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1
Introduction

1.1 Research Context

"We’re presently in the midst of a third intellectual revolution. The first
came with Newton: the planets obey physical laws. The second came
with Darwin: biology obeys genetic laws. In today’s third revolution,
we’re coming to realize that even minds and societies emerge from in-
teracting laws that can be regarded as computations. Everything is a
computation (RUCKER 2006)."

1.1.1 Motivation

Social simulation is a research field that applies computational methods to model,
understand or predict a social phenomenon in human society. However, there are
still many difficulties for social simulation research as it is often too complex to
study social phenomena (SCHUTT 2014). For example, social phenomena can be
counterintuitive and unpredictable due to ongoing dynamics of the environment
(BONABEAU 2002b).

From the perspective of modeling, the difficulty comes from modeling the
complex human behavior in society that depends on the interplay between
people, the large number of non-linear interactions, and the dynamic evolving
social structure (SQUAZZONI et al. 2013). Since complex social processes of the
interactions can not be easily represented as equations (LI et al. 2008), it is hard
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Introduction

for social simulationists to use traditional computational and mathematical mod-
els to understand how macroscopic social phenomena emerge from the micro-
scopic level (RITZER 2001), for example, the aggregate behavior of groups of people
(EASLEY and KLEINBERG 2010) when they interact over a significant period of time
(SQUAZZONI et al. 2013).

With the development of artificial intelligence and computational theory, in-
terest in agent-based social simulation (ABSS) has been growing rapidly (GILBERT

and TROITZSCH 2005). ABSS was proposed as an alternative to traditional math-
ematical methods to model the complex behavior and study the social phenom-
ena of human society (ADAMATTI 2014). In an ABSS society, the agents have a one-
to-one correspondence with the individuals (or organizations, or other agents)
that exists in the real social world, while the interactions between the agents can
likewise correspond to the interactions between the real world individuals (GIL-
BERT 2004). Through the interactions, complex behavior of the social system can
emerge, which is a new way to study the macroscopic social phenomena in human
society. For example, it is more natural to describe how shoppers move in a super-
market than to come up with the equations that govern the dynamics of the dens-
ity of shoppers (BONABEAU 2002a). The first ABSS model was Schelling’s model to
study housing segregation patterns (SCHELLING 1971) while the first widely known
ABSS model, Sugarscape, was developed in 1996 by EPSTEIN and AXTELL (1996).
This model was introduced to simulate and explore the role of social phenom-
ena such as seasonal migration, pollution, sexual reproduction, combat, trade and
transmission of disease and culture (CASTELLANO et al. 2009).

Methodologically, AXELROD and TESFATSION (2006) considers ABSS represent-
ing an approach that could contribute to two aspects: (1) the rigorous testing, re-
finement, and extension of existing theories that have proven to be difficult to for-
mulate and evaluate using standard statistical and mathematical tools; and (2) a
deeper understanding of fundamental causal mechanisms in multi-agent systems
whose study is currently separated by artificial disciplinary boundaries.

GILBERT and TROITZSCH (2005) presented three main objectives of scientific
implementation of ABSS: (1) a way to understand basic aspects of a social phe-
nomenon in which the resulting behavior emerges from a system that could be
easily observable; (2) a prediction of real life events and phenomena; and (3) re-
search, testing and formulation of hypotheses.

In fact, the insights on ABSS from both Axelrod and Gilbert can be convergent
if we shift our focus from the goal and contribution to the category and discipline.
ABSS is a cross-disciplinary research and application field. As shown in Figure
1.1, PAUL (2002) defines and differentiates the research areas that are a combin-
ation of agent-based computing, computer simulation, and social science as So-
cial Aspects of Agent Systems (SAAS), Multi-Agent Based Simulation (MABS), and
Social Simulation (SocSim). Among these, Agent-Based Social Simulation (ABSS)
is the overlap between agent-based computing, computer simulation, and social
science. Other than ABSS, which is introduced above, SAAS is the overlap between
social science and agent-based computing that includes the study of norms, in-
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1.1 Research Context

stitutions, organizations, co-operation, competition, etc (SQUAZZONI et al. 2013).
MABS, the overlap of computer simulation and agent-based computing, mainly
includes the model realization, simulation of the agent models, the collection and
analysis of outcomes, and simulation optimization. At last, SocSim is the inter-
section between social sciences and computer simulation. In SocSim, social phe-
nomena in social science are modeled with the methods and tools used in com-
puter simulation.

Social 

science

Agent-

based 

computing

Computer 

simulation

SocSim

SAAS

ABSS

MABS

Figure 1.1: ABSS as an overlapping area of other research disciplines (PAUL 2002)

As a matter of fact, some researchers are convinced that ABSS represents an
exciting, versatile methodological approach for studying human societies, which
could contribute to policy making in social science (AXELROD and TESFATSION

2006), to distributed artificial intelligence and agent technology in computer sci-
ence (GILBERT and TROITZSCH 2005), and to theory and modeling practice in com-
puter simulation systems (JENNINGS 2000).

Based on this argument, we give a definition of Agent-Based Social Simulation
(ABSS) from IZQUIERDO et al. (2003) as follows:

Definition ABSS is a form of computer modeling of complex social systems, in
which the agents within such a system are represented explicitly and individu-
ally within the model. The model agents typically represent human individuals,
but may also represent non-human animals, or human collectives such as firms or
states. Their interactions with each other, and often with a simulated external en-
vironment, take place according to rules that may vary between agents and change
as agents learn.

As we presented in Figure 1.1, ABSS is the overlap of three research areas, com-
puter simulation, agent-based computing and social science. Thus, there are a lot
of research works focusing on ABSS from these three communities.
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(1) The first is from the computer simulation community who mainly work in
discrete event system simulation (ZEIGLER et al. 2000) and parallel and distrib-
uted simulation (FUJIMOTO 1999), where the DEVS specification (Discrete Event
System Specification) (ZEIGLER and RADA 1984) is getting popular in organizing
agent-based social systems (UHRMACHER and GUGLER 2000). In the computer
simulation community, DEVS is an operational formalism to describe the system
structure and organization of discrete event systems. Simulation implementa-
tions in this area are often programmed from scratch in Object Oriented Program-
ing languages (OOP) (e.g. C++, Java, etc.) (LUNA and STEFANSSON 2012, WARD and
HUANG 1992), as object-oriented programs show simple techniques for data col-
lection, time management, and statistical instrumentation (TYSZER 2012).

From the standpoint of computer simulation, agents in object oriented agent-
based simulation become objects and events become steps activated by loops in
the program (GILBERT and TERNA 2000). Thus, many ABSS models have been pro-
grammed from scratch due to the simplification of translating the social system
into a set of objects and events (RAILSBACK et al. 2006). For example, MACE3J is
a Java-based MAS simulation testbed with a supporting library of components,
examples and documentation for fast and flexible simulation (GASSER and KAK-
UGAWA 2002). More examples are given in WANG et al. (2012), LEES et al. (2005),
HU et al. (2005), CICIRELLI et al. (2015). These example works may be promising
from the perspective of computational efficiency. From a computational point
of view, the computational efficiency of the object oriented agent-based simula-
tion is increased with the help of techniques in parallel and distributed simulation
(FUJIMOTO 1999).

(2) The second is from the agent-based computing community who build
agent-based models by an implementation using Agent-Oriented Programming
(AOP) languages (SHOHAM 1997, HUNTBACH and RINGWOOD 2003). AOP can be
viewed as a specialization of object-oriented programming (SHOHAM 1993), for
experimenting with agents with embodied principles and concepts proposed by
theorists (WOOLDRIDGE and JENNINGS 1995). For example, 3APL is an AOP lan-
guage combining imperative and logic programming with a clear and formally
defined semantics to model agents (HINDRIKS et al. 1999). As an extension and
modification of the original version of 3APL, 2APL (DASTANI 2008) is an AOP lan-
guage that facilitates the implementation of multi-agent systems with a set of in-
dividual BDI-based (Belief-Desire-Intention) agents and a set of environments in
which they can perform actions. AgentSpeak can be viewed as an abstraction of
one of the BDI systems and allows agent programs to be written and interpreted
in a manner similar to that of horn-clause logic programs (RAO 2009). Others are
AGENT-0 (SHOHAM 1993), and ConGolog (DE GIACOMO et al. 2000).

There are also models and platforms based on AOP for specific purposes. For
example, the Multi-modal Agent Decision Making (MADeM) library enables re-
searchers to model and simulate the social decisions made by each agent based
on the agent interpreter Jason (BORDINI et al. 2007), implemented in the AOP lan-
guage AgentSpeak (RAO 2009). The social decisions are about how to get to work
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every day, e.g., by train, by car, or by sharing a car (GRIMALDO et al. 2011). Wei
proposed a cognitive model for robot control in which the cognitive layer is pro-
grammed in the AOP language Goal (WEI and HINDRIKS 2013). As for social simu-
lation purpose, examples of ABSS platforms are GALATEA (DAVILA et al. 2005) and
Brahms (SIERHUIS 2001).

(3) The third is from the social science community who use agent-based mod-
els to analyze and study social phenomena (HELBING and BALIETTI 2013), where
tools and toolkits are introduced to help social scientists who don’t have much
programming experience to build their own agent-based models (TAYLOR 2014).
These tools and toolkits can be employed as "containers" based upon a specific
shell and simplify the task of replicating simulated experiments (GILBERT and
TERNA 2000).

(a) Mason simulation for Craig Reynolds’
Boids algorithm1.

(b) NetLogo Interface of the Rabbits
Grass Weeds model2.

(c) Repast simulation of social influ-
ence3.

(d) Emergency department 3d simula-
tion with Anylogic platform4.

Figure 1.2: Typical ABSS toolkits

Many modeling and simulation tools and toolkits exist, such as Repast (TATARA

et al. 2006) which encapsulates both OOP (JAVA/C++) and AOP (ReLogo), Cormas
(PAGE et al. 2000), Ascape (PARKER 2001), MASON (LUKE et al. 2004), NetLogo

1Retrieved from https://cs.gmu.edu/~eclab/projects/mason/
2Retrieved from https://www.openabm.org/book/33102/42-first-steps-netlogo
3Retrieved from http://www.lionhrtpub.com/orms/orms-8-06/fragent.html
4Retrieved from http://www.anylogic.com/screentshots
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Toolkit (WILENSKI 1999), Swarm (MINAR 1996, LINGNAU 1999) and AnyLogic (BOR-
SHCHEV et al. 2002).

There are many common features of these standard tools and toolkits, which
are: (1)the basic unit in these systems is a rule-based agent (SMITH and CONREY

2007) and the modeling environment is contained in a specific shell (GILBERT and
TERNA 2000), which allows users to create and test agents easily; (2)the model
states are usually updated on time ticks/steps, which makes the models easier for
time management (GANZHA and JAIN 2012).

With the increasing availability of powerful computing resources (e.g., GPU
computing, supercomputing and cloud computing), the research interest of ABSS
is shifting to large-scale social systems. Typical large-scale social systems are (1)
Evolvement of societies aiming to gain a greater understanding of how human
societies evolve through testing of different hypotheses and theories for urban
change (CROOKS 2006); (2) Artificial society simulation usually spanning a shorter
time frame compared to society evolvement systems and performs as a testbed
for other high-level domain-specific research, such as epidemics (BISSET and
MARATHE 2015) and rumor spread (GONG and XIAO 2007); (3) Evacuation simula-
tion which can be used as a verification of the existing emergency plans (CAMILLEN

et al. 2009) or as a prediction of the consequences of certain courses of actions to
a large-scale emergency (HAWE et al. 2012); (4) Transportation and Mobility simu-
lation, used for general traffic analysis (NAGEL and RICKERT 2001); and (5) Systems
for analyzing other social phenomena such as migratory flows (FILHO et al. 2013).

Among these systems, epidemic spread on a large scale (city/country/global)
has remained a research focus for an extended period. Over the last two centuries,
science made enormous progress in the fight against infectious diseases, but the
biggest battles may be still ahead of us (WHO 2007). With the remaining threats,
much research was conducted due to the following reasons 5:

◦ With the increase in plane traffic, contagious illnesses spread farther and
faster than ever. During the previous decade, H1N1 Flu (STROUD and VALLE

2007) and Severe Acute Respiratory Syndrome (SARS) (HUANG 2010) infected
people around the globe.

◦ Some diseases, such as tuberculosis (DE ESPÍNDOLA et al. 2011) are now be-
coming resistant to antibiotics.

◦ Old enemies like malaria (LINARD et al. 2009) refuse to go away.

◦ Others like smallpox (GRUNE-YANOFF 2010) that have been eradicated
threaten a devastating comeback if released.

◦ New diseases are emerging at an unprecedented rate of one per year, such
as MERS (Middle East Respiratory Syndrome), SARS, Ebola and new strains
of Influenza.

5Global Public Health Threats. Retrieved from http://www.greenfacts.org/en/
global-public-health-threats/
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1.1 Research Context

Therefore, we will focus on epidemic prediction and control as the main ap-
plication area of ABSS in this dissertation.

1.1.2 Problem Statement

To get a better understanding of epidemics and to effectively support policy mak-
ing during a disease outbreak, several large-scale ABSS models were developed
aiming to create powerful tools that can help studying different diseases, differ-
ent interventions, and different simulation scenarios (STROUD and VALLE 2007,
PARKER and EPSTEIN 2011, AJELLI et al. 2010, RAKOWSKI et al. 2010, BISSET et al.
2009a, BISSET et al. 2014, GE et al. 2013, BARRETT et al. 2008). Among these models,
we noticed a common characteristic that these models were all developed from
scratch, and none of them were developed based on existing ABSS platforms or
tools.

For existing models and platforms in the agent-based computing community,
the difficulty in studying large-scale epidemic systems can be explained by the
computational complexities introduced by the implemented complex agent be-
haviors, such as planning and reasoning, limiting the number of agents in a simu-
lation study. To decrease the complexity, agents are often implemented as thread-
based objects in languages such as Brahms (SIERHUIS 2001). However, the syn-
chronization among large number of threads could greatly decrease system per-
formance and limit system scale.

For tools and toolkits in the social science community, large-scale ABSS plat-
forms have been developed such as RePast HPC (ZIA et al. 2013, ZIA et al. 2012)
with the help of high-performance computing middleware. However, there are
several limitations for these platforms to study large-scale epidemic prediction
and control. Firstly, the model concepts in these tools and toolkits are usually en-
capsulated and simplified to ease model development, for example, most large-
scale ABSS models consider the agent environment as discrete cells/grids to help
the model partitioning and reduce unnecessary inter-node communication mes-
sages. Examples include ABCCA (SUZUMURA et al. 2014) and HLA-GRID-REPAST
(THEODOROPOULOS and ZHANG 2006). In simple cases, this may be a sensible
approach when the movement of the agents has no particular pattern or is very
restricted (WANG et al. 2012). However, in current agent-based epidemiology re-
search, direct physical contact (e.g. touching) or vector-borne contact (e.g. a
droplet) outside closed rooms is also considered to be an effective method for
the spread of disease (MORSE 1995), especially in densely populated areas such as
public transportation (HALL 2007). Thus, a detailed and refined representation of
entities in a continuous environment is necessary, rather than cell/grid based and
discrete. Secondly, agents are rule-based due to the encapsulation of agency con-
cepts (e.g. knowledge) in these platforms (AN 2008) to ease the modeling develop-
ment phase, which is insufficient to model the complex behavior of agents during
an epidemic emergency. Thirdly, the tick/time step based mechanism is a pop-
ular way to advance simulation time in tools like Repast (TATARA et al. 2006) and
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Introduction

NetLogo (WILENSKI 1999). This design brings difficulties for these platforms to
run large-scale epidemic models because of the choice of the time step (CAZELLES

et al. 2007). Small steps in large-scale epidemic models with uneven event times
greatly decrease system performance while large steps speed up the simulation,
but may lead to wrong results (HELBING and BALIETTI 2013).

For existing platforms in the computer simulation community, object ori-
ented methodologies have inherent advantages to deal with large-scale systems,
especially because parallel and distributed simulation has been widely studied
(FUJIMOTO 1999). However, the concepts in agent-based systems are greatly sim-
plified. For example, the social networks implemented in these platforms are usu-
ally simplified and fixed, as dynamic social interactions significantly increase the
number of synchronization messages if the model runs in a parallel and distrib-
uted manner.

Thus, although mathematicians, epidemiologists, computer and social scient-
ists share a common interest in studying the spread of epidemics and rely on
very similar models for the description of the diffusion of pathogens (PASTOR-
SATORRAS et al. 2014), current large-scale ABSS models for epidemic predictions
and control are usually developed from scratch in OOP languages. In addition,
there are some limitations in current large-scale ABSS models for epidemic pre-
dictions and control.

Firstly, although system performance is guaranteed (ZEIGLER et al. 1997) by
adopting distributed/parallel mechanisms, the precondition of adopting distrib-
uted/parallel mechanisms in large-scale ABSS models is usually to simplify the
model components including the agent itself (UHRMACHER et al. 1997, CICIRELLI

et al. 2015). Thus, the agents are usually simple reactive agents. In other words,
agents for epidemic predictions are rather simple in terms of both the agent archi-
tecture and the decision-making mechanisms (HAWE et al. 2012). Agents in these
models either make decisions based on simple rules or behave to initially fixed
schedules. However, the results of epidemic prediction are highly related to the
decisions made by individuals (FENICHEL et al. 2011). Specifically, the variance
and diversity of agents’ decisions can significantly impact the effect of proposed
interventions during an epidemic outbreak.

Secondly, social aspects of the agent environment, such as norms and institu-
tions that provide rules and sanctions for agents to behave during a disease out-
break (SAVARIMUTHU et al. 2008), are excluded in current large-scale ABSS models
while they play an important role in disease spread as they influence agents’ be-
havior institutionally.

At last, modeling complex social interactions on a large scale remains a chal-
lenging task as well. Current large-scale ABSS models have omitted or simplified
the interaction part of social contacts in real life, for example, negotiating in plan-
ning joint social activities. Agents in existing models will only execute their sched-
uled activities and interact with others based on random or predefined social net-
works, which cannot describe the dynamic evolvement of social relations during a
disease outbreak (GUO et al. 2015). However, dynamic social interactions provide
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a perfect fabric for fast disease propagation while they can be dramatically altered
when people respond to the crisis and interventions (BISSET et al. 2009b).

To sum it up, the architectural foundation for large-scale agent-based epi-
demic prediction and control is still insufficient (SARJOUGHIAN et al. 2001), al-
though there are discussions about the use of standard patterns for agent-based
modeling (NORTH and MACAL 2011) based on their equivalents. We see these in-
sufficiencies as the core problem for our research:

There is a gap between current large-scale ABSS models and the require-
ments to study specific large-scale social systems, for example, epidemic
prediction and control.

1.2 Research Objective and Questions

Research Objective To design, implement, and test an effective conceptual model for
large-scale agent-based social simulation.

A conceptual model can be defined as a non-software specific description of
the computer simulation model (that will be, is or has been developed), describing
the objectives, inputs, outputs, content, assumptions and simplifications of the
model (ROBINSON 2008). A conceptual model is an abstraction of a simulation
model from the part of the real world it is representing (the real system) (ROBINSON

2010).
To satisfy the research objective, we will answer several research questions in

different steps.

Research Question 1 What conceptual model and model concepts can support
large-scale agent-based social simulation?

Research Question 2 How can the components of this conceptual model be imple-
mented in the case of epidemic prediction and control?

Research Question 3 How can the case of epidemic prediction and control benefit
from the proposed conceptual model regarding of model outcomes and system per-
formance?

Research Question 4 How can large-scale agent-based social simulation benefit
from the case of epidemic prediction and control in this research?

1.3 Research Methodology

To describe the choices that have to be made for formulating an effective re-
search methodology, SAUNDERS et al. (2012) developed the research onion which
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is presented in Figure 1.3. The research onion provides an effective sequence
through which a research methodology can be designed. Its usefulness lies in
its adaptability for almost any type of research, and it can be used in a variety of
contexts (BRYMAN 2012). This section will describe the concepts and explain the
choices for the different layers.
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Figure 1.3: The research ’onion’ (SAUNDERS et al. 2012)

1.3.1 Research Philosophy

To choose an appropriate research strategy and approach for conducting a suc-
cessful research project, researchers should pay attention to research philosophy
as a starting point. In general, research philosophy is built on three major
components which are ontology, epistemology, and methodology. Based on
these, various paradigms in different overlapping categories can be differentiated
(MKANSI and ACHEAMPONG 2012). For example, ORLIKOWSKI and BAROUDI (1991)
and GUBA and LINCOLN (1994) divide research philosophy into positivism, post-
positivism, critical theory, and constructivism, while SAUNDERS et al. (2012) dif-
ferentiates between positivism, realism, interpretivism, and pragmatism in the re-
search onion.

Positivism, as a philosophy in both the social and natural sciences, generally
confines a system to the data of experience and excludes a priori or metaphysical
speculations. This view assumes that society operates according to laws like the
physical world.

Realism is the viewpoint that some aspects of our reality are ontologically in-
dependent of our conceptual schemes, perceptions, linguistic practices, beliefs,
etc. (DELL’AVERSANA 2013). Realists tend to believe that whatever we believe now
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is only an approximation of reality and that every new observation brings us closer
to understanding reality (RANA 2008).

Interpretivism (also known as antipositivism or negativism) is the belief within
social science that the social realm may not be subject to the same methods of in-
vestigation as the natural world 6. Interpretive researchers assume that access to
reality (given or socially constructed) can only be obtained through social con-
structs such as language, consciousness, shared meanings, and instruments (MY-
ERS 2013).

Pragmatism (or Pragmaticism) is the view that considers practical con-
sequences or real effects to be vital components of both meaning and truth
(HEVNER 2007). Pragmatists believe that truth is not "ready-made", but that truth
is made jointly by us and reality 7. Some pragmatists also believe that that truth
is mutable (beliefs can pass from being true to being untrue and back again), and
that truth is relative to a conceptual scheme (SWANSON 2010).

Among these paradigms, positivism and interpretivism are the two domin-
ant ontological and epistemological traditions (BECKER and NIEHAVES 2007). Al-
though they are often seen as opposite and have many basic differences (DECROP

2006), they share the assumption that a ’real world’ exists beyond the realms of
human cognition (WEBER 2004), and they are frequently used in conjunction with
contemporary research (CROSSAN 2003).

This research focuses on designing a conceptual model to support large-scale
agent-based social simulation. A positivist view is necessary for designing the
proposed conceptual model. However, the proposed conceptual model often in-
volves subjective understanding about the requirements and supportive hypo-
thesis, and there is no available data for validating part of the results of the simu-
lation studies. Thus, an interpretivistic perspective is also required to evaluate the
model and the model results.

1.3.2 Research Approach, Methodological Choice, Time Horizon,

Strategy, and Instrument

The research approach is an overall paradigm based on the research philosophy
for conceptualizing and conducting an inquiry and constructing scientific know-
ledge (CECEZ-KECMANOVIC 2001). There are three types of research approaches
in the research onion: deduction, induction and abduction. Since there is not
enough data and observations, this research will use the deductive approach to
propose a conceptual model for large-scale agent-based social simulation, and
use the inductive approach through testing the proposed model in the case of epi-
demic prediction and control.

6Wikipedia, s.v. "Antipositivism", last modified on 18 December 2015, http://en.wikipedia.
org/w/index.php?title=Antipositivism&oldid=695740053.

7Retrieved from http://www.philosophybasics.com/branch_pragmatism.html, visited on
07 January 2016.
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Besides the research approach, there are three recognized research methodo-
logical choices: the quantitative method, the qualitative method and the mixed
method. This research will use the mixed research method, where the qualitative
method is used to develop the proposed conceptual model and to implement a
reference model for the case of epidemic prediction control, and the quantitat-
ive method is used to measure the model outcomes by statistical analysis of data
collected through simulation studies.

Regarding the choice of time horizon in the research onion, a longitudinal
method is selected in this research as both the input data and validation data are
gathered over a period of time.

The research strategy will use a design science research methodology (DSRM)
in VAISHNAVI et al. (2007), PEFFERS et al. (2007), which was created with objective of
providing researchers with a mental model or template for a structure for research
outputs. The reason for the choice is that this research is primarily driven by the
needs of accounting practice and focusing on the creation of new artifacts (GEERTS

2011).
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Figure 1.4: Design Science Research Methodology (DSRM) Process Model (PEFFERS et al.
2007)

There are six major phases in the DSRM process as presented in Figure 1.4.
Along with the execution of these phases, different research instruments are used.

The phases start with the problem awareness phase that tries to find an inter-
esting problem that could yield new developments in the research field (MORTON

and REDMOND 2015).
For the first phase of problem awareness, this research involves a systematic

literature review as the research instrument, where patterns of existing research
on large-scale ABSS will be examined to establish the knowledge on the partic-
ular study of epidemics. The existing research on large-scale ABSS on epidemic
prediction and control will also be examined.

Phase two looks at the objectives of potential artifacts that might address the
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problem of the first phase. This phase should be able to provide requirements to
produce an artifact that can be implemented in the next phase (ibid.).

Phase three is the development of the artifact, which will be evaluated accord-
ing to the functional specifications. Phase four is the application of the artifact in
a proper context to solve problems proposed in phase one.

Phase five evaluates the results from the application phase, and further sugges-
tions could be made through iteration if the results don’t satisfy the requirements
proposed in phase two.

For these phases, we will use literature review, data analysis, computer simula-
tion and experiments as research instruments. A Literature review will be mainly
conducted in the domains of ABSS, epidemic modeling, agent-based modeling,
social networks, and other related works. Data analysis will be performed (1) on
the data used as the input for a case study to identify data consistency, (2) on the
data of the model output to verify model results, and (3) on the data from an ac-
tual survey about urban statistics by other independent research to validate model
outputs.

Computer simulation and experiments were conducted with the implemen-
ted simulation model to evaluate the design. Computer simulation is growing in
popularity as a methodological approach allowing to assume the inherent com-
plexity of organizational systems as a given (DOOLEY and DOOLEY 2001). Experi-
mental research is the investigation of relations between controlled variables, with
tightly controlled variations, solving an artificial problem situation (epidemic pre-
diction and control). The purpose of computer simulation and experiments is un-
derstanding the behavior of the system (SHANNON 1998) and to evaluate various
strategies for controlling disease outbreak.

Phase six is the conclusion. This can indicate the end of the research cycle and
completion of the DSR project by summarizing the findings in research publica-
tions.

1.4 Thesis Outline

Agent-based social simulation is an interdisciplinary area, where knowledge, the-
ory and concepts in social science about social structures, mechanisms, and pro-
cesses of interaction and communication are combined with modeling and simu-
lation methodologies in agent-based modeling and simulation, with the objective
to solve problems in social science.

This thesis will present a novel large-scale agent-based social simulation con-
ceptual model and a reference implementation for the key model components.
With the proposed reference implementations, a case study on epidemic predic-
tion and control is conducted, and the simulation results are analyzed and dis-
cussed.

The remainder of this thesis is organized as follows. Chapter 2 presents the rel-
evant background theories and concepts that are related to ABSS models. Chapter
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3 introduces the case of large-scale epidemic prediction and control and presents
the challenges and shortcomings of current solutions. Chapter 4 presents a novel
conceptual model for large-scale ABSS and proposes a reference implementations
for key model components. Chapter 5 describes how this conceptual model is
used in the case of disease spread and policy management for the city of Beijing
and what the simulation results are if relevant simulation scenarios are executed in
this case study. Chapter 6 shows how this conceptual model performs when mul-
tiple simulation scenarios are executed regarding of model outcomes and system
performance. Chapter 7 discusses the possibilities of using this conceptual model
for other large-scale ABSS systems. Chapter 8 draws conclusions and provides
suggestions for future work.

Figure 1.5 gives an overview of the structure of this thesis.
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Figure 1.5: The research process
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2
Background and Related

Work

2.1 Application Areas in ABSS

As we presented in the first chapter, agent-based social simulation (ABSS) is a
particular form of Multi-Agent Based Simulation (MABS), which is the overlay be-
tween computer simulation and agent-based computing.

Multi Agent Based Simulation, also referred to Agent-based modeling and sim-
ulation (ABMS) (ZHENG et al. 2013), is a relatively new process of designing an
agent based model composed of interacting, autonomous agents (SIEBERS et al.
2007, SIEBERS et al. 2010), and conducting experiments with this model for the
purpose of understanding the behavior of the system and/or evaluating various
strategies for the operation of the system (SHANNON 1998). In ABMS, individual
agents and their behavior are described by an agent architecture, and agents inter-
act with others or the environment following a set of rules. By this modeling and
simulation process, the full effects of the diversity of attributes and behavior can
be observed as it generates the behavior of the system model as a whole (MACAL

and NORTH 2010). Self-organization can be observed in such models as well. Pat-
terns, structures, and behavior emerge that were not explicitly programmed into
the models, but arise through the agent interactions (ibid.).

Compared to agent-base social simulation, ABMS spans a broader range of
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areas. There are many review papers summarizing the application areas apply-
ing ABMS models (MACAL and NORTH 2010, RAILSBACK et al. 2006, CASTIGLIONE

2006, HELBING 2012, BONABEAU 2002a, GETCHELL 2008). Based on their research,
we list several areas where ABMS models are typically adopted.

◦ Economics. Examples are stock markets (ZAWADOWSKI et al. 2002), self-
organizing markets and trade networks (TESFATSION 2001), consumer beha-
vior (SAID et al. 2002), and deregulated electric power markets (WEIDLICH

and VEIT 2008). Among these, E-Commerce is a hot application topic (RO-
MAN and KATERINA 2012) where investigating market mechanisms and con-
sumer behavior on-line are attractive for researchers, and ABMS can be ad-
opted to model the market dynamics.

◦ Education and Training. Education in the 21st century can benefit from us-
ing ABMS as there is a geographical dispersion of students and teachers who
spend hours a day interacting with multimedia environments (LI et al. 2008).
ABMS can be adopted to decide resource allocation for education optimally
(PAN et al. 2006).

