l} and {Xt , t ≥ l + k}, respectively, for any l ≥ 0 (see
Rosenblatt, 1956). Many time series models satisfy this assumption – for Gaussian processes,
the summability of the autocovariance function implies the strong mixing property. When our
process (1) is symmetric, the strong mixing condition is always satisfied, as the following
Proposition demonstrates:

PROPOSITION 3 The symmetric stochastic process X (t) given by Eq. (1) – for any α ∈ (0, 2],
filter function ψ satisfying the conditions specified above, and skewness intensity identically
zero–is strong mixing.

Proof Let I (θ1, θ2; t) denote, for any real θ1, θ2, the following feature of the stochastic
process:

I (θ1, θ2; t) = − log Eei(θ1 X (t)+θ2 X (0)) + log Eeiθ1 X (t) + log Eeiθ2 X (0).

The asymptotic negligibility of I (t) is a sufficient condition for the process to be strong
mixing – (see Maruyama, 1970; Gross, 1993; Samorodnitsky and Taqqu, 1994). According to
Gross (1993), so long as a stationary symmetric α-stable process satisfies Condition S (which
is true – (see Samorodnitsky and Taqqu, 1994), a sufficient condition for strong mixing is

lim
t−→∞ I (1,−1; t) = 0

for 0 < α ≤ 1; for α > 1, the additional assumption that

lim
t−→∞ I (1, 1; t) = 0

provides a sufficient condition. For moving average processes of type given by (1), both con-
ditions are satisfied. In fact, −I (1,−1; t) is the codifference of the process, which tends to
zero as t grows, as demonstrated in Samorodnitsky and Taqqu (1994, Theorem 4.7.3). As for
I (1, 1; t), writing out the characteristic function for a symmetric α-stable random variable
yields

I (1, 1; t) = ‖ψ(· + t)+ ψ‖αα − 2‖ψ‖αα.

As in the proof of Theorem 4.7.3, we can approximate ψ by a compactly supported function
with arbitrary precision, such that

lim
t−→∞ ‖ψ(· + t)+ ψ‖αα = lim

t−→∞ ‖ψ(· + t)‖αα + ‖ψ‖αα = 2‖ψ‖αα.

This concludes the proof for all cases of α. �

5.2 The Sample Mean

Let us now focus on the mean estimation problem introduced in the second and third sections of
this paper. Assume that the mean exists (so α > 1 – see the discussion preceding Corollary 1),
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and define the subsampling distribution estimator of the standardized root (which will be
denoted by Tn(µ) – see line (22)) to be the following empirical distribution function (edf):

Kb(x) := 1

n − b + 1

n−b+1∑
i=1

1{Tb,i ≤x}, (38)

where Tb,i is essentially the statistic Tb(µ) evaluated on the subseries {Z(i), . . . , Z(b + i − 1)}
(but with the unknown µ replaced by the estimate Z̄n); in other words,

Tb,i := Z̄b,i − Z̄n

σ̂b,i/
√

b
.

The precise definitions of Z̄b,i and σ̂b,i are as follows:

Z̄b,i := 1

b

b+i−1∑
t=i

Z(t),

σ̂b,i :=
√√√√1

b

b+i−1∑
t=i

(Z(t)− Z̄b,i)2.

COROLLARY 3 Restrictα to the interval (1, 2] and letβ = 0 in the location-shifted model (18),
and let J (x) denote the cdf of the limit random variable in Corollary 2, i.e.

J (x) = P




∫
B 
(x)M(dx)√

C · ∫B 
2(x)M̃(dx)
≤ x


 .

Then the subsampling distribution estimator Kb is consistent as an estimator of the true sam-
pling distribution of Tn(µ), denoted by Jn(x) = P{Tn(µ) ≤ x}. In other words, if b → ∞ as
n → ∞ but with b/n → 0, we have

sup
x

|Kb(x)− Jn(x)| P−→0

and in addition

K −1
b (t)

P−→J −1(p)

for any p ∈ (0, 1); here G−1(p) is the p-quantile of distribution G, i.e., G−1(p) :=
inf{x :G(x) ≥ p}.

