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Abstract

In this paper we describe a system that can carry out SLAM in large indoor and outdoor environments using a

stereo pair moving with 6DOF as the only sensor. Unlike current visual SLAM systems that use either bearing-only

monocular information or 3D stereo information, our system accommodates both monocular and stereo. Textured

point features are extracted from the images and stored as 3D points if seen in both images with sufficient disparity,

or stored as inverse points otherwise. This allows to map both near and far features: the first provide distance

and orientation, and the second orientation information. Unlike other vision only SLAM systems, stereo does not

suffer from ’scale drift’ because of unobservability problems, and thus no other information such as gyroscopes or

accelerometers is required in our system. Our SLAM algorithm generates sequences of conditionally independent

local maps that can share information related to the camera motion and common features being tracked. The system

computes the full map using the novel Conditionally Independent Divide and Conquer algorithm, which allows

constant time operation most of the time, with linear time updates to compute the full map. To demonstrate the

robustness and scalability of our system, we show experimental results in indoor and outdoor urban environments

of 210m and 140m loop trajectories, with the stereo camera being carried in hand by a person walking at normal

walking speeds of 4-5km/hour.
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Large Scale 6DOF SLAM with Stereo-in-Hand

Abstract—In this paper we describe a system that can

carry out SLAM in large indoor and outdoor environments

using a stereo pair moving with 6DOF as the only

sensor. Unlike current visual SLAM systems that use

either bearing-only monocular information or 3D stereo

information, our system accommodates both monocular

and stereo. Textured point features are extracted from

the images and stored as 3D points if seen in both

images with sufficient disparity, or stored as inverse

points otherwise. This allows to map both near and far

features: the first provide distance and orientation, and

the second orientation information. Unlike other vision

only SLAM systems, stereo does not suffer from ’scale

drift’ because of unobservability problems, and thus no

other information such as gyroscopes or accelerometers is

required in our system. Our SLAM algorithm generates

sequences of conditionally independent local maps that

can share information related to the camera motion and

common features being tracked. The system computes

the full map using the novel Conditionally Independent

Divide and Conquer algorithm, which allows constant time

operation most of the time, with linear time updates to

compute the full map. To demonstrate the robustness and

scalability of our system, we show experimental results in

indoor and outdoor urban environments of 210m and 140m

loop trajectories, with the stereo camera being carried in

hand by a person walking at normal walking speeds of

4-5km/hour.

Index Terms—Visual SLAM, Stereo, Scalability.

I. INTRODUCTION: STATE OF THE ART IN VISUAL

SLAM

THE interest in using cameras in SLAM has grown

tremendously in recent times. Cameras have be-

come much more inexpensive than lasers, and also

provide texture rich information about scene elements at

practically any distance from the camera. 6DOF SLAM

systems based on 3D laser scanners plus odometry have

been demonstrated feasible both indoors and outdoors

[1], [2], as well as vision aided by laser without odometry

[3] and vision aided by an inertial navigation system [4],

[5]. But in applications where it is not practical to carry

heavy and bulky sensors, such as egomotion for people

tracking and environment modeling in rescue operations,

cameras seem the only light weight sensors that can be

easily adapted to helmets used by rescuers, or simply

worn.

Current Visual SLAM research has been focused on

the use of either monocular or stereo vision to obtain 3D

information from the environment. Quite a few monoc-

ular visual SLAM systems have been demonstrated to

be viable for small environments [6], [7], [8], [9], [10],

[11], [12], [13], [14], [15]. Most are essentially standard

EKF SLAM systems, and vary in the technique used to

initialize a feature, given the partiality of the bearing

only information provided by one camera, or in the

type of interest points extracted from the images (be

it Harris corners, Shi-Tomasi corners, SIFT features, or

some combination). Some works have also considered

segment features [16], [17]. Larger environments have

been tackled in the Hierarchical Visual SLAM [18].

A single camera is used in all of these systems, and

although very distant features are potentially detectable,

scale unboservability is a fundamental limitation. Either

the scale is fixed in some way (for example by observing

a known object [15]), or drift in scale can occur as is

reported in the Hierarchical Visual SLAM system [18].

Panoramic cameras are also being used in visual SLAM

[19], [20]. Here the limitation of scale unobservability

is overcome using an additional stereo vision bench for

motion estimation between consecutive frames. In the

work of Royer et. at. [21] only monocular images are

used. Mapping is achieved using a batch hierarchical

bundle adjustment algorithm to compute all camera as

well as interest points locations. The scale is introduced

in the system by manually entering the length of the

path.

Stereo visual systems provide scale through the base-

line between the cameras, known from calibration. Davi-

son and Murray demonstrated the first active stereo

visual SLAM system [22], [23], [24]. It is based on

standard EKF and thus also has low scalability. Under

restrictive planar environment assumptions, Iocchi et.

al. built an environment map using stereo [25]. Se et.

al. demonstrated a visual stereo SLAM system using

SIFT features in a small laboratory environment [26].