◦ Ecology. Examples are population dynamics of fish such as salmon and trout
(GRONER et al. 2013), flocking behavior in birds (RAZAVI et al. 2010), rain
forest growth (DEADMAN et al. 2004), fire spread (HU et al. 2005), and insect
societies (PRATT et al. 2005).

◦ Political Sciences. Examples are water rights in developing countries
(SCHREINEMACHERS and BERGER 2011), party competition (LAVER and SER-
GENTI 2011), origins and patterns of civil violence (EPSTEIN 2002).

◦ Social Science. Examples are evolvement of societies (CROOKS 2006), urban
riots (BRUZZONE et al. 2011), spread of epidemics (BISSET and MARATHE

2015), human evacuation (CAMILLEN et al. 2009, BRUZZONE et al. 2014), and
traffic flow management (NAGEL and RICKERT 2001).

Among those areas listed above, the social science area is the research interest
of this thesis. As mentioned in the list, social science includes a lot of sub-areas
that attract research interests. We listed several example applications that can eas-
ily be elaborated as follows:

1) Evolvement of societies. Agent based models (ABM) allow for the testing of
different hypotheses and theories for urban change, thus leading to a greater un-
derstanding of how cities evolve (CROOKS 2006). For example, Crooks presents an
ABSS model to explore how cities change and develop by integrating his model
with Geographical Information Systems (ibid.). UrbanSim is a urban simulation
models studying urban dynamics and reflecting specific agents interacting with
other agents, such as households, jobs, and governments (WADDELL 2012). To
investigate changes in the social structure of New Zealand, the Modeling Social
Change (MoSC) project simulated inter-ethnic cohabitation patterns using ABSS
models populated with unit-level census data (WALKER 2009). Similar research
can be found in another agent-based model for urban simulation (NAVARRO et al.
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(a) ABM on Evolvement of societies1 (b) ABM on Artificial society with epidemic2

(c) ABM on Evacuation3 (d) ABM on Transportation and Mobility4

Figure 2.1: Application Areas of ABSS

2011) and simulation of residential dynamics in a city (BHADURI et al. 2014).
2) Artificial society. Different from society evolvement research, artificial soci-

ety research usually spans a shorter time frame compared to society evolvement
and performs as a fundamental testbed for other high-level domain-specific re-
search, such as epidemics (BISSET and MARATHE 2015) and rumor spread (GONG

and XIAO 2007). An artificial society is a multi-agent simulation where autonom-
ous agents carry out activities in parallel, move around the environment locations
and communicate with each other (SAWYER 2003). It requires individual agents
representing humans that have daily behavior, together with locations (house-
holds, schools, work places, hospitals, stations, etc.) that provide space for agents’
activities. Based on the artificial city models, fundamental collective behaviors
"emerge" from the interaction of individual agents following a few simple rules
(EPSTEIN and AXTELL 1996).

3) Evacuation. ABSS models on evacuation can be used as verification of the
existing emergency plans for building evacuation (CAMILLEN et al. 2009), or to pre-
dict the consequences of certain courses of action and to respond optimally to a
large-scale emergency (HAWE et al. 2012), or for analysis of realistic evacuation
models at the level of large cities (ZIA et al. 2012). In the study of large-scale evac-
uations of cities by LÄMMEL et al. (2010), ABSS is used to understand the interde-
pendency of infrastructure systems and their vulnerabilities for natural disasters,

1Retrieved from https://www.cs.purdue.edu/cgvlab/urban/index.html
2Retrieved from http://www.lanl.gov/programs/nisac/episims.shtml
3Retrieved from http://www.geosimulation.org/disasters.html
4Retrieved from https://github.com/agents4its/mobilitytestbed/wiki
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terrorist attacks, accidents, and other incidents.
4) Transportation and Mobility. A lot of ABSS studies on large-scale transport-

ation are conducted. For example, the highly scalable X10-based agent simula-
tion platform XAXIS was used to implement a large-scale traffic simulation which
focuses on performance issue (SUZUMURA and KANEZASHI 2012). The TRANSIMS
project (NAGEL and RICKERT 2001) by the Los Alamos National Laboratory (LANL),
has helped to create large-scale ABSS models to study the travel behavior of the 7.5
million inhabitants of Switzerland (RANEY et al. 2002) and for general traffic ana-
lysis in the Buffalo-Niagara metropolitan area (ZHAO and SADEK 2012). A similar
research project was the large-scale multi agent-based transport simulation for
Shanghai (ZHANG et al. 2013) using MATSIM. Agent-based traffic simulation was
also used to capture the regional impacts of new development (ZHANG et al. 2012).
Besides transportation, ABSS can be easily applied to pedestrian mobility models
(ZIA et al. 2013, PELECHANO et al. 2007).

5) Other social phenomena. Besides the above hot topics, agent-based so-
cial simulation are widely used in analyzing other social phenomena. For ex-
ample, educational scientists developed agent-based models to identify the cas-
ual implications of the same-race effect on the educational achievement trends
(MONTES 2012). Social scientists used ABSS models to reproduce migratory phe-
nomena to gain a deeper understanding regarding migratory flows and social net-
works (FILHO et al. 2013).

2.2 Conceptual Model for ABSS

A conceptual model is usually made of a composition of concepts. The general
opinion about when a model should be called agent-based is that this is often de-
cided at the conceptual and not at the implementation level (SIEBERS et al. 2010).
Due to the standardization of ABM tools and toolkits, conceptual frameworks are
commonly designed in platforms in the social science community which are dis-
cussed in Section 1.1.1. Among these platforms, three typical platforms are selec-
ted to analyze their conceptual models, which are Swarm (MINAR 1996, LINGNAU

1999), NetLogo (WILENSKI 1999) and Repast (TATARA et al. 2006).
Swarm was developed at the Santa Fe Institute in 1994 and was specifically de-

signed for artificial life applications and studies of complexity. It is selected as an
representative in this dissertation for analysis as it is the first re-usable software
tool created for agent-based modeling and simulation (ALLAN 2009).

The two types of concepts that are particular to each Swarm simulation
(STEFANSSON 1997) are Agents and Model Abstractions. Agents are actors in the
artificial world or possibly auxiliary objects that control the agent behavior. Model
Abstractions are objects that may collect information and respond to inquiries
from the agents or perform other necessary tasks in the artificial world.

Swarm is the most mature ABMS library based framework and is stable and
well organized (ALLAN 2009). However, Swarm is not suitable for large-scale so-
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cial systems. One of reasons is the way it use to organize a group of agents. To
manage more than one agent in a Swarm world, ’List’ is used to keep track of all
agents as a collection. When the list grows to millions, it will cause problems for
agent interactions. There is a lack of concept in the Swarm world to represent the
relationships among agents.

NetLogo is a multi-agent programming and modeling environment for simu-
lating complex phenomena. It is selected for analysis as it is one of the most widely
used multi-agent modeling tools today (RAILSBACK et al. 2006), with a community
of thousands of users worldwide (BLIKSTEIN et al. 2005).

In NetLogo, the only model concept is agent. There are four types of agents in
NetLogo, and each serves a different purpose in a NetLogo model (LYTINEN and
RAILSBACK 2012):

◦ Observer. In each NetLogo simulation, there is always exactly one instance
of this kind of agent. It is the only agent that can perform certain global op-
erations in a model (e.g. clear-all).

◦ Patch. These stationary agents represent the agents’ physical environment
where each agent can only stay in one patch (grid/cell).

◦ Turtle. These are agents equivalent to agents in other ABM platforms.

◦ Link. Links, representing the relationships among agents, are agents con-
necting one turtle to another.

Similar to Swarm, NetLogo is difficult to apply in large-scale social systems,
as well. One of the limitations is the simplification of the concept on modeling
environment. NetLogo adopts grids (patches) to represent agent environment,
while many large-scale systems social include continuous space.

Repast (Simphony) is an open source agent-based modeling toolkit that sim-
plifies model creation and use. RePast is selected as it is ranked to be the first
among several other ABMS tools based on the value of the weighted total score by
TOBIAS and HOFMANN (2004).

In Repast, the most important concepts besides agents are contexts and pro-
jections (HOLZHAUER 2010). Contexts represent agent’s environments with their
own internal states which are organized hierarchically. Each agent needs to be-
long to at least one context. Projections specify the environment the agents are
within and impose a structure on the context. This might be continuous space,
grid, GIS information or a network. Figure 2.2 outlines the relations between con-
texts, agents and projections (ibid.).

Repast (Simphony) probably now has the greatest functionality of any AMBS
package (ALLAN 2009). However, the concepts of context and projection in Repast
are designed for general agent-based modeling and simulation. There is no spe-
cific concept available for modeling concepts such as social regulation in large-
scale social systems.

Swarm, NetLogo and Repast are three representatives among many other plat-
forms, and there are many review papers on all kinds of platforms (MACAL and
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Figure 2.2: The relations between contexts, agents and projections in Repast

NORTH 2010, RAILSBACK et al. 2006, CASTIGLIONE 2006, HELBING 2012, BONABEAU

2002a, GETCHELL 2008). A review paper by RAILSBACK et al. (2006) concluded
that "it would be easier to teach these platforms (and even to motivate students
to bother with them) if their libraries were more clearly linked to a well-defined,
standard conceptual framework". This conceptual framework can provide a com-
mon language for thinking about and describing agent-based models. MACAL and
NORTH (2010) concluded that a typical agent-based conceptual model usually in-
cludes three concepts :

◦ Agent. Each agent has attributes and behavior and individually assesses
its situation and makes decisions on the basis of a set of rules or a defined
schedule.

◦ Interdependency. An interdependency is an underlying topology of connec-
tedness defining how and with whom agents interact.

◦ Environment. The environment is the sum of entities that agents can inter-
act with in addition to interacting with other agents.

These concepts in conceptual models used in general ABM tools and toolkits
are rather popular in many application areas. Nevertheless, as we showed in
Chapter 1 (pp.7), they are not suitable to simulate large-scale social systems. As
far as we can see, one of the design choices preventing the conceptual models to
be applied in large-scale social systems is the integration of many heterogeneous
concepts into general ones. Regarding agent environment, few of these models
distinguish social environment (e.g., norms) from physical environment (e.g., geo-
graphical space). These concepts and conceptual models work flexibly for diverse
small-scale problems. When they are applied to large-scale social systems, diffi-
culties arise, such as organizing the large number of agents with dynamic evoling
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social networks.
Therefore, we propose the following requirement for research on large-scale

ABSS in this dissertation as follows:

Research Requirement - Model Architecture A conceptual model is required for
large-scale ABSS.

2.3 Agent and Agent Architecture in ABSS

Over the last few years, the term ’agent’ has become almost commonplace, far
beyond its originating niche area of interest in artificial intelligence (LUCK and
D’INVERNO 2001). Although increasingly popular, the term has been used in such
diverse ways that it has become meaningless without reference to a particular no-
tion of agenthood (SHOHAM 1993). There is a lack of agreement over what actually
constitutes an agent. "Agents sound just like computer programs. How are they
different (FRANKLIN and GRAESSER 1997)?"

There is no universal agreement in literature on a precise definition of an agent
(MACAL and NORTH 2010), therefore many researchers provided their own defini-
tions.

FRANKLIN and GRAESSER (1997) defines "an autonomous agent is a system situ-
ated within and a part of an environment that senses that environment and acts
on it, over time, in pursuit of its own agenda and so as to effect what it senses in
the future".

FERBER (1999) states "an agent can be a physical or virtual entity that can
act, perceive its environment (in a partial way) and communicate with others, is
autonomous and has skills to achieve its goals and tendencies".

JENNINGS and WOOLDRIDGE (2012) views an agent as "a computer system situ-
ated in some environment, and that is capable of autonomous action in this en-
vironment in order to meet its design objectives".

BONABEAU (2002a) sees an agent as "an autonomous decision-making entity
that assesses its situation and makes decisions on the basis of a set of rules". In
addition, agents may be capable of evolving, allowing unanticipated behaviors to
emerge.

Among these definitions, the most frequently mentioned keywords for defin-
ing an agent are "autonomous", "environment", "sense (perceive)", "act" and
"goals (objectives)". Based on the systems we are targeting, we define an agent
in the context of large-scale social systems as:

Definition An agent is an autonomous entity that senses and acts upon its environ-
ment including other agents, physical entities, and social regulations, and directs
its activity towards achieving goals.

This definition is not concerned with how complex and intelligent agents can
be. In fact, agents can be categorized based on their degree of intelligence and
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capability. RUSSELL and NORVIG (2003) group agents into five classes: simple re-
flex agents, model-based reflex agents, goal-based agents, utility-based agents
and learning agents. NWANA (1996) identify seven types of agents: collaborat-
ive agents, interface agents, mobile agents, information/Internet agents, reactive
agents, hybrid agents and smart agents. In both of the categorizations, agents are
different in terms of application area, capability and "smartness" (CHEN 2008),
which is related to the design of agent architectures.

Agent architectures can be thought of as designing agents from the perspective
of software engineering. Thus, researchers in this area are primarily concerned
with the problem of designing agents that will satisfy the properties specified by
agent theorists (WOOLDRIDGE and JENNINGS 1995).

Over the years, a large amount of research was done to design agent architec-
tures for various purposes. For example, mobile agents can be developed based on
templates such as Aglets (LANGE and MITSURU 1998), and Web-based agents based
on JAVA Agent Template(JAT). Originating from Aglets, LI et al. (2006) proposed an
execution model of mobile agents called SMA which is described via SMA-DEVS.
They also built a direct execution simulation environment called MADESE for per-
formance evaluation of mobile agents.

Agents with more "smartness" can be realized through cognitive architectures
such as SOAR (NEWELL et al. 1987) and ACT-R (ANDERSON et al. 2004), which pro-
vide more complete representations and reasoning frameworks than the above
template architectures (BUSEMEYER and DIEDERICH 2010). For example, ACT-R
supports a theory of human cognition and provides a wide range of cognitive cap-
abilities.

Besides cognitive architectures, there are a number of multi-level/layer ar-
chitectures, such as TouringMachines (FERGUSON 1992), Atlantis, and InteRRap
(MÜLLER and PISCHEL 1993), providing a more flexible mechanism to solve cognit-
ive problems. For example, SLOMAN et al. (1999) introduced a 3-layer internal ar-
chitecture of individual agents required for social interaction, collaborative beha-
vior, complex decision making, learning, and emergent phenomena within com-
plex agents, and implemented a software toolkit, SIM_AGENT, to allow construc-
tion sets of agents in which each agent has a multi-component architecture.

Compared with the above mentioned agent architectures, Beliefs-Desires-
Intentions (BDI) (BRATMAN 1999) based models provide a more formal description
for reasoning agents. In BDI theory, beliefs represent the informational state of the
decision-maker. More precisely, Beliefs represent what the agent believes about it-
self and the environment. Desires represent the motivational state of agent, that
is, the goals that the agent would like to reach. Intention is constructed by a set of
plans, where the agent chooses the best action to perform based on its beliefs.

BDI has been extensively explored in multi-agent reasoning research. For ex-
ample, DUNIN-KEPLICZ and VERBRUGGE (2002) investigated the notion of collect-
ive intention in teams of agents involved in cooperative problem solving (CPS)
in multi-agent systems. GRANT et al. (2005) presented a formal logical calcu-
lus for representing the formation of intentions by agents, which can describe
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the reasoning and activities of the agents. ZUCKERMAN et al. (2012) presented a
formal Beliefs-Desires-Intentions (BDI) based model, called the Adversarial Activ-
ity model, for bounded rational agents operating in a zero-sum environment.

Based on the these formal BDI models, researchers contributed to architec-
tural work and implementations. BRATMAN (1999) presented a high-level spe-
cification of the practical-reasoning component of an architecture for a resource-
bounded rational agent. TAMBE (1997) implemented an agent architecture
STEAM, founded on the joint intentions theory and a practical operationalization.
However, the most successful architecture is PRS (Procedural Reasoning System)
(INGRAND et al. 1992) which is an implementation based on the BDI theory. There
are four main components in the PRS architecture: (1) beliefs; (2) desires; (3) in-
tention; and (4) plans.

Plan 
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World 

Model

Button
JAM Agent 

Interpreter

Observer
Intention 

Structure

Environment

Communicated, 

Generated, 

Revised Plans

Communicated, 
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Execution
Goals, 

Intentions, 

Execution

Actions, 
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Reasoning, etc.

Sensing results, 
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etc.

Actuation and 

Communication

Action, Sensing, etc.

Figure 2.3: The JAM intelligent agent architecture

JAM (HUBER 1999) is a hybrid intelligent agent architecture that draws upon
the theories and ideas from PRS, and some other agent architectures, presented

23



Background and Related Work

in Figure 2.3 as an example. ARTS, a BDI architecture that was extended from PRS
and JAM includes goals and plans which have deadlines and priorities, and allows
the development of agents that guarantee (soft) real-time performance (VIKHOREV

et al. 2009).
To deal with norm emergence, normative agent architectures were introduced

and designed to enable norms to be communicated, adopted and used as meta-
goals on an agent’s own processes (CASTELFRANCHI et al. 2000). Typical ex-
amples are EMIL-A by ALDEWERELD (2007) and NoA by KOLLINGBAUM and NOR-
MAN (2003).

Before choosing a proper reference architecture for agents in large-scale ABSS,
the requirements need to be finalized. MACAL and NORTH (2010) consider agents
to have certain essential characteristics and some optional characteristics. Since
one of the problems we try to solve in large-scale social system is to improve the
agent capability, we introduced all these characteristics for agents in the large-
scale systems to some extent as below (ibid.):

CH1 "An agent is a self-contained, modular, and uniquely identifiable indi-
vidual."

CH2 "An agent is autonomous and self-directed."

CH3 "An agent has a state that varies over time."

CH4 "An agent has dynamic interactions with other agents that influence its be-
havior."

CH5 "An agent may be adaptive, for example, by having rules or more abstract
mechanisms that modify its behavior."

CH6 "An agent may be goal-directed, having goals to achieve (not necessarily ob-
jectives to maximize) with respect to its behavior."

CH7 "An agent is heterogeneous."

As described at the beginning of the thesis, the case system is composed of a
large number of parallel autonomous agents which have a certain level of capabil-
ity to reason, interact, and perform specified tasks. To model this specified type of
agent, a desired agent architecture must satisfy the following requirements, which
are mostly interpretations of the characteristics mentioned above. In addition to
these requirement, there is also the challenge of computational complexity. Large-
scale social simulations could involve a large number of agents, up to thousands
or even millions. Thus, scalability is a significant issue (SUN 2009) when choosing
agent architectures.

Thus, agents in this research should be illustrated in Figure 2.4.
The requirements for agent architectures in the target conceptual model for

large-scale ABSS are as follows:

Research Requirement - Agent Architecture The architecture for agents in the
target conceptual model for large-scale ABSS should satisfy the following re-
quirements.
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Intelligence

S
y
stem

 S
cale

Simple 

Agents

(Swarm-like)

Complex 

Agents

(BDI)

Agents in this 

research

Figure 2.4: The illustrated place of agent in this research

R1 It should be easily decomposable into components. -Interpreted from
CH1

R2 It should have its own decision-making capability. -Interpreted from
CH2 & CH7

R3 The architecture should support a mechanism to sense and reflect the
surrounding environment. -Interpreted from CH3 & CH4

R4 It should have dynamical social interaction capability. -Interpreted
from CH4

R5 It should have the ability to response to emergent events, rather than
having to blindly follow a prearranged plan. -Interpreted from CH5 &
CH6

R6 The agents should be "simple" and "small". -Interpreted from scalabil-
ity requirement

Based on these requirements, we conducted a comparison in Table 2.1, which
compared the mentioned agent architectures above.
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2.4 Social Networks in ABSS

According to the comparison on different requirements of current agent archi-
tectures in Table 2.1, we can see that all agent architectures have their own diffi-
culties to satisfy the requirements for our target large-scale social systems which
is shown in Table 2.2.

Table 2.2: Difficulties of applying current agent architectures in large-scale social systems

Agent Architecture Difficulties

Template agent architectures R1,R2,R3,R5,R6
Cognitive architecture R1,R6

BDI architecture R6
Normative architecture R1,R6

Multi-level/layer agent architectures R6

2.4 Social Networks in ABSS

One of the practices of agent-based models is that agents only interact with the
agent’s neighbors, and local information is obtained from interactions with an
agent’s neighbors and its localized environment. Thus, an agent’s neighbors could
change rapidly as agents move through space when simulating (MACAL, HOWE et
al. 2006), as they will continuously get new neighbors. However, this practice is
insufficient for large-scale social systems where agents can easily contact other
agents far way.

Another way to manage the relationship of agents is by a topology, such as a
spatial grid or network of nodes (agents) and links (relationships). This topology
describes who transfers information to whom. However, agents can interact ac-
cording to multiple topologies. For example, an agent could interact only with its
neighbors located close-by in physical (or geographical) space as well as neighbor
agents located close-by in its social space as specified by the agent’s social net-
work (MACAL and NORTH 2010). When large-scale social systems grow to include
millions of agents, assigning a topology for the whole population becomes too dif-
ficult. As a matter of fact, modeling social networks is becoming an active research
area in the large-scale agent-based social simulation research (ALAM and GELLER

2012).
Basically, research on social networks can be distinguished into two parts: (1)

social network structure and (2) social network dynamics (SQUAZZONI et al. 2013).
Social network structure defines the interacting agents that an agent has. In gen-
eral, a social network structure is a graph representation of individuals (nodes/ver-
tices) and the relationships (lines/edges/links/arcs). For each line between two
individuals, information can be specified, such as what type of connection it is,
how often the agents interact with each other and what information they share.
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As defined in graph theory, lines in social networks may be directed from one in-
dividual to another which means for instance that friendship may be one-sided.
Generally, social network structures have two types (RONALD et al. 2012a): com-
plete networks where the whole topology of the links among nodes are specified
(PUJOL and FLACHE 2005, GABBRIELLINI and TORRONI 2014) and egocentric net-
works where links of nodes are described per node (CARRASCO et al. 2008, GATTI

et al. 2014).
Social network structures, in the form of agent organizations in multi-agent

systems, are commonly studied (DUBOZ et al. 2006). From their perspective, agent
organizations can be seen as a set of agents regulated by social rules and mechan-
isms with which autonomous agents can achieve common goals under some kind
of institutional control. In other words, the organization supports an agent to re-
cognize its role, and the roles of others, in accomplishing those collective goals,
with communication as an important means. Organizational theory is therefore
increasingly used in agent-based modeling and simulation and support of social
systems.

In recent years, various type of organizations were modeled by researchers,
such as institutions, groups, firms, and communities. The organizational struc-
ture usually involves two fundamental concepts: agent roles and their relations
with which the overall behavior of the MAS is determined (GROSSI et al. 2005). In
addition to modeling agent organizations, several organizational structures spe-
cifications were introduced by KOLP et al. (2006) as the meta-class of organiza-
tional structures for MAS, which adopted concepts from organizational theories.

An example of the organizational structure specifications is the Block-like Rep-
resentation of Interactive Components (BRIC)(WEISS 1999). Another specification
dealing with structure specification is the Agent/Group/Role or AGR organization
modeling approach (FERBER and GUTKNECHT 1998), in which an organizational
structure consists of a set of groups, roles in each group and agents fulfilling roles
(BOELLA and VAN TORRE 2006). GROSSI et al. (2005) argues that organizational
structures should be seen along at least three dimensions, instead of just one:
power, coordination, and control.

However, these research works focus on the descriptive level of organizational
structures. When it comes to organization design itself, it is not always easy to
model organizational structure on an operational level. The reason is that the re-
lation between agents could change over time due to the autonomous property of
agents. Thus, the primary limitation of these specifications is that they don’t en-
able the formalization of the structural evolution of the system (i.e., the dynamics
of interactions).

To formalize the system dynamics in multi-agents system, temporal modeling
specification languages have been introduced (DARDENNE et al. 1993) in which
dynamic properties are often specified in the form of a set of logical formulas.
Hence, this method is one of the dominant approaches for specification and ana-
lysis of dynamic properties in agent-based systems. The advantage of this method
is the declarative modeling of simulation models, for example, Executable Tem-
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poral Logic (AMIGUET et al. 2002) and the Strictly Declarative Modeling Language
SDML (EDMONDS 2002). The shortcoming of this specification is that it usually
does not provide explicitly specified organizational structure nor does it offer ded-
icated support for a specific type. Moreover, simulation of dynamics is the main
purpose of this specification and not much formally defined support is offered for
analysis of dynamics.

Instead of adopting specifications, there are many other ways to look at social
networks. From the perspective of what characteristics of social networks to focus
on, social networks have three different categorizations: the structure-oriented,
the actor-oriented, and the actor-structure crossing (JIANG et al. 2014). From the
perspective of how to add new nodes in a social network model, the social network
models are classified into two main categories: network evolution models (NEMs)
and nodal attribute models (NAMs) (TOIVONEN et al. 2009).

Different algorithms were developed to help generate social networks for dif-
ferent research purposes. BADHAM and STOCKER (2010) introduced a spatially
based algorithm that generates networks with constrained but arbitrary degree
of distribution, clustering coefficient and assortativity (preference for a network’s
nodes to attach to others that are similar in some way). This algorithm randomly
creates the nodes in space and assigns a target degree to each. A different ap-
proach is based on dynamically constructing networks on the basis of the like-
lihood that people connect. It has been observed that the similarity between
people, or homophily, increases that chance that people talk (BROWN and REIN-
GEN 1987), and highly similar people are more likely to connect than those who
are very different (KOSSINETS and WATTS 2009). Similarity is often measured in
terms of attributes such as age, gender, education, or lifestyle. Greater similarity
between people seems to also increase trust, understanding, and attraction be-
tween them, creating a stronger relationship (RUEF et al. 2003). This introduces
the possibility of using social simulation models to look at networks based on in-
dividual preferences and characteristics rather than having to collect full network
data (SQUAZZONI et al. 2013), which is difficult for large-scale systems.

Thus, we propose a requirement for the target conceptual model for large-scale
ABSS as follows:

Research Requirement - Social Networks The conceptual model for large-scale
ABSS should support modelers to generate dynamical social networks.

2.5 Social Interaction in ABSS

Social interaction is widely modeled in various areas. The theory of Sociology of
Organized Action, also called Strategic Analysis, is a key theory, and it intends
to discover the functioning of any organization beyond its formal rules, espe-
cially how social actors build the organization that in return rules their behavior
(SIBERTIN-BLANC et al. 2006). For over a decade, the FIPA specification, acting as a
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key standard in MAS area, offers interaction mechanisms for agent to agent com-
munications as well (POSLAD 2007). Social interaction is also modeled in agent-
based argumentation (SIERRA et al. 1998), in which agents are socially embedded
and exchange information by means of simulated dialogues (GABBRIELLINI and
TORRONI 2014). The advantage of agent-based argumentation is that it can gener-
ate rational and explainable decisions, while it is not suitable for large-scale com-
plex social interactions as each agent is equipped with a local argumentation the-
ory (KAKAS et al. 2012), which will consume a lot of memory.

Both agent-based argumentation theory and other theories on social interac-
tion mentioned above are designed for small-scale systems. Nevertheless, model-
ing complex human social interactions is an important part in large-scale agent-
based social simulation research. For example, results of interactions (negoti-
ations) for scheduling joint social activities could influence the future plans of the
involved individuals, which has a great impact on the researches such as activity-
based travel demand analysis and agent-based epidemic models.

Scheduling a joint social activity can be considered as a process of group de-
cision, by which agents plan, negotiate and execute a joint social activity. This
process is becoming more important in the field of traffic demand analysis (RON-
ALD et al. 2012a, LIN and WANG 2014). In addition to activity-scheduling behavior,
congestion levels at specific times and places emerge in traffic demand analysis
system and may lead to discrepancies between scheduled and actual activity and
travel times. Agents should respond to such unforeseen events by reconsidering
an existing schedule (within-day re-planning) and by adapting their expectations
about traffic conditions for subsequent days (learning) (ARENTZE et al. 2010).

Describing this process is a rather difficult task than it may seem, in particular
when the system has a very large scale (millions of individuals). Current research
efforts in large-scale ABSS ignore or simplify the negotiation/coordination part of
the social interactions in order to reduce complexity, either by using fixed and pre-
defined human daily schedules as inputs or by constraining the joint social activ-
ities (interaction purposes) into several specific types (e.g. eating out) (ZHANG et
al. 2015).

Another limitation of current research practices in large-scale ABSS is that
the modeled decision process is only held among family members (MILLER and
ROORDA 2003). Thus, only scheduling social activities for families are studied.

Thus, we propose a requirement for the target conceptual model for large-scale
ABSS as follows:

Research Requirement - Social Interaction The conceptual model for large-
scale ABSS should support agents to join in different types of social activities
through complex social interactions.
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2.6 Agent Environment in ABSS

The environment is a fundamental concept of agent-based modeling and simula-
tion (ABMS), in which agents exist, interact, perceive, and act (HESAN et al. 2015).
In the context of a classic agent-based social simulation, the agent environment
is usually represented by a geographical area that may be real or fictitious. One of
the simplest methods of representing a fictitious geographical area is using grids
or cells. When representing real areas, a vector Geographic Information System
(GIS) based spatial environment is more popular (HAWE et al. 2012).

A grid-based or cell-based agent-based simulation is also called a situated
agent-based simulation (CICIRELLI et al. 2015), by which agents can interact
through information exchange in the grids or cells. An example of a situated
ABMS platform is DIVAs, in which the environment (designed as a network of
cells) is a distinct active entity that provides an indirect coordination mechanism
for agents situated in the cell (MILI et al. 2006). Compared to situated systems,
GIS-based systems provide a more realistic way to model agent environments for
agent-based social simulation. Many middleware approaches are developed to
link existing GIS and ABM models in order to enable interaction between geo-
graphic data (fields and objects) and agent-based process models (BROWN et al.
2005). Generally, a GIS-based agent environment is more popular in current large-
scale ABSS models as it can not only deal with spatial data but also with other data
such as culture, political ideology or religion (ADAMATTI 2014).

