large sample variaices of vaximan Likelihood
 ESTIMATORS OF VARIANCE COMPONENTS II THE
 3-WAY INESTED CLASSIFICATION, RAiNDOM MODEL, WITH UNBALAINCED DATA
 J. W. Rudan and S. R. Searle
 Biometrics Unit, Cornell University Ithaca, N. Y., 14850

Abstract

Explicit expressions are presented for the elements of the information matix of the variance components in a 3 -way nested classification, random model, with normality and unbalanced data.

IARGE SAMPLE VARIANCES OF MAXIMUM LIKELIHOOD ESTIMATORS OF VARIANCE COMPONENTS IN THE 3-WAY NESTED CIASSIFICATION, RANDOM MODEL, WITH UNBAIANCED DATA

J. W. Rudan and S. R. Searle

Biometrics Unit, Cornell University
Ithaca, N. Y., 14850

BU-352-M
February, 1971

Summary
Explicit expressions are presented for the elements of the information matrix of the variance components in a 3-way nested classification, random model, with normality and unbalanced data.

1. Introduction and Model

Searle [1970] developed a general method for obtaining, under normality conditions, the elements of the information matrix of the variance components of mixed models, with unbalanced data; in particular he displayed the results for the 2-way nested classification. This paper presents analogous results for the 3-way nested classification, random model, for the general case of unbalanced data.

The linear model for an observation is taken to be

$$
\begin{equation*}
y_{i j k l}=\mu+\alpha_{i}+\beta_{i j}+\gamma_{i j k}+e_{i j k l} \tag{1}
\end{equation*}
$$

where $y_{i j k l}$ is the l-th response within the k-th level of the γ-factor within the j-th level of the β-factor within the i-th level of the α-factor. This nesting is indicated in the observation identifiers which are taken to be

$$
i=1,2, \ldots, a ; j=1,2, \ldots, b_{i} ; k=1,2, \ldots, c_{i j} ;
$$

and $I=1,2, \ldots, n_{i j k}$.

The α 's, β 's, γ 's and e's are assumed to be normally and independently distributed with zero means and variances $\sigma_{\alpha}^{2}, \sigma_{\beta}^{2}, \sigma_{\gamma}^{2}$ and σ_{e}^{2} respectively.

There is a total of $n \ldots=\sum_{i=1}^{a} \sum_{j=1}^{b_{i}} \sum_{k=1}^{c_{i j}} n_{i j k}$ observations. Suppose they are written as a vector $\underset{y}{y}$ in lexicon order, i.e., ordered by l within k within j within i . Then, similar to the 2-way nested classification of Searle [1970], V, the variance-covariance matrix of y can be written as

$$
\begin{equation*}
\underline{V}=\sum_{i=1}^{a}+V_{i} \tag{2}
\end{equation*}
$$

where \sum_{i}^{+}denotes the operation of a direct sum of matrices. Each V_{-1} in (2) can be written in partitioned matrix form as

$$
\begin{equation*}
V_{i}=\left\{V_{i j, i j^{\prime}}\right\} \text { for } j, j^{\prime}=1,2, \ldots, b_{i} \text {, } \tag{3}
\end{equation*}
$$

where, for $j=j^{\prime}$, the partitioned form of $V_{i j, i j}$ is
$\underline{V}_{i j, i j}=\left\{\delta_{k k}\left(\sigma_{e}^{2} I+\sigma_{Y-n_{i j k}^{2}} \times n_{i j k}\right)+\left(\sigma_{\alpha}^{2}+\sigma_{\beta}^{2}\right) J_{-n_{i j k}} \times n_{i j k}\right\}$ for $k, k \prime=1,2, \ldots, c_{i j}$
and for $j \neq j^{\prime}$, the partitioned form of $V_{i j}, i j$, is
$V_{i j, i j^{\prime}}=\left\{\sigma_{\alpha-n_{i j k}^{2}} \times n_{i j^{\prime} k^{\prime}}\right\}$ for $k=1,2, \ldots, c_{i j} ; k^{\prime}=1,2, \ldots, c_{i j^{\prime}}$.
In (4) and (5) $\delta_{k k}$, is the Kronecker delta and $J_{n_{i j k}} \times n_{i j}{ }^{\prime}{ }^{\prime} /{ }^{\text {is }}$ matrix of order $n_{i j k} \times n_{i j}{ }^{\prime} k$, having every element unity.
2. Method

