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In this paper we investigate the relationship between the large- and small-scale
energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-
number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond.
A, vol. 365, 2007a, pp. 647–664) have revealed a possible influence of the large-
scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure
amplitude modulation. In the present study we build upon these observations, using
the Hilbert transformation applied to the spectrally filtered small-scale component of
fluctuating velocity signals, in order to quantify the interaction. In addition to the
large-scale log-region structures superimposing a footprint (or mean shift) on the near-
wall fluctuations (Townsend, The Structure of Turbulent Shear Flow , 2nd edn., 1976,
Cambridge University Press; Metzger & Klewicki, Phys. Fluids , vol. 13, 2001, pp. 692–
701.), we find strong supporting evidence that the small-scale structures are subject to
a high degree of amplitude modulation seemingly originating from the much larger
scales that inhabit the log region. An analysis of the Reynolds number dependence
reveals that the amplitude modulation effect becomes progressively stronger as the
Reynolds number increases. This is demonstrated through three orders of magnitude
in Reynolds number, from laboratory experiments at Reτ ∼ 103–104 to atmospheric
surface layer measurements at Reτ ∼ 106.

1. Introduction

Over the past few decades, a great many studies have been directed towards
understanding the turbulence structure in the near-wall region of wall-bounded flows.
To a large extent, such studies have their origins in the observations of Kline
et al. (1967) and the realization that recurrent near-wall structures can play a key
role in turbulence regeneration. More recently our understanding of such events
has tended to shift towards a self-sustaining near-wall cycle, in which the near-wall
structures propagate and sustain without need of external triggers (Panton 2001). Such
autonomous views are based largely on insightful low-Reynolds-number simulations
by Jiménez & Pinelli (1999) and Schoppa & Hussain (2002).

The logarithmic region was largely absent from the earliest low-Reynolds-
number flow visualizations and direct numerical simulation (DNS). For example, the
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approximate upper and lower bounds of the logarithmic region (100< z+ < 0.15δ+)
would indicate that almost no overlap region was present in the measurements
of Kline et al. (1967) or in DNS in which Reτ � 700. (The friction Reynolds
number or Kármán number is defined as Reτ = δUτ/ν, where δ is the boundary-
layer thickness, Uτ the friction velocity and ν the kinematic viscosity.) The first
insights into the log-region structure were provided by performing spatio-temporal
two-point correlations across the boundary layer (using hot wires). Statistics based
on fluctuating streamwise velocity signals revealed the presence of highly elongated
regions of uniform streamwise momentum in the log region (Blackwelder & Kovasznay
1972; Wark & Nagib 1991; Wark, Naguib & Robinson 1991). More recently, advances
in particle image velocimetry (PIV) and DNS have provided the opportunity to
study the turbulence structure in the logarithmic region of higher-Reynolds-number
turbulent boundary layers (Adrian, Meinhart & Tomkins 2000; del Álamo et al. 2004;
Hoyas & Jiménez 2006). PIV studies of streamwise/spanwise planes have revealed
the presence of a pronounced stripiness in instantaneous fields of streamwise velocity
(u) fluctuation (Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian
2003; Hutchins & Marusic 2005; Hambleton, Hutchins & Marusic 2006). Similar
events were observed in the channel flow numerical simulations of del Álamo &
Jiménez (2003). Such elongated regions of momentum deficit have been explained
within vortex-based models as the regions between the legs of aligned packets of
hairpin vortices (Adrian et al. 2000; Ganapathisubramani et al. 2003; Tomkins &
Adrian 2003; Hambleton et al. 2006; and others). These low-speed regions are
typically 0.3–0.5δ wide in the spanwise direction and often seem to occur in spanwise
alternating patterns. (Elongated low-speed events are usually flanked on either side
by high-speed events.) The length of these features often exceeds the streamwise
length of the PIV images. Hutchins & Marusic (2007a) employed spanwise rakes of
hot-wire probes to ascertain the true length of these structures, demonstrating that
they appear to extend to lengths of order 20δ and meander substantially. They used
the collective term ‘superstructures’ (so named because of their large size and because
they are shown to carry a large proportion of the Reynolds shear stress) to describe
these events. Ganapathisubramani, Clemens & Dolling (2006) used a multiple side-
by-side arrangement of cameras to image 8δ × 2δ streamwise/spanwise planes in a
supersonic turbulent boundary layer, finding similar elongated meandering features.
For pipe flows, the energetic footprint of superstructure-type events is evident as
even longer-wavelength peaks in the pre-multiplied energy spectra of u fluctuations,
termed very large-scale motions or VLSMs (Kim & Adrian 1999; Abe, Kawamura &
Choi 2004; Toh & Itano 2005; Guala, Hommema & Adrian 2006). Recent studies
in turbulent pipe and channel flow facilities (Monty et al. 2007; Bailey et al. 2008)
have reiterated the general presence and form of these very large features in internal
geometries.