This system is also unlikely to scale adequately to

large environments or work in more challenging outdoor

scenarios as cross-correlations were neglected for com-

putational reasons. In [27], [28] the authors demonstrate

an autonomous blimp system for terrain mapping using

stereo as the only sensor, also using a standard EKF

SLAM algorithm. Saez et. al. [29] presented a 6DOF

stereo visual SLAM system where egomotion estimation

is done by a 3D point matching algorithm, and map-

ping thought a global entropy minimization algorithm in
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indoor orthogonal scenarios, with difficult extension to

more complex non-orthogonal environments.

In [30], [31] Sim et. al. describe a dense visual

SLAM system using Rao-Blackwellized Particle Fil-

ters and SIFT features (a similar effort in using Rao-

Blackwellized Particle Filters and SIFT features for

visual SLAM was reported in [14]). Visual odometry

(SFM) is used to generate proposals for the sensor

motion and global pose estimation algorithms for loop

closing. This system works in either monocular or stereo

mode, with cameras mounted on a robot moving in 2D;

sensor trajectories with 6dof will require large amounts

of particles for their representation. In [32] authors

also compare the advantages of separate monocular and

stereo approaches in traditional SLAM frameworks. In

this paper we show the advantages of being able to

accommodate both monocular and stereo information in

carrying out 6dof SLAM with a hand-held camera. In

the works of Sola et. al. [33] and Lemaire et. al. [19]

it is also pointed out that combining visual information

at close range as well as at infinity should improve the

performance of visual SLAM.

Since the initial results of [34] great progress has

been made in the related problem of visual odometry

[35], [36], [37], [38]. Visual odometry systems have

the important advantage of constant time execution.

Furthermore, during exploratory trajectories, in which an

environment feature is seen for a certain window of time

and never more, visual odometry can obtain the same

precision in the estimation of the sensor location as a

SLAM system, with a great reduction in cost. Unfortu-

nately, visual odometry does not cope with loop closings,

and thus eventual drift in these cases is inevitable. Stereo

visual odometry combined with GPS can result in a

mapping system that avoids long term drift [39], [40],

but unfortunately GPS is not always available. Improving

the precision in sensor location through loop closing is

one of the main advantages of SLAM.

An important limitation of current SLAM systems that

use the standard EKF algorithm is that when mapping

large environments, very soon they face computational

as well as consistency problems [41]. Many efforts have

been invested in reducing the O(n2) cost of the EKF

updates. In [42] an Information filter, the dual of the

Kalman Filter, was used, allowing constant time updates

irrespective of the size of the map. An approximation

is carried out to sparsify the Information Matrix, which

may lead to map divergency [43]. The Tree Map algo-

rithm [44] performs updates in O(log n) also by forcing

information matrix sparseness by weak link breakage.

In more complicated trajectories as that performed by a

lawnmower, the cost can increase [45]. In the Smoothing

and Mapping method [46] the authors observed that the

information matrix is exactly sparse when all vehicle

locations are considered in the stochastic map, and thus

very efficient techniques can be used to compute the

batch solution (a recent incremental version is described

in [47]).

All of these algorithms use the information form and

thus the state and covariance are not readily available.

There are alternatives that work on the covariance form,

such as the Map Joining Algorithm [48]. It works on a

sequence of local maps of limited size and thus it can

cut down the cost of EKF SLAM considerably, although

remaining O(n2). It has the additional advantage of im-

proving the consistency of the resulting estimation [49].

The Divide and Conquer algorithm [50], [51] is able

to compute the covariance form of the stochastic map in

amortized time linear with the size of the map, improving

further the consistency of the solution. However, in

these systems, local maps are required to be statistically

independent. This requires creating a new local map from

scratch every time the current local map size limit has

been reached. Consequently, no sharing is possible of

valuable information in 6DOF visual SLAM, such as

the camera velocity, or information about features being

currently tracked.

In this paper we describe a robust and scalable 6DOF

visual SLAM system that can be carried in hand at

normal walking speeds of 4-5km/hour, and used to map

large indoor and outdoor environments. In section II

with summarize the main charateristics of our system.

In section III we describe the details of the base visual

SLAM system that provides the sequence of condition-

ally independent local maps; the basic building blocks

of our mapping algorithm. This algorithm, Conditionally

Independent Divide and Conquer, is explained in section

IV. In section V we describe the two experiments carried

out to test the system, an indoor 200m loop and an

outdoor 140m loop. In section VI we discuss the results

obtained, and finally in section VII we draw the main

conclusions of our work.

II. OUR PROPOSAL

The fundamental characteristics of the system that we

describe in this paper are:

1) Unlike any other visual SLAM system, we con-

sider information from features both close and far

from the cameras. Stereo provides 3D information

from nearby scene points, and each camera can

also provide bearing only information from dis-

tant scene points. Both types of information are

incorporated into the map and used to improve the
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Fig. 1. Stereo vision system used to acquire the image sequences.