Many recent projects on social simulation involving policy makers and stake-
holders have shown that environment information contains not only static ele-
ments, such as spatial entities providing GIS information, but also active and in-
terdependent artifacts (BOERO 2006). Thus, artifacts, providing the services and
functions that influence individual agents together with spatial information are
both required to shape agent environment (OMICINI et al. 2008).

Besides the active and interdependent elements that influence individual
agents, social norms influence agents’ behavior institutionally (SAVARIMUTHU et
al. 2008). In multi-agent systems (MAS) literature, an agent environment includes
social aspects in addition to physical spaces (HESAN et al. 2015). However, cur-
rent large-scale ABSSs usually don’t include social concepts such as norms or in-
stitutions. This is because, in large-scale ABSS models, agents behave according
to fixed schedules while norms and institutions can only take effect when agents
have mechanisms for norm compliance (SAVARIMUTHU et al. 2008). The contra-
diction relies on the lack of the right kinds of beliefs (or expectations) and prefer-
ences in agents with fixed schedules, which are required for modeling people with
social norm compliance (BICCHIERI 2005).

In addition to norms, there are many other concepts, frameworks and per-
spectives that are developed in social science areas, which should be addressed
clearly in large-scale ABSS because techniques and insights borrowed from these
other discipline can be beneficial (FOO and PEPPAS 2005). We will list several pop-
ular and important concepts in social science research that can be/have been im-
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ported into agent-based social simulation research.
1) Norm. Norms, as a means of regulating social systems consisting hetero-

geneous and autonomous agents,are prohibitions, permissions and obligations
associated with agents (VASCONCELOS et al. 2012). Norms play a crucial role in
social systems research because they: (i) regulate the behavior of agents, and (ii)
create expectations on the behavior of other agents (VIGANÒ et al. 2006). With so-
cial norms, social order can be facilitated (SAVARIMUTHU et al. 2011).

2) Institution. Institutions are viewed as a collection of social constraints
(NORTH 1990), which are used to regulate relations among agents. These con-
straints are either informal, for instance customs and traditions, or formally de-
fined, like laws and regulations, which affect the formation of agent organizations
(ALDEWERELD 2007). According to CRAWFORD and OSTROM (1995), the central
pieces of an institution are strategies, norms and rules, which can be distinguished
by their grammatical texture. Thus, an institution is a concept greater than a col-
lections of norms.

3) Organizational concept. Organizational concepts such as groups, roles and
structures, define schemes for describing agent coordination and negotiation in
multi-agent systems (FERBER and GUTKNECHT 1998). Organizational concepts
can be translated into norms and institutions (HÜBNER et al. 2011).

Therefore, we propose a requirement for the target conceptual model for large-
scale ABSS as follows:

Research Requirement - Agent Environment The agent environment in the
conceptual model for large-scale ABSS should be separated into different
concepts to represent spatial information together with other independent
artifacts and social concepts that can influence agent behavior.

2.7 Conclusion

This chapter presented background theories and concepts that are related to ABSS
models. Firstly, the diversity of application areas of ABMS and ABSS was presen-
ted. Then, current conceptual models for ABSS were discussed together with their
shortcomings. The concepts in the conceptual model, such as agent, agent archi-
tecture, social networks, social interactions and agent environment were presen-
ted and discussed. With this chapter, the requirements for a general conceptual
model for large-scale ABSS were explained and presented as follows.

RR1 Research Requirement - Model Architecture A conceptual model is re-
quired for large-scale ABSS.

RR2 Research Requirement - Agent Architecture The architecture for agents in
the target conceptual model for large-scale ABSS should satisfy the following
requirements.

RR2.1 It should be easily decomposable into components. -Interpreted from
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CH1

RR2.2 It should have its own decision-making capability. -Interpreted from
CH2 & CH7

RR2.3 The architecture should support a mechanism to sense and reflect the
surrounding environment. -Interpreted from CH3 & CH4

RR2.4 It should have dynamic social interaction capability. -Interpreted from
CH4

RR2.5 It should have the ability to respond to emergent events, rather than
having to blindly follow a prearranged plan. -Interpreted from CH5 &
CH6

RR2.6 The agents should be "simple" and "small". -Interpreted from scalabil-
ity requirement

RR3 Research Requirement - Social Networks The conceptual model for large-
scale ABSS should support modelers to generate dynamic social networks.

RR4 Research Requirement - Social Interaction The conceptual model for
large-scale ABSS should support agents to join in different types of social
activities through complex social interactions.

RR5 Research Requirement - Agent Environment The agent environment in the
conceptual model for large-scale ABSS should be separated into different
concepts to represent spatial information together with other independent
artifacts and social concepts that can influence agent behavior.
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3
Large-scale Agent-based
Epidemic Prediction and

Control as a Case of
Large-scale ABSS

3.1 Epidemics

The meaning of the term "epidemic" depends on the context in which it is used
(GREEN et al. 2002). An epidemic can be defined as "the occurrence in a com-
munity or region of cases of an illness, specified health behavior, or other health-
related events clearly in excess of normal expectancy; the community or region,
and the time period in which cases occur, are specified precisely (LAST 2001)".

From the earliest times to the present, epidemics have affected human history
in myriad ways: demographically, culturally, politically, financially, and biologic-
ally. Humans have never known a time in history when epidemics did not threaten
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them. This is as true today as it always was 1. Epidemics have an overwhelm-
ing impact on a population both directly through damaging health and indirectly
through causing panic, disrupting the social and economic structure and imped-
ing development in the affected communities. There are quite a number of excel-
lent introductions to the history of epidemics and its effects on history (MCNEILL

2010, HAYS 2009, HARRISON 2013).
Recent large outbreaks, just since the start of this century, have shattered

a number of myths about the world’s vulnerability to threats arising from new
pathogens and epidemic-prone diseases like Ebola 2. A time-line on epidemics
since the start of the 21st century is present in Figure 3.1.
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Figure 3.1: Epidemics of 21st century

A lot of research has been conducted to understand epidemics. There are
more than 20 thousand results since 2015 when searching the term "epidemic"
in Google Scholar. However, there are still many challenges remaining in under-
standing epidemics (LLOYD-SMITH et al. 2015).

Generally, transmission of an infectious disease may occur from one person to
another by one or more of the following means (STRAIF-BOURGEOIS et al. 2014):
direct physical contact (e.g., touching), indirect physical contact (e.g., contam-
inated food) or vector-borne contact (e.g., a droplet). These contacts usually
occur among people in geographical spaces, either open environments or in-
terior spaces, where people can quickly or easily get in touch with each other
directly or indirectly. For example, if an infected person coughs or sneezes in a
bus, the droplets containing microorganisms may enter another person’s body,

1Christian W. McMillen, Epidemic Diseases and their Effects on History, last modified on 24 JULY
2013, retrieved from http://www.oxfordbibliographies.com/document/obo-9780199743292/
obo-9780199743292-0155.xml.

2WHO, How the 4 biggest outbreaks since the start of this century shattered some long-standing
myths, Retrieved from http://www.who.int/csr/disease/ebola/ebola-6-months/myths/en.
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which causes a disease to spread. This is considered as a basic model for disease
transmission. Thus, understanding of the transmission patterns of a hypothet-
ical epidemic among a susceptible population (MOSSONG et al. 2008) is pivotal for
epidemic modeling research (PEREZ and DRAGICEVIC 2009). Similar to other so-
cial system models, typical epidemic models are based on mathematical models
(BOBASHEV et al. 2007) or agent-based models (AJELLI et al. 2010).

3.2 Mathematical Epidemic Models

The first mathematical approach to the spread of a disease was proposed by
BERNOULLI (1760) in 1760, while KERMACK and MCKENDRICK (1927) defined the
modern mathematical modeling of infectious diseases in 1927. Mathematical epi-
demic models generally assume that the population can be divided into differ-
ent compartments depending on the phase of the disease (ANDERSON et al. 1992)
such as susceptibles (denoted by S, those who can be infected), infectious (I, those
who are infected and contagious), and recovered (R, those who recovered from the
disease). Another assumption is that the total population (denoted by N) in the
system is fixed, which means other demographic processes such as migrations,
births, and deaths are ignored.

Based on these assumptions, many mathematical epidemics models have
been proposed with different transition phases.

The Susceptible-Infected-Susceptible (SIS) model (IANNELLI et al. 1992, ALLEN

1994) separates the population into two compartments, susceptibles and infec-
tious. Thus, there are only two possible transitions among the population, either
from S to I when a susceptible individual interacts with an infectious individual
and becomes infected or from I to S when the infectious individual recovers from
the infection. This model assumes that people who are infected will never become
immune.

Another mathematical model for epidemics is the Susceptible-Infected-
Recovered (SIR) model (SHULGIN et al. 1998) which separates the population into
three compartments, susceptibles, infectious and recovered. In an SIR model, an
infectious individual can only transit to recovered. It assumes that people can
either acquire a permanent immunity or be removed from the total population
(e.g. because of death). Thus, this model is more realistic for certain diseases (e.g.,
chickenpox) than for others (e.g., the flu).

The SIR model is often used to study the epidemics by tracking the number of
susceptible, infectious and recovered population through three differential equa-
tions for S (t ), I (t ), and R (t ):
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d S

d t
= −βS (t )I (t ) (3.1)

d I

d t
= βS (t )I (t )−k I (t ) (3.2)

d R

d t
= k I (t ). (3.3)

In this equation set, k is the recovery rate and β is the probability of transmit-
ting the disease when an infected interact with a susceptible person.

A more complex mathematical model is the Susceptible-Exposed-Infectious-
Recovered (SEIR) model (D’ONOFRIO 2002). Compared with the SIR model, the
phase of exposed is included in the transition process to represent those individu-
als who have been infected and are undergoing an incubation period. Individuals
in the phase exposed are not infectious yet and no symptoms are shown.

With this added phase, the SEIR model provides a more accurate abstraction
of the various stages of some diseases, such as Ebola. The dynamics of population
in different phases of diseases in the SEIR model can be modeled by the following
set of differential equations:

d S

d t
= −

βS I

N
, (3.4)

d E

d t
=
βS I

N
−σE , (3.5)

d I

d t
= σE −γI , (3.6)

d R

d t
= (1− f )γI . (3.7)

In this equation set, β is the transmission probability of a disease, σ is 1 over
the incubation period, γ is the recovery rate, and f is the fatality rate.

In addition to the SIS, SIR, SEIR model, there are many other mathematical
models designed for various disease transmission processes, such as SEIS (FAN et
al. 2001), SEI (LI and ZHEN 2005), SIRS (XU and MA 2009) and SEIRS (COOKE and
VAN DEN DRIESSCHE 1996).

With assumptions and simplifications of the complex spreading process of epi-
demics, mathematical models have good performance in theoretical analysis of
macroscopic regularities of epidemic diffusion, such as the epidemic threshold
and final epidemic size (DUAN et al. 2015). However, mathematical models es-
timate the speed of a disease outbreak based on the basic reproduction number
which depends on the number of adequate contacts (DEL VALLE et al. 2007), while
the contact details often rely on priori contact assumptions with little or no em-
pirical basis (MOSSONG et al. 2008) in the form of a set of parameters, for exam-
ple, household contact rates, school contact rates and workplace contact rates
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(GREFENSTETTE et al. 2013). Thus, current mathematical models rarely consider
the heterogeneous process of disease transmission (GUO et al. 2015), such as het-
erogeneous contagiousness of infectious individuals, and do not reveal realistic
contact patterns due to the difficulties in modeling demographic stochasticity and
spatial heterogeneity (BEN-ZION et al. 2010). Furthermore, a small set of paramet-
ers in mathematical models are inadequate to capture the variety of factors associ-
ated with the epidemic spread process, especially the determining factors, human
behavior and heterogeneous links between individuals (DUAN et al. 2015).

In recent years, a second type of epidemic modeling has become popular. The
real-world accuracy of the models used in epidemiology has been considerably
improved by the integration of large-scale datasets and the explicit simulation of
entire populations down to the scale of single individuals (PASTOR-SATORRAS et al.
2014), which is agent-based epidemic modeling.

3.3 Agent-based Epidemic Models

Due to the increasing threat from epidemics and the shortcomings of the mathem-
atical models, agent-based epidemic models are getting more popular. To name a
few, the disease that has been studied using agent-based methods include tuber-
culosis (TB) (DE ESPÍNDOLA et al. 2011), smallpox (GRUNE-YANOFF 2010), SARS
(HUANG 2010), malaria (LINARD et al. 2009), CA-MRSA (MACAL et al. 2012), HIV
(MEI et al. 2010), measles (PEREZ and DRAGICEVIC 2009), AHC (CHEN et al. 2014)
and H1N1 (STROUD and VALLE 2007).

The popularity of adopting agent-based methods comes from the fact that
ABM can characterize each agent with a variety of variables that are considered rel-
evant to model disease spreading such as mobility patterns, social network char-
acteristics, socio-economic status, health status, etc. (FRIAS-MARTINEZ 2011).

Recently, due to the growth of computational power, large-scale agent-based
modeling and simulation have become possible for epidemic models (STROUD

and VALLE 2007, PARKER and EPSTEIN 2011, AJELLI et al. 2010, RAKOWSKI et al. 2010,
BISSET et al. 2009a, BISSET et al. 2014, BARRETT et al. 2008).

As we stated in Chapter 1, current large-scale ABSS models for epidemic pre-
dictions and control are usually developed from scratch in the OOP languages
which causes large amount of repetitive works in studying large-scale epidem-
ics. To tackle this, the objective of this research is to design and test a concep-
tual model architecture that can help simulation modelers to construct models
of large-scale agent-based epidemic and prediction. The conceptual model ar-
chitecture should not only meet the general requirements for large-scale ABSS
presented in Chapter 2, but also the requirements for this specific case, large-scale
epidemic prediction and control, in the following aspects.

The first is related to disease modeling. New diseases are emerging at an un-
precedented rate of one per year, such as MERS (Middle East Respiratory Syn-
drome), SARS, Ebola and the variance of the novel Influenza. Although mathem-

39



Large-scale Agent-based Epidemic Prediction and Control as a Case of Large-scale ABSS

atical researchers have developed many disease spread models, such as SIR and
SEIR, these models are usually disease-specific, which means a lot of more efforts
are needed to develop a new disease spread model when a new disease with a
different phase transition process emerges. Thus, the requirement for modeling
diseases in large-scale agent-based epidemic prediction is:

RR6 Research Requirement - Disease in the Case Study Large-scale epidemic
prediction and control should have a flexible mechanism to model new
diseases with a different phase transition process.

The second is about policy modeling. Although current agent-based epidemic
models contribute to help health-care policy makers investigate the effects of dif-
ferent interventions, they have inherent limitations on modeling new policies dur-
ing an epidemic outbreak (GREFENSTETTE et al. 2013), such as the difficulty to test
a combination of multi policies. Thus, the requirement for modeling policies for
large-scale agent-based epidemic prediction is:

RR7 Research Requirement - Policy in the Case Study Large-scale epidemic
prediction and control should have a flexible mechanism to model new
policies with different settings.

More requirements for the case of large-scale agent-based epidemic prediction
and control are reflected in the model components.

3.3.1 Agent Behavior

Agent behavior in agent-based simulation is usually specified by agent architec-
tures (ATKIN et al. 2001). To model the behavior of agents for epidemic prediction
and control, the agents should be able to make complex decisions in daily life,
interact for social activities and respond to emergency during the period of an
epidemic outbreak. However, agents in current large-scale epidemic prediction
models are rather simple in terms of both the agent architecture and the decision-
making mechanism (HAWE et al. 2012). Agents in these models either make de-
cisions based on simple rules, or behave according to initially set fixed schedules.

The reasons are two-fold. Firstly it seems there is no necessity for modeling
complex reasoning agents for epidemic predictions. The interest in the current
large-scale agent-based epidemic models stems from the requirement to under-
stand the correlation between human behavior, the epidemic dynamics and the
potential interventions (MACAL et al. 2012, PEREZ and DRAGICEVIC 2009, ZHOU

et al. 2012). Since individual responses can be categorized into several com-
mon types and incorporating these response types into either simple rules or
fixed schedules seem to be adequate to predict the common human behavior, the
mechanisms and processes for agents to reason and to make complex decisions
are no longer necessary.
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Another consideration is from the perspective of simulation performance.
Complex reasoning and decision-making process involves a large amount of co-
ordination among the components of the agent architecture, which will cause
countless communication messages and greatly decrease the simulation perform-
ance (SWARUP et al. 2014). In addition, agents’ local argumentation knowledge will
decrease simulation performance as well, as they will consume a lot of memory
when the system scale increases. In large-scale epidemic predictions, even simple
rule-based agents become a luxury due to the performance limitation. Thus, fixed
schedules for agents start to serve as a common law for agent-based large-scale
epidemic predictions.

However, modeling agents’ complex decisions to some extent is essential for
epidemic prediction. Due to the uncertainties of new emerging diseases and the
fast information acquisition and progression, human responses to unforeseen
events are becoming difficult to predict. Thus, the resulting emergent human be-
havior through the interactions of simple agents is becoming less trustworthy.

Thus, the requirement for agents in large-scale agent-based epidemic predic-
tion is:

RR8 Research Requirement - Agents in the Case Study Agents for large-scale
epidemic prediction should have capabilities to make complex decisions to
some extent during a disease outbreak.

3.3.2 Agent Environment

The environment is a fundamental concept of agent-based modeling and simu-
lation (ABMS), in which agents exist and interact, can perceive and act. Thus, a
common agent environment in ABMS is considered as a physical space (typically
a 2D grid) or as a virtual space that supports agent-to-agent interaction (HESAN

et al. 2015).
In current agent-based epidemiology research, an agent environment repres-

ented by physical rooms is a key component as the majority of transmissions of
contagious diseases is thought to occur as a result of sustained indoor contacts
(ANDREWS et al. 2013), such as students taking classes in classrooms and work-
ers working in offices. However, direct physical contact (e.g. touching) or vector-
borne contact (e.g. a droplet) outside rooms can be an effective method for disease
spread as well, especially in densely populated areas such as public transporta-
tion.

Some historical observations examined the role of public transportation for
epidemic outbreaks and studied the effect of some interventions related to public
transportation. For example, CONDON and SINHA (2010) observed the facemask
usage on public transportation in Mexico City in April/May 2009 during a 2-week
period and the results showed mask usage rates matched the course of the H1N1
epidemic. WANG (2014) showed that the dynamics of the Taipei underground us-
age during the 2003 SARS epidemic in Taiwan were closely linked to the daily re-
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ported probable SARS cases.
Some mathematical epidemic models also investigated the possible effect that

using public transportation may have on the spread of contagious diseases. The
model and results from ANDREWS et al. (2013) indicate that public transportation
may play a critical role in the transmission of tuberculosis. An investigation by XU

et al. (2013) gave the conclusion that increasing transportation efficiency and im-
proving sanitation and ventilation of the public transportation system decrease
the chance of an outbreak occurring. ZHOU et al. (2012) used a mathematical
model called SIS (susceptible-infectious-susceptible) and studied the impact of
the preference of an individual for public transport on the spread of infectious dis-
eases. More generally, several mathematical epidemic models were proposed to
investigate disease transmission among regions with infection during travel, such
as SIS (CUI et al. 2006, TAKEUCHI et al. 2007), SEIS (WAN and CUI 2007), SEIRS
(DENPHEDTNONG et al. 2013) and SIQS (LIU and TAKEUCHI 2006).

The popularity of examining the role of public transportation (or travel in gen-
eral) by mathematical models comes from the fact that they can easily estimate the
likelihood of a disease outbreak based on the basic reproduction number which
depends on the number of adequate contacts (DEL VALLE et al. 2007), while the
contact details often rely on a priori contact assumption with little or no empir-
ical basis (MOSSONG et al. 2008) in the form of a set of parameters, for example,
contact rates (GREFENSTETTE et al. 2013). Thus, mathematical models can not
reveal realistic contact patterns due to the difficulties in modeling demographic
stochasticity and spatial heterogeneity (BEN-ZION et al. 2010).

In agent-based epidemic research, GREFENSTETTE et al. (2013) and PARKER and
EPSTEIN (2011) use gravity models with simplified assumptions to model the gen-
eral travel patterns in order to recreate random contacts during travel. RAKOWSKI

et al. (2010) considered only the intermediate breakpoints (transfer cities) be-
tween endpoints (the origin and the target cities) to determine the number of co-
travelers for each traveling agent during his travel. PEREZ and DRAGICEVIC (2009)
modeled a transportation network to represent the movement path as a trajectory
in space for disease propagation, while disease doesn’t propagate during the trans-
portation. All these researches claim that these methods are sufficient to model
disease spread during general travel (public transportation is not even mentioned)
to some extent, however, none of them offer the ability to test some specific in-
terventions on controlling individual travel behavior (e.g., shut down one metro
line).

According to our findings in the literature, COOLEY et al. (2011) developed an
agent-based model of New York city that incorporates subway ridership, which
simulates the interactions of subway riders and examines the impact that a severe
influenza epidemic would have on NYC and the potential effects of different hy-
pothetical subway-related disease control measures. In our opinion, the scarcity
of including public transportation or travel in general does not mean it is under-
appreciated in agent-based epidemic models, but the reason can be explained as
the consideration of simulation performance. Due to the high resolution of simu-
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lation time in a microscopic traffic model, the inclusion of the traffic component
can greatly decrease the simulation performance.

Thus, including complete physical spaces into agent environment for epi-
demic research still remains a challenging task for current large-scale models as
they typically omit or simplify many of the temporary contacts during traveling.

Thus, the requirement for an agent environment for large-scale agent-based
epidemic prediction is:

RR9 Research Requirement - Agent Environment in the Case Study The agent
environment for large-scale epidemic prediction should model different
kinds of physical spaces including movable spaces for disease transmission.

3.3.3 Social Interaction

Besides the agent environment, modeling complex human social interactions
is also an important part in agent-based epidemic and pandemic predictions
(STROUD and VALLE 2007, MOSSONG et al. 2008, RAKOWSKI et al. 2010, GE et al.
2013) due to the fact that social interactions provide a perfect fabric for fast dis-
ease propagation while they can be dramatically altered when people respond to
the crisis and interventions (BISSET et al. 2009b). For example, results of interac-
tions (negotiations) for scheduling joint social activities could influence the fu-
ture plans of the involved individuals, which has a great impact on the contacts of
people. To describe these interactions is a more difficult task than it may seem, in
particular when the system has a very large scale (millions of individuals). Current
research efforts ignore or simplify the negotiation/coordination part of the social
interactions in order to reduce complexity, either by using fixed and predefined
human daily schedules as input or by constraining the joint social activities (in-
teraction purposes) into several specific types (e.g. eating out). Thus, to model
complex social interactions, social structures in current large-scale agent-based
epidemic models are not implemented independently of individual agents, but as
properties of agents (RONALD et al. 2012b).

In the model EpiSimS (STROUD and VALLE 2007), there are no predefined or dy-
namically generated social networks in the model. To eliminate the need to simu-
late every single agent’s day-to-day activities, explicitly stored social networks and
random contacts were considered in a global-scale model (PARKER and EPSTEIN

2011) to replace social interaction. In the model of (AJELLI et al. 2010, RAKOWSKI

et al. 2010), no social networks are discussed. In EpiFast (BISSET et al. 2009a), IN-
DEMICS (BISSET et al. 2014) and CHEN et al. (2014)’s work, social contact networks
representing proximity relationships between individuals of the population were
considered as input data.

Furthermore, since using a single computing core may be inadequate (HAWE et
al. 2012) to deal with the scalability issue, some of the implementations are based
on distributed architectures. However, there could be a huge overhead for en-
abling coordination between agents on distributed architectures as it increases
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the number of communication messages and leads to a higher communication
complexity. As a matter of fact, to balance between performance and accuracy for
large-scale agent-based models, reducing complex social interactions is an often
used compromise (STROUD and VALLE 2007, PARKER and EPSTEIN 2011, AJELLI et
al. 2010, RAKOWSKI et al. 2010, BISSET et al. 2009a, GE et al. 2013).

Thus, the requirement for social interaction for large-scale agent-based epi-
demic prediction is:

RR10 Research Requirement - Social Interaction in the Case Study Large-scale
agent-based epidemic prediction and control should have capabilities to
model complex human social interactions.

3.4 Conclusion

This chapter presented background theories and concepts that are related to the
case study of epidemic prediction and control. Firstly, the basic context for epi-
demics was given. Then, current mathematical models for epidemics were dis-
cussed together with the shortcomings. At last, we presented a review of agent-
based epidemic models in terms of agent behavior, agent environment and so-
cial interaction. With this chapter, the requirements for a general conceptual
model architecture for large-scale epidemic prediction and control were clearly
explained and presented as follows:

RR6 Research Requirement - Disease in the Case Study Large-scale epidemic
prediction and control should have a flexible mechanism to model new
diseases with different phase transition process.

RR7 Research Requirement - Policy in the Case Study Large-scale epidemic
prediction and control should have a flexible mechanism to model new
policies with different settings.

RR8 Research Requirement - Agents in the Case Study Agents for large-scale
epidemic prediction should have capabilities to make complex decisions to
some extent during a disease outbreak.

RR9 Research Requirement - Agent Environment in the Case Study The agent
environment for large-scale epidemic prediction should model different
kinds of physical spaces including movable spaces for disease transmission.

RR10 Research Requirement - Social Interaction in the Case Study Large-scale
agent-based epidemic prediction and control should have capabilities to
model complex human social interactions.
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4
A General Conceptual
Model for Large-scale

ABSS

4.1 Model Concepts and A Conceptual Model for Large-

scale ABSS

In this section, we will provide a proposed conceptual model for large-scale agent-
based social simulation, which borrows many concepts from other popular ABM
conceptual frameworks.

The proposed conceptual model for large-scale social systems is presented in
Figure 4.1. This conceptual model separates general concepts into concrete con-
cepts which are designed for large-scale model development.

There are five concepts in this conceptual model, which are:

◦ Agents. Agents represent human beings in the real world.

◦ Physical container. The concept of a physical container is used to repres-
ent the physical environment in which an agent stays. Physical containers
are hierarchically organized and every agent has to stay in at least one phys-

45



A General Conceptual Model for Large-scale ABSS
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Figure 4.1: Conceptual Model for Large-scale Agent-based Social Simulation

ical container at any time. Typical physical containers are bedroom, office,
classroom, bus, etc.

◦ Social regulation. The concept of social regulation is designed to model so-
cial concepts such as norms and institutions that can guide and influence
human behavior globally. For example, the policy ’closing public transport-
ation during an epidemic outbreak’ can be modeled as a social regulation in
the system of epidemic prediction and control.

◦ Functional entity. Functional entities are those extra objects in the system
that can influence or directly change attributes of either agents, physical
containers or social regulations. For example, a disease is modeled as a func-
tional entity to change agents’ healthy status. A storm is modeled as a func-
tional entity to change the temperature of a room (physical container).

◦ Social network. The concept of social network defines agents’ social rela-
tions in different categories, such as family member, classmates and friends.

Compared to the model concepts in a general ABM conceptual model dis-
cussed in Section 2.2, the major difference is that the concept of agent environ-
ment is separated into physical container, social regulation and functional en-
tity. This separation overcomes the limitations on environmental completeness in
other ABM models and provides flexibilities in simulating different system scen-
arios. On the other hand, the concepts themselves were also refined. For example,
this thesis will show that physical containers can be movable to represent trans-
portation vehicles which are difficult to implement in general ABM platforms.
Moreover, this thesis will also prove that theories and concepts on social regula-
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tion from artificial intelligence can be easily implemented and integrated into an
agent-based model while showing reasonable performance, which will be presen-
ted in Section 7.1.1.

Besides the general ABM concepts, the proposed conceptual model borrows
concepts from classic object-oriented simulation models as well, which can be
seen as a hybrid conceptual model (ZHANG et al. 2014). This design choice is
shown in Figure 4.2.
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Figure 4.2: Proposed hybrid model for large-scale agent-based social simulation

Historically, the well-known UML-compliant diagrams are widely used in
object-oriented discrete event simulation to represent the required conceptual in-
formation in three models: the Object Model, the Dynamic Model and the Func-
tional Model (PASTOR et al. 1998), where the Object Model declares system classes
including their attributes and services, the Dynamic Model specifies inter-object
interactions, and the Functional Model captures the semantics associated with the
changes of state of the objects motivated by the service occurrences.

Inspired by this concept of Functional Model in the object-oriented concep-
tual model, the concept of a functional entity is borrowed from classical ABM con-
ceptual model and introduced in our proposed conceptual model for large-scale
ABSS. With this clear separation of concepts which is much easier for implement-
ation using the object-oriented paradigm, experimental results in the following
chapters show that models adopting this conceptual model are reasonably more
efficient in terms of system performance and low agent-to-agent communication
cost than a pure ABS model (ZHANG et al. 2014) while keeping high model fidelity
and the same agent capabilities.

Figure 4.1 provided the key concepts of the proposed conceptual model for
large-scale ABSS. How each concept can be designed and implemented will be
illustrated in the following sections.
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4.2 Agent

Similar to the agent concept in the general ABM conceptual model (KROGSTIE et
al. 2007), the agent concept in a large-scale ABSS model should own individual
behavior and internal architecture before it can be implemented.

4.2.1 Agent Architecture

From the comparison of current agent architectures in Table 2.2 in Chapter 2,
it can be seen that multi-level architecture and BDI architecture have less diffi-
culties when applying to large-scale social systems. However, neither of them are
"simple" and "small" enough for implementation in large-scale agent-based so-
cial simulation. Thus, a novel agent architecture was designed in this research for
large-scale agent-based social simulation, which simplifies the traditional multi-
level architecture but still keeps certain level of decision-making capability.

Large-scale social systems usually contain millions of agents and their sched-
ules. Typical implementations of behavior schedules of agents in large-scale social
systems research are activity-based, where all activities for the whole simulation
are predefined in the input data source (GE et al. 2014, BARRETT et al. 2008) or
generated before the simulation run (STROUD and VALLE 2007) which consumes
a lot of memory. Assume there are around 20 million agents and each agent has
10 activities per day, then the total number of activities for a 4 weeks simulation
period is 5.6 billion. To reduce memory consumption, activity pattern-based ap-
proach was introduced into multi-level architecture in this thesis, which is in-
spired by MOSSONG et al. (2008)’s research that human behavior patterns are re-
markably similar among people in different countries and the patterns are highly
correlated with age.