It is logical then to consider what effect these very large log-region motions
might have on the near-wall cycle. We do not seek here to challenge the view of
self-sustaining near-wall turbulence as suggested by Jiménez & Pinelli (1999), the
evidence for which is compelling. However, we do note that the term ‘autonomous’
when referring to the near-wall cycle can tend to negate the influence of larger
scales, which, although perhaps not strictly a prerequisite for sustenance of the
near-wall cycle, may still impart an influence or modulation on near-wall events.
One clear example of such an influence is in the breakdown of universal behaviour
based on viscous scaling in the near-wall region. The viscous-scaled near-wall peak
in the streamwise broadband intensity clearly grows in magnitude with increasing
Reynolds number (Klewicki & Falco 1990; DeGraaff & Eaton 2000; Metzger
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et al. 2001; Metzger & Klewicki 2001; Marusic & Kunkel 2003; Hoyas & Jiménez
2006; Hutchins et al. 2009). Moreover, it has been shown that such growth is
due to the increase of large-scale energy imparted to the near-wall region as Re
increases (Metzger & Klewicki 2001; Hutchins & Marusic 2007a, b). Hutchins &
Marusic (2007a) have clearly shown that the footprint of large-scale superstructure
events in the streamwise velocity fluctuations can extend deep into the near-wall
region. This is as predicted by Townsend (1976), who noted that the near-wall region
will feel wall-parallel motions due to all attached eddies with centres above that
height (right across the shear layer). Thus, in the near wall, the streamwise velocity
fluctuations will be the sum of the induced fluctuations from every scale that resides
above (including superstructures). In this instance the large-scale energy is merely
superimposed as a low-wavenumber shift onto the near wall and, by definition (since
it is largely wall-parallel), will not contribute to the Reynolds shear stress.

By studying fluctuating velocity signals from hot-wire sensors in the near-wall
region, Hutchins & Marusic (2007b) recently observed that in addition to the low-
wavenumber mean shift, the largest scales appear to ‘amplitude modulate’ the small-
scale fluctuations. They noted that the large regions of streamwise momentum deficit
(associated with the low-speed footprint of the superstructures) are accompanied
by reduced small-scale fluctuations in the near-wall region. On the other hand, for
large-scale high-momentum regions, the small-scale fluctuating component is more
energetic. They also found that, away from the wall, this scenario seems to reverse
with the more energetic small-scale fluctuations eventually becoming aligned with the
part of the superstructure that is in momentum deficit.

Some observations concerning the contribution of outer-scale events to the near-wall
cycle have previously been reported in the literature. In their study of the ‘bursting’
phenomena, Rao, Narasimha & Badri Narayanan (1971) have previously observed
that large outer-scaled structures were interacting with the near-wall structure.
Later, Bandyopadhyay & Hussain (1984) studied the relationship between large and
small scales in numerous shear flows, including boundary layers, mixing layers, wakes
and jets. By studying short-time correlation measurements (from hot-wire time-series
data) between the low-frequency component and a signal similar to the envelope of
the high-frequency component, they found significant coupling between scales in all
flows. They also noted a reversal in coupling, occurring only across the boundary layer
and the mixing layer (referring to this as a phase reversal). They found that the large
and small scales, initially ‘phase-locked’ in the vicinity of the wall, are progressively
shifted across the boundary layer to reach a 180◦ phase difference at the edge of
the log region. More recently, Hunt & Morrison (2000) have observed that large-
scale log-layer events can influence the near-wall region at high Reynolds number.
Based on atmospheric data, they suggested that when the Reynolds number becomes
sufficiently high the large-scale eddies associated with the log layer become dominant,
influencing the near-wall region and maintaining the Reynolds shear stresses. They
categorized this as a ‘top-down’ instability, as opposed to the ‘bottom-up’ mechanism
that is more commonly proposed from lower-Reynolds-number studies.