Picture on the left shows the experimental setup during the data

acquisition for the indoor experiment.

estimation of both the camera pose and velocity,

as well as the map.

2) Nearby scene points provide scale information

through the stereo baseline, eliminating the intrin-

sic scale unobservability problem of monocular

systems.

3) We use Conditionally Independent Divide and

Conquer SLAM, a novel SLAM algorithm that al-

lows to maintain both camera velocity information

and current feature information during local map

initialization. This adds robustness to the system

without sacrificing precision or consistency in any

way. Being a Divide and Conquer algorithm, it also

allows linear time execution, enabling the system

to be used for large scale indoor/outdoor SLAM.

Our 6DOF hardware system consists of a stereo cam-

era carried in hand and a laptop to record and process a

sequence of images (fig. 1). Since the camera moves in

6DOF, we define the camera state using 12 variables:

camera position in 3D cartesian coordinates, camera

orientation in Euler angles, and linear and angular veloc-

ities. It is known that a stereo camera can provide depth

estimation of points up to a certain distance determined

by the baseline between left and right cameras. There-

fore, two regions can be differenciated: a region close to

the cameras and visible by both, in which stereo behaves

as a range and bearing sensor. The second is the region

of features far from the cameras or seen by only one,

in which the stereo becomes a monocular camera, only

providing bearing measurements of such points. To take

advantage of both types of information, we combine 3D

points and inverse depth points (introduced in [52]) in

the state vector in order to build a map and estimate

the camera trajectory. The system produces sequences

of local maps of limited size containing both types of

features using an EKF SLAM algorithm. As we detail

in section IV, these local maps are joined into a full

map using the Conditionally Independent Divide and

Conquer SLAM algorithm, obtaining as final result a

full stochastic map containing all tracked features and the

final and intermediate camera states from each local map.

This system is highly scalable: local maps are built in

constant time, regardless of the size of the environment,

and the Conditionally Independent Divide and Conquer

algorithm requires amortized linear time.

During the feature tracking process, the right image

is chosen as reference to initialize new features. Interest

points are detected and classified according to their dis-

parity with the left image. Those points whose disparity

reveals a close distance are initialized as 3D features,

otherwise they are modeled as inverse depth points and

initialized using the bearing information obtained from

the right image. When the camera moves, these features

are tracked in order to update the filter and produce the

corresponding corrections. To track a feature, its position

is predicted in both images inside a bounded region

given by the uncertainty in the camera motion and the

corresponding uncertainty of the feature.

The process to select, initialize, and manage these

features is detailed in the next section.

III. THE VISUAL SLAM SYSTEM

A. State Representation

The state vector that represents a local submap xB

contains the final camera location xc and the location of

all features xf1:n
with respect to the map base reference

B, the initial camera location. Some features are codified

using the Inverse Depth (ID) parametrization that model

points that are at the infinity in xID. Additionally,

cartesian 3D parametrization is used to represent depth

points in x3D:

xB =

[

xc

xf1:n

]

=







xc

xID

x3D






(1)

The camera is described by the position of its optical

center in cartesian coordinates r, its orientation in Euler

angles Ψ, its linear velocity v and its angular velocity w.

In order to carry out the prediction process, the camera

motion follows a constant velocity model with zero mean

Gaussian noise in the linear and angular accelerations:

xc =











r

Ψ
v

w











(2)

Image corners classified as depth points are trans-

formed to 3D points, given the disparity information pro-

vided by the stereo pair. Subsection III-D describes the



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH YEAR 4

criterion adopted to select points as depth points. Since

the stereo camera provides rectified images, the back-

projection equations to obtain a 3D point are based on

a pinhole camera model which relates image points and

3D points using the following transformation function:

x3D = f(ur, vr, ul, vl)

= [x, y, z]T

=

[

b(ur − u0)

d
,
b(vr − v0)

d
,
fb

d

]T

(3)

where (ur, vr) and (ul, vl) are the pixels on the right and

left images, and d = (ul−ur) is the horizontal disparity.

The remainder terms in the equations are the calibrated

parameters of the camera, i.e., the central pixel of the

image (u0, v0), the baseline b and the focal length f .

Given the camera location xci
, an inverse depth point

is defined as in [52]:

xID =











ri

θi

φi

ρi











(4)

This vector depends on the optical center ri of the

camera from which the feature was first observed, the

direction of the ray passing through the image point (i.e.

azimuth θi, elevation φi), and the inverse of its depth,

ρi = 1/di.

B. Selection and Management of Trackable points

To ensure tracking stability of map features, distinctive

points have to be selected. Following a similar idea as the

one presented in [53], we use the Shi-Tomasi variation of

the Harris corner detector to select good trackable image

points and their corresponding 11×11 surrounding patch

to perform correlation when solving data association.