Activity pattern-based approach emerged in the 1970s, and is becoming in-
creasingly popular in the travel planning area (ISTRATE et al. 2006, ARENTZE and
TIMMERMANS 2000). The sequence of activities and travel that a person under-
takes is defined as the individual’s activity-travel pattern for the day (BHAT et al.
2004). The experiments show that models developed by this approach consider-
ably affect activity planning and rescheduling behavior of individuals (PAS 1984),
although large number of individuals will share same patterns which makes the
individual travel model much simpler.

Inspired by this approach, we constructed an agent model architecture for
large-scale agent-based social simulation (presented in Figure 4.3), which is a in-
tegration of an activity pattern-based approach and a multi-level architecture.

This agent architecture consists of three main parts: (1) agent object, (2) activ-
ity pattern, and (3) multi-level decision-making module.

An agent object, as part of the agent architecture, is the body which is re-
sponsible for updating the agent status as the carrier, receiving, processing and
forwarding input messages to corresponding decision-making modules, and en-
abling agents to behave according to activity patterns.
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Figure 4.3: Agent Model Architecture

For a given agent, an activity pattern specifies which behavior schedule will be
conducted. Based on the activity pattern, agents will mainly perform their activit-
ies according to the initial predefined sequences of activities. However, this sched-
ule doesn’t specify how long, when, where and with whom these activities take
place, which are decided by the decision-making module.

The decision-making module serves as the brain of the agent architecture
which is specially designated for some proposed decision-making problems. It’s
considered as a supplement to agent’s behavior pattern.

The detailed definition and formalization of these three parts are given in the
following sections.

4.2.2 Agent Object Definition

An agent object is designed as the fundamental component of the proposed agent
architecture. It is designed as the behavior body and status indicator while the
concrete tasks such as decision-making are undertaken by other components. As
a matter of fact, each agent object is associated with a set of attribute variables
and status variables. The attribute variables mainly include the agent’s individual
information such as gender, age, activity pattern, home location and work/school
location. The status variables mainly include agent’s current behavior and status,
such as its current physical container, current activity, and current active social
network. Take the epidemic prediction problem as an example, an agent object in
such systems can be defined as follows if it’s implemented in an object oriented
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language (e.g., JAVA).

public abstract class Agent{
/** <Variable> gender */
private final Gender gender;

/** <Variable> age */
private byte age;

/** <Variable> home location as a ’PhysicalContainer’*/
private PhysicalContainer homeLocation;

/** <Variable>work location as a ’PhysicalContainer’*/
private PhysicalContainer workLocation;

/** <Variable> current physical container where the agent is staying */
private PhysicalContainer currentLocation;

/** <Variable> activity pattern */
private ActivityPattern activityPattern;

/** <Variable> current activity in the pattern */
private Activity activity;

/** <Variable> healthy status */
private DiseasePhase diseasePhase;

/** <Variable> active Social Network*/
private SocialNetwork activeSNS;}

In this definition example of an agent object, the variables such as ’age’,
’gender’, ’homeLocation’ and ’workLocation’ are the information of the agent that
will remain fixed for a long period during the simulation run, in which ’age’ and
’gender’ may influence the infection possibilities of some diseases. The variable
’activityPattern’ specifies an initial behavior schedule for an agent. During the
simulation, agent will perform his/her activities according to a defined sched-
ule referenced by this variable. However, this variable can be replaced when the
decision-making module makes a decision under certain regulation or influenced
by functional entities.

The variable ’activity’ indicates the agent’s current activity in the pattern, while
’currentLocation’ points to the physical container where the agent performs the
current activity. The variable ’diseasePhase’ demonstrates the agent’s current
health status during a disease outbreak. It’s important in the agent-based sim-
ulation not only for specifying agents’ status but also for the results when agents
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make decisions. The ’activeSNS’ is a variable designed for indicating the agent’s
current active social network.

The above definition for an agent objects is presented as an example in simula-
tion for epidemic predictions. The detailed working mechanism will be explained
in the following subsections.

4.2.3 Formalization of Activity Pattern and Activity

As discussed above, a typical method for modeling agents’ behavior on a large
scale is predefining all activities for the whole simulation period, which consumes
a lot of memory. To reduce memory consumption, agents in this research will be-
have based on activity patterns. This design is based on MOSSONG et al. (2008)’s re-
search results that the mixing patterns and contact characteristics are remarkably
similar among people and the patterns are highly assortative with age. APOLLONI

et al. (2013) confirmed the coupling relations between the age-dependent mixing
profiles and the conditions for the spatial invasion of an emerging influenza pan-
demic.

Thus, each agent in this research will be assigned a social role according to the
attribute ’age’ of the agent before assigned a week pattern, as the age of a person
is highly related to the social role KITE 1996. An example mapping between age,
social role and family role can be found in Table 4.1 as an example. There are 4 so-
cial roles, which are infant, student, worker and elder(retired), and 3 family roles,
which are child, parent, grandparent. The mapping from social roles to family
roles are quite simple. Any student or worker will remain as a child until he/she
has a baby and becomes a parent. Any parent will shift to grandparent only after
his/her child becomes a parent.

Table 4.1: Mappings between age, social role and family role

Age Social role Family role

0-2 Infant Child
3-5 Kindergarten student Child
6-11 Elementary school student Child
12-17 High school student Child
18-20 University student Child
20-25 University student/Worker Child/Parent
25-54 Worker Parent
55-59 Worker/Elder Parent/Grandparent
60+ Elder Grandparent

Then, agent behavior is represented as an activity pattern according to its so-
cial role while each social role can be mapped to several activity patterns. For
instance, a worker who has a car will drive to work every working day while one
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of his/her colleagues may prefer taking public transportation to the office, then
these two workers will be assigned two different worker activity patterns. Like-
wise, a student will be assigned one of the student patterns according to his/her
school schedule and his/her preference.

Even when agents have the same activity pattern, they show diverse behavior in
terms of activity location and duration. When an activity in a pattern is executed,
activity location and duration will be dynamically calculated based on the agent’s
attributes. Moreover, agents can change their activity patterns if necessary.

The activity pattern can work on a specified time duration basis (e.g., hourly,
daily and weekly). The choice depends on the problem domain and time range of
the simulation study. For instance, a university student can be assigned a univer-
sity student week pattern, and a worker can be assigned a worker week pattern if
they are modeled for a long-term epidemic problem. A pattern can be shared by
multiple agents. To increase the heterogeneity and richness of these schedules,
more than one week pattern was designed for each social role. A pattern can also
be organized hierarchically. For example, a week pattern is made up of seven day
patterns, which can be formalized as follows:

weekPattern= {ID, Name, dayPattern[7]} (4.1)

For a worker who generally works in the office, the first five days patterns can
remain the same, and the last two days can be two repeated weekend day patterns.
In the week pattern for retired people, the seven day patterns can be the same. A
day pattern can be formalized as follows if it doesn’t include any lower time range
patterns:

dayPattern= {Name,List<Activity>} (4.2)

In this case, a day pattern is a sequence of linked activities. However, a day
pattern can also be formed by multiple short time range patterns (e.g., 24 hourly
patterns) if needed. Typical activities for agents in epidemic models are sleeping,
staying at home, working, shopping, eating in a restaurant, going to school, visit-
ing a doctor, etc. Table 4.2 gives one example day pattern for students who prefer
taking public transportation (metro and bus) to their school.

Every activity in the above table belongs to an activity type, and the activity
types can be defined into three activity root categories in Figure 4.4, which are
regular activity, travel activity and social activity. Typical activities, such as sleep-
ing, staying at home, working, shopping and attending school belong to regular
activity category.

All activities are extended from an abstract activity. This abstract activity is
formalized as:

AbstractActivity= {Name, currentLocator, f(getActivityLocation),

f(getDuration)} (4.3)
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Table 4.2: A day pattern example for students

No. Activity Name Activity Type Duration

1 sleep StochasticDurationActivity Triangular(6.0, 7.0, 7.5)

2
transport to

school PublicTransportActivity based on simulation

3 study UntilFixedTimeActivity until 12:00 am
4 lunch and rest FixedDurationActivity 1 hour
5 study FixedDurationActivity 4 hours

6
transport to

home PublicTransportActivity based on simulation

7 family dinner FamilySynchronizedActivity Fixed(19:00-21:00)
8 homework StochasticDurationActivity Uniform(1.0,2.0)

9
sleep till
midnight UntilFixedTimeActivity until 24:00

AbstractActivity

(4.3)

TravelActivity

(4.4)

CarpoolActivity

(4.6)

Synchronized

FixedTimeActivity

(4.7)

BusTransportActivity

FamilySynchronizedActivity

FlexibleDurationActivity

(4.9)

FixedDurationActivity

(4.8)

FriendsSynchronizedActivity

MetroTransportActivity

OfficeSynchronizedActivity

StochasticDurationActivity

(4.10)

TravelActivityCar

TravelActivityWalk

UntilFixedTimeActivity

(4.11)

SocialActivity

(4.5)

RegularActivity

(4.3)

Figure 4.4: Category of activities

An abstract activity defines the capability of using a locator interface to calcu-
late the activity location and duration during the execution phase of the activity,
rather than in the definition phase. Extended from this abstract activity, a travel
activity is formalized as:
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TravelActivity+= {startLocator, endLocator, f(getStartLocation),

f(getEndLocation)} (4.4)

The symbol ’+’ here means the activity is extended from the abstract activity,
same with the other activities below. In addition to the abstract activity, a ’startLoc-
ator’ and an ’endLocator’ interface are added to help the model calculate the start
and end location for the execution of the travel activity.

A social activity can be formalized as:

SocialActivity+= {f(getSocialContacts)} (4.5)

A carpool activity, as a special form of a social activity, can be formalized as:

CarpoolActivity+= {startLocator, endLocator, carpoolLocator,

f(getStartLocation), f(getEndLocation), f(getCarpoolLocation)} (4.6)

Likewise the travel activity, a carpool activity also owns a ’startLocator’ and an
’endLocator’ interface. The difference is that a carpool activity has an additional
’carpoolLocator’ interface which helps calculate the carpool location.

A ’SynchronizedFixedTimeActivity’ is another type of social activity modeled
in this research, which specifies the start time and end time of the activity expli-
citly. However, these time points can be negotiated during the execution phase as
agents have corresponded decision-making module to deal with it when receiving
unscheduled social activity invitation. It also offers an function to get the activity
members when it’s finalized properly. A typical ’SynchronizedFixedTimeActivity’
is ’a staff meeting between 2pm and 3pm’. The formalization of the activity is as
follows:

SynchronizedFixedTimeActivity+= {startTime, endTime, f(getStartTime),

f(getEndTime), f(getActivityMembers)} (4.7)

A ’FixedDurationActivity’ belongs to the regular activity type, which directly
defines the duration of the activity. A regular activity can be formalized as same as
an abstract activity. A typical ’FixedDurationActivity’ is ’play football for an hour’.
It is formalized as:

FixedDurationActivity+= {duration} (4.8)

A ’FlexibleDurationActivity’ is another type of regular activity, which provides
the estimated activity duration while the actual duration can be calculated during
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the simulation execution. A typical ’FlexibleDurationActivity’ is ’go shopping for
around two hours’.

FlexibleDurationActivity+ = {estimatedDuration, f(getEstimatedDuration)}
(4.9)

A ’StochasticDurationActivity’ is a special form of a ’FlexibleDurationActivity’
where the actuation duration can be calculated by a duration distribution. It is
formalized as:

StochasticDurationActivity+= {durationDistribution} (4.10)

A ’UntilFixedTimeActivity’ is formalized as:

UntilFixedTimeActivity+= {untilHour} (4.11)

This formalization simply specifies the fixed end time of the activity, which can
be realized for activities such as ’sleep till 7am’.

With these definitions of activities, one major novel design about agents can
be concluded as the stateless activities in agents’ behavior pattern. We show this
design concept in Figure 4.5, where three agents share a same activity pattern.
However, each agent will get different location and duration when executing the
activities.

……
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Figure 4.5: Runtime calculation of location and duration among agents with a same activity
pattern
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4.2.4 State Update Scheme

Agents change state, either spontaneously or through interactions. The update
scheme deals with how frequent, and in what order, each agent updates its state
(GUO and TAY 2008). In this research, we designed an implicit scheme for updat-
ing the agent’s state by which agents can change state both spontaneously and
through interactions.

Thus, the current explicit state (current activity) of an agent is set to be un-
known for memory-consuming consideration. Different from keeping the current
activity, a current index of the activity in an activity pattern for agents is recorded.
When executing an activity, the activity itself or the activity executor (if the activity
is a travel activity or social activity) will specify a duration for this agent to schedule
its next activity. During this period, the agent remains in an implicit state which is
shown in Figure 4.6.

Figure 4.6 gives one example day pattern for students who prefer taking public
transportation (metro and bus) to school. There are 9 activities in this pattern.
With the execution of these activities, agents will change their status in a cyclic
way.

When executing regular activities, such as ’sleeping’, agent will stay in a ’wait-
ing’ state till the end of the activity. This ’end’ is informed by an ’end’ event trigged
when the ’sleeping’ activity starts to be executed. After the ’end’ event is received
by the agent, the agent will start to execute the next activity in the pattern and
change the state accordingly. When executing a travel activity or a social activ-
ity, the agent will stay in the state of ’transit’ or ’suspended’. Both of the states are
passive, which means the agent has authorized other objects to control its state
temporarily (e.g. an activity group for a social activity and a travel executor for a
travel activity). Take the social activity for example, when the activity group has
detected that the social activity is finished, it will ask the agent to execute its next
activity and change its state.

Much alike the agent life cycle in a FIPA agent (POSLAD 2007), an agent realized
in this model has a implicit life cycle describing the agent states with the execution
of activities (see Figure 4.7).

The difference between the life cycle of FIPA agents and agents in this model
is how states are transited. Each FIPA agent keeps the exact current state in its life
cycle and needs a specific transition instruction for updating to the next state. To
achieve this, every agent should keep a list of future instructions which consumes
a lot of memory. In our model, the current state of the agents is not clear as there
are no explicitly defined states in the agents. Instead we keep a current activity in-
dex within the current activity pattern of an agent. When executing an activity, the
activity itself or activity executor (if this activity is a travel activity or social activ-
ity) will specify a duration for this agent to schedule its next activity. During this
period, the agent remains in an implicit state (e.g., suspended), which is shown
in Figure 4.7. Based on this design, the activity pattern is reusable for agents who
have the same social role, which considerably reduces memory usage compared
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Figure 4.6: An example day pattern for students

to the FIPA solution. Take the same assumption mentioned above, assume there
are around 20 million agents and each agent has 10 activities per day, then we can
design 100 day patterns instead of the initial 5.6 billion activities for a 4 week sim-
ulation period, which are only around 1000 activities in total. Moreover, the week
pattern of an agent in our model can be changed as a result of the state of the sys-
tem (e.g. a policy intervention) as the week pattern is treated as an index attribute
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Figure 4.7: Agent life cycle

for an agent, which increases the flexibility of the model.

4.2.5 Multi-level Decision-making Capabilities

Agents realized by the proposed conceptual model are supposed to have three-
level decision-making capabilities, which is mainly gained by the concept separ-
ation of agent environment into three parts.

Firstly, although the sequence of the activity list is predefined in the activity
pattern for agents, agents can still adjust their preference for activity location and
duration during the execution of the regular activities. This process is defined as
operational level decision-making in this research, which is shown in Figure 4.8.
Operational decision-making is mainly supported by physical containers.

Besides activity location, determination of activity duration is another aspect
of operational level decision-making for agents. In the formalization of ’Flex-
ibleDurationActivity’ (see Formalization 4.9), the duration is defined to be flex-
ible. However, this amount should be weighted carefully in some special activity
patterns. Take the Figure 4.9 as example, the get-up time for a parent who needs
to send the child to school in the morning should be calculated to meet the con-
straints that both himself/herself and the child can’t be late for work/school.

From Figure 4.9, we can find that the parent has to get up around 7am although
the duration of his/her ’sleep’ activity is set to be flexible. The operational level
decision-making module in this research is realized to solve this time constraint
through a scanning-predicting-deciding procedure, which is described as follows:

1. Before an agent starts to execute a ’FlexibleDurationActivity’, firstly it will
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scan the future activities in the current day pattern and pick out the first activity
with fixed start time or end time.

2. Secondly, the total duration required for executing all activities between cur-
rent ’FlexibleDurationActivity’ and the next activity with fixed start/end time can
be predicted.

3. At last, the duration for the ’FlexibleDurationActivity’ can be decided by a
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mathematical calculation.
In addition, agents can decide to join in social activities or decline them when

they receive social activity invitations which are not scheduled in their activity pat-
terns. This is a capability of within-day re-planning to solve social interaction dy-
namics. When agents follow their day patterns, they can still receive social invita-
tions from friends, which don’t exist in the schedule. How agents respond to these
invitations is defined as tactical level decision-making in this research, which will
be explained in detail in the following sections. To realize this capability, agents
need to coordinate with functional entities heavily.

Despite these, in order to increase the heterogeneity of agents, it is necessary to
take into account also strategical level decision-making for agents. According to
Figure 4.8, the strategical level focuses on the replacement of week pattern that an
agent will follow when they break rules or encounter some emergency events, such
as a mandatory policy intervention during an epidemic outbreak. This capability
is achieved by the regulation of social regulations.

Using three levels of decision-making is not a new idea for agent-based mod-
eling. However, it is very difficult to develop a comprehensive agent model in-
cluding all the three levels of decision-making, yet we define these three levels of
decision-making capability for agents to solve different levels of behavior dynam-
ics problems when processing different types of events, as we believe the higher
level, such as strategical level, can be progressively fulfilled by more situations and
solutions in further research. How each of these dynamics problems are solved by
the coordination between agent’s decision-making modules and agent environ-
ment concepts is present in the following subsections.

4.3 Agent Environment

4.3.1 Separation of Concepts

In this research, the concept of agent environment is separated into physical con-
tainer, social regulation and functional entity. The physical container is used to
represent the physical environment where an agent stays. Physical containers are
hierarchically organized and every agent has to stay in at least one physical con-
tainer at any time. Social regulation is designed to model norms and institutions
that can guide and influence human behavior globally. Functional entities are
those extra artifacts in the system that can influence or directly change attributes
of either agents, physical containers or social regulations.

This separation overcomes the limitations on environmental completeness in
other ABM models and provides flexibilities in simulating different system scen-
arios. In other words, the concepts are also refined.
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4.3.2 Physical Container

A physical container represents the physical environment where agents stay. Typ-
ical physical containers are such as school, classroom, office, bedroom, and train,
etc. A physical container can be formalized as follows:

PhysicalContainer= {ID, Type, GISInfor,<List> PhysicalSubContainers,

area, status,<List> agents} (4.12)

Each physical container is characterized by its ID, type, GIS information (lon-
gitude and latitude), the total (area) in square meters, its current status (e.g., full,
closed), a list of sub-physical containers and hosting agents.

The type attribute is used to categorize physical containers in the simulated
system. In an epidemic model, the types can be e.g., home, working places and
hospitals. In a traffic model, the types can be e.g., private cars, buses, trains and
road lanes. GIS information provides the accurate location of the physical con-
tainer in the map.

The total area attribute to a physical container is unique in this definition
and differs from other similar researches, which is used to generate physical sub-
containers (e.g., classrooms in a school).

Physical containers are organized hierarchically. Each physical container can
be partitioned into physical sub-containers by giving each physical container an
attribute list of physical sub-containers. Examples are classrooms in a school,
stores in a shopping mall, or offices in a working place. Agents can have different
forms of contacts when they are in the different level of physical contain hierarchy.

Each physical container is assigned a variable status, which is used to specify
its current availability for agents to enter or leave. All agents staying in the present
physical container can also be retrieved by the variable hosting agents.

Besides the definition, physical containers show "behaviors" just like agents.
An important "behavior" ’Calculate Distance’ calculates the distance between two
physical containers based on the GIS coordinate information (latitude and lon-
gitude). Since the process of calculating the distance between two physical con-
tainers is an indispensable step for many social systems, this "behavior" is most
frequently shown during a simulation run.

Besides the default "behaviour", other frequently showed "behaviour" are such
as ’Find Nearest Physical Container’ and ’Find Physical Containers within certain
Distance’. The first "behaviour" gives out the nearest physical container, and the
second returns a list of physical containers within a max distance to any specified
physical container. These two "behaviours" will be frequently asked by agents due
to the fact that people are more willing to visit nearby places for certain activities,
such as shopping, eating and leisure when they have no particular preference.

We will use an example algorithm to explain how ’Find Nearest Physical Con-
tainer’ works when an agent (worker) tries to find a nearest restaurant for dinner.
This algorithm is shown in Algorithm 4.1.

61



A General Conceptual Model for Large-scale ABSS

Algorithm 4.1 Determine a nearest restaurant R for a worker

Require:
1 The start Physical Container LS

Ensure:
2 The nearest restaurant R to the start Physical Container LS

3 Calculate the key kn of the LS for the nearest restaurants cache map R C Mn ;
4 if R C Mn contains key kn then
5 get the restaurant R from the R C Mn ;
6 return R ;
7 else
8 Calculate the key kg of the LS for the restaurants grid cache map R C Mg ;
9 get all the restaurants Rg in the same grid with LS from the R C Mg ;

10 if Rg not empty then
11 min Distance Dm =Double.MAX_VALUE;
12 for all L ∈Rg do
13 Calculate the distance DL between L and LS ;
14 if DL <Dm then
15 R = L ;
16 Dm = DL ;
17 end if
18 end for
19 add R in the nearest restaurants cache map R C Mn ;
20 return R ;
21 else
22 get all the restaurants Rd within a certain distance(e.g. 1km) to LS in

the restaurants distance cache map R C Md ;
23 if Rd is empty then
24 get all the restaurants Rd in the map;
25 end if
26 min Distance Dm =Double.MAX_VALUE;
27 for all L ∈Rd do
28 Calculate the distance DL between L and LS ;
29 if DL <Dm then
30 R = L ;
31 Dm = DL ;
32 end if
33 end for
34 add R in the nearest restaurants cache map R C Mn ;
35 return R ;
36 end if
37 end if
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In the above example algorithm, there is a supporting caching mechanism
which is designed for large-scale systems. This three-level cache mechanism is
creatively designed to achieve balance between cpu utilization and memory us-
age.

◦ The first cache is the nearest cache, which stores the nearest physical con-
tainer of the current physical container type to a certain physical container.
New items will be added into this cache only after they have been calculated
for a first time.

◦ The second cache is the grid cache. The whole map can be divided into grids
and keep indexes of physical containers in the grids (similar to Quadtree).

◦ The third cache is the distance cache, which is used when no results can be
found in the nearest cache or the grid cache. To any specific physical con-
tainer, this cache can keep nearby physical containers ordered by distance.

Based on this design, the other "behaviour" ’Find Physical Containers within
certain Distance’ is listed in algorithm 4.2.

Algorithm 4.2 Get Location Array within Max Distance

Require:
1 Start location S L ; Max Distance D ;

Ensure:
2 Location array Ld within D to S L
3 Calculate key kd of S L for distance cache map Md ;
4 if Md contains key kd then
5 get location array Ld from Md ;
6 return Ld ;
7 else
8 Calculate all grids Gs within distance D to S L ;
9 for all G ∈Gs do

10 Calculate key kg for each G ;
11 get all locations Lg in G from grid cache map Mg ;
12 for all L ∈ Lg do
13 Calculate distance DL between L and S L ;
14 if DL <=D then
15 add L into location array Ld ;
16 end if
17 end for
18 end for
19 end if
20 return Ld ;

Besides an effective mechanism to organize physical containers in large-scale
systems, the concept of physical container separating from the general agent en-
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vironment concept makes it much easier to include a transportation component
in a social simulation model. This is achieved by considering vehicles as movable
physical containers in the model.

4.3.2.1 Movable Physical Container

Human mobility and, in particular, commuting patterns have a fundamental role
in understanding social systems (GARGIULO et al. 2012), such as epidemics. In
current agent-based epidemiology research, agent environment represented by
physical rooms is a key component as the majority of transmission of contagious
diseases is thought to occur among sustained indoor contacts (ANDREWS et al.
2013), such as students taking classes in classrooms and workers working in of-
fices. However, direct physical contact (e.g. touching) or vector-borne contact
(e.g. a droplet) outside rooms can be an effective method for disease spread as
well, especially in densely populated areas such as during transportation. Thus, it
is also important and necessary to include a transportation component in a social
simulation model.

KOPMAN et al. (2012) present a basis for a mobile epidemic simulation frame-
work by creating a simulation model of individuals walking in a defined space.
MEI et al. (2015) described an approach to study the spread of airborne diseases in
cities by combining traffic information with geo-spatial data, infection dynamics
and spreading characteristics. However, none of these tryouts was able to cover
the fundamental structures of the route network and to run basic microscopic
traffic simulations successfully in large-scale social systems which are well studied
in large-scale traffic engineering areas (FELDKAMP and STRASSBURGER 2014).

There are many papers on large-scale agent-based transportation simulation
(see e.g., (RANEY and NAGEL 2003, NAGEL and RICKERT 2001, ZHANG et al. 2013)).
These papers mainly focus on the prediction of traffic peaks and congestion. In
order to make this research applicable in other social systems, we introduced the
movable physical container concept in the large-scale agent-based conceptual so-
cial simulation model. To make this concept practical, an implementation of a
microscopic public transport system (subways and buses) is present.

The public transportation system is closely associated with the execution of
travel activities, which are considered as a connection between two activities of
agents in two different physical containers. An agent that has to commute by
public transport between two physical containers to conduct its next activity, is
required to authorize the transportation system to execute a travel activity, which
helps this commuting agent to determine a route and calculate the travel dura-
tion. For example, the agent in Figure 4.6 will ask the public transportation sys-
tem to take him from household to school when executing the activity ’transport
to school’.

The public transportation component is microscopic as we can model all lines
and stops for the metro and bus system. In each simulation day, modeled buses
and metro trains will execute their schedules on these routes based on timetables.
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The geographic information and routing data of the transportation infrastructure
network can be acquired from maps such as OpenStreetMap. The map offers stops
as nodes and routes as links which can be connected in a graph. This graph shows
the topology of the whole public transportation network.

The metro stops and bus stops of the public transportation system are modeled
as movable physical containers which are extended from the general physical con-
tainers. In addition to the behavior of a physical container, a bus/metro stop can
’move’ the waiting agent from the current stop to the arriving transporter (bus/-
metro train) when this transporter has enough space and is on the right route
for the waiting agent in the stop. Moreover, in order to keep the agents ’simple’
enough for large-scale simulation while ’heterogeneous’ enough for public trans-
portation, only the stops know and record transfer information of the waiting
agents, and will pass the information to the transporter when the agents are on
board. Then the transporter will ’move’ the agent from the bus to a stop when it
arrived at the right transfer or destination stop.

Agent transfer in and between stops causes realistic delays, while the trans-
porter also takes an amount of delay to ’move’ agents out and accept new passen-
gers when arriving at a stop. In order to be realistic, the bus or metro train can be
also enabled to operate through a timetable. This data driven method enables this
public transportation model to be able to simulate people’s real travel behavior.

The modeled traffic infrastructure components can’t offer routing information.
Thus, a graph for routing should be constructed to connect all bus/metro stops.
All successive stops of the same bus/metro line will be linked and the edge of the
link will be assigned a travel duration. Stops that are not on the same route but
within walkable distance should also be linked, and assigned a estimated walking
duration on this edge of the link. This graph can offer a shortest (in travel duration)
path to a potential public transport user. Since this graph will be called many times
per simulation run, a cache can be added in each node (stop) to store the next
transfer stop information with the destination node as the key in the cache. The
structure of this public transportation system is shown in Figure 4.10.

However, there is a big challenge for an agent to use this graph to get a travel
route, which is to find the first stop to use as there could be more than one public
transport stop close to the agent. An explicit solution is comparing all the nearby
stops for every travel request. This could decrease the simulation performance
drastically. This challenge can be solved by creating ’GridZones’ as nodes and
adding them to the existing graph. The map is divided into grid cells, and the resol-
ution of the grid can be set flexibly. The center of each cell can be called ’GridZone’.
Each ’GridZone’ is a node and is linked to the graph by linking the ’GridZone’ with
all stops in this grid cell. The weight of each edge will be assigned an estimated
walking duration. When an agent plans to use public transport, the public trans-
portation model will use the agent’s current ’GridZone’ as the start node to calcu-
late the shortest path. The destination is treated in a similar manner. The details
are shown in Figure 4.11.

Besides public transportation, an agent can also choose to commute by his
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Figure 4.10: The structure of the public transportation component
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Figure 4.11: Part of the graph for public transportation using ’GridZones’

or her own private car or taxis. When the physical container of an agent’s next
activity is within walkable distance, a travel activity ’walk’ is conducted. This en-
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ables people to meet others when walking. Thus a ’walk’ physical container can
be modeled with a large area into which walking agents and cars will be put.

4.3.3 Social Regulation

In a real human society, social regulations protect public interests through re-
stricting behaviors that directly threaten public health, safety welfare or well be-
ing (SALAMON 2002). Particularly in health-care areas, understanding the complex
interplay between human disease and social environment is attracting a lot of in-
terests (BARABÁSI et al. 2011).

In ABMS literature, there are already some researchers trying to model part of
the function to simulate social regulations. An example is DIVAs, where users can
create events that influence the environment at run-time, and the environment is
able to enforce rules and constraints on the agents using the influence combin-
ation function (STEEL et al. 2010). OKUYAMA et al. (2009) presented an approach
to integrate the modeling of environments and organizations, using a normative
infrastructure that is composed of normative objects and normative places to dis-
tribute normative information over an environment. However, both of the ap-
proaches have no clear way to relate organizational and normative structures to
the model of the environment where they are to be situated and operate.