In this paper, we expand upon the initial observations of Hutchins & Marusic
(2007b), using the Hilbert transformation in an attempt to quantify the relationship
between large-scale fluctuations and any amplitude modulation of the small-scale
energy in turbulent boundary layers. The Hilbert transform is particularly well suited
to the analysis of amplitude modulation interactions and has often been used in
the study of geophysical and atmospheric processes (Spark & Dutton 1972; Hristov,
Friehe & Miller 1998; Huang, Shen & Long 1999; Ouergli 2002). However, its use
in turbulence studies is far less common than say the Fourier transform. Notable
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δ Uτ U∞ No. of Domain
Reτ Facility (m) (m s−1) (m s−1) l+ �T + points of measurement

2800 HRNBLWT 0.098 0.442 11.97 22 0.53 53 z+ = 9.09 – z/δ = 4.52
3900 HRNBLWT 0.140 0.426 11.87 22 0.49 49 z+ = 11.83 – z/δ = 3.18
7300 HRNBLWT 0.326 0.330 9.82 22 0.37 51 z+ = 5.50 – z/δ = 1.36

13600 HRNBLWT 0.315 0.671 20.63 22 0.48 54 z+ = 7.44 – z/δ = 1.41
19000 HRNBLWT 0.303 0.960 30.20 22 0.59 53 z+ = 8.71 – z/δ = 1.45

650000 SLTEST 60 0.180 – – 96 9 z/δ = 0.02 – z/δ = 0.43

Table 1. Experimental parameters for hot-wire traverses; HRNBLWT experiments were
conducted with single hot-wire probe; SLTEST data were acquired with sonic anemometers.
Number of points indicates the number of wall-normal positions.

δ Uτ U∞ No. of Domain
Reτ Facility (m) (m s−1) (m s−1) l+ T + points of measurement

7300 HRNBLWT 0.325 0.353 10.28 22 0.40 2 z+ = 15 and z/δ = 0.06

Table 2. Experimental parameters for two-point synchronized hot-wire measurements.

exceptions include Sreenivasan (1985) who used the analytic signal and envelope as
defined via the Hilbert transform (described in § 4) to characterize the intermittency of
fine-scale turbulence and more recently Tardu (2008) who used the Hilbert transform
in studying the instantaneous phase and amplitude of wavelet coefficients applied to
fluctuating velocity signals in turbulent boundary layers.

2. Experimental set-up

The experiments were conducted in the High Reynolds Number Boundary Layer
Wind-Tunnel (HRNBLWT) at the University of Melbourne with a working section
of dimensions 27 m × 2m × 1 m. Full details of the facility are available in Nickels
et al. (2005). Measurements consist of boundary-layer traverses using a single-normal
hot-wire probe. The probe is operated in constant temperature mode, using an AA
Lab Systems AN-1003 with overheat ratio set to 1.8. Wollaston wires of various core
diameters are soldered across the tips of the probe and etched to give a platinum
filament of the desired length. For each Reynolds number, the diameter d and length
l of the sensing element was adjusted to give a constant viscous scaled length of
l+ = lUτ/ν =22 with l/d � 200, to allow comparison without any spatial resolution
influences (see Hutchins et al. 2009 for a full description of the matched l+ data
set). The non-dimensional time interval between samples was maintained in the
range �T + ≃ 0.4–0.6 to ensure that the smallest scales were adequately resolved. A
sufficiently long sample length T , in the range 5000–14 000 boundary-layer turnover
times (T U∞/δ, where U∞ is the free-stream velocity), was used to converge the energy
contained in the largest scales. Details of the experimental conditions are given in
table 1. The friction velocity Uτ was calculated from a Clauser chart fit (using log-
law constants κ = 0.41 and A = 5.0). Boundary-layer thickness δ is calculated from a
modified Coles law of the wake fit (Jones, Marusic & Perry 2001).