From the first step, the right image is split using a

regular grid; the point with the best detector response

per cell is selected, see fig. 2. During the following steps

those cells that become and remain empty for a given

time are chosen as candidates to initialize a new feature

when a good point is detected. In this way features

can be uniformly distributed in the image, improving

the amount of information gathered from the scene and

therefore the estimate. The approach is accompanied

by a feature management strategy so that non-persistent

features are deleted from the state vector to avoid an

unnecessary growth in population.

C. Measurement Equation

At each step, features that fall in the field of view

of each camera in the stereo are projected with their

uncertainty to the corresponding camera image. Using

the patch associated with the feature, a match inside the

projected uncertainty region is searched using normal-

ized cross-correlation (active search). When a match is

found, a new observation z, given by the matched pixel,

is used to update the state of the camera and the map.

In the right camera, the equation that defines the

relation between the ith inverse depth feature x
i
ID and its

observation z
ri

ID is given by the measurement equation:

z
ri

ID = hr
ID(xc,x

i
ID) + υ

= projection(⊖xc ⊕ x
i
ID) + υ (5)

where hr
ID is the function that projects the inverse depth

feature to the right camera and υ is a zero mean gaussian

noise with σp standard deviation that represents the

projection error in pixels. Alternatively, we can define

the measurement equation that relates the inverse point

observation on the left image by:

z
li
ID = hl

ID(xc,x
i
ID) + υ

= projection(⊖xc ⊕ xcrcl
⊕ x

i
ID) + υ (6)

where the displacement of the left camera optical center

with respect to the right camera is given by the rigid

transformation xcrcl
= [0 b 0]T .

In a similar way, we describe observations correspond-

ing to 3D map features in the right and left cameras:

z
ri

3D = hr
3D(xc,x

i
3D) + υ

= projection(⊖xc ⊕ x
i
3D) + υ

z
li
3D = hl

3D(xc,x
i
3D)

= projection(⊖xc ⊕ xcrcl
⊕ x

i
ID) + υ

Note that we use ⊕ and ⊖ operators in order to

carry out the corresponding compositions and inversions

of transformations. Nonetheless, they represent different

transformations accordingly to the kind of parametriza-

tion used to express a feature. A full explanation about

how to develop those operations for inverse depth and

depth points and how to compute the corresponding

Jacobians to propagate the uncertainties is detailed in

[54].

Fig. 2 shows the prediction of those 3D and inverse

depth features that fall inside the field of view of each of

the cameras. A good advantage of using a stereo camera

is that although a feature can disappear from the field
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Fig. 2. Points detected using a stereo camera. Projection of map features on both left (left) and right (middle) images. We show feature

uncertainties from a lateral perspective (right): 3D feature uncertainties are drawn using darker ellipses whereas we use samples to show

the inverse depth feature uncertainties. The Submitted Video VSLAM_local_map.avi illustrates the process of building a single local

submap.
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Fig. 3. Simulated experiment of a point reconstruction from a stereo pair observation, for a point at 5m distance (left), 10m (middle)

and 15m (right). The blue point clouds are samples from the real distribution of the point location, given that the pixel noise in the

images is Gaussian. Red ellipses represent the uncertainty region for the point location when the back projection equations of a depth

point are linearized. Green regions represent the uncertainty in the point using the inverse depth parametrization. The accompanying video

VSLAM_stereo_distribution.avi shows the real and approximate uncertainties.

of view of one camera, information to update the state

is available if the feature can be still found in the other.

As it will be shown in the experiments, this fact is of

extreme importance when the camera rotates or turns

around a corner, since features escape very fast from the

FOV of a single camera making the estimation of the

camera location in those moments very weak.

D. Depth points Vs. Inverse Depth points

Current research on Monocular SLAM has shown that

the inverse-depth parametrization is suitable to represent

the distribution of features at infinity as well as close

points, allowing to perform an undelayed initialization

of features. Despite of its properties, each inverse depth

point needs an over-parametrization of six values instead

of a simpler three coordinates spatial representation [55].

Therefore this can produce a computational overhead

in the EKF complexity. Working with a stereo camera,

which can estimate the initial depth of points close to the

camera, introduces the subtle question of when a feature

should be initialized using a 3D or an ID representation.