On the other hand, the typical approach in multi-agent systems is that social
regulation can be viewed and used at the level of individuals through the defin-
ition of entities such as norms and institutions (HESAN et al. 2015). As a matter
of fact, the social regulation concept is separated from the general agent environ-
ment concept in this research, which makes large-scale normative agent-based
social simulation possible.

A social regulation can be formalized as follows:

SocialRegulation = {ID, Type, Monitor, Standards, Operations,<List>Agent}
(4.13)

In this formalization, the field Type categorize the social regulations. A coarse-
grained categorization on Type can be "sanction" and "enforcement". Monitor
is used to observe agents’ behavior and status, analyze the results and compare
with Standards. Based on the comparison, social regulations can trigger various
Operations to the agent society in order to regulate agents’ behavior.

One of the referenced implementation on (Operations) in a large-scale agent-
based social simulation is to switch agents’ activity patterns when the objective
agents don’t comply with any of the standards. With this process, agents can
respond to different situations during a simulation run. For example, regulat-
ing agents’ behavior during a disease outbreak is an indispensable part to model
large-scale agent-based epidemic predictions. How agents would respond to a
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disease outbreak is a lightweight strategical level decision-making process as it
would have a big impact on the agent’s behavior.

Figure 4.12 presents the coordination process between the strategical level
decision-making module of agents and a social regulation.

Strategic Decision Module

Preference Assessment

Agent Behavior (Active Pattern)

Social Regulation

Monitor Operation

Figure 4.12: Elements involved in strategic decision-making procedure

How the process in Figure 4.12 works is explained in the procedure below,
which presents the details.

1. A monitor is used by a social regulation to observe agents’ states or system
state, collecting results and compare the results with predefined standards.

2. When an agent’s or the whole system’s status is not compliant with any of the
standards, the agent will be notified and the process is triggered using two steps.

3. The first step takes place in agent’s decision-making module before social
regulation triggers an operation, which makes a preference assessment to calcu-
late a preference possibility indicating whether the agent would change behavior
by shifting to another activity pattern.

Take an example of an agent’s response during disease outbreak, where the
preference assessment may work based on the probability P (A) on Equation 4.14,
where Ap represents the importance degree of the current activity pattern to the
agent A, As represents the severity of the agent’s new healthy status, Aa is the age of
the agent, ε is the average infected age among people with the disease andλ is the
weight coefficient. The closer to 1 the calculation result is, the higher possibility
that the agent would shift to a temporary activity pattern.

P (A) = 1− e −λ·Ap ·As ·|Aa−ε| (4.14)

4. The second step takes place after social regulation triggers an operation,
which means the agent has to decide if it will comply with the regulation. The
decision-making module will ask the preference assessment module to give out a
compliance preference possibility.
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Take the same example as above, this assessment may be based on the prob-
ability P (A) on Equation 4.15. The added parameter compared to Equation 4.14 is
Pc , which represents the mandatory degree of the regulation.

P (A) = 1− e −λ·Ap ·As ·Pc ·|Aa−ε| (4.15)

5. Two results are possible after an operation of a social regulation is fired, the
agent changes its behavior or the agent follows the original one.

4.3.4 Functional Entity

Besides agents representing human beings, many other entities are relevant in
agent-based social simulation models as well. In epidemic models, researchers
showed that climatic conditions greatly influence vaccine effectiveness (ESTRADA-
PEÑA et al. 2014), temperature influences the dynamic of epidemic significantly
(GUO et al. 2015), climate affects malaria transmission (BOMBLIES and ELTAHIR

2009), and influenza virus transmissibility differs at various temperature and hu-
midity conditions (ZUK et al. 2009). The common way is to model these as a built-
in components or properties in agent environment. This will limit the scalability
and performance of large-scale models.

Thus, we separate these entities from the agent environment concept and
define that functional entities are those extra objects in the system that can in-
fluence or directly change attributes of either agents, physical containers or social
regulations. For example, a disease is modeled as a functional entity to change
agents’ healthy status. A storm is modeled as a functional entity to change the
temperature (functional entity) of a room (physical container).

Although the functionalities of the functional entities are diverse, it can be
formalized as follows:

FunctionalEntity= {ID, Type, Status, Targets, Operations} (4.16)

In this definition, Type can be "Agent-related", "Physical Container-related" or
"Social Regulation-related" where the classification criteria focus on the targets.
Targets are the entities being affected by the Operations conducted by functional
entities with changing Status in the simulation models.

4.4 Social Networks

A social network is a social structure made up of a set of social actors (such as
individuals or organizations) and a set of the dyadic ties between these actors. So-
cial networks and the analysis of them is an inherently interdisciplinary academic
field which emerged from social psychology, sociology, statistics, and graph the-
ory. For social scientists, the theory of social networks has been very rewarding,
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Figure 4.13: Types of social networks

yielding explanations for social phenomena in a broad range of disciplines from
psychology to economics (BORGATTI et al. 2009).

4.4.1 Generating Social Networks

Social networks usually contain three types of relations: family, colleagues/ class-
mates, and friendships, which are shown in Figure 4.13.

Family, colleagues and classmates relations can easily arise from defining a
complete topology that clearly specifies all relation connections. Friendships, as
the most complex social relation, are relatively difficult to define. The topology of
friend connections changes over time due to the dynamics of friendship relations
(PUJOL and FLACHE 2005). This is even more complicated on a large scale (GATTI

et al. 2014).
WANG and COLLINS (2014) argues that, in social networks, people’s intention

to connect is not only affected by popularity, but also strongly affected by the ex-
tent of similarity. The authors propose that in forming social networks, agents are
constantly balancing between instrumental and intrinsic preferences. SUTCLIFFE

et al. (2012) described a computational model for the development of social re-
lationships based on agents’ strategies for social interaction that favor more less-
intense, or fewer more-intense partners. This model does not account for spatial
effects, which have been modeled by BELTRAN et al. (2006) who demonstrated that
groups can emerge from interactions within a lattice topology as a consequence
of agents’ preferences to maintain personal or social space. The MOCA platform
presents a theoretical model that allows agents to dynamically choose to create,
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join or quit social networks based on their individual and collective recurrent
patterns of behavior, called respectively roles and organizations (AMIGUET et al.
2002).

Based on this research, this thesis uses the concept of social reach in the social
circle model and the aggregation utility between two agents (NAVARRO et al. 2011,
HAMILL and GILBERT 2010), and proposes the concept of ’social similarity’ to dy-
namically generate a special type of social networks-friendship. Then, egocentric
friend networks are generated to represent friendship connections dynamically.
In this thesis, friendships will be generated before planning and negotiating social
activities based on an algorithm that we will present below. The candidates for the
friends come from three kinds of sources: neighbors, classmates/colleagues and
a random selection. When agent A is planning a social activity, the algorithm for
generating friends can be described as follow:

First, the number of friends Ns is assigned to A which follows a power-law dis-
tribution (HAMILL and GILBERT 2010).

Second, the percentage of A’s friends from different sources is calculated ac-
cording to a combination of uniform distributions (see Table 4.3) as the source
composition of A’s friends may differ from another agent. For example, agent A
may like to make friends with neighbors while agent B may prefer making new
friends randomly in places like shops or restaurants.

Table 4.3: Distribution of agent’s friends

Item Number

Total number Ns

Number of friends from neighbors Nn U ni f o r m [0, Ns ]

Number of friends from classmates/colleagues Nc U ni f o r m [0, Ns −Nn ]

Number of friends from random selection Nr Ns −Nn −Nc

Third, select one candidate randomly from the source and calculate the pos-
sibility that the candidate and agent A are friends. If the calculation result ex-
ceeds a predefined threshold (e.g., 0.25 as an initial setting), put the candidate
in agent A’s friends list. Otherwise, select a new candidate and repeat the calcula-
tion process till all A’s friends are generated. If the new friends list is still not full,
increase the threshold and repeat the calculation process again. The calculation
process is based on a concept called ’social similarity’, which is proposed in this re-
search. It calculates the similarity between two agents. The considered variables
include age, social role (week pattern), family role and the number of friends. In
this research, the similarity S (A, B ) between two agents A and B is evaluated by
a weighted Euclidean distance which is shown is in Equation 4.17, where a rep-
resents age, s represents social role (converted to an index), f represents family
role, n represents the agent’s friends size andµ represents the weights for different
variables. The result of S (A, B ) is bounded on [0,1]
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S (A, B ) = 1−

√

√

√

∑

i=a ,s , f ,n

µi (Ai −Bi )
2 (4.17)

4.4.2 Modeling Process of Social Interactions

The mechanism for implementing social interactions can be separated into two
parts, social learning and social influence (MONTGOMERY and CASTERLINE 1996).
Social learning is considered as the process to make decisions by taking external
information, while in social influence process individuals always try to avoid con-
flicts. MARSELLA et al. (2004) claimed that a key factor in human social interaction
is the beliefs about others. Whether we believe a message depends not only on its
content but also on our model of the communicator.

Based on these arguments, the interaction mechanism in this research con-
tains two stages, as well. The first stage is equation based, by which agents cal-
culate the possibility to join in proposed social activities according to their own
preference (belief of others and input messages). The second stage is decision-
tree based, by which agents make decisions according to rules (social norms, sanc-
tions) and try to avoid conflicts with their own schedules. The decision can be a
full agreement or a decline.

The challenges for implementing these two stages are extensive. The first is
that no friendship social network can be predefined in the initial data. All friend-
ship social networks should be generated before the execution process of friend-
ship social activities based on the algorithms described above. For example, part
of the friendship relations of agents are generated among his/her neighbors and
colleagues. The reasons that we choose to dynamically generate friendship so-
cial networks for the agents are twofold: first, it’s too memory-consuming to store
all friends lists for all agents (up to 100 friends for each agent), and second, the
real human friendship social networks are dynamic and evolve over time, which
influence a lot of social phenomena. To make this friendship relation generated
by the stochastic method as stable as possible (most friends of an agent still re-
main the same over time), a reproducible random generator was designed using
the agent id as the seed. Hence, every time when agents want to invite his/her
friends to conduct a social activity in the simulation, the dynamically generated
friendship relations will mostly remain the same although no static friends list are
predefined, or need to be stored. The slight difference comes from the sequence
of selecting candidates for friendship calculation from friends sources, which is
on a first come, first served basis.

Another challenge is the consequences of the first challenge that the joint so-
cial activities are not pre-scheduled for all participants and only the organizer
agent of the joint social activity foresees this activity in its schedule. Because there
are no predefined friendship social networks, it’s impossible to assign two consist-
ent and semantically matched week patterns to two individual agents before the
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simulation starts while the two agents are modeled dynamically as friends during
the simulation. This is solved through dynamically generating Functional Entit-
ies, Group Agents, to help execute the friendship social activities. When the ori-
ginator/organizer agent tries to execute a social activity, a helping Group Agent is
dynamically generated to take over the task to execute the social activity. First it
will generate a social network and then invite the members in the network to at-
tend this joint social activity. After a decision tree considering several rules and
conditions (for example time and distance), each invitee can either decline or ac-
cept the invitation. After collecting all the response, the Group Agent will request
all the participants to travel to the social location where agents can be late due to
real travel delay which is caused by the transportation model. The major process
of executing a social activity is presented in Figure 4.14.
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Figure 4.14: Execution process of a social activity

The detailed interaction procedure can be described as follows:
1. Before an agent starts to execute the current activity in the activity pattern,

it will check the next activity to see if it’s a joint social activity. If yes, check if the
conditions are met for organizing it. Then a proposal of the joint social activity
will be sent to all involved social networks members. It is worth noting that the
friendship relations in social networks will only be generated in this step and the
agent will only schedule a social activity within its current pattern.

73



A General Conceptual Model for Large-scale ABSS

2. Calculate the attendance possibility after receiving a social activity proposal
for every agent Ii according to Equation 4.18, where N is the total number of
agents involved in the planned social activity, Io is the organizer of this activity,
S (Ii , I j ) calculates the link weight between the two agents based on a concept ’so-
cial similarity’. The considered variables include age a , social role s , family role f
and the number of friends n . In this research, the social similarity is calculated as
a weighted Euclidean distance, where µ represents the weight for different vari-
ables. By setting the weight coefficient {µa , µs , µ f , µn}, the calculation result
S (Ii , I j ) will be constrained between 0 and 1. 1 means they are fully connected
while 0 means no relations. A(d , E ) calculates the interest degree of the activity to
the agent, where d is the distance between agent’s current location and proposed
activity location, E gives out the degree that the agent is interested in the activity
andσ is a corrective coefficient for calibration.

P (i , o , N ) = e

N
∑

j=1, j 6=o

S (Ii ,I j )−N

×A(d , E )

S (Ii , I j ) = 1−

√

√

√

∑

x=a ,s , f ,n

µx (Iix
− I jx

)2

A(d , E ) =
σ ·E

d

(4.18)

3. For each agent, compare the attendance possibility with its own attendance
threshold t . If it’s negative, send a decline response to the activity organizer and
continue its own schedule. Otherwise, start the second stage process for decision-
making based on a decision tree (see Figure 4.15).

4. Two kinds of decisions can be made by the agents after the decision-tree
based process, which are accept and decline. The decisions will be responded to
the organizer immediately, and the organizer will make a decision on continuing
the activity after collecting all responses.

5. Social activity organizers will only negotiate with other members for one
time, which is necessary to avoid deadlocks.

6. When the final decision is made, the agents who are willing to join in the
coming social activity will authorize a dynamically generated Functional Entity,
’Group Agent’, to take the responsibility for state updating and moving agents back
to their original schedule when the social activity is finished.

For social contacts among family members and colleagues, the execution pro-
cess of their joint social activities is almost the same as the process in Figure 4.14.
However, the difference with the friendship social contacts is that the social net-
works for family members and colleagues can be pre-defined in the initial data.

74



4.4 Social Networks

Does the 

coming/current 

social activity has a 

determined end 

time  

Am I traveling 

to/already in another 

social activity?

Yes No

Yes No

Is the end time 

earlier than the 

starting time of the 

proposed activity  

Yes No
Do I have another 

scheduled un-

Interruptible 

Activity 

afterwards?   
Yes No

Decline

Do I have enough 

time for traffic 

transfer?  

Yes No

Accept

Can I be late for 

this activity and 

the activity will not 

end before I 

arrive?  

Yes No

Accept
Decline

Yes

Does the current 

activity has a 

determined end 

time? 

Yes No

Accept

No

Is the location the 

same with my 

current location？

Is the end time 

earlier than the 

starting time of the 

proposed activity  

Yes No

Do I have another 

scheduled un-

Interruptible 

Activity 

afterwards?   
Yes No

Is the location 

the same with 

my current 

location？

Yes No

Accept

Yes No

Accept

Yes No

Accept

Is the location 

the same with 

my current 

location？

Decline

Can I be late for 

this activity and 

the activity will not 

end before I 

arrive?  

Decline

Decline

Decline

Decline

Decline

Figure 4.15: Decision tree for joining in social activities
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4.5 Conclusion

This chapter introduces a new conceptual framework to build large-scale agent-
based social simulation models, which separates the concept of agent environ-
ment into a physical container, a social regulation and a functional entity. Com-
pared to the model concepts in the general ABM conceptual model, this separ-
ation overcomes the limitations on environmental completeness in other ABM
models and provides flexibilities in simulating different system scenarios. In other
words, the concepts are also more refined. For example, physical containers can
be movable to represent transportation vehicles which are difficult to implement
in general ABM platforms. Moreover, theories and concepts on social regula-
tion from artificial intelligence can be easily implemented and integrated into an
agent-based model while showing reasonable performance. Inspired by the con-
cept of Functional Model in object-oriented conceptual models, the concept of
functional entity is borrowed from the classical ABM conceptual model and in-
troduced in our proposed conceptual model for large-scale ABSS. With this clear
separation of concepts which is much easier for implementation using the object-
oriented paradigm, experimental results in the following chapters show that mod-
els adopting this conceptual model are more efficient in terms of system perform-
ance and low agent-to-agent communication cost than a pure ABS model while
keeping high model fidelity and the same agent capabilities.

With this chapter, research requirement RR1 is satisfied.

RR1 Research Requirement - Model Architecture A conceptual model is re-
quired for large-scale ABSS.
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5
Case: Large-scale

Agent-based Epidemic
Prediction and Control

In order to test the proposed conceptual model architecture, we applied the large-
scale agent-based social conceptual model in a large-scale epidemic model in this
chapter. We constructed a large-scale artificial city Beijing with 19.6 million pop-
ulation and 8 million geo-referenced locations (like households, schools, offices,
hospitals, stations, etc.), in which 200 million activities are executed per simula-
tion day. In addition to regular contacts in locations like home and schools, agents
can interact with each other based on the dynamic formation of social networks.
Furthermore, we include a microscopic public transportation system in this city
model to implement random travel contacts.

5.1 Model Preparation

As we described in Chapter 3, many large-scale agent-based epidemic prediction
models have been developed in recent years due to the increasing threat from mul-
tiple epidemics. However, most of the models are in the context of the megacit-
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ies or metropolitan areas either in the USA (STROUD and VALLE 2007, BISSET et al.
2009a, BISSET et al. 2014, BARRETT et al. 2008, GREFENSTETTE et al. 2013, MAO 2014)
or in Europe (AJELLI et al. 2010, RAKOWSKI et al. 2010). None of these mentioned
popular models have been applied in other areas, such as megacities in Asia.

On the other hand, there is a strong need to study epidemic models in the
megacities in Asia. As of 2015, there are 35 megacities in existence in the world
and 22 cities are in Asia of which 8 are in the top 10 1.

As far as we can see, the scarcity of large-scale agent-based epidemic models
in Asian megacities is caused by many difficulties. One intuitive difficulty is the
lack of open data in demographics in Asian cities, such as population and envir-
onment. Large-scale real world data sets are expensive to collect and difficult to
obtain high fidelity ground truth for (BERNSTEIN and O’BRIEN 2013). Thus, there
is a trilemma of inadequate data from real-world datasets, statistical simulation
models, and agent-based simulation models. This difficulty is reflected in the
research in Beijing by the model of the spread of SARS in Beijing conducted by
HUANG (2010).

Another difficulty is in applying the existing conceptual models for Asia mega-
cities due to the differences in people’s commuting patterns (VAN DE COEVERING

and SCHWANEN 2006, BAUMAN et al. 2011) and social behavior (TRIANDIS 1989).
Taking public transportation usage among workers as an example, the average rate
of public transportation usage among workers in USA among a handful of the na-
tion’s large and densely populated regions was 5 percent from the 2009 ACS (MCK-
ENZIE and RAPINO 2011), while Asian cities dominate the ranking of the world’s
biggest and busiest metro systems 2 (e.g., 40% workers use public transportation
in Beijing 3).

Beijing, as the capital of the People’s Republic of China and the second largest
Chinese city by urban population, is selected as the context of this case study. The
population as of 2009 was 19.7 million.

The reason to choose Beijing as the context of the case study mainly comes
from the availability of the raw data generated by an independent research by GE

et al. (2014) for constructing an artificial city of Beijing. They adopted a mixing
method which collect real data (statistical data and geographic information) and
generate the other minimum required data by algorithms, which are the synthetic
population and physical locations by utilizing the real data. More detailed inform-
ation about the raw data on synthetic population and physical locations are as
follows:

◦ The statistical population and location data were collected from the National
Bureau of Statistics (NBS) at the city scale, and from the Municipal Bureau of
Statistics (MBS) at the district scale, which include population, age-sex dis-

1Wikipedia, s.v. "Megacity", last modified on 27 April 2016, https://en.wikipedia.org/wiki/
Megacity.

2Retrieved from http://www.uitp.org/news/metro-ridership-ranking
3Retrieved from http://www.wtoutiao.com/p/Eb1ThP.html

78

https://en.wikipedia.org/wiki/Megacity
https://en.wikipedia.org/wiki/Megacity
http://www.uitp.org/news/metro-ridership-ranking
http://www.wtoutiao.com/p/Eb1ThP.html


5.1 Model Preparation

tribution, number of children distribution among families, family size dis-
tribution and geographic distribution of families among districts.

◦ With the algorithms in GE et al. (ibid.), each individual person is specified
with the attributes of age, gender, family role, family index and social role
to specify this individual’s demographic characteristics. The family role can
be defined as a set {grandparent, parent, child}. The social role is defined
as a set {infant, student, worker, retired}. This design is based on find-
ings from the China census data (available at http://www.stats.gov.cn) that
households with more than three generations are a small proportion (less
than 10%) of the total number of households.

◦ Besides individual persons, physical locations were generated where indi-
viduals can perform a variety of activities. Currently, there are 18 location
types, and these location types are classified into 6 categories: houses, edu-
cational institutions, workplaces, consumption locations, entertainment
locations, and medical institutions. Each location has a geographic refer-
ence and the distribution of these locations was generated according to both
statistical data and the geographic distribution of the population (ibid.).

◦ The consistency between the individual person and the physical location
was guaranteed. For example, a student of age 22 will be assigned a loca-
tion which belongs to location type ’university’ rather than ’primary school’.

The statistics of the synthetic population and physical locations are listed in
Table 5.1.

Item Description Results

Population Number of agents 19611800
Age Scope of age 0-105

Location Number of physical locations 8216011
Families Number of families 8055324

Table 5.1: The statistics of the synthetic population and physical locations

The statistical results of the generated synthetic population are shown in Fig-
ure 5.1 in the form of an age distribution. According to the previous results, the
standard deviation of errors between the generated age and the statistical data is
0.9823 (95% confidence interval (CI) from 0.7034 to 1.3510) (ibid.).

With the generated data, GE et al. (ibid.) constructed a large-scale agent-based
virtual city model. Based on the same source of data, this research built a large-
scale agent-based artificial city model for epidemic prediction in a new way. A key
issue and challenge of utilizing the raw data to our model is the redundancy of
the data, such as the agents’ preferred location list for shopping, eating and enter-
tainment. Together with the predefined social networks for agents in the data, the
size of the data is initially around 130 Gb. Since the large-scale agent-based model
implemented in this research is entirely different from GE et al. (ibid.)’s method
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Figure 5.1: Age distribution of the Synthetic Population

which doesn’t require the predefined location choices and social networks, we
post-processed the raw data by extracting only the valuable fields of data items
from the original database to fit our requirements. In addition, to speed up the ini-
tialization phase, we converted the data items to a compressed format (e.g., gzip)
to reduce disk transfer time. With these post-processing steps, the time efficiency
for loading the model could be improved by 65% in our case.

5.2 Model Implementation

5.2.1 System Architecture

There are many existing large-scale agent-based epidemic system architectures,
such as FRED, FLUed and DISimS. FRED (A Framework for Reconstructing Epi-
demic Dynamics) is an open-source software system for modeling infectious dis-
eases and control strategies using census-based populations (GREFENSTETTE et
al. 2013). FLUed (A Four-Layer Model for Simulating Epidemic Dynamics) is a
model that integrates complex daily commuting network data into multiple age-
structured compartmental models for simulating the epidemic dynamics of emer-
ging infectious diseases, assessing the potential efficacies of various interven-
tion policies, and identifying the potential impacts of spatial-temporal epidemic
trends on specific populations (HUANG et al. 2013). DISimS (Distributed Interact-
ive Simulation System) is a flexible epidemiological modeling environment that
combines high-resolution individual-based epidemic and intervention modeling
environment with a web-based user-friendly analytics environment (BISSET and
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MARATHE 2015).
As we stated in Chapter 1, all these large-scale agent-based epidemic models

have gained reasonable performance while model fidelity is weaker considered in
term of modeling agent behavior and a realistic set of contacts.

Based on the proposed conceptual model, the system architecture of the epi-
demic model of Beijing is shown in Figure 5.2. Components of physical contain-
ers, agents, social networks, functional entity and social regulation constitute the
main parts of the model.

Agent

Social 
Regulation

Disease 
(Functional 
Entity)

ActivityGroup
(Functional Entity)

Social 
Network

Activity 
Pattern

Activity Physical 
Container

Figure 5.2: System architecture of the epidemic model of Beijing

Based on this system architecture, we built a model to study epidemic dynam-
ics and effect of interventions based on the main class diagram in Figure 5.3. More
details of this implementation are illustrated in the following subsections.

5.2.2 Agent-based Modeling

The typical way of implementing the daily behavior of agents in artificial cities is
initializing an activity list (schedule) for each agent, which initially give out the
activity location, duration and contact list explicitly. Instead, agents in this im-
plementation are activity pattern based. Every agent is assigned with a reconfig-
urable index pointing to a week pattern which include seven day patterns. A day
pattern consists of a linked list of executable activities which can repeatedly be
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Figure 5.3: Class diagram of the epidemic model of Beijing

executed. Agents can be referenced to the same week pattern if they have similar
schedules, but distinct information is provided to them during a simulation run,
such as duration and location. That is, activities in the pattern don’t offer any dir-
ect information regarding activity location and duration and social contacts. With
the sequenced execution of the activities in the referenced pattern, the attributes
of agents update with the simulation time.

In this research, we designed around 20 different day patterns for all social roles
in the artificial city Beijing, which is based on other independent research con-
clusions. TA et al. (2015) distinguished the working people in the suburb area of
Beijing into 5 types by recording the real GPS data and combining the difference
in activity (work, eat and shop) distance and commuting frequency. In summary,
they differentiated between 5 types of workers: (1) people who work at home and
seldom go out; (2) people who work and do other activities nearby (within 3 km);
(3) people who do activities in average distance of 7 km to home; (4) people who
do activities in an average distance of 10 km to home; (5) people who do activities
further than 15 km. Based on this research, firstly we merged type (3)(4) and (5),
and then separated the resulting type into 2 new types by the way of commuting to
work, which are commuting by public transportation and by private vehicles. The
people of the type of commuting by private vehicles were separated into another
2 new types, which are those who need to carpool their children to school every
school day and those who don’t. For workers during weekend days, 4 types of day
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patterns were designed according to the conclusions made by the research in YUE,
YANWEI et al. (2013), which are: (1) people who stay at home during weekend; (2)
people who do activities nearby (within 3 km); (3) people who do activities further
than 3 km by public transportation; (4) people who do activities further than 3 km
by driving.

For people who are retired, TA et al. (2015) concluded that they behave mostly
like Type (1) and (2) of workers. Thus, we designed 2 day patterns for them. The
first type prefers to stay at home and the other prefers to do activities outside but
nearby. Besides this design, there is also no difference for retired people between
weekdays and weekends in this research. For students, due to the scarce data, 3
types of weekday patterns were designed for typical students according to the way
they commute to school. For weekend days, 4 types of day patterns were designed
similar to workers. Since the commuting ways for students are highly correlated
to the distance to schools in the initial data set and the patterns of their parents
(those who carpool their children to school or to other shopping and entertain-
ment places), the proportion of assigning patterns to students were determined by
the simulation model, both for weekdays and weekends. For babies, we assumed
there is only one typical day pattern for them which is associated with their par-
ents who work at home. Since this model is used to predict epidemics, a special
day pattern for hospitalized people was designed as well.

A list of all designed day patterns are presented in Table 5.2. An algorithm was
implemented to pick the proper weekday patterns and weekend patterns to form
a week pattern, and to assign the resulting week pattern to agents during the ini-
tialization phase of the simulation.

To give a detailed impression of the designed typical day pattern, a weekday
pattern example for workers who carpool their children to school in weekdays is
presented in Table 5.3.

A day pattern example for workers who drive outside during weekends is
presented in Table 5.4.

5.2.3 Physical Container

Every activity in the pattern that an agent owns is required to assign an activity loc-
ation. An activity location was modeled as a physical container in this research. It
means that the agent has a physical container associated at any time in the sim-
ulation, both when performing activities in static places (for example, eating in a
restaurant), and during traveling (walking or riding on a bus). The physical con-
tainer is locatable as well. Thus, every physical container or agent who stays in a
place in this model has a geographic reference (longitude and latitude) assigned
to it in order to locate it. This definition gives a strict requirement for the com-
pleteness and consistency of data required for modeling.

With the data generated by the statistical information, firstly we modeled each
of the 8 million static physical containers in the city model of Beijing, which rep-
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Table 5.2: Implemented day patterns according to social roles

Social role Name of Day pattern Proportion
for the social
role

Description for the typical day
pattern

Infant B_Pattern 100% For all babies
Student S_DayWalk Based on ini-

tial data and
model

For students who walk to school
in weekdays

Student S_DayPT Based on ini-
tial data and
model

For students who take public
transportation in weekdays

Student S_DayCarpool Based on par-
ents’ pattern

For students who are sent by
parents using cars in weekdays

Student S_WeekendHome Based on ini-
tial data and
model

For students who stay at home
during weekends

Student S_WeekendNearby Based on ini-
tial data and
model

For students who do activities
nearby (within 3 km) during
weekends

Student S_WeekendPT Based on ini-
tial data and
model

For students who do activities
outside using public transport-
ation during weekends

Student S_WeekendDrive Based on par-
ents’ pattern

For students who do activities
outside with parents by driving
during weekends

Worker W_DayHome 12.9% For workers who work at home
Worker W_DayNearby 12.2% For workers who work nearby

(within 3 km)
Worker W_DayPT 33.7% For workers who take public

transportation to work
Worker W_DayDrive 19.2% For workers who drive to work
Worker W_DayCarpool 22% For workers who drive but car-

pool child to school first
Worker W_WeekendDayHome 20% For workers who stay at home

during weekends
Worker W_WeekendDayNearby 20% For workers who do activities

nearby (within 3 km) during
weekends

Worker W_WeekendDayPT 30% For workers who do activities
by public transportation during
weekends

Worker W_WeekendDayDrive 30% For workers who do activities by
driving cars during weekends

Retired R_DayHome 50% For retired people who prefer
staying at home

Retired R_DayOut 50% For retired people who prefer do
activities outside

ALL HospitalizedDay Based on sim-
ulation

For hospitalized people
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Table 5.3: A day pattern example for workers who carpool children to school in weekdays

No. Activity Name Activity Type Duration

1 sleep StochasticDurationActivity Triangular(6.0, 7.0, 7.5)
2 carpool Child CarpoolActivity based on simulation
3 work UntilFixedTimeActivity until 12:00 am
4 lunch and rest StochasticDurationActivity Triangular(0.4, 0.6, 1.0)
5 work StochasticDurationActivity Uniform(4.0,7.0)
6 drive home TravelActivityCar based on simulation
7 walk to shop TravelActivityWalk based on simulation
8 shop StochasticDurationActivity Triangular(0.1, 0.3, 0.5)
9 walk home TravelActivityWalk based on simulation

10 family Dinner FamilySynchronizedActivity Fixed(20:00-21:00)
11 housework StochasticDurationActivity Uniform(1.0,2.0)

12
sleep till
midnight UntilFixedTimeActivity until 24:00

Table 5.4: A day pattern example for workers who drive outside during weekends

No. Activity
Name

Activity Type Duration

1 sleep StochasticDurationActivity Triangular(7.5, 8.5, 10.0)
2 housework StochasticDurationActivity Uniform(1.0,4.0)
3 drive to

shop/relax
TravelActivityCar based on simulation

4 shop/relax StochasticDurationActivity Uniform(2.0,10.0)
5 eat StochasticDurationActivity Triangular(0.4, 0.6, 1.0)
6 drive home TravelActivityCar based on simulation
7 housework StochasticDurationActivity Uniform(0.5,2.0)
8 sleep till mid-

night
UntilFixedTimeActivity until 24:00

resent schools, restaurants, shops, hospitals, etc. The exact numbers are shown in
Table 5.5.