When σ^{2} is the vector of variance components in a linear model, i.e., $\underline{\sigma}^{2}=\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{f}^{2}\right)$, and $\underline{\sigma}^{2}$ the corresponding vector of maximum likelihood
estimators, Searle [1970] has shown that the large sample variance-covariance matrix of $\tilde{\sigma}^{2}$, namely $\operatorname{var}\left(\tilde{\sigma}^{2}\right)$, can be written as

$$
\begin{equation*}
\operatorname{var}\left(\tilde{\sigma}^{2}\right)=2 \underline{T}^{-1}=2\left\{t_{\sigma_{r}^{2} \sigma_{S}^{2}}\right\}^{-1} \text { for } r, s=1,2, \ldots, f . \tag{6}
\end{equation*}
$$

A typical element of T is

$$
\begin{equation*}
t_{\sigma_{r}^{2} \sigma_{S}^{2}}=\operatorname{trace}\left(\underline{V}^{-1} \frac{\partial V}{\partial \sigma_{r}^{2}} \underline{V}^{-1} \frac{\partial V}{\partial \sigma_{S}^{2}}\right) \tag{7}
\end{equation*}
$$

where $\frac{\text { g} v}{\partial \sigma_{r}^{2}}$ is the matrix of partial derivatives of the elements of \underline{V} with respect to σ_{r}^{2}.

After deriving (7), Searle [1970] obtains explicit expressions for the elements of \underline{T} for the 2-way nested classification with unbalanced data. Direct extension of the methods used there yields the analogous results for the 3 -way nested classification, given in section 3 that follows. The algebraic manipulations involved in deriving these results are detailed in a lengthy appendix to this paper which is available on request from the authors. Development of the results relies heavily on lemma 2 of Urquhart [1962] (quoted in Searle [1970]), and on properties of direct sum matrices, for deriving \underline{V}^{-1} of (7) from \underline{V} defined by equations (2)-(5). Repetitive use is also made of the fact that $J_{-n} x_{n}={ }_{-1}^{1} n_{n}^{1} n^{\prime}$ where 1_{-n} is an n-vector of I 's, and that

$$
\left(\underline{A}+\lambda \underline{u} \underline{v}^{\prime}\right)^{-1}=\underline{A}^{-1}-\frac{\lambda{\underset{A}{ }}^{-1} \underline{u v}^{\prime} \underline{A}^{-1}}{1+\lambda \underline{u}^{\prime} \underline{A}^{-1} \underline{v}}
$$

for which existence conditions hold for the matrices defined by (2) through (5).
3. Results

Presentation of the results for the 3-way nested classification is simplified by using the following notation, which is an extension of that used by Searle [1970].

$$
\underline{\sigma}^{2}=\left(\begin{array}{llll}
\sigma_{\alpha}^{2}, & \sigma_{\beta}^{2}, & \sigma_{\gamma}^{2}, & \sigma_{e}^{2} \tag{8}
\end{array}\right)=(\alpha, \beta, \gamma, e),
$$

$$
\begin{equation*}
m_{i j k}=n_{i j k} \sigma_{V}^{2}+\sigma_{e}^{2} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
A_{i j p q}=\sum_{k=1}^{c} \frac{\left(n_{i j k}\right)^{p}}{\left(m_{i j k}\right)^{q}}, \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
p_{i j}=1+\sigma_{\beta}^{2} A_{i j l l} \tag{11}
\end{equation*}
$$

and $\quad q_{i}=I+\sigma_{\alpha}^{2} \sum_{j=1}^{b_{i}}\left(A_{i j 11} / p_{i j}\right)$.