In order to clarify this topic we have designed a sim-

ulated experiment to study the effect of the linearization

in both representations when a point is initialized using

the stereo information. In this simulated experiments the

variance of the pixel noises (σp = 1pixel) and the

actual intrinsic parameters of the stereo camera used,

as the baseline, are taken into account to implement

the simulation. The experimental setup consists of a

stereo pair where the left camera is located at the origin

of the reference frame, with its principal axis pointing

along Z and the X axis pointing to the right. The right

camera is at b = 12cm in X . We consider a point

that is in the middle between both cameras at different

distances in Z. Given a noisy pixel observation the

uncertainty region of a reconstructed point is sampled

and plotted in Fig.3 for three different point distances:

5,10 and 15 meters. The uncertainty region of the 3D

representation which is calculated using a linearization

of Eq. 3 and evaluated in the ground truth, is represented
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n

p p p p p p p p

2p 2p 2p 2p

4p 4p

n/2 n/2

n/4 n/4 n/4 n/4

1 join, 1 resulting 

map of size n

2 joins

4 joins

l/2 joins

l local maps

of size p

Fig. 4. Binary tree representing the hierarchy of maps that are

created and joined in D&C SLAM. The red line shows the sequence

in which maps are created and joined.

by the red ellipse. The corresponding uncertainty region

of the linearized inverse depth representation is bounded

by the green lines in the plot. Notice that the inverse

depth parametrization models very accurately the real

uncertainty for the studied distances. However, although

the red ellipse covers the real distribution at 5 meters

quite accurately, for the other distances the ellipse over

estimates the uncertainty in the region close to the

cameras and is over confident for far distances.

This experimental analysis allows us to choose a

threshold of 5 meters below which a point is initialized

using a 3D representation whereas above it the feature

is parameterized as an inverse depth point.

IV. CONDITIONALLY INDEPENDENT DIVIDE AND

CONQUER SLAM

Divide and Conquer SLAM (D&C) has proved to be

a good algorithm in minimizing the computational com-

plexity of EKF-based SLAM and improving consistency

of the resulting estimate [51]. The algorithm allows us

to efficiently join several local maps in a single state

vector using Map Joining in a Hierarchical tree structure

(figure 4). Local maps can be obtained in constant

time, regardless of the size of the environment, and the

map joining operations can be performed in amortized

linear time. The D&C SLAM algorithm was however

conceived for statistically independent sequences of local

maps. This requires creating a new local map from

scratch every time the current local map size limit has

been reached. Consequently, it is not possible to share

valuable information in 6DOF visual SLAM, such as the

camera velocity, or information about features currently

being tracked.

In this section we describe the Conditionally Indepen-

dent D&C SLAM algorithm, that is able to work with

maps that are not statistically independent, but rather

conditionally independent, and thus allow to share the

valuable information with no increment in computational

cost or loss of precision whatsoever.

A. Conditionally Independent Local Maps

In Visual SLAM it can be very useful to share some

state vector components between consecutive submaps:

some camera states, such as linear and angular velocities,

as well as features that are in the transition region be-

tween adjacent submaps and are currently being tracked.

This allows to improve the estimate of relative location

between the submaps and continue tracking the observed

features with no interruptions. Nevertheless, special care

is needed to join the submaps in a single map since their

estimates are not independent anymore.

The novel technique to achieve these requirements is

based on the concept of Conditionally Independent Local

Maps (CI) presented in [56]. For the reader convenience

here we present a brief summary of the technique.

Suppose that a local map 1 has been built and we want

to start a new submap 2 not from scratch, but sharing

some elements in common with 1. Submap 1 is described

by the following probability density function:

p(xA,xC |za) = N

([

x̂Aa

x̂Ca

]

,

[

PAa
PACa

PCAa
PCa

])

(7)

where xA are the components of the current submap

that only belong to map 1, xC are the elements that

will be shared with map 2 and za the observations

gathered during the map construction. Notice that upper

case subindexes are for state vector components whereas

lower case subindexes describe which observations z

have been used to obtain the estimate.

Submap 2 is then initialized with the result of

marginalizing out the non common elements from

submap 1:

p(xC |za) =

∫

p(xA,xC |za) dxA = N (x̂Ca
, PCa

) (8)

During the trajectory along map 2, new observations

zb are gathered about the common components xC

as well as observations of new elements xB that are

incorporated to the map. When map 2 is finished, its

estimate is finally described by:

p(xC ,xB|za, zb) = N

([

x̂Cab

x̂Bab

]

,

[

PCab
PCBab

PBCab
PBab

])

(9)

where the subindexes in the estimates x̂Cab
and x̂Bab

reveal that both sets of observations za and zb have
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Submap 1 Submap 2

x
A

x
C

x
B

z
b

z
a

Fig. 5. Bayesian network that describes the relations between two

consecutive submaps

been used in the estimation process. This means that

submap 2 is updated with all the information gathered

by the sensor. But observe that map 1 in Eq. (7) has been

updated with the observation za but not with the more

recent observations zb.

Figure(5) shows a Bayesian network that describes the

probabilistic dependencies between elements of submaps

1 and 2. As it can be seen, the only connection between

the set of nodes (xA, za) and (xB , zb) is through node

xC , i.e. both subgraphs are d-separated given xC [57].