From Table 5.5, we can find that currently there are 18 types of static physical
containers which are categorized into 6 categories. Obviously, these can not cover
all the types in Beijing, for example, small shops in ’Consumption locations’ and
cinemas in ’Entertainment locations’ are missing in the current database. Further
research should be conducted on generating or collecting real data for these miss-
ing types which are important for disease spread, as well.

Besides static physical containers, we modeled a transportation system includ-
ing movable physical containers to execute travel activities, which helps commut-
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Table 5.5: Static physical container statistics

Category Type Size

Houses household 4.961 million
Consumption locations restaurant 55257
Consumption locations market 18686
Consumption locations mall 547
Medical institutions clinic 836
Medical institutions community meds 1744
Medical institutions hospital 569
Medical institutions medservice 3335
Educational institutions elementary 1090
Educational institutions kindergarten 1305
Educational institutions middle school 632
Educational institutions middle university 91
Educational institutions private university 79
Educational institutions university 73
Entertainment locations green 13983
Entertainment locations playground 6151
Entertainment locations garden 93
Other workplaces workplace 11431

ing agents to determine a route and give out the travel duration. The public trans-
portation system in the model is microscopic, where we modeled all lines and
stops of metro and bus system in Beijing. The public transportation in Beijing
contains 17 Metro lines, 227 Metro stations and nearly 1,000 public bus and trol-
leybus lines in the city, which makes it one of the largest public transportation
systems in the world. A picture of Beijing metro system is present in Figure 5.4
from 4.

Modeled buses and metro trains will execute their schedules on these routes
based certain timetables. The geographic information and routing data of the
transportation infrastructure network are acquired from open source based Open-
StreetMap 5 by using the Java library osmosis 6. To show the topology of the whole
public transportation network in Beijing, a graph is built in this model by the Java
library jgrapht 7. It models stops as nodes (static physical containers) and routes
as links. For commuting vehicles (cars and taxis) on the road network, we don’t
model the real road networks, but calculate estimated travel duration according
to the distance and historical statistical data on congestion.

4http://www.johomaps.com/as/china/beijing/beijingmetro.html
5http://www.openstreetmap.org
6http://wiki.openstreetmap.org/wiki/Osmosis
7http://jgrapht.org
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Figure 5.4: Map of Beijing’s metro system from JohoMaps

5.2.4 Social Regulation

The policies for interventions during disease outbreak are modeled as the main
social regulations in this research. One of the policies modeled can be described
as "When the number of ’infected’ agents is observed to reach a threshold, agent
who are in the phase of ’Symptomatic’ are required to stay at home for isolation.
If violated, agents will be forced to be isolated in hospitals".

In this social regulation, the Type is defined as "sanction". A Monitor is used to
observe the number of ’infected’ agents in the simulation. When the observed res-
ults are higher than a pre-defined threshold which is a Standard in the regulation,
two steps of Operations are triggered.

The first step is specifying new behavior for agents who are under the regula-
tion in the form of assigning new activity patterns. After agents receive the new
assignments, the strategical level decision-making module of agents will decide
whether they accept this change or not. If an agent decides to decline, the second
step of the Operations is that this agent will be forced to assign another activity
pattern.

5.2.5 Social Networks and Social Interaction

Three types of social networks are dynamically generated in the model, which
are family, colleagues/ classmates and friendships. Family and colleagues/ class-
mates are intuitively generated by checking the other agents who are in the same
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living and working physical containers, while friendships are generated according
to the algorithms specified in Section 4.4.1.

Besides regular interaction among agents, the agents in this model are able to
communicate for scheduling joint social activities. This feature is realized through
a dynamic construction of social networks and execution of social activities. When
executing joint social activities, a functional entity called ’activity group’ is gener-
ated to organize and manage the participants and social contact network emerges
from the execution.

According to the fact that Dunbar’s number (HILL and DUNBAR 2003) ranges
from 100 to 250, the largest size of friends in this research is set to the lower bound-
ary 100 to reduce the computational complexity. The skewness is set to 0.8, which
is an example experiment setting in (HAMILL and GILBERT 2010).

5.2.6 Functional Entity: Modeling H1N1

Besides ’activity group’, pandemic influenza is modeled as another functional en-
tity in this model, which can change agents’ health status ’diseasePhase’. The
phase transitions are modeled according to the research of STROUD and VALLE

(2007). In addition to their disease transition model, a phase called ’Vaccinated’
was added in this research, which can be used for policy modeling. The phase
transitions and details about the transition time and probability are presented in
Figure 5.5.
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Figure 5.5: Phase transition of disease model (H1N1)
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An infected agent is contagious as of the phase of ’Asymptomatic_Conta-
gious_Early_Stage’ until the phase of ’Convalescent’ or the end phases of ’Dead’
or ’IMMUNITY’. However, the contagious probability varies for different transition
phases. The basic contagious rates in the phases are initialized in Table 5.6 based
on the research of STROUD and VALLE (ibid.), which are considered as an initial
experimental setting.

Table 5.6: Basic Transmission Probability(P) of All Contagious Phases

Phase Label Phase P

RAC E Asymptomatic_Contagious_Early_Stage 0.15
RAC M Asymptomatic_Contagious_Middle_Stage 0.5
RAC R Asymptomatic_Contagious_Recovering 0.125
RS E S Symptomatic_Early_Stage 1.0
RSU S Symptomatic_Usual_Schedule 1.0
RSU SR Symptomatic_Usual_Schedule_Recovering 0.25
RSSH Symptomatic_Stay_Home 1.0
RSSH R Symptomatic_Stay_Home_Recovering 0.25
RH Hospitalized 0.25

Besides the basic contagious rates, the probability to infect a susceptible per-
son is also highly related to factors such as the space of the sub-location, the num-
ber of infected persons in the same sub-location and the contact duration (BEGGS

et al. 2003, HOUK et al. 1968). Because of this, we added more parameters in the
disease progression model. The final contagious rate for a susceptible person i in
a sub-location L containing N infected people can be calculated through Equa-
tion 5.1, where R j can be found in Table 5.6, β is a corrective coefficient for the
basic contagious probability,σL is a corrective coefficient for the sub-location, SL

is the space of the sub-location (in square meters) and t _i j is the contact duration
between person i and j .

R (i , N , L ) =
(1− e

−
N
∑

j=1
β×R j×ti j

)×σL

SL

(5.1)

In this research, the corrective coefficients β and σL in Equation 5.1 are both
set to 1.0. This simplification is determined as one possible experimental setting
and the sensitivity analysis of this set is not the research interest in this research.

With the above components implemented, the large-scale agent-based epi-
demic model is constructed. Before studying the epidemic dynamics under dif-
ferent interventions, a process of verification and validation for the underlined
artificial city model is conducted.
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5.3 Verification and Validation for the Artificial City Model

Two experiments are designed for verification and validation of the artificial
model, in which the whole modeled population perform daily activities based
on their weekday patterns and weekend patterns. There are ten replications in
each experiment (Shapiro-Wilk test is conducted) and each replication runs for
one simulation day (24 hours) based on the JAVA-based simulator DSOL (JACOBS

et al. 2002). The warm-up period is set to 0 in the experiments as the simulation
time starts at 0am and all agents are considered in their house locations as a hypo-
thesis. In the simulation experiments, disease control interventions are excluded.
The human spatial contacts in all the modeled locations (physical containers) are
recorded for validation. The results are categorized into two types, indoor contacts
in static locations and outdoor contacts during commuting. The indoor contacts
are mainly used for verification purpose due to the available data while outdoor
contacts are mainly used for validation.

5.3.1 Indoor Contacts

Spatial contacts are the main transmission measures for pandemic influenza to
propagate among human beings. STROUD and VALLE (2007) studied the spatial
dynamics of pandemic influenza in a massive artificial society. TOROCZKAI and
GUCLU (2007) presented a framework to account for the dynamics of contacts in
epidemic processes as well.

Spatial contacts emerge when individuals execute their daily activities in phys-
ical containers. For example, spatial contacts can emerge among students who are
in the same school location. When executing a school activity in a student’s day
pattern, and another student is executing a school activity at the same location
and the periods have overlap with each other, these two students are considered
to have a spatial contact in this model.

Through the execution of the simulation experiment for weekday, firstly we
show the hourly number of people in several typical types of locations in one rep-
lication in Figure 5.6, where the time of the day (0:00-24:00) goes on the x-axis.
The ’others’ item in the figure represents all the other location types according to
Table 5.5.

From Figure 5.6, it can be found in this weekday replication that the largest part
of the population during the day time is in their houses. The statistical results of
the hourly number of people in the house location for ten replications are presen-
ted in Figure 5.7, where the 95% confidence interval is drawn in the sample point
(each hour).

Since all the population in this research are modeled into four social roles
(baby, worker, student and retired), the hourly results of agents with different role
in the house location are presented in Figure 5.8 for the weekday experiment and
in Figure 5.9 for the weekend experiment.
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Figure 5.6: Number of people in physical containers
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Figure 5.7: Number of total agents in the house location in a weekday (10 replications)

In Figure 5.8a, we can find that the baby agents stay at home for all 24 hours.
This is the result of the design of the baby pattern, in which babies are modeled to
execute all activities at home. Since the results for the baby agents are the same
between the weekday and weekend experiments, no results are shown for babies
in Figure 5.9.

Besides the results in the house location, more results and evaluation analysis
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(a) Number of baby agents in the house
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(b) Number of retired agents in the house
location in a weekday
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(c) Number of student agents in the
house location in a weekday
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Figure 5.8: Statistics of the number of agents with social roles in the house locations in a
weekday (10 replications)

are presented in Appendix A.
Due to the design of the activity in the pattern, the duration of staying in differ-

ent types of locations varies among agents even when they use the same activity
pattern. To verify this design, the average duration of agents staying in different
locations in the weekday experiment is presented in Table 5.7.

From Table 5.7, we can find that the longest duration of stay occurs in house-
holds, followed by work or study places.

It’s not difficult to find the causal relationship between the designed 20 day
patterns in Table 5.2 for all the agents and the experiment results as a verification
evaluation. To validate this design to some extent, the result of a survey by WANG

et al. (2011) is used to compare with the experiment results. WANG et al. (ibid.)
present the time-use patterns of the different neighborhood on a normal work-
day for workers. From this, two representative neighborhoods, TRA and CHC are

92



5.3 Verification and Validation for the Artificial City Model

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0 5 10 15 20 25
Hours

N
um

be
r o

f A
ge

nt
s Bars

Average Number

Lines

Confidence Interval(95%)

(a) Number of total agents in the house
location in a weekend day

0e+00

1e+06

2e+06

3e+06

0 5 10 15 20 25
Hours

N
um

be
r o

f A
ge

nt
s Bars

Average Number

Lines

Confidence Interval(95%)

(b) Number of retired agents in the house
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(c) Number of student agents in the
house location in a weekend day
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Figure 5.9: Statistics of the number of agents with social roles in the house locations in a
weekend day (10 replications)

Table 5.7: Average duration by location types

Type Average Duration Standard Deviation Confidence Interval (95%)

Household 10.2 hours 4.9 hours [7.16, 13.24]
Mall 0.5 hours 0.2 hours [0.38, 0.62]
Market 0.3 hours 0.1 hours [0.24, 0.36]
Restaurant 1.3 hours 0.8 hours [0.80, 1.80]
Workplace 4.2 hours 2.3 hours [2.77, 5.63]
University 6.0 hours 3.6 hours [3.77, 8.23]
Middle school 4.5 hours 2.1 hours [3.20, 5.80]
Hospital 0.9 hours 0.4 hours [0.65, 1.15]
Clinic 0.5 hours 0.2 hours [0.38, 0.62]
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chosen. Since there is only workers’ result in the research by WANG et al. (2011) and
the duration in different places are simply categorized into home, out-of-home
and travel, we recorded the duration for workers in different locations separately
and made a comparison in Table 5.8, where the duration in travel is excluded.

Table 5.8: Comparison of duration in home/out-of-home locations for workers in a week-
day

Item Simulation results TRA CHC

In-home Mean 11.4 hours 14.5 hours 15.6 hours
CI(95%) [7.93, 14.87] [12.14, 16.86] [13.06, 18.14]

Out-of-home Mean 9.1 hours 8.0 hours 6.9 hours
CI(95%) [7.05, 11.15] [5.83, 10.17] [4.54, 9.26]

From Table 5.2, we can find that the relative error of the average duration of
staying In-Home between TRA (equivalent to household in this research) and the
experiment is relatively high (21.3%), compared to the average duration of stay-
ing Out-of-home between TRA (13.8%) and the experiment. This difference can
be caused by many factors, such as the season of the survey, the monotonicity of
the surveyed neighborhood and the incompleteness of our designed activity pat-
tern. As our interest in this research is in a new agent-based modeling method,
we accept this error while further surveys on human behavior patterns in Beijing
is required in future research.

Due to the design of movable physical containers, agents can have spatial con-
tacts outside which is considered as one contribution in this research on large-
scale systems. Thus, the statistics on agents during commuting are discussed in
the next section.

5.3.2 Outdoor Contacts

Travel contacts, also as spatial contacts in movable physical containers, emerge
from the inclusion of the public transportation component in this model. We
observed the information about the number of people in the public transporta-
tion infrastructure components, such as metro stops, metro trains, buses and bus
stops during a working day. As an example, how the numbers of agents with dif-
ferent social roles in the bus location change in a weekday is shown in Figure 5.10.
More results are shown in Appendix A. Through this transportation component,
travel contacts emerge. In this research, stops or metro trains are divided into sev-
eral sub-physical containers to represent platforms or train compartments, where
agents can have travel contacts when they are in the same sub-physical containers
at the same time.

As we described before, the duration of a travel activity by bus/metro will be
decided by the simulation model, and is dependent on several factors, such as the
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Figure 5.10: Statistics of the number of agents in the bus location in a weekday (10 replic-
ations)

travel distance, the path that the agent chooses (e.g. Dijkstra shortest path) and
the waiting queue in the metro stops.

Validation of a model with a wide range of parameters would be very difficult
(STOCKER et al. 2001). Thus, this simulation study shifts the focus to validation
using several travel statistics. In order to validate the results in this public trans-
portation component of the whole model, the average travel volume in a weekday
by bus and by metro are compared to the historical traffic statistics report in 2011
(GUO and LI 2012) in Table 5.9. The reason for adopting the traffic statistics re-
port in 2011 is to keep this research consistent as the generated population data is
based on the census data of 2011 as well.

From the comparison in Table 5.9, we can find that the relative errors be-
tween simulation results and the historical traffic statistics are within 15%. Several
factors are responsible for the differences and one of the crucial differences is that

95



Case: Large-scale Agent-based Epidemic Prediction and Control

Table 5.9: Comparison of daily travel volume by public transportation in a weekday (ibid.)

Item Simulation results Historical statistics

by bus 7.28 million 8.11 million
by metro 4.55 million 3.95 million

the data collected in the report (GUO and LI 2012) only covers part of Beijing city
(within the 6th Ring Road). This difference will increase the total relative errors to
28% as the daily travel volume within the 6th Ring Road only accounts for 87% of
the whole travel volume in Beijing.

Regarding the travel purpose, Table 5.10 shows the comparison of the main
purposes of using public transportation in a weekday. The relative errors are less
than 10%.

Table 5.10: Comparison of daily travel purpose in a weekday (ibid.)

Item Simulation results Historical statistics

For working and school 59.2% 54.5%
For shopping 8.1% 7.6%
For leisure 6.1% 6.5%

From Figure 5.10, it can be found that the rush hours for public traveling are
from 7 am to 8 am and from 5 pm to 6 pm, which match the historical traffic stat-
istics (ibid.).

Besides travel volume and travel purpose, travel duration is used to make a
comparison as well. The data for comparison comes from the survey data used
in the research by ZHAO et al. (2011) which present a survey data on commuting
time (travel duration in this research) in a weekday conducted in a neighborhood
in Beijing in 2001.

Table 5.11: Comparison of daily travel duration by public transportation in a weekday
(ibid.)

Item Simulation results (min) Survey data (min)

Mean time 66.4 52.4

The relative errors between simulation results and the real data mainly come
from the lack of certain activity patterns in the model, which results in the miss-
ing of a large amount of travel volume. For example, the model does not include
patterns for business people and tourists who would use the public transportation
multiple times in one day. These patterns were excluded in the model due to the
lack of available data.

As a conclusion, we listed the missing components in the artificial city model
that can be easily improved when the associated data becomes available.
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◦ More refined activity patterns, such as worker pattern in night shift, tourist
pattern, business people pattern.

◦ More rules in agents’ architecture when making decisions. For example,
people in reality would consider the choice of routes based on the price
of tickets before traveling while agents in this research only consider the
shortest path.

◦ More accurate distribution of the starting time, duration and ending time of
activities. For example, the departure time to workplaces for workers who
are employed by universities should be earlier than those who work in res-
taurants in general. For now, the departure time for workers with different
type of jobs follows the same distribution in this thesis.

5.4 Disease Spread

5.4.1 Disease Dynamics

With the verified and validated artificial city model, statistics of disease spread
can be used to validate the whole epidemic model in the artificial city. Thus, a
simulation experiment with 10 replications for disease spread among the modeled
19 million agents was constructed.

Agents, who are in the disease (H1N1) outbreak in this research, have 16 poten-
tial phases which are presented in Figure 5.5. The contagious rate for a susceptible
person in a sub-location containing multiple infected people can be calculated
through Equation 5.1 which is presented in 5.2.6.

With these settings, we recorded the number of agents in different phases dur-
ing the simulation run for 30 days in each replication. The initial condition for the
disease model was that 1 in 2 million people in the population was in the ’Suspect’
phase.

In the disease spread model, the 16 potential phases are categorized into two
types: end phases and transitional phases. Firstly, we present the number of
agents in the end phases of ’IMMUNITY’ in Figure 5.11. Other end phases such as
’HEALTHY’ and ’DEAD’ are presented in Appendix B (’IMMUNITY’ is also presen-
ted as well).

One example of the transitional phases is ’Hospitalized’, which is presented
in Figure 5.12. Other major transitional phases are presented in Appendix B. It
is worthy to mention that there is a drop in the trend-line in the phases such as
’Asymptomatic_Contagious_Early_Stage’ in Simulation day 6. This is because all
simulation studies in this thesis start from Monday and agents in Saturday (Sim-
ulation day 6) will have less contacts based on weekend patterns.
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Figure 5.11: Number of agents in the phase ’IMMUNITY’ (10 replications)
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Figure 5.12: Number of agents in the phase ’Hospitalized’ (10 replications)

5.4.2 Model Validation

As we stated before, the phase transitions are modeled mainly according to the
research of STROUD and VALLE (2007). To validate the results of disease spread in
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this research, we made a comparison with the results of disease spread in (ibid.)
through giving out the distribution of ’infected’ agents (from Phase ’Asympto-
matic_notContagious’) by age group in Figure 5.13 and by infection location type
in Figure 5.14.
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Figure 5.13: Distribution of infected agents’ age

From Figure 5.13, we find find that the age group ’10-20’ (mainly consisting
of students) got the highest infection rate which is aligned with the conclusion in
(ibid.). CDC of the United States collected and analyzed the reported cases in 2009
and concluded that the infection rate is the highest among people in the 5 years
to 24 years of age group 8.

From Figure 5.14, we can find that household (home) is the most possible loc-
ation type for disease spread among the full population, followed by workplaces,
schools and transportation. This result is also consistent with the conclusion in
(ibid.). To give a detailed view, the distribution of infected agents with different
social roles in different location categories is presented in Figure 5.15.

We also presented the distribution of infection sources for different social roles
in Figure 5.16.

From Figure 5.16, we can find that the biggest part of the infections for a given
social role are from the same social role type except for babies. It can be explained
by the fact that students, workers and retired people stay with each other in most of
their day time while babies always stay with their parents. Especially, workers get
a higher infection possibility from their companions than the other social roles. It
is caused by both the facts that workers are the biggest part of the population and
workers are in more closed spaces during the day.

8http://www.cdc.gov/h1n1flu/surveillanceqa.htm
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Figure 5.14: Distribution of location type for infection among full population

Although some basic disease dynamics reported in the figures above are con-
sistent with STROUD and VALLE (2007), there are many difference in other specific
indicators. For example, STROUD and VALLE (ibid.) reported that about 10% of the
population will be symptomatic or convalescing at the pandemic peak after 30
days of stable and exponential growth, while we get a result of around 5% of the
population that will be convalescing after 16 days. Furthermore, there are are also
difference in the concrete numerical values in terms of the the breakout of cumu-
lative infections by location type and the clinical attack rates by age groups. Since
we believe these differences are correlated to the artificial city model and the un-
derlying population data (China vs USA) are different, these indicators will not be
validated in this research.

In reality, there was an H1N1 outbreak in Beijing in 2009 which lasted more
than six months. However, the historical data, including the peak number of ’in-
fection’ and the time of the peak, will not be used for validation in this research due
to many factors. First of all, the peak number of reported ’infection’ was based on
confirmed cases. These cases do not distinguish the disease phases and do not
contain detailed personal information. Secondly, the reported peak time (day)
lasted a rather long period as a series of interventions were conducted by differ-
ent authorities in different part of the city among different social roles, from the
first case in May 16 to the peak time on October 28, 2009. Therefore, the simulated
results of the extreme situation in this research cannot be validated. Instead, an
expert validation process is required as part of future research.
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Figure 5.16: Distribution of the source of infection for different social roles

5.5 Comparison with Related Works

5.5.1 Model with Same Disease Transition Model

Since this research shares the same disease (H1N1) model with the research Epi-
SimS by STROUD and VALLE (ibid.) for prediction in southern California, it is ne-

101



Case: Large-scale Agent-based Epidemic Prediction and Control

cessary to compare the model by EpiSimS with the model in this research.
Besides the differences in data and parameters such as the basic contagious

rate (R0) and the data source, the major differences are reflected in the choices in
the design and implementation phases.

◦ Although sublocations are modeled in EpiSimS, the activity locations (phys-
ical containers) are organized in a more hierarchical way in this research.

◦ Weekdays and weekend days are averaged to get a representative day in Epi-
SimS while they are separately modeled in this research.

◦ EpiSimS does not capture disease transmission during travel while this re-
search includes a public transportation component for commuting.

◦ Agents’ behavior are based on fixed schedules in EpiSimS while both activity
pattern can be replaced and specified activities (e.g., social activity) in the
pattern can be rescheduled in this research.

5.5.2 Model with Same Data Source

Although the population and environmental data originates from GE et al. (2014)’s
research, this research is independent and the way to design and implement the
artificial city model and epidemic prediction model is different. To show how the
research in this thesis is unique and innovative, we made a comparison between
this research and the KD-ACP framework (CHEN et al. 2015) which was used to
implement an epidemic model based on the same data.

◦ Agents implemented by KD-ACP behave according to fixed activity sched-
ules in terms of the activity sequence, the activity locations (fixed choices)
and duration. That is, agents in KD-ACP do not have decision-making
capabilities. This thesis models agents in a different way by which agents
own multi-level decision-making capabilities while still staying "simple" and
"small" enough for computational efficiency.

◦ Social networks in KD-ACP are predefined in the initial data, thus, no un-
scheduled joint social activities can be executed in the simulation. This
thesis generates social networks for agents dynamically by which agents can
have complex social interactions in order to join in unscheduled joint social
activities.

◦ Subway networks are modeled to represent the whole public transportation
in KD-ACP. A lot of efforts are required to complete the public transporta-
tion networks. However, this thesis archives this task easily by proposing the
concept of ’movable physical container’.

◦ The disease model are considered to be validated in KD-ACP in two indic-
ators, the infection trend and the basic reproduction number. This thesis
verifies and validates the model in both people’s daily behavior and infec-
tion details, which include more model details.
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5.6 Discussion

This chapter presented a model of a large-scale artificial city of Beijing, on which
to test policies for controlling the spread of disease among the full population (19.6
million). This is used as a case study to test the proposed large-scale agent-based
social conceptual model. Firstly, by combining diverse data sets, including gener-
ated census-based data, open source maps, activity patterns, an artificial city with
a large population was constructed. In this artificial city, each of the 8 million
physical locations and 19.6 million citizens was modeled. A microscopic public
transport system (subways and buses) together with a predicted road traffic sys-
tem are simulated in an artificial city and are well integrated with the daily activ-
ities of the population. With this model, spatial contact networks emerge and can
be observed during the execution of the model. Thus, research requirements RR9
and RR10 are satisfied.

RR9 Research Requirement - Agent Environment in the Case Study The
agent environment in the large-scale epidemic prediction should model
different kinds of physical spaces including movable spaces for disease
transmission.

RR10 Research Requirement - Social Interaction in the Case Study Large-
scale agent-based epidemic prediction and control should have capabilities
to model complex human social interactions.

Secondly, to investigate the effect of the emerging spatial contact network for
epidemic prediction, a pandemic influenza disease progression model was im-
plemented and several scenarios related to adding different contact types were
tested.

The disease was modeled as a functional entity to change agents’ healthy
status. The concept of ’Functional Entity’ was introduced to model those extra ob-
jects in the system that can influence or directly change attributes of either agents,
physical containers or social regulations. For example, weather is modeled as a
functional entity to change the temperature of physical containers. Thus, research
requirement RR6 is satisfied.

RR6 Research Requirement - Disease in the Case Study Large-scale epi-
demic prediction and control should have a flexible mechanism to model
new diseases with different phase transition process.
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6
Exploratory Model Studies

The popularity of large-scale agent-based social simulation comes from the fact
that it can help to explore different outcomes for phenomena where people might
not be able to view the results in real life. It can provide sociologically valuable
information on the society, and provide decision makers the outcomes of a new
policy on the society for policy evaluation. This chapter presents two kinds of sim-
ulation studies to test the quality and explore the possibility of the implemented
large-scale agent-based model for epidemic prediction and control.

6.1 Simulation Study on Model Outcomes

Due to the proposed conceptual model and the implemented model, this simula-
tion study on model outcomes covers several unique aspects that are not presen-
ted in other similar research. Two novel aspects among others in the model are the
inclusion of public transportation and dynamic social interactions. In this section,
two scenarios are used to test the effect of the inclusion of these two aspects in the
model.

Before studying these scenarios, a baseline scenario without the inclusion of
public transportation and dynamic social interactions was created to study the
disease dynamics at first, which is considered as a traditional model for large-scale
agent-based epidemic prediction. The initial condition for the model was that 1
in 2 million people in the population was in the ’Suspect’ phase. The number of
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persons in the ’Hospitalized’ phase was recorded during a simulation run of 30
days.

6.1.1 A Baseline Scenario without Public Transportation and Dynamic

Social Interactions

The first scenario is a baseline model where agents will only have contacts in
static physical containers such as home, schools and workplaces where movable
physical containers such as buses and metro trains are excluded from the model.
Agents will not go to attend social activities either, as no joint social activities will
be included in agents’ pattern. Furthermore, agents don’t have decision-making
capability during disease outbreak, which means no agents will decide to stay at
home even when he/she has a symptom. No interventions are conducted during
the simulation run either. This scenario contained an experiment with 5 replic-
ations, and the number of agents in the ’Hospitalized’ phase for each replication
were recorded.

The statistical results are presented in Figure 6.1.
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Figure 6.1: Number of ’Hospitalized’ agents in a baseline scenario

The major indicators and statistics are shown in Table 6.1 and the presented
two KPIs will be compared with the results from the other scenarios as they can
intuitively show the dynamics of disease transmission. The first indicator ’Average
Peak Time’ shows the average time point when the number of ’Hospitalized’ agents
reaches the highest value and the second indicator ’Peak Number’ presents the
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number of ’Hospitalized’ agents at the highest point. Besides the mean value and
95% confidence interval, the p value of the Shapiro-Wilk Test is also given to test
the normality of indicators.

Table 6.1: Results of ’Hospitalized’ agents in a baseline scenario after 5 replications

Result Mean 95% Confidence Interval Shapiro-Wilk
Test (P Value)

Average Peak
Time (Hours)

362 [361.0, 363.0] 0.135

Peak Number 652,598 [647,989, 657,207] 0.9189

It can be found from Table 6.1 that both the ’Average Peak Time’ and ’Peak
Number’ came from a normal distribution, which can be used to compare with
other statistical results in other scenarios.

6.1.2 Scenario of Including Public Transportation

In order to test the quality of implemented physical containers, a scenario was
designed to test the impact of including travel contacts in movable physical con-
tainers on disease spread, where the microscopic public transportation system
was included in the model and agents can realistically ’travel’ through the city and
have travel contacts.

For this scenario, we also conducted an experiment with 5 replications. For
each replication, the numbers of agents in the ’Hospitalized’ phase were recorded
and the statistical results are presented in Figure 6.2.