Then T of (6) is the 4×4 symmetric matrix

$$
\underline{I}=\left[\begin{array}{cccc}
t_{\alpha \alpha} & t_{\alpha \beta} & t_{\alpha \gamma} & t_{\alpha e} \\
t_{\alpha \beta} & t_{\beta \beta} & t_{\beta \gamma} & t_{\beta e} \\
t_{\alpha \gamma} & t_{\beta \gamma} & t_{\gamma \gamma} & t_{\gamma e} \\
t_{\alpha e} & t_{\beta e} & t_{\gamma e} & t_{e e}
\end{array}\right]
$$

and its 10 different elements are as follows:

$$
\begin{align*}
& t_{\alpha \alpha}=\sum_{i=1}^{a}\left[\sum_{j=1}^{b_{i}}\left(A_{i j l l} / p_{i j}\right)\right]^{2} / q_{i}^{2}, \tag{13}\\
& t_{\alpha \beta}=\sum_{i=1}^{a}\left[\sum_{j=1}^{b_{i}}\left(A_{i j l l} / p_{i j}\right)^{2}\right] / q_{i}^{2}, \tag{14}
\end{align*}
$$

$$
\begin{equation*}
t_{\alpha y}=\sum_{i=1}^{a}\left[\sum_{j=1}^{b_{i}} A_{i j 22} / p_{i j}^{2}\right] / q_{i}^{2} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
t_{\alpha e}=\sum_{i=1}^{a}\left[\sum_{j=1}^{b_{i}} A_{i j 12} / p_{i j}^{2}\right] / q_{i}^{2}, \tag{16}
\end{equation*}
$$

$$
t_{\beta \beta}=\sum_{i=1}^{a} \sum_{j=1}^{b_{i}}\left\{\left(A_{i j 11} / p_{i j}\right)^{2}-2 \sigma_{\alpha}^{2} A_{i j 11}^{3} / q_{i} p_{i j}^{3}\right.
$$

$$
\begin{equation*}
\left.+\sigma_{\alpha}^{4}\left(A_{i j l l} / p_{i j}\right)^{2}\left[\sum_{j=1}^{b_{i}}\left(A_{i j l l} / p_{i j}\right)^{2}\right] / q_{j}^{2}\right\} ; \tag{17}
\end{equation*}
$$

$$
\begin{align*}
t_{\beta e}=\sum_{i=1}^{a} \sum_{j=1}^{b_{i}}\left\{A_{i j 12} / p_{i j}^{2}\right. & -2 \sigma_{\alpha}^{2} A_{i j 11} A_{i j 12} / q_{i} p_{i j}^{3} \\
& \left.+\sigma_{\alpha}^{4}\left(A_{i j 12} / p_{i j}^{2}\right)\left[\sum_{j=1}^{b_{i}}\left(A_{i j 11} / p_{i j}\right)^{2}\right] / q_{i}^{2}\right\}, \tag{19}
\end{align*}
$$

$$
\begin{align*}
& t_{\beta \gamma}=\sum_{i=1}^{a} \Gamma_{j=1}^{b_{i}}\left\{A_{i j 22} / p_{i j}^{2}-2 \sigma_{\alpha}^{2} A_{i j 11} A_{i j 22} / q_{i} p_{i j}^{3}\right. \\
& \left.+\sigma_{\alpha}^{4}\left(A_{i j 22} / p_{i j}^{2}\right)\left[\sum_{j=1}^{b_{i}}\left(A_{i j l l} / p_{i j}\right)^{2}\right] / q_{i}^{2}\right\}, \tag{18}
\end{align*}
$$