Proof The cdf j is a continuous function, since neither
∫

B 
(x)M(dx) nor
∫

B 
2(x)M̃(dx)
have point masses in their distributions. Now the proof of the corollary, using Proposition 3,
follows at once from a simple extension of Proposition 11.4.3 of Politis et al. (1999). �
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From this result, we may use Kb(x) as a cdf from which to draw quantiles and develop
confidence intervals with asymptotic veracity. This is done as follows:

1 − p = P
[

J −1
n

( p

2

)
≤ Tn(µ) ≤ J −1

n

(
1 − p

2

)]
≈ P

[
K −1

b

( p

2

)
≤ Tn(µ) ≤ K −1

b

(
1 − p

2

)]

= P

[
Z̄ − K −1

b

(
1 − p

2

) σ̂√
n

≤ µ ≤ Z̄ − K −1
b

( p

2

) σ̂√
n

]

where 1 − p is the confidence level. Thus the approximate equal-tailed confidence interval for
µ is [

Z̄ − K −1
b

(
1 − p

2

)
· σ̂√

n
, Z̄ − K −1

b

( p

2

) σ̂√
n

]
. (39)

As we have alluded to, this procedure provides inferential information about µ without an
a priori hypothesis on the value of α (except that α > 1). Note that if the data is not actually
heavy-tailed (e.g., α = 2), this procedure retains its validity. When we assume that X (t) has a
symmetric distribution (i.e., the skewness intensity is identically zero), a partially symmetrized
version of the subsampling distribution estimator Kb may have better accuracy properties; see
McElroy and Politis (2002), Corollary 3 for more details. Finally, these subsampling techniques
can be applied in the case of random fields. The mixing conditions become more complicated
as the dimension d of the index set increases, and the details have been omitted for simplicity.
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Klüppelberg, C. and Mikosch, T. (1993). Spectral estimates and stable processes. Stochastic Processes and their

Applications, 47, 323–344.
Klüppelberg, C. and Mikosch, T. (1994). Some limit theory for the self-normalized periodogram of stable processes.

Scandinavian Journal of Statistics, 21, 485–491.
Logan, B. F., Mallows, C. L., Rice, S. O. and Shepp, L. A. (1973). Limit distributions of self-normalized sums. Annals

of Probability, 1, 788–809.
Maruyama, G. (1970). Infinitely divisible processes. Theory of Probability and its Applications, 15(1), 1–22.
McElroy, T. and Politis, D. (2002). Robust inference for the mean in the presence of serial correlation and heavy-tailed

distributions. Econometric Theory (to appear).
Politis, D. and Romano, J. (1994). Large sample confidence regions based on subsamples under minimal assumptions.

Annals of Statistics, 22(4), 2031–2050.
Politis, D., romano, J. and Wolf, M. (1999). Subsampling. Springer, New York.
Politis, D., Romano, J. and Wolf, M. (1997). Subsampling for heteroskedastic time series. Journal of Econometrics,

81(2), 281–317.
Resnick, S. (1997). Special Invited Paper: Heavy Tail Modeling and Teletraffic Data. Annals of Statistics, 25(5),

1805–1849.



LARGE SAMPLE THEORY 35

Resnick, S., Samorodnitsky, G. and Xue, F. (1999). How misleading can sample ACF’s of Stable MA’s be? (Very!).
Annals of Applied Probability, 9(3), 797–817.

Resnick, S. and Starica, C. (1998). Tail index estimation for dependent data. Annals of applied Probability, 8(4),
1156–1183.

Romano, J. and Wolf, M. (1998). Inference for the mean in the heavy-tailed case. Metrika, 50(1), 55–69.
Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National Academy

of Sciences, 42, 43–47.
Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes, Chapman and Hall.



 
 

 
Journal….Non Parametric Statistics  Article ID… GNST 031038  

 
TO: CORRESPONDING AUTHOR 

 
AUTHOR QUERIES - TO BE ANSWERED BY THE AUTHOR 

 
The following queries have arisen during the typesetting of your manuscript. Please answer the queries.  

Q1 Please check affiliation  

Q2 Please supply keywords  

Q3 Klüppelberg and Mikosch (1992) is cited in text, but not 
present in the reference list. Please check. 

 

 Please check the shortened right handside running head.  

   

   

   

   

   

   

Production Editorial Department, Taylor & Francis Ltd. 
4 Park Square, Milton Park, Abingdon OX14 4RN 

 
Telephone: +44 (0) 1235 828600 
Facsimile: +44 (0) 1235 829000 