This implies that nodes xA and za are Conditionally In-

dependent of nodes xB and zb given node xC . Intuitively

this means that if xC is known, submaps 1 and 2 do not

carry any additional information about each other.

B. Conditionally Independent Map Joining

Consider two CI local maps that belong to the same
level of the tree. The oprations to join the two maps into
a single stochastic map that contains all the information
provided by each map are as follows:

p(xA,xB ,xC |za, zb) =

= N









x̂Aab

x̂Cab

x̂Bab



 ,





PAab
PACab

PABab

PCAab
PCab

PCBab

PBAab
PBCab

PBab







(10)

Taking into account the submap conditional indepen-

dence property, it can be demonstrated [56] that the

optimal map result of the joining can be computed using:

K = PACa
P−1

Ca

= PACab
P−1

Cab
(11)

x̂Aab
= x̂Aa

+ K(x̂Cab
− x̂Ca

) (12)

PAab
= PAa

+ K(PCAab
− PCAa

) (13)

PACab
= KPCab

(14)

PABab
= KPCBab

(15)

Using this technique we can build local maps that

have elements in common and then retrieve the global

information in a consistent manner. After the joining, the

elements belonging to the second map are transformed

to the base reference of the first map.

C. Actual implementation for stereo

The D&C SLAM algorithm of [50] can be adapted to

work with conditional independent local maps simply by

using the CI Map Joining operation described above. As

we mentioned before, since the camera moves in 6DOF,

the camera state is composed of its position using 3D

cartesian coordinates, the orientation in Euler angles and

its linear and angular velocities. 3D points and inverse

depth points are included as features in the state vector.

When a local map mi is finished, the final map estimate

is given by:

mi.x̂ =











x̂RiRj

v̂RiRj

x̂RiF1:m

x̂RiFm+1:n











(16)

where x̂RiRj
is the final camera location Rj with respect

to the initial one, Ri, v̂RiRj
are the linear and angular

velocities, x̂RiF1:m
are 3D and inverse depth features that

will only remain in the current map and x̂RiFm+1:n
are

3D and inverse depth features that will be shared with

the next submap mj .

Since the current camera velocity v̂RiRj
and some

features x̂RiFm+1:n
are used to initialize the next local

map, these elements have to be computed with respect

to the base reference of the second map Rj :

mi.x̂ =























x̂RiRj

v̂RiRj

x̂RiF1:m

x̂RiFm+1:n

· · ·
⊖x̂RiRj

⊕ v̂RiRj

⊖x̂RiRj
⊕ x̂RiFm+1:n























=







x̂Aa

· · ·
x̂Ca






(17)

where the new elements define the common part x̂Ca

and the original map defines x̂Aa
. Notice that the ap-

propriate composition operation have to be applied for

each transformed component and that the corresponding

covariance elements have to be added to the map.

In local mapping, a reference have to be identified to

start a new map. This common reference is represented

by the final vehicle position, which is the case of Rj

between mi and mj .
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The initial state vector of the next submap is then

given by:

mj .x̂ =











x̂RjRj

⊖x̂RiRj
⊕ v̂RiRj

⊖x̂RiRj
⊕ v̂RiRj

⊖x̂RiRj
⊕ x̂RiFm+1:n











(18)

where x̂RjRj
represents the location of the camera in

the new reference frame with initial zero uncertainty

and zero correlation with the rest of the elements of

the initial map. Notice that the initial velocity brought

from the previous map has been replicated twice. One of

the copies will change as the camera moves through the

new map carrying the current camera velocity. The other

copy will remain fixed and, together with the transformed

features, will be the common elements with the previous

map. The same process is successively repeated with all

local maps.

D. Continuous data association in each local map

Recent work on large environments [18] has shown

that Joint Compatibility Test [58] helps avoiding map

corruption in visual SLAM by rejecting measurements

that come from moving objects. This framework turns

out to be suitable in environments with a few number of

observations. However, even though impressive results

were registered, a Branch and Bound algorithm imple-

mentation of (JCBB) has limited use when the number

of observations per step is large. In this paper we have

obtained more efficient results using the Randomized

Joint Compatibility version RJC proposed in [51], in

which, in the spirit of RANSAC, a Joint Compatibility

JC test is run with a fixed set of measurements p selected

randomly. In this case correlation between patches and

individual χ2 tests are used to obtain candidate matches.

If all p measurements and its matches are jointly com-

patible, we apply the Nearest Neighbor rule to match

the remaining measurements. Once a total hypothesis H
is obtained, we check JC to avoid false positives. The

process is repeated t times in the spirit of an adaptive

RANSAC, limiting the probability of missing a correct

association.

E. Map matching

The property of sharing common elements solves the

data association problem between consecutive local maps

[51]. This requires of us to solve data association just in

loop closing situations. We use the Maximum Clique

Algorithm of [18] in order to detect an previously vis-

ited area. The algorithm finds correspondences between

features in different local maps, taking into account the

texture and the relative geometry between the features.