Similar to the baseline scenario, the key statistics on indicators of ’Average Peak
Time’ and ’Peak Number’ are shown in Table 6.2.

Table 6.2: Results of ’Hospitalized’ agents when including travel contacts after 5 replica-
tions

Result Mean 95% Confidence Interval Shapiro-Wilk
Test (P Value)

Average Peak
Time (Hours)

375 [371.4, 378.6] 0.7147

Peak Number 700,138 [691,524, 708,752] 0.4913

From Table 6.2, we can find both the ’Average Peak Time’ and ’Peak Number’
follow a normally distribution as well. To show the difference of the simulation res-
ults between the baseline scenario and the scenario including movable physical
containers, we did statistical tests using SPSS and present the outcome in Table
6.3.
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Figure 6.2: Number of ’Hospitalized’ agents in the scenario of including public transport-
ation

Table 6.3: Tests for equality of means between baseline and including movable physical
containers

Levene’s
Test for
Equality of
Variances

t-test for Equality of Means

F Sig. t df Sig. (2-
tailed)

Mean
Differ-
ence

Peak
Time
(Hours)

Equal
variances
not
assumed

6.146 0.0382 -7.070 4.552 0.001 14

Peak
Num-
ber

Equal
variances
assumed

0.837 0.387 -11.49 7.110 7.56e-
06

47540

It can be seen from Table 6.3 that the p values for both the two indicators are
are below 0.05 in the t-test. It means both the ’Average Peak Time’ and ’Peak Num-
ber’ in this scenario are different from the baseline scenario. That is, including
movable physical containers in the model increases the peak number of infected
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agents (7.3%) in the experiment. In addition, it does shift the infecting peak to
a later time (14 hours) according to the ’Mean Difference’ for ’Peak Time’. This
result confirms the results in the other research (COOLEY et al. 2011). The differ-
ence in ’Peak Number’ is minor, which means travel contacts in movable phys-
ical containers are not the dominating factor for the disease to transmit among
people in the model. Figure 5.14 proved this cause where infection rate occurred in
public transportation is around 8%. Furthermore, in the baseline scenario where
movable physical containers are excluded from the model, people are designed to
have longer contact with their colleagues, families or social networks for the saved
travel time in the model. These longer contacts cause the ’Peak Time’ of disease
outbreak to be slightly ahead (14 hours in the experiment) of the scenario of ’in-
cluding movable physical containers’.

Studying the disease transmission through travel contacts in movable physical
containers in large-scale epidemic models is not a new idea. However, most of the
works in the literature uses simplified or estimated models to represent travel con-
tacts in daily transportation. The research in GREFENSTETTE et al. (2013), PARKER

and EPSTEIN (2011) uses gravity models with simplified assumptions to model the
travel patterns in order to create random contacts during travel. RAKOWSKI et al.
(2010) considered only the intermediate breakpoints (transfer cities) between end
points (the origin and the target cities) to determine the number of co-travelers
for each traveling agent during its travel. PEREZ and DRAGICEVIC (2009) modeled a
transportation network to represent the movement path as a trajectory in space for
disease propagation, while the disease does not propagate during the transporta-
tion. All these research works claim that these methods are sufficient to model
disease spread through travel contacts to some extent, however, none of their
models offers the ability to represent accurate travel contacts in movable phys-
ical containers which are important to test some specific interventions on travel
controlling (e.g. shut down one metro line), while the interactions of people using
public transportation in large metropolitan areas actually help spread an influ-
enza epidemic (COOLEY et al. 2011).

According to our findings in the literature, only COOLEY et al. (ibid.) developed
an agent-based model of New York city that incorporates subway ridership which
simulates the actual travel contacts of subway riders and examines the impact that
a severe influenza epidemic would have on NYC and the potential effects of dif-
ferent hypothetical subway-related disease control measures. Compared to their
research, the novelty and contribution of this research are reflected in the follow-
ing aspects:

◦ We consider the metro system and bus systems as an indivisible whole and
investigate the role of the entire system on epidemic control, while only sub-
ways are studied in Cooley’s model (ibid.). With this contribution, we can
test more types of interventions in our model, such as closing the whole pub-
lic transportation system or avoiding public transportation.

◦ We modeled the diversity of traveling purpose in public transportation,
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while COOLEY et al. (2011) didn’t account for children commuting to school
on the metro system. Thus, interventions related to traveling purpose
such as forbidding or discouraging students to take public transportation
to schools can be tested in this model.

◦ There is a much more refined disease model in this research where 16 po-
tential phases of the disease are included. This can lead to test interventions
related to people in different phases. For example, the intervention of pre-
venting the symptomatic population to board the public transport system,
e.g., can be easily studied.

The study showed the relatively limited effect on epidemic outbreak, and the
results comply with other research findings (ibid.). As a matter of fact, it can be
seen from the scenario in this section that the model presented in this research of-
fers more flexible opportunities for policy makers to test different interventions re-
garding travel, such as forbidding students to take public transportation to schools
or preventing symptomatic passengers from using public transport.

6.1.3 Scenario of Including Social Networks and Social Interactions

In order to test the quality of implemented social networks and social interactions,
a scenario was designed to test the impact of including dynamic social contacts
during unscheduled social interactions on disease spread. In this scenario, social
contacts emerge when agents participate in social activities based on dynamically
generated social networks.

For this scenario, we also conducted an experiment with 5 replications. For
each replication, the numbers of agents in the ’Hospitalized’ phase were recorded
and the statistical results are presented in Figure 6.3.

Similar to the scenario of including public transportation, the key statistics on
indicators of ’Average Peak Time’ and ’Peak Number’ are shown in Table 6.4.

Table 6.4: Results of ’Hospitalized’ agents when including social interactions after 5 replic-
ations

Result Mean 95% Confidence Interval Shapiro-Wilk
Test (P Value)

Average Peak
Time (Hours)

260 [252.5, 267.7] 0.5765

Peak Number 694,458 [689,520, 699,396] 0.8103

From Table 6.4, we can find both the ’Average Peak Time’ and ’Peak Number’
follow a normally distribution as well. To show the difference of the simulation
results between the baseline scenario and the scenario including social networks
and social interactions, we also did statistical tests using SPSS and present the res-
ults in Table 6.5.
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Figure 6.3: Number of ’Hospitalized’ agents in the scenario of including social interactions

Table 6.5: Tests for equality of means between baseline and including social interactions

Levene’s
Test for
Equality of
Variances

t-test for Equality of Means

F Sig. t df Sig.
(2-
tailed)

Mean
Differ-
ence

Peak
Time
(Hours)

Equal
variances
not
assumed

9.184 0.016 26.306 4.132 9.308e-
06

102

Peak
Num-
ber

Equal
variances
assumed

0.041 0.845 -12.146 7.962 2.036e-
06

41860

From Table 6.5, we can see that the p values for both the two indicators are
below 0.05 in the t-test. It means both the peak number and the total number of
’Hospitalized’ agents have a significant difference between the two scenarios. Ac-
cording to the ’Mean Difference’ in the table, the ’Average Peak Time’ is increased
by 6.4% and the peak time is shifted to an earlier time (102 hours). Although the
difference in the number of infections is minor, the result proves that including
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social interactions does have a great impact on disease outbreak in terms of peak
time.

Compared to other large-scale epidemic models, the role of social interactions
in disease progression is not widely explored. The most proximate research is a
test of the effects of interventions such as self-isolation (BISSET et al. 2009b, CHEN

et al. 2010), which eliminates all activities including social activities. The difficulty
comes from the design of these models where the social networks are treated as
fixed attributes of individuals.

This study is also quite novel as testing the effect of interventions such as elim-
inating social interactions from part of the population can be easily realized due
to dynamic generation of social networks and the decision capability of agents
to join non-predefined social activities. This research is inspired by RONALD et
al. (2012a), but there are big differences. For example, the agent in this research
is pattern based which results in the capability of modeling interactions among
millions of agents while agents in RONALD et al. (ibid.) are activity based and the
system scale is hundreds of agents.

With the way to generate social networks and execute social activities in this re-
search, interventions such as eliminating social interactions from part of the pop-
ulation or blocking a percentage of the social interactions can be easily realized.

6.2 Simulation Study on Epidemic Interventions

The most commonly-used policies for H1N1 epidemic interventions in current
research are for instance, vaccination, antiviral treatment and school closure (CAO

et al. 2014). The scarcity of the types interventions that can be studied relies on the
existing incomplete and unrealistic models.

With the epidemic model of this research, three policies to control disease
outbreak will be introduced and tested to explore the model, which are closing
schools, prohibiting social activities and avoiding public transportation.

6.2.1 Simulation Scenarios

The intervention of closing the whole school system (including universities) is that
all students and employees in the schools need to change their behavior when
the number of agents in the city who are in the ’Hospitalized’ phase reaches a
threshold. A monitor in the model is created to give alerts. When the trigger is
fired, a notification is fired to all targets. Agents who receive this notification either
switch their activity pattern to a new preferred one or will be forced to use one spe-
cial pattern specified by the social regulation (policy).

The intervention of prohibiting social activities is assumed to have a low effect-
iveness, as it’s not compulsory. We assume that 50% of the agents will follow this
regulation. The intervention is triggered by a monitor in the model as well. Agents
who decide to follow the intervention will skip social activities and stay at home.
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The intervention of avoiding public transportation means that the occupancy
of the public transportation will decrease. When the ’hospitalized’ agents exceed a
certain number, the whole population will get a warning of the danger taking pub-
lic transport. However, the agents can choose either to find other transportation
methods or to travel as usual.

The initial condition at t=0 for all the scenarios is that 0.01% of the population
(100,000 agents) are in the ’Suspect’ phase. The number of people in the ’Hospit-
alized’ phase is recorded during the simulated 30 days within the three scenarios
and the results are compared to a baseline model where no interventions are in-
troduced. Table 6.6 describes the other settings of the applied interventions.

Table 6.6: Settings of applied policies in the simulation scenario

Item Policy Mandatory
degree

Trigger

1 Close school 1.0 0.1% population hospital-
ized

2 Prohibit social activity 0.5 0.1% population hospital-
ized

3 Avoid Public Transportation 0.5 0.1% population hospital-
ized

Based on this initial setting, we ran the simulations and recorded the number
of agents in the phase of ’Hospitalized’.

Before conducting the experiments for the three interventions, firstly an ex-
periment with 5 replications without interventions was conducted as a baseline,
and the numbers of agents in the ’Hospitalized’ phase for each replications were
recorded.

6.2.2 Simulation Results and Analysis

The first tested intervention is closing schools when the number of students in the
’Hospitalized’ phase is monitored to reach a predefined threshold. If the involved
schools are shut down, the related students will be using another week pattern.
However, the students can return to their original week pattern when the alert is
lifted. This scenario puts forward a challenge to the family members of the stu-
dents. For example, a parent’s week pattern is required to be replaced as well when
the parent is supposed to carpool the student to school. Thus, a detection and re-
placement for parent’s week pattern is necessary after replacing the students’ week
pattern during the simulation.

The second tested intervention is prohibiting social activities for controlling
disease spread. When this intervention is carried out, agents can decide whether
to still go to the social activities jointly with friends or not.
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The third tested intervention is avoiding public transportation. When the
number of people in the city who are in the phase of ’Hospitalized’ reach a
threshold, a policy called "avoiding public transportation" is triggered. Similar to
the implementation of the intervention "prohibiting social activities", a monitor
is modeled to give alerts. Agents who are going to execute public transportation
activities have certain degrees of preference to follow the policy or obey it. When
an agent decided to follow this policy, he/she will take a TAXI (assume unlimited)
to go to the destination (a duration of travel is scheduled), otherwise the agent will
take the public transportation as usual.

For all these scenario, we conducted an experiment with 5 replications for each
scenario. For each replication, the numbers of agents in the phase of ’Hospital-
ized’ are recorded. The main objective of this simulation study is to study and
provide an effective comparison on consequence of disease progression between
the scenario of no intervention and the scenarios with interventions.
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Figure 6.4: Comparison of Number of ’Hospitalized’ agents between ’closing school’ and
’no intervention’

For the first intervention closing schools, the simulation results showed that
the trigger was fired at simulation day 4 and the policy took effect at day 5. From
Figure 6.4, we can see that the peak when using the school closure intervention
is lower (13.98% in average). The simulation results also showed that the average
age of infected agents is 6 years older. It means applying school closure to reduce
regular contacts can effectively suppress the disease outbreak.

There are many large-scale epidemic models that can offer the ability for test-
ing interventions of school closure (BISSET et al. 2009b, 2014, MNISZEWSKI et al.
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2008, GREFENSTETTE et al. 2013, PALESHI and EVANS 2011). However, there is a
fundamental difference in our model. The model in this research uses a more
flexible and memory-efficient way to change the original schedule/itinerary of an
agent which is induced by policies such as school closures. The models mentioned
above either replace the involved activity in the schedule with another activity (for
example, anyone whose activity schedule would have taken them to one of the
closed locations will go home during that time instead, and they will follow their
other scheduled activities as usual (MNISZEWSKI et al. 2008)), or pre-compute and
keep the alternate schedules for agents in order to enable the alternate schedules
to work in a consistent way on locations and duration (BISSET et al. 2014), or use a
simple alternate schedule (for example, household and community contact dura-
tions of the students whose schools are closed are considered to be equal to their
weekend values (PALESHI and EVANS 2011)). The model in this research is more
flexible in the implementation of changing schedules if necessary due to the fact
the agents are activity pattern based. Every agent will only keep an index point-
ing to a week/day pattern, while the behavior details such as activity location and
duration are not kept in the pattern, but will be computed during the simulation
runs. This design benefits on not only that agents can have many alternate sched-
ules without much memory consumption, but also that modeler can easily test
different scenarios through creating new activity patterns.
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Figure 6.5: Comparison of Number of ’Hospitalized’ agents between ’prohibiting social
activities’ and ’no intervention’

For the intervention of prohibiting social activities, the day for the implement-
ing the policy (day 5) is the same with other interventions as all the thresholds are
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set to be the same. We can find in Figure 6.5 that prohibition of social activities
with friends in the model can’t reduce the number of the infected agents in the
long term but does shift the infecting peak to a later date (4 days in average).

Compared to the mandatory interventions such as school closure, the effect of
advisory interventions such as prohibiting social activities for controlling the dis-
ease progression is not widely explored in current research on agent-based epi-
demic models. The most proximate intervention is self isolation (BISSET et al.
2009b, CHEN et al. 2010), which eliminates all activities. This lack of similar re-
search is caused by the design in the models that the social networks are treated
as fixed attributes of individuals, which results in the difficulties of implementing
interventions of changing social interactions dynamically.
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Figure 6.6: Comparison of Number of ’Hospitalized’ agents between ’avoiding public trans-
portation’ and ’no intervention’

An observation in Figure 6.6 is that the number of infected agents in the scen-
ario of avoiding public transportation has a lower peak (11.94% in average) but
without delay. The lower peak shows that fewer public transportation would de-
crease the infection possibility caused by random contacts in travel. The fact
that the time of the peak didn’t shift means travel contacts are not the dominat-
ing factor for the disease to transmit among people. This is because the disease
(H1N1) we modeled in this research will spread effectively based on stable and
long-time contacts while the environment and the contacts in public transporta-
tion frequently change.

To summarize, these experiments show the difference of the epidemic out-
break using different interventions through presenting the statistical results of
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’Hospitalized’ agents. We found that all policies introduced in the model have a
positive influence to control disease spread.

The current trend in researches on influenza pandemic control has been shift-
ing to study parameter changes or interventions one-at-a-time, with many stud-
ies focusing on a single intervention, such as school closures, mass vaccination,
or the use of face masks. The results of the study by BEELER et al. (2012) with a
five-factor designed experiment suggest that such an approach to pandemic mod-
eling is fundamentally limited. The effects of pandemic control strategies may
vary considerably in the presence of other control strategies, or be contingent on
the epidemiological characteristics of the particular strain causing the pandemic.
There may be a risk of misrepresenting or oversimplifying the effectiveness, and
cost-effectiveness, of pandemic control strategies if these strategies are not eval-
uated in a way that considers the presence of other policies or variable pandemic
characteristics. However, the study presented in this thesis performs well in terms
of testing different scenarios and combining scenarios is extremely easy. In addi-
tion, shifting behavior of agents as a result of scenarios or changing compliance
with government measures, e.g., decreasing compliance over time, or increasing
compliance with an increasing number of infections, can be easily modeled as
well.

6.3 Discussion

Two types of simulation studies were conducted in this chapter and the simula-
tion results clearly showed the characteristics of epidemic dynamics which reflect
model outcomes and model capabilities. The simulation study on model out-
comes used different scenarios to show the effect of the implemented model com-
ponents. The simulation study on epidemic interventions showed the impact of
different interventions on controlling disease spread.

Epidemic interventions in this research are modeled as social regulations. The
concept of ’Social Regulation’ is designed to model norms and institutions that
can guide and influence agent behavior globally. In a social regulation, a mon-
itor is used to observe agents’ behavior and status, analyze the results and com-
pare with standards. Based on the comparison, social regulations can trigger vari-
ous Operations to the agent society in order to regulate agents’ behavior. One of
the referenced implementation on Operations in a large-scale agent-based social
simulation is to switch agents’ activity patterns when the objective agents don’t
comply with any of the standards. With this process, agents can respond to differ-
ent situations during a simulation run. For example, regulating agents’ behavior
during a disease outbreak is an indispensable part of a large-scale agent-based
epidemic simulation. How agents would respond to a disease outbreak is a light-
weight strategical level decision-making process in our reference implementation
as it would have a big impact on the agent’s behavior. With the implemented in-
terventions (policies) in this chapter, research requirement RR7 is satisfied.
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RR7 Research Requirement - Policy in the Case Study Large-scale epidemic
prediction and control should have a flexible mechanism to model new
policies with different settings.
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7
Reflection on Large-Scale

Agent-based Social
Simulation

Chapter 6 provided several simulation scenarios to show the effect of the proposed
conceptual model in the case of epidemic prediction and control. In this chapter,
we will use several tests to show that several novel designs during the practical
phase of the case study can also be used as general designs in large-scale agent-
based social simulation studies in addition to the general conceptual model.

7.1 Agent with the ’Right’ Amount of Intelligence

This thesis presents a new way to model large-scale agents with complex behavi-
ors. An agent consists of three main parts: (1) agent object, (2) activity pattern,
and (3) multi-level decision-making module. An agent object, as part of the agent
architecture, is the body which is responsible for updating the agent status as the
carrier, receiving, processing and forwarding input messages to the correspond-
ing decision-making module, and enabling agents to behave according to activity
patterns. For a given agent, an activity pattern specifies which behavior schedule
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will be conducted. Based on the activity pattern, agents will mainly perform their
activities according to the initial predefined sequences of activities. However, this
schedule does not specify how long, when, where and with whom these activities
are to be, which is decided by the decision-making module. The decision-making
module serves as the ’brain’ of the agent architecture which is specially designed
for a number of proposed decision-making problems. It is considered as a sup-
plement to the agent’s behavior pattern. With this design, the agent can carry out
a lot of complex activities and show diverse behavior, such as traveling around, or
joining non-predefined social activities.

In order to check whether the implemented agents have the ’right’ amount of
intelligence that can guarantee both system performance and model complexit-
ies, two simulation tests were conducted.

7.1.1 System Performance

One of the challenges to model agents with decision-making capabilities for large-
scale agent-based social simulation is to guarantee the system performance, as the
countless communication messages for complex reasoning and decision-making
processes and the agents’ large amount of local argumentation knowledge will
greatly decrease the simulation performance.

The typical solution for the simulation phase in current research on large-scale
ABSS is partitioning the model into parts and running different parts in a paral-
lel and distributed setting (SIŠLÁK et al. 2009) through introducing corresponding
communication middlewares (such as MPI, or RTI) and high-performance com-
puting (BISSET et al. 2012).

As a different tryout, this research tried to gain reasonable system performance
from the consideration of model design and implementation, which adopted a
pattern-based design for agents’ daily behavior and a multi-level mechanism for
decision-making. In order to test the performance of this design, we implemen-
ted three sets of simulation experiments and recorded the execution time of the
experiments when the agent population increases in different situations. The res-
ults are shown in Figure 7.1.

From Figure 7.1, we can find that the execution time is basically linear if agents
only include operational level decision-making process. When the higher level
decision-making processes are added to agents in the simulation, the execution
time increases slightly. When all agents (19.6 million) with complete decision-
making capabilities are simulated which is the worst case, it will take around 40
hours for one simulation run. It still has acceptable performance as this simula-
tion runs for a simulation period of 30 days.

Compared to other agent architectures presented in Table 2.1, the agent archi-
tecture designed and implemented in this research satisfied all the requirements.
It can be easily decomposable into components, has its own decision-making cap-
ability, supports a mechanism to sense and reflect the surrounding environment,
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Figure 7.1: Simulation performance comparison for agents with different capabilities

has dynamical social interaction capability, has the ability to response to emergent
events, and is "simple" and "small" enough.

7.1.2 Agent Capability

Section 7.1.1 presented a test to show the performance of the multi-level decision-
making agents. In this section, a test is conducted to show the effect of the
decision-making capability in the context of disease spread.

The capability that agents with the role of ’Student’ have is to decide to stay
at home when the total number of agents in the phase of ’Hospitalized’ reaches
a threshold. However, the preference of making this decision is various in differ-
ent settings. We presented the results in Figure 7.2 to show the dynamics of the
number of infected agents in the role of ’Student’, where the setting ’Preference =
0’ means no student agents will make the decision to stay at home, ’Preference =
0.2’ and ’Preference = 0.4’ mean 20% and 40% of the student agents will decide to
stay at home. The population of agents is set as 10,000 in this test.

From Figure 7.2, we can find that the capability of making decisions of students
does have positive impact on the spread of disease among the students them-
selves. To show the impact to the whole population, the results about the dynam-
ics of the number of infected agents among the the full population are presented
in Figure 7.3.

This test shows the effect of the decision-making capability for agents in the
context of disease spread.

Together with the case study in Chapter 5, these two tests prove that research
requirements RR2 and RR8 are satisfied.
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RR2 Research Requirement - Agent Architecture The architecture for agents
in the target conceptual model for large-scale ABSS should satisfy the fol-
lowing requirements.

RR2.1 It should be easily decomposable into components.
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RR2.2 It should have its own decision-making capability.

RR2.3 The architecture should support a mechanism to sense and reflect the
surrounding environment.

RR2.4 It should have dynamic social interaction capability.

RR2.5 It should have the ability to respond to emergent events, rather than
having to blindly follow a prearranged plan.

RR2.6 The agents should be "simple" and "small".

RR8 Research Requirement - Agents in the Case Study Agents in the large-
scale epidemic prediction should have capabilities to make complex de-
cisions to some extent during disease outbreaks.

7.2 Agent Environment

The agent environment in the proposed conceptual model is separated into three
concepts: physical container, social regulation and functional entity. In the case of
epidemic prediction and control, social regulations are implemented as interven-
tions to control disease spread, physical containers are implemented as activity
locations and the disease is considered as a functional entity.

In this section, we will run several tests to show that not only these concepts
can be generalized for other social systems, but also some of the used algorithms
can contribute to other systems.

7.2.1 Three-level cache system of Physical Containers

This thesis introduces a new concept of a hierarchical ’Physical Container’ to rep-
resent the physical environment where agents stay. Typical physical containers
are school, classroom, office, bedroom, and train, etc. Physical containers are
organized hierarchically. Each physical container can be partitioned into sub-
physical containers. Examples are classrooms in a school, stores in a shopping
mall, or offices in a working place. Agents can have different forms of contacts
when they are in the different level of physical contain hierarchy. In addition,
physical containers show "behavior" just like agents. For example, an important
"behavior" ’Calculate Distance’ should be implemented in the physical container,
which calculates the distance between two physical containers based on the GIS
coordinate information (e.g., latitude and longitude).

Besides the large number of agents, the challenge of large-scale agent-based
social simulation also arises from the large number of physical containers. In the
context of the case study in this research, there are 8 million static locations in the
city of Beijing. A three-level cache system was proposed in Chapter 4 (pp 61-62)
to organize the millions of locations during a simulation run.
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To show the effect of this cache system on the simulation, we made a compar-
ison between two experiments. The first experiment is to measure the simulation
execution time for a simulation period of one week (7 days) when the cache sys-
tem is adopted, while the other experiment excluded the cache system. Other ini-
tial conditions are set to be the same, for example, the agents are the same in all
properties and decision-making capabilities in both experiments. The results for
different agent populations (from 1000 to 5000) are shown in Figure 7.4.

140 142 145 148 150
179

208
236

266
298y = 29.6x + 148.6

y = 2.6x + 137.2

0

50

100

150

200

250

300

350

1 2 3 4 5Si
m

ul
at

io
n 

Ex
ec

ut
io

n 
Ti

m
e(

Se
co

nd
s)

Agent population (X 1000)

Comparison of Simulation Performance on Cache System

With Cache
System

Without Cache
System

Figure 7.4: Performance comparison in simulation with and without the use of cache sys-
tem for a week

From Figure 7.4, we can find that the execution time increases linearly in both
cases. However, the execution time in the situation without cache system is ten
times longer than the situation with cache system in all the 5 settings, where we
exclude the initial set-up time of the simulation run. Since no epidemics are in-
volved in this test, this cache system is supposed to benefit other large-scale social
system research, as well.

7.2.2 ’GridZones’ Algorithm

Besides an effective mechanism to organize physical containers in large-scale sys-
tems, the concept to separate physical containers from the general agent envir-
onment concept makes it much easier to include a transportation component in
a social simulation model. This is achieved by considering vehicles as movable
physical containers in the model.

With the consideration of transporters as movable physical containers, this re-
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search included a public transportation component into an artificial city model,
where 19.6 million agents can realistically travel through this component for daily
commuting purpose.

An algorithm called ’GridZones’ was proposed in Section 4.3.2.1 in order to op-
timize agents’ routing processes. To evaluate this algorithm, a test is conducted
by measuring the simulation performance between two situations when this al-
gorithm is adopted or not. The simulation execution time is recorded for both
situations when the number of agents increase from 1000 to 5000 for a simulation
period of a week (7 days). The comparison is shown in Figure 7.5.
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Figure 7.5: Performance comparison for in simulation with and without the use of ’grid-
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From Figure 7.5, we can find that the simulation execution time increases lin-
early in both of the two situations, and the speedup of the situation with the ’Grid-
Zones’ algorithm is enormous when the agent population increases. In addition to
the performance optimization, the other benefit are reflected on the efficiency of
memory usage. With the inclusion of ’GridZones’, all the connecting information
for the bus/metro stops inside the zone are gathered together and stored in this
’GridZones’. This design avoids the redundancy when the connecting information
is separated into different stops, and ensures the updating efficiency when one of
the stops in the traffic graph is closed.

7.2.3 Including Weather as Functional Entity

In the case of epidemic prediction and control, the disease is modeled as a func-
tional entity which can influence the behavior of agents directly. Considering the
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generalization of the concept of functional entity, more objects that can influence
either the behavior of agents or other entities in the social system can be modeled
as functional entities. This feature is shown by designing a test where the weather
condition is included in the epidemic prediction system.

This test models the daily temperature as a component in the weather condi-
tion in Beijing as a functional entity to show how the fluctuating of temperature
would influence the disease dynamics. The test designs a situation where the fluc-
tuating temperature in Beijing are applied to a disease spread model. The result of
the number of new infected agents in this situation is compared to another situ-
ation where the temperature is constant. The comparison is shown in Figure 7.6.
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From Figure 7.6, we can find that the temperature has a positive effect for dis-
ease transmission. The result of the effect will not be validated as the aim of this
test is to show the easy use of the concept of functional entity in a general social
simulation.

With these three tests, research requirement RR5 is satisfied.

RR5 Research Requirement - Agent Environment The agent environment in
the conceptual model for large-scale ABSS should be separated into different
concepts to represent spatial information together with other independent
artifacts and social concepts that can influence agent behavior.

7.3 Dynamic Social Networks and Social Interaction

One of the innovations for agents realized in this research is the capability to re-
spond reasonably to unscheduled social activities based on dynamically gener-
ated social networks including family, classmates/colleagues and friends.
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Since the family and classmates/colleagues are intuitively generated by check-
ing the other agents who stay in the same living and studying/working places, de-
fined in the input source data, we only focus on the generation of friends and in-
teraction with friends.

The friends in the dynamically generated social networks are based on the pro-
posed concept ’social similarity’ which is inspired from the concept of social reach
in the social circle model and the aggregation utility between two agents (NAVARRO

et al. 2011).
To show the effect of this design for general social systems, we constructed a

simulation for the large-scale artificial city model (without disease outbreak) and
ran it for a simulation period of 30 days.

The parameters in this experiment are initialized using the data from Table 7.1.
Since the four factors (age, social role, family role and the number of friends) are
considered to be equally weighted to generate a friendship link, the correspond-
ing weight coefficients (µa ,µs , µ f , µn ) are calculated according to boundary con-
ditions, which is to enable the resultS (Ii , I j ) to be constrained between 0 and 1.
1 means they are fully connected while 0 means that they have no relations. The
other parameters are initialized as one possible experimental setting and the sens-
itivity of them will not be discussed in this research as the aim of this test is to show
how the dynamic social networks work in the context of a large-scale artificial city
model.

Table 7.1: Parameter initialization for social activity participation analysis

Item Value Description

µa 2.268×10−5 weight coefficient
µs 1.563×10−2 weight coefficient
µ f 0.0625 weight coefficient
µn 2.5×10−5 weight coefficient
A(d , E ) 1 interest degree
t 0.25 attendance threshold

Based on this initial setting, agents’ friends can be generated when ’Friends-
SynchronizedActivity’ is scheduled during a simulation run. The number of
agents’ friends is assigned to agents by the algorithm in Section 4.4.1 which follows
a power-law distribution (HAMILL and GILBERT 2010) with an average number of
13.

Together with the family and the classmates/colleagues network, agents’ social
networks are formed. However, agents will only generate their social networks
when they need execute social activities.