$$
\begin{align*}
{ }^{t}{ }_{\gamma \gamma}=\sum_{i=1}^{a} \sum_{j=1}^{b_{i}}\left\{A_{i j 22}-2 \sigma_{\alpha}^{2} A_{i j 33}\left\{q_{i} p_{i j}^{2}\right.\right. & -2 \sigma_{\beta}^{2} A_{i j 33} / p_{i j} \\
& +2 \sigma_{\alpha}^{2} \sigma_{\beta}^{2} A_{i j 22}^{2} / q_{i} p_{i j}^{3}+\sigma_{\beta}^{4}\left(A_{i j 22} / p_{i j}\right)^{2} \\
& \left.+\sigma_{\alpha}^{4}\left(A_{i j 22} / p_{i j}^{2}\right)\left[\sum_{j=1}^{b_{i}} A_{i j 22} / p_{i j}^{2}\right] / q_{i}^{2}\right\}, \tag{20}
\end{align*}
$$

$t_{\gamma e}=\sum_{i=1}^{a} \sum_{j=1}^{b_{i}}\left\{A_{i j 12}-2 \sigma_{\alpha}^{2} A_{i j 23} / q_{i} p_{i j}^{2}-2 \sigma_{\beta}^{2} A_{i j 23} / p_{i j}\right.$

$$
\begin{align*}
& +2 \sigma_{\alpha \beta}^{2} \sigma^{2} A_{i j 12} A_{i j 22} / q_{i} p_{i j}^{3}+\sigma_{\beta}^{4} A_{i j 12} A_{i j 22} / p_{i j}^{2} \\
& \left.+\sigma_{\alpha}^{4}\left(A_{i j 12} / p_{i j}^{2}\right)\left[\sum_{j=1}^{b_{i}} A_{i j 22} / p_{i j}^{2}\right] / q_{i j}^{2}\right\}, \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
& t_{e e}=\sum_{i=1}^{a} \sum_{j=1}^{b_{i}\left\{A_{i j 02}-2 \sigma_{\alpha}^{2} A_{i j 13} / q_{i} p_{i j}^{2}\right.}-2 \sigma_{\beta}^{2} A_{i j 13} / p_{i j} \\
&+2 \sigma_{\alpha \beta}^{2} \sigma_{\sigma_{i j 12}^{2} A_{i}^{2}} / q_{i} p_{i j}^{3}+\sigma_{\beta}^{4}\left(A_{i j 12} / p_{i j}\right)^{2} \\
&\left.+\sigma_{\alpha}^{4}\left(A_{i j 12} / p_{i j}^{2}\right)\left[\sum_{j=1}^{b_{i}} A_{i j 12} / p_{i j}^{2}\right] / q_{i j}^{2}\right\} \\
&+(n \ldots-c) / \sigma_{e}^{4} \tag{22}
\end{align*}
$$

4. Validation

The above results have been partially validated in 2 major ways; by ensuring that they reduce both to those for the 2 -way nested classification and to those for the balanced data case. The first way is to set either $\sigma_{\alpha}^{2}=0$, or $\sigma_{\beta}^{2}=0$, or $\sigma_{y}^{2}=0$ and appropriately adjust the model and the factor subscripts so that the model reduces to the 2-way nested classification. With obvious adjustments to equations (8) through (12) in all 3 cases the results (11) through (20) then reduce to those given by Searle [1970]. For example, if $\sigma_{\alpha}^{2}=0$ then $t_{\beta \beta}$ given in (17) corresponds to $t_{\alpha \alpha}$ of (27) given in Searle [1970].

The second validation was to consider the balanced data wherein $n_{i j k}=n$ for all $i, j, k, c_{i j}=c$ for $a l l i$ and j, and $b_{i}=b$ for all i. Results (13) through (21) then lead to the customary results for balanced data as indicated, for example, in Mahamunulu [1963].

References

Mahamunulu, D. M. [1963]. Sampling variances of the estimates of variance components in the unbalanced 3-way nested classification. Ann. Math. Statist. 34, 521-27.

Searle, S. R. [1970]. Large sample variances of maximum likelihood estimators of variance components using unbalanced data. Biometrics 26, 505-524.

Urquhart, N. S. [1962]. The repeated design and further considerations of the general two-way design. M.S. Thesis, Colorado State University, Fort Collins, Colorado.