If sufficient corresponding features are found, an ideal

measurement equation that imposes the loop closing

constraint is applied in the final map.

V. EXPERIMENTS IN URBAN OUTDOOR AND INDOOR

ENVIRONMENTS

In order to demonstrate de robustness and scalability

of the visual SLAM system that we propose, we have

gathered two 320x240 images sequences with a Point

Grey Bumblebee stereo system (See Fig. 1). The system

provides a 65 x 50 degree field of view per camera,

has a baseline of 12cm, limiting the 3D point features

initialization up to a distance non far from 5m.

An indoor loop (at 48 fps) and an urban outdoor (at 25

fps) loop sequences were captured carrying the camera

in hand, at normal walking speeds of 4-5km/hour. Both

sequences were processed with the proposed algorithms

on a desktop computer with an Intel 4 processor at

2,4GHz. The increase in the frame rate for the indoor

experiment is to reduce the probability of mismatches

given that the environment is based most of the time on

brick walls providing poor texture information.

The outdoor sequence is composed of 3441 stereo

pairs gathered in a public square of our home town. The

full trajectory is approximately 140 meters long from

the initial camera position. Figure 6 (left) shows the

sequence of conditional independent local maps obtained

with the technique described in section IV-A. Each map

contains 100 features combining inverse depth and 3D

points. The total number of maps built during the stereo

sequence is 11. The result of D&C without applying the

loop closing constraint is shown in Fig. 6 (middle). As

it can be observed, the precision of the map obtained is

good enough to almost align the first and last submaps

after all the trajectory has been traversed, even without

applying loop closing constraints. Fig. 6 right presents

the final result after closing the loop.

The second experiment was carried out inside one of

our campus buildings in a walk of approximately 210

meters. The same process was run in order to obtain a

full map from 8135 stereo pairs. This environment has a

particular degree of difficulty due to the poor texture and

the presence of extend zones of glass windows such as

offices, corridors and cafeterias. This can be noticed in

the long distance points estimated in some of the maps,

which are actually inside offices and the cafeteria (fig.7,

left). The result of CI D&C is shown in (see fig. 7,

middle), and the final result after loop closing is shown

in fig.7, right.

Our 6DOF SLAM system, even implemented in MAT-

LAB, does not exceed 2 seconds per step, which is the
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Fig. 6. Outdoors experiment: 6DOF stereo SLAM on a public square. The sequence of CI Local maps is represented with respect to the initial

reference (left); results obtained after running the D&C algorithm that joins and corrects the estimates (middle); final map obtained when

the loop closing constraint is imposed (right). The scale factor and camera positions are well recovered thanks to the combined observations

of 3D points and inverse depth points. Both a XY projection (first row) and a YZ projection (second row) are shown in order to illustrate

the precision obtained. The accompanying video VSLAM_video_outdoor.avi shows the full execution of the outdoor experiment.

Fig. 7. Indoor experiment: 6DOF visual SLAM along an indoor environment. Sequence of CI local maps with 100 features each

(left), result after CI D&C joins and updates (middle) and final map estimate after loop closing (right). The accompanying video

VSLAM_video_outdoor.avi shows the full execution of the indoor experiment.
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Fig. 8. Running time per step of all associated processes: a detailed analysis of the Features extraction, Local Mapping (labeled as local

maps) and Data Association (DA) times (left); total time per step where the peaks represent the joins performed by the CI D&C algorithm

(right). Outdoor environment: the Public square (top). Indoor environment (bottom).

worst case when building CI local maps. Fig. 8 shows

how the running time system remains constant in most

of the steps. Moreover, time peaks that appear when CI

D&C takes place are below 8 seconds for the square

experiment and 14 seconds for the indoor experiment,

which are the maximum times required in the last step.

Using the Google Earth tool we can see that the map

scale obtained and the trajectory followed by the camera

is very close to the real scale. Fig. 9 illustrates compar-

ative results. We loaded the MATLAB figure in Google

Earth and set the scale parameter to the real scale. Given

that we had no GPS nor compass measurements for

the initial locations of the camera which are the base

reference of each map, the position and orientation of

the figure over the map were adjusted by hand. It can

be noticed that angles between the square sides and the

shape of the walls of the surrounding environment have

been finely captured.

VI. DISCUSSION

As presented in the introduction, several works have

demonstrated successful Visual SLAM systems in small

environments using monocular or stereo cameras. There

are several important factors that limit the extension of

these results to large scale environments.