Agents, who receive invitations from their friends for attending social activities
which are unscheduled in their activity patterns, can make interactions with the
organizing agents in order to make a final decision.
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Table 7.2 shows the average distribution of agents’ decisions on a new fam-
ily social activity after executing the processes explained in Section 4.4.2. The
equation-based process and decision tree-based process are the processes after
which agents receive an activity proposal.

Table 7.2: Distribution of agents’ decisions on family social activities

Decisions Equation based Process Decision Tree based Process

Accept 0.78 0.67
Decline 0.22 0.33

From Table 7.2, it can be found that 33% of agents decide to decline the invit-
ation after the decision tree process.

Similar to Table 7.2, Table 7.3 shows the average distribution of agents’ de-
cisions on a new colleague/classmate social activity. The biggest difference be-
tween the figures is that more agents are willing to participate in a colleague/-
classmate social activity than in a family social activity. This is because colleague/-
classmate social activities are often scheduled during the time when there are no
conflicts in the agents’ schedule.

Table 7.3: Distribution of agents’ decisions on colleague/classmate social activities

Decisions Equation based Process Decision Tree based Process

Accept 0.88 0.75
Decline 0.12 0.25

Table 7.4 shows the average distribution of agents’ decisions on a new social
activity after executing the planning processes. Compared with the other two fig-
ures, the unusual aspect of the figure is that fewer agents accept the new proposal.
This demonstrates that the composition of members in a friendship network can
be heterogeneous in terms of daily schedules.

Table 7.4: Distribution of agents’ decisions on friends social activities

Decisions Equation based Process Decision Tree based Process

Accept 0.67 0.54
Decline 0.33 0.46

Figure 7.7 shows how the number of agents in different social activities evolved
during a typical week day.

For the family social activity, there are three peaks in Figure 7.7 and it reaches
the highest point in the evening. This indicates that people are more willing to
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Figure 7.7: Number of people in social activities

plan activities with their families. For colleagues or students, there are two peaks
in the morning and the afternoon. This is caused by the day patterns where work-
ing people have to attend meetings in the morning and afternoon and students
attend joint sport activities in the afternoon. For the friend activity, it seems that
most friends will only meet in the evening, to have dinner, go shopping or go
to cinemas together. This phenomenon can be verified by the fact that Chinese
people are more wiling to have joint dinner as a social interaction (HORIZONKEY

2007). However, these results can’t be well validated in this research as no inde-
pendent data exists at this moment.

As a conclusion, this thesis provides a new method to generate social networks
dynamically for interactions among a group of agents on a large scale during a
simulation run. Three types of social networks are dynamically generated in the
model, which are family, colleagues/ classmates and friendships. Family and col-
leagues/ classmates are intuitively generated by checking the other agents who
are in the same living and working physical containers, while friendships are gen-
erated dynamically. This thesis learns from the concept of ’social reach’ in a social
circle model, and proposes the concept of ’social similarity’ to generate the special
type of social networks-friendship. Based on the entire social network, agents in
this model are able to communicate for scheduling joint social activities. When
executing joint social activities, a functional entity called ’activity group’ is gen-
erated to organize and manage the participants and the social contact network
emerges from the execution.

With the simulation test in this section, research requirements RR3 and RR4
are satisfied.

RR3 Research Requirement - Social Networks The conceptual model for
large-scale ABSS should support modelers to generate dynamic social
networks.
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RR4 Research Requirement - Social Interaction The conceptual model for
large-scale ABSS should support agents to join in different types of social
activities through complex social interactions.

7.4 The Hybrid Conceptual Model and Event Scheduling

Mechanism

As we mentioned in Chapter 4, the proposed conceptual model in this research
borrows concepts from both general agent-based models and discrete event sim-
ulation models. Thus, it is worth to mention that the simulation studies in this re-
search are based on the commonly used event scheduling mechanism in discrete
event system simulation (ZEIGLER et al. 2000, NANCE 1996), which is contrary to
the commonly used time-step mechanism in agent-based modeling. This choice
is mainly based on the consideration of system performance. The traffic compon-
ent is included in the model in this research which makes using fixed time steps
difficult for scalability. Small steps (e.g. seconds) are usually required for a mi-
croscopic transportation model (SCHWERDTFEGER 1984) which would generate a
large number of events in the model. Suppose the time step of an epidemic pre-
diction model with the time-step mechanism can be set as 1 minute, the resul-
ted number of events for each agent is at least 1440 per simulation day, while the
event scheduling mechanism only generates around 10 events per day for each
agent. Since the number of events for each agent in the event scheduling mech-
anism depends on the number of activities in its activity pattern, this mechanism
is more efficient than the time step mechanism in this case.

However, parallel simulation (multiprocessors and distributed memory)
(FUJIMOTO 1999) is used to increase system performance in large-scale agent-
based simulation with the time step mechanism (COLLIER and NORTH 2012). The
difficulty in parallel simulation is to preserve causality constraints among events
(LIU et al. 2001), while it can be easily solved in the time step driven simulation as
the synchronization messages with time stamps can strictly prohibit out-of-order
execution of events (CHANDY and MISRA 1979).

Compared to the time step driven simulation, it is more difficult for event
driven simulation (event scheduling mechanism) to execute the model in paral-
lel. The difficulty mainly comes from model partitioning and time synchroniz-
ation (CELIK et al. 2012). Furthermore, it often turns out that parallel programs
run surprisingly slow as the model is tightly-coupled (SCHWARZ 1995). The model
implemented in this research can be considered as tightly-coupled due to the dy-
namic social interaction and the microscopic public transportation. Even without
the dynamic social interaction, the parallel execution in the independent research
with same original data by CHEN et al. (2014) has not been applied in the further
research (CHEN et al. 2015) as the system performance did not improve in their
experiments.
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7.5 Conclusion

This Chapter presented several tests and results to show the effect of the design
and algorithms for the case study for large-scale epidemic prediction and control,
and how other large-scale social systems can benefit from this design and these
algorithms. As a conclusion, we list the key design components and algorithms in
this research that can contribute to other large-scale agent-based social simula-
tion systems.

◦ Activity pattern for agent behavior and multi-level decision-making for
agent architecture. The activity pattern-based design made the agents
’simple’ and ’small’ enough, which causes the whole system to be scalable.
On the other hand, the multi-level decision-making agent architecture en-
able agents with the same activity patterns to show heterogeneous behavior.

◦ Three-level cache system for physical container management. A key to gain
good performance for large-scale agent-based systems is optimizing the
method to store and to retrieve objects in the system. For objects such as
physical containers in this research, a three-level cache system was designed
to manage all physical containers. This algorithm shows great performance
and can serve in many similar systems.

◦ ’GridZone’ algorithm for shortest path calculation. With the inclusion of a
public transportation component, the imposed challenge by the large num-
ber of commuting request was solved by the ’GridZone’ algorithm. It can be
applied for other social systems containing a travel component.

◦ Functional entity for changing agent behavior or system state globally. The
separation of the functional entity from the agent environment was used to
model other artifacts in the social systems that can influence agents’ beha-
vior or the system state globally.

◦ Dynamic generation of social networks for efficient memory consumption
and realistic friendship evolvement. A fixed social network is sometime a
bottleneck for large-scale social systems. Thus, the ’social similarity’ concept
was proposed to generate social networks dynamically.

◦ The difficulty caused by the dynamic generation of social networks is the
execution of unscheduled joint social activities. The ’ActivityGroup’ concept
was proposed to enable the complex social interactions during the execution
process.

◦ The event scheduling mechanism for reducing unnecessary synchroniza-
tion messages, which increased the simulation performance if the model
runs on a single processor.
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Large-scale agent-based social simulation is gradually proving to be a versatile
methodological approach for studying human societies, which could make con-
tributions ranging from policy making in social science, to distributed artificial
intelligence and agent technology in computer science, and to theory and mod-
eling practice in computer simulation systems. Simultaneously, the focused ap-
plication areas of large-scale agent-based social simulation vary a lot as well, from
daily transportation in a city/country level, to large-scale emergency response and
to prediction of social change and analysis of social structure.

However, large-scale agent-based social simulation is facing difficulties in bal-
ancing model complexity and simulation performance. The widely use of distrib-
uted/parallel mechanism in current large-scale agent-based social simulation has
proven to be an efficient solution to achieve system performance and scalabil-
ity. The consequence, on the other hand, is usually a severe simplification of the
model including agent behavior, agent environment and the social networks and
interactions, which are proven to be important to understand complex social sys-
tems.

Based on the existing challenges, this thesis introduces a novel conceptual
framework for large-scale agent-based social simulation model development,
provided the reference implementation of the proposed model components, and
presents a simulation study of the case of epidemic prediction and control in the
city of Beijing.
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8.1 Research Findings

The main contributions of this thesis are given below. With these contributions,
the research requirements presented in Chapter 2 and 3 are met.

1. This thesis introduces a new conceptual framework to build large-scale
agent-based social simulation models, which separates the concept of agent
environment into a physical container, a social regulation and a functional
entity. Compared to the model concepts in the general ABM conceptual
model, this separation overcomes the limitations of environmental com-
pleteness in other ABM models and provides flexibility in simulating dif-
ferent system scenarios. In other words, the concepts are also refined.
For example, physical containers can be movable to represent transport-
ation vehicles which are difficult to implement in general ABM platforms.
Moreover, theories and concepts on social regulation from artificial intelli-
gence can be easily implemented and integrated into an agent-based model
while showing reasonable performance. Inspired by the concept of Func-
tional Model in object-oriented conceptual models, the concept of func-
tional entity is separated from the classical ABM conceptual model and in-
troduced in our proposed conceptual model for large-scale ABSS.

2. This thesis presents a new way to model large-scale agents with complex be-
havior. An agent consists of three main parts: (1) agent object, (2) activity
pattern, and (3) multi-level decision-making module. The agent object, as
part of the agent architecture, is the body which is responsible for updating
the agent status as the carrier, receiving, processing and forwarding input
messages to corresponding decision-making module, and enabling agents
to behave according to activity patterns. For a given agent, an activity pattern
specifies which behavior schedule will be conducted. Based on the activity
pattern, agents will mainly perform their activities according to the initial
predefined sequences of activities. However, this schedule does not specify
how long, when, where and with whom these activities take place, which
is decided by the decision-making module. The decision-making module
serves as the ’brain’ of the agent architecture which is specially designed for
the proposed decision-making problems. It is considered as a supplement to
the agent’s behavior pattern. With this design, the agent can carry out many
complex activities and show diverse behavior, such as traveling around, or
joining non-predefined social activities.

3. This thesis presents a new method to generate social networks dynamically
for interactions among a group of agents on a large scale during a simulation
run. Three types of social networks are dynamically generated in the model,
which are family, colleagues/ classmates and friendships. Family and col-
leagues/ classmates are intuitively generated by checking the other agents
who are in the same living and working physical containers, while friend-
ships are generated dynamically. This thesis borrows from the concept of

134



8.1 Research Findings

’social reach’ in a social circle model, and proposes the concept of ’social
similarity’ to generate the special type of social networks-friendship. Based
on the entire social network, agents in this model are able to communicate
for scheduling joint social activities. When executing joint social activities, a
functional entity called ’activity group’ is generated to organize and manage
the participants and the social contact network emerges from the execution.

4. This thesis introduces a new concept of ’Physical Container’ to represent
the physical environment where agents stay. Typical physical containers are
school, classroom, office, bedroom, train, etc. Physical containers are or-
ganized hierarchically. Each physical container can be partitioned into sub-
physical containers. Examples are classrooms in a school, stores in a shop-
ping mall, or offices in a working place. Agents can have different forms of
contacts when they are in a different level of the physical container hierarchy.
In addition, physical containers show "behavior" just like agents. For exam-
ple, an important "behavior" ’Calculate Distance’ should be implemented
in the physical container, which calculates the distance between two phys-
ical containers based on the GIS coordinate information (e.g., latitude and
longitude). Besides an effective mechanism to organize physical contain-
ers in large-scale systems, the fact that physical container is separated from
the general agent environment concept makes it much easier to include a
transportation component in a social simulation model. This is achieved by
considering vehicles as movable physical containers in the model.

5. This thesis introduces a new concept of ’Social Regulation’ which is designed
to model norms and institutions that can guide and influence agent behavior
globally. In a social regulation, A monitor is used to observe agents’ behavior
and status, analyze the results and compare with standards. Based on the
comparison, social regulations can trigger various Operations to the agent
society in order to regulate agents’ behavior. One of the reference imple-
mentation on Operations in a large-scale agent-based social simulation is to
switch agents’ activity patterns when the agents don’t comply with any of the
standards. With this process, agents can respond to different situations dur-
ing a simulation run. For example, regulating agents’ behavior during a dis-
ease outbreak is an indispensable part of a large-scale agent-based epidemic
simulation. How agents would respond to a disease outbreak is a lightweight
strategical level decision-making process as it would have a big impact on
the agent’s behavior.

6. This thesis introduces a new concept of ’Functional Entity’. Functional entit-
ies are those extra objects in the system that can influence or directly change
attributes of either agents, physical containers or social regulations. For
example, a disease is modeled as a functional entity to change the agents’
healthy status. A storm is modeled as a functional entity to change the tem-
perature of a room (physical container).
With the research findings 1-6, Research Question 1 is answered.
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Research Question 1 What conceptual model and model concepts can
support large-scale agent-based social simulation?

7. This thesis presents a model of a large-scale artificial city of Beijing, on which
to test policies for controlling the spread of disease among the full popula-
tion (19.6 million). This is used as a case study to test the proposed large-
scale agent-based social conceptual model. Firstly, by combining diverse
data sets, including generated census-based data, open source maps, activ-
ity patterns, an artificial city with a large population was constructed. In this
artificial city, each of the 8 million physical locations and 19.6 million citizens
was modeled. A microscopic public transport system (subways and buses)
together with a predicted road traffic system are simulated in the artificial
city and are well integrated with the daily activities of the population. With
this model, spatial contact networks emerge and can be observed during the
execution of the model. Secondly, to investigate the effect of the emerging
spatial contact network for epidemic prediction, a pandemic influenza dis-
ease progression model was implemented. At last, to test the quality and ex-
plore the possibility of the implemented large-scale agent-based model for
epidemic prediction and control, different simulation scenarios were con-
ducted and simulation results were analyzed.
With this research finding, Research Question 2 and 3 are answered.

Research Question 2 How can the components of this conceptual model
be implemented in the case of epidemic prediction and control?

Research Question 3 How can the case of epidemic prediction and con-
trol benefit from the proposed conceptual model regarding of model
outcomes and system performance?

8. This thesis can be considered as a proof of concept which exemplifies how
large-scale social systems with complex human behaviors and social inter-
actions can be modeled with the help of the proposed conceptual frame-
work, it also indicates potential use in other social science areas, such as mi-
croscopic transportation systems and city level evacuation planning.
With this research finding, Research Question 4 is answered.

Research Question 4 How can large-scale agent-based social simulation
benefit from the case of epidemic prediction and control in this re-
search?

8.2 Future Research

As for future research, many extra efforts are required to refine the proposed con-
ceptual model and the referenced implementation of model components. A num-
ber of first targets for additional research in the case of epidemic prediction and
control are:
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1. Activity pattern generation. The design of a full set of activity patterns is im-
portant to model agent behavior in the proposed implementation for the
agent component. The current method to generate activity pattern requires
a large effort on surveying people’s behavior and abstracting them into a set
of patterns. Thus, an activity pattern generator can be an interesting direc-
tion to explore which considers factors such as culture, history, law, etc. An-
other direction is to build a repository of activity patterns for different cities,
countries and areas.

2. Decision-making capability. Three levels of decision-making capability for
agents are defined to solve different levels of behavior dynamics problems
when processing different types of events. This thesis implemented several
specific decision-making problems, mainly in the lower level (e.g., opera-
tional level), while more situations and solutions should be studied to pro-
gressively fulfill the higher level, such as strategical level.

3. Realistic environmental data. Currently there are 18 types of static phys-
ical containers that can not cover all the types in Beijing, for example, small
shops and cinemas are missing. Further research should be conducted on
generating or collecting real data for these missing types.

4. Expert validation. The simulated results of the disease spread scenario in
this thesis have not been well validated due to the missing of available date.
An expert validation process is required as part of future research.

Regardless of the case in this thesis, there are several aspects that should be re-
searched further with the proposed conceptual model for large-scale agent-based
social simulation:

1. Parallel execution. This thesis presents a way to guarantee the scalability
issue from the aspect of model design. However, the traditional way to model
large-scale models that adopts a parallel/distributed execution mechanism
should also be studied in the proposed architecture, which can make current
model execution much faster (or slower).

2. More application areas. This thesis uses the case of large-scale epidemic pre-
diction and control to test the proposed conceptual model for large-scale
agent-based social simulation model development. More cases need to be
studied in other application areas to improve the versatility and applicability
of the proposed conceptual model.
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Figure A.1: Statistics of the number of agents in the bus location in a weekend day (10 rep-
lications)
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Figure A.2: Statistics of the number of agents in the bustop location in a weekday (10 rep-
lications)
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Figure A.3: Statistics of the number of agents in the metro system location in a weekday (10
replications)
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Figure A.4: Statistics of the number of agents in the car location in a weekday (10 replica-
tions)
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Figure A.5: Statistics of the number of agents in the medical locations in a weekday (10
replications)
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Figure A.6: Statistics of the number of agents in the elementary location in a weekday (10
replications)
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Figure A.7: Statistics of the number of agents in the kindergarten location in a weekday (10
replications)
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Figure A.8: Statistics of the number of agents in the middle_university location in a week-
day (10 replications)
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Figure A.9: Statistics of the number of agents in the middleschool location in a weekday (10
replications)
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Figure A.10: Statistics of the number of agents in the private_university location in a week-
day (10 replications)
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Figure A.11: Statistics of the number of agents in the university location in a weekday (10
replications)
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Figure A.12: Statistics of the number of agents in the entertainment locations in a weekday
(10 replications)
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Figure A.13: Statistics of the number of agents in the market location in a weekday (10
replications)
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Figure A.14: Statistics of the number of agents in the market location in a weekend day (10
replications)
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Figure A.15: Statistics of the number of agents in the restaurant location in a weekday (10
replications)
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Figure A.16: Statistics of the number of agents in the ’walk’ location in a weekday (10 rep-
lications)
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Figure A.17: Statistics of the number of agents in the ’walk’ location in a weekend day (10
replications)
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Figure A.18: Number of total agents in the workplace location in a weekday (10 replications)
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Figure B.1: Number of agents in the phase ’Dead’ (10 replications)
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Figure B.2: Number of agents in the phase ’HEALTHY’ (10 replications)
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Figure B.3: Number of agents in the phase ’IMMUNITY’ (10 replications)
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B.2 Transitional Phases
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Figure B.4: Number of agents in the phase ’Asymptomatic_Contagious_Early_Stage’ (10
replications)
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Figure B.5: Number of agents in the phase ’Asymptomatic_Contagious_Middle_Stage’ (10
replications)
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Figure B.6: Number of agents in the phase ’Asymptomatic_Contagious_Recovering’ (10
replications)
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Figure B.7: Number of agents in the phase ’Asymptomatic_notContagious’ (10 replica-
tions)
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Figure B.8: Number of agents in the phase ’Convalescent’ (10 replications)
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Figure B.9: Number of agents in the phase ’Symptomatic_Early_Stage’ (10 replications)

156



B.2 Transitional Phases

0e+00

1e+05

2e+05

3e+05

4e+05

0 10 20 30
Days

N
um

be
r o

f A
ge

nt
s

Confidence Interval(95%)

Retired

Student

Total

Worker

Baby 

Figure B.10: Number of agents in the phase ’Symptomatic_Stay_Home’ (10 replications)
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Figure B.11: Number of agents in the phase ’Symptomatic_Stay_Home_Recovering’ (10
replications)
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Figure B.12: Number of agents in the phase ’Symptomatic_Usual_Schedule’ (10 replica-
tions)
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Figure B.13: Number of agents in the phase ’Symptomatic_Usual_Schedule_Recovering’
(10 replications)
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Summary

Large-scale agent-based social simulation is gradually proving to be a versatile
methodological approach for studying human societies, which could make contri-
butions from policy making in social science, to distributed artificial intelligence
and agent technology in computer science, and to theory and modeling practice
in computer simulation systems. Simultaneously, the application areas of large-
scale agent-based social simulation vary a lot as well, from daily transportation
on a city/country level, to large-scale emergency response, prediction of social
change, and analysis of social structure.

However, current large-scale agent-based social simulation practice is facing
difficulties in balancing model complexity and simulation performance. The wide
adoption of distributed/parallel mechanism in current large-scale agent-based
social simulation has proven to be an efficient solution to achieve system perform-
ance and scalability. On the other hand, the trade-off is usually the simplification
of the model precision including agent behavior, agent environment and the so-
cial networks and interactions, which are proven to be important to understand
social phenomena in complex social systems.

Based on the existing challenges, this thesis introduces a novel conceptual
model for large-scale agent-based social simulation development, gives out the
reference implementation of the proposed model components, and presents a
simulation study of a case of epidemic prediction and control in the city of Beijing.
This conceptual model can be considered as a hybrid model mixing a general
agent-based conceptual model and the discrete event simulation paradigm.

For the concept of agent in the proposed conceptual model, this thesis presents
a new way for implementation. A reference implementation of an agent is consti-
tuted by three main parts: (1) agent object, (2) activity pattern, and (3) multi-level
decision-making module. With this design, the implemented agents can carry out
a lot of complex activities and show diverse behaviors, such as traveling around
and joining non-predefined social activities, while staying "simple" and "small"
enough for scalability consideration.

For the concept of a social network, this thesis presents a new method to gen-
erate social networks dynamically for simulating interactions among a group of
agents on a large scale during a simulation run. This thesis borrows from the con-
cept of ’social reach’ in a social circle model, and proposes the concept of ’social
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similarity’ to generate the special type of social networks, friendship. Using the
generated entire social network, agents in this model are able to communicate for
scheduling joint social activities. When executing joint social activities, a func-
tional entity called ’activity group’ is generated to organize and manage the parti-
cipants, and a social contact network emerges from the execution.

Compared to the concept of agent environments in general ABM conceptual
models, the introduced conceptual model separates the concept of an agent en-
vironment into physical container, social regulation and functional entity, which
overcomes the limitations on environmental completeness in other ABM models
and provides flexibility in simulating different system scenarios.

The concept of a physical container is introduced to represent the physical en-
vironment where agents stay. Typical physical containers are school, classroom,
office, bedroom, train, etc. Physical containers are organized hierarchically.
Moreover, this concept makes it much easier to include a transportation com-
ponent in a social simulation model, which is achieved by considering vehicles
as movable physical containers in the model.

The concept of social regulation, borrowed from the multi-agent system com-
munity, is used to model artifacts that can guide and influence agent behavior
globally (rules/norms/institutions). With this concept, agents can respond to dif-
ferent situations during a simulation run. For example, regulating agents’ beha-
vior during a disease outbreak is an indispensable part at a large-scale agent-based
epidemic simulation. How agents would respond to interventions during a dis-
ease outbreak would have a big impact on the model outcomes.

The concept of functional entity, borrowed from the object-oriented paradigm,
is used to model the extra objects in the system that can influence or directly
change attributes of either agents, physical containers or social regulations. For
example, a disease is modeled as a functional entity to change agents’ healthy
status. Temperature can be modeled as a functional entity to change the trans-
mission probability of a disease in a specified location (physical container).

Using reference implementations of these concepts, a model of a large-scale
artificial city of Beijing is constructed as a case study to test policies for controlling
the spread of disease among the full population (19.6 million). This case study can
be considered as a proof of concept which exemplifies how large-scale social sys-
tems with complex human behavior and social interactions can be modeled with
the help of the proposed conceptual model, but still gains reasonable perform-
ance. It also indicates potential use in other social science areas, such as micro-
scopic transportation systems and city level evacuation planning.
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Samenvatting (in Dutch)

Grootschalige agentgebaseerde sociale simulatie is uitgegroeid tot een veelzijdige
methodologische aanpak voor het bestuderen van samenlevingen, die onder an-
dere kan bijdragen aan het opstellen van beleid (vanuit de sociale wetenschap-
pen), aan gedistribueerde kunstmatige intelligentie en agenttechnologie in de
computerwetenschappen en aan de theorie en modelleringspraktijk van com-
putergebaseerde simulatiesystemen. Er zijn vele verschillende toepassingsge-
bieden van grootschalige agentgebaseerde sociale simulatie, zoals het dagelijks
transport op het niveau van een stad of een land, grootschalige rampenbestrijd-
ing, voorspelling van sociale veranderingen en analyse van sociale structuren.

Eén van de moeilijkheden bij de toepassing van grootschalige agentgebaseerde
sociale simulatie is de balans tussen de complexiteit van het model en de
doorlooptijd van de simulatie. Er bestaan goede gedistribueerde en parallelle
oplossingen die een efficiënte oplossing bieden voor het bereiken van zowel sys-
teemprestaties als schaalbaarheid. Echter, het gebruik van deze mechanismen
leidt meestal tot het sterk vereenvoudigen van de modellen waarbij ook het gedrag
van de agent, de omgeving van de agent en de sociale netwerken en interacties
vereenvoudigd worden. Bij het bestuderen en begrijpen van verschijnselen in
complexe systemen zijn dit juist de belangrijke eigenschappen.

Om dit probleem op te lossen introduceert dit proefschrift een nieuw concep-
tueel model voor de ontwikkeling van grootschalige agentgebaseerde sociale sim-
ulatie en geeft het een referentie-implementatie van de voorgestelde componen-
ten voor het model. Als test wordt het model toegepast in een simulatiestudie
waarin de verspreiding van epidemieën in de stad Beijing en beleid om de ver-
spreiding tegen te gaan bestudeerd worden. Het conceptuele model is een hy-
bride model waarin een algemeen agentgebaseerd conceptueel model met een
discreet-simulatieparadigma gecombineerd wordt.

Het conceptuele model bevat een nieuwe implementatie van het concept
agent. De referentie-implementatie van een agent heeft drie hoofdonderdelen:
(1) het agent-object, (2) het patroon van activiteiten en (3) de multi-level besluit-
vormingsmodule. In dit ontwerp kunnen de geïmplementeerde agenten veel ver-
schillende complexe activiteiten uitvoeren en verschillend gedrag vertonen, zoals
rondreizen en aan niet-voorgedefinieerde sociale activiteiten deelnemen. Tegel-
ijkertijd zijn ze "simpel" en "klein" genoeg om schaalbaarheid te garanderen.

187



Voor het concept sociaal netwerk wordt een nieuwe methode aangereikt
waarmee sociale netwerken voor interacties tussen agenten op grote schaal dy-
namisch gegenereerd kunnen worden tijdens een simulatierun. Het proefschrift
bouwt voort op het concept ’sociale reikwijdte’ uit de sociale wetenschappen,
en stelt het concept ’sociale overeenkomst’ voor om vriendschapsnetwerken als
een speciaal type sociaal netwerk te genereren. Door deze gegeneerde sociale
netwerken hebben agenten de mogelijkheid om gezamenlijke activiteiten te or-
ganiseren. Wanneer deze gezamenlijke activiteiten plaatsvinden, wordt een func-
tionele entiteit, die ’activiteitengroep’ genoemd wordt, gegenereerd die de deel-
nemers bijeen probeert te roepen en aanstuurt. Met deze uitvoering ontstaan
netwerken van sociale contacten in het model.

Anders dan in andere agentgebaseerde conceptuele modellen, wordt de agen-
tomgeving in het voorgestelde conceptuele model opgedeeld in een fysieke con-
tainer, sociale regels en een functionele entiteit. Dit vermindert de beperkingen
van compleetheid van de omgeving binnen andere agentgebaseerde modellen en
biedt flexibiliteit bij het simuleren van verschillende scenario’s.

Het concept fysieke container representeert de fysieke omgeving waar de
agenten zich bevinden. Typische fysieke containers zijn bijvoorbeeld school,
klaslokaal, slaapkamer enzovoort. Fysieke containers zijn hiërarchisch gestruc-
tureerd, waar klaslokalen onderdeel uitmaken van een school. Dit concept maakt
het ook makkelijker om een transportcomponent aan een sociaal simulatiemodel
toe te voegen. Dit wordt geïmplementeerd door voertuigen als bewegende fysieke
containers te beschouwen.

Het concept sociale regels is gebruikt om artefacten te modellen die het gedrag
van actoren kunnen leiden en beïnvloeden (regels / normen / instituties). Met
dit concept kunnen agenten tijdens een simulatierun reageren op verschillende
situaties. Het reguleren van het gedrag van agenten tijdens een ziekte-uitbraak is
bijvoorbeeld onmisbaar in een grootschalige agentgebaseerde epidemische sim-
ulatie. De manier waarop agenten reageren op verspreiding van de ziekte en
afgekondigde maatregelen tijdens een uitbraak heeft veel invloed op de mode-
luitkomsten.

Het concept functionele entiteit, geleend uit het object georiënteerde
paradigma, is gebruikt om extra objecten in het systeem te modelleren die attrib-
uten van agenten, fysieke containers en sociale regulaties kunnen beïnvloeden of
veranderen. Zo wordt bijvoorbeeld een ziekte gemodelleerd als een functionele
entiteit die de gezondheidstoestand van een agent verandert. En temperatuur kan
gemodelleerd worden als een functionele entiteit die de kans op oplopen van een
ziekte op een specifieke locatie (in een fysieke container) verandert.

Met de referentie-implementatie van deze concepten is een grootschalig
model van de stad Beijing opgesteld waarmee verschillende beleidsopties om de
verspreiding van een ziekte onder controle te krijgen getest kunnen worden. Deze
case study kan beschouwd worden als een proof of concept die laat zien hoe een
grootschalig sociaal systeem met complex menselijk gedrag en sociale interacties
gemodelleerd kan worden. Het voorgestelde conceptuele model leidt tot een sim-
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ulatie met goede uitkomsten en een redelijke snelheid. De resultaten wijzen ook
op mogelijkheden om het conceptueel model te gebruiken in andere gebieden
uit de sociale wetenschap, zoals bestuderen van transportsystemen en evacuatie-
planning.
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