First, the computational complexity and consistency of

the underlying SLAM technique. In this work we have

presented a novel algorithm that builds conditionally

independent local maps in constant time and combines

them in an optimal way in amortized linear time. Al-

though the experiments presented here were processed

in MATLAB, we expect that the extension to stereo of

our current real-time implementation [18] will be able

to build local maps up to 100 features in real time, with

updates at 25Hz. The D&C map joining, loop detection

and loop closing can be implemented on a separate

thread, taking advantage of the current multiple core
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Fig. 10. Comparison of the outdoor and indoor maps obtained before the loop closure using three different techniques: monocular SLAM

with inverse depth points (left), stereo SLAM with 3D points (middle) and the proposed stereo SLAM with 3D points and inverse depth

points (right)

processors.

In the case of monocular SLAM, another important

limiting factor is the intrinsic unobservability of the

scale. This problem can be addressed using additional

sensors such as the vehicle odometry, GPS or inertial

units. When they are not available, the scale can be

initialized using some a priori knowledge about the

environment such as the size of a known object visible

at the start [15] or the initial speed of the camera [56].

However, in large environments, unless scale information

is injected on the system periodically, the scale of the

map can slowly drift (see for example, the experiments

in [18]). Another critical issue appears when the scene

is mostly planar and perpendicular to the optical axis. In

this situation, with a monocular camera it is very difficult

to distinguish between camera translation and rotation,

unless a wide field of view (FOV) is used.

To illustrate these difficulties, we have processed our

indoor and outdoor experiments using only the infor-

mation from the right camera. As we are now using

a bearing-only system, all the features are initialized

using the inverse depth representation. To bootstrap the
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Fig. 9. Stereo visual SLAM recovers the true scale: the building

environment (top) and the Public square (bottom) overlapping Google

Earth.

system, we have introduced a initial estimated speed for

the camera of 1m/s. Apart from that, our Visual SLAM

algorithm remains unchanged. The resulting maps are

represented in the left column of figure 10. As it can

be seen, the scale obtained by the system is arbitrary.

Also in the outdoor experiment, at a certain point,

the system misinterprets the camera translation as a

rotation, and the map gets corrupted. Here we are using

a camera with FOV of 65 degrees. The results obtained

in the same environment with a FOV of 90 degrees are

significantly more robust [59]. In the indoor experiment

with monocular, as the objects are much closer to the

camera, most of the features disappear fast from the

FOV when the camera turns leading to a bad estimation

of its position and consequently divergence in the map

estimate.

We have also processed the sequences with our SLAM

algorithm using conventional stereo, i.e. changed to ini-

tialize all the features whose disparity is bigger than one

pixel as 3D points. Features without disparity are dis-

carded because its depth cannot be computed by stereo.

The immediate benefit is that the true environment scale

is observable and the map corruption disappears (figure

10, middle column). However, for points that are more

than 10m away from the camera, a Gaussian in xyz is

a bad approximation for its true uncertainty. This is the

reason for the map deformation that is clearly visible in

the lower part of the outdoor experiment, where many

features are at about 20m from the camera.

The proposed system (figure 10, right column) com-

bines the advantages stereo and bearing only vision. On

the one hand, the true scale is precisely obtained thanks

to the 3D information obtained by the stereo camera from

close point features. On the other hand, the region with

useful point features extends up to infinity, thanks to the

inverse depth representation developed for bearing-only

SLAM. The depth of the features that are far from the

camera can be precisely recovered by the system if they

are seen form viewpoints that are separated enough. In

that case, they can be upgraded to 3D points for better

efficiency [60]. Otherwise, they remain as inverse depth

points and still provide very valuable orientation infor-

mation that improves map precision and keeps the SLAM

system stable when few close features are observed.

VII. CONCLUSIONS

In this paper we have shown that 6DOF visual

mapping of large environments can be efficiently and

accurately carried out using a stereo camera as the only

sensor. One of the contributions of the paper is that in-

formation from features nearby and far from the cameras

can be simultaneously incorporated to represent the 3D

structure more precisely. Using close points provides

scale information through the stereo baseline avoiding

’scale-drift’, while inverse depth points are useful to

obtain angular information from distant scene points.

Another contribution of the paper is the combination

of two recent local mapping techniques to improve

consistency and reduce complexity in the SLAM process.

Using Conditionally Independent local maps, our system

is able to properly share information related to the

camera motion model, and common features between

consecutive maps. Smoother transitions from map to map

are achieved as well as better relative locations between

local maps. By means of the simplicity and efficiency of

the D&C SLAM algorithm, we can recover the full map
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very efficiently. The combination of both techniques adds

robustness to the process without sacrificing precision.

Although we are able to close large indoor and outdoor

loops, the algorithm used for loop closing strongly

depends on detecting sets of features already stored

in the map when the same area is revisited. It would

be interesting to analyze other types of algorithms, for

instance the image to map algorithm proposed in [61].

As future work, we will focus on comparing our

system with other stereo vision techniques such as visual

odometry. We are also interested in studying the fusion of

the stereo camera with other sensors like GPS or inertial

systems in order to compare the precision obtained. We

will also consider other types of feature detectors, and

their effect in the final result.
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