In addition to the boundary-layer traverses, two-point simultaneous measurements
were performed using two hot-wire probes located at z+ = 15 and z/δ =0.06 for a
Reynolds number Reτ = 7300. Details are given in table 2.
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The highest Reynolds-number measurements are atmospheric surface layer (ASL)
data from the Surface Layer Turbulence and Environmental Science Test Facility
(SLTEST) facility, located in the Great Salt Lake Desert in Western Utah. Full
details of the facility are available in Klewicki et al. (1995), Metzger & Klewicki
(2001) and Kunkel & Marusic (2006). The unique geography of this site allows
us to obtain measurements in extremely high-Reynolds-number turbulent boundary
layers (Reτ ∼ O(106)). The boundary layer develops naturally over 100 km of salt
playa, which is remarkably flat and has low surface roughness. Measurements were
performed using a wall-normal array of nine sonic anemometers (Campbell Scientific
CSAT3) spaced logarithmically from z = 1.4m to z = 25.7 m. Experimental parameters
are reported in table 1, and full details are available in Hutchins & Marusic (2007a).
We will consider here 1 h of data taken from a period of prolonged neutral buoyancy
and steady wind conditions. In this case it is difficult to accurately estimate the
boundary-layer turnover time. However, a crude estimate based on sample length
of 1 h, δ ≈ 70 m and U∞ based on the mean velocity at the highest wall-normal
position would indicate T U∞/δ of approximately 350. Thus the sample length for
the atmospheric measurements is rather short as compared to the laboratory data.
The very long superstructure-type events in the ASL (which can be > 10δ in length)
would take several minutes to advect past the measurement array. Hence, the 1 h
of data contains only limited occurrences of these events, and as such we would
expect the largest wavelengths to be improperly converged. However, in spite of
this uncertainty the mean statistics from SLTEST have been found to compare
well with canonical turbulent boundary layers from laboratory facilities (Hutchins &
Marusic 2007a; Marusic & Hutchins 2008). Moreover, conditional averaging and
two-point correlations of the streamwise velocity fluctuation also agree very well with
laboratory results, indicating that the large scales in the ASL are remarkably similar to
those observed in laboratory turbulent boundary layers (Hutchins & Marusic 2007a;
Marusic & Hutchins 2008). Clearly the wake region of the ASL would be expected
to be different from that of a laboratory boundary layer. However, such differences
are also true for internal geometries (turbulent pipe and channel flow facilities, both
of which have turbulent cores), and yet the work of Monty et al. (2007) has shown
that the general qualitative form of the large-scale features in pipes and channel
are very similar to flat-plate boundary layers (with differences in spanwise scale).
This would seem to suggest that the largest scales are a relatively robust feature of
wall-bounded turbulence and are only weakly affected by changes in the geometry
of the facility. Hence the attempt here to use the ASL case as a representation of
high-Reynolds-number behaviour would seem to be reasonable.

Throughout this paper, the coordinates x, y and z refer to the streamwise,
spanwise and wall-normal directions. The respective fluctuating velocity components
are denoted by u, v and w. The spectral density function of the streamwise velocity
fluctuation is described by φuu, and the streamwise wavenumber and wavelength are
denoted by kx and λx respectively (where λx = 2π/kx). Overbars indicate time-averaged
values, and the superscript ‘+’ is used to denote viscous scaling of length z+ = zUτ/ν,
velocities u+ = u/Uτ and time t+ = tU 2

τ /ν.

3. Initial observations of Hutchins & Marusic (2007b)

The observations of Hutchins & Marusic (2007b) were performed at a Reynolds
number of Reτ = 7300, studying the impact of ‘superstructure’ events on the near-wall
turbulent flow organization. Measurements consisted of a boundary-layer traverse,
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Figure 1. Pre-multiplied energy spectra of streamwise velocity fluctuation kxφuu/U 2
τ

(Reτ = 7300). (a) Three dimensional surface plot for all wall-normal locations and
(b) isocontour representation in which levels are from 0.2 to 1.8 in steps of 0.2; the ‘+’
symbols mark the inner (z+ = 15, λ+

x = 1000) and outer (z/δ = 0.06, λx/δ =6) peaks. The
horizontal dot-dashed line in (b) shows the location of the spectral filter (λx = δ).

using a single normal hot-wire probe. A complete description of the experimental
set-up and measurement procedure is available in Hutchins & Marusic (2007a, b).

3.1. Overview of the pre-multiplied energy spectra

Following Hutchins & Marusic (2007b), figure 1 gives an overview of the pre-
multiplied streamwise energy spectra kxφuu/U 2

τ across the full height of the turbulent
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Subscript Designation Spatial filter cutoff

L large scales only λx/δ > 1
S small scales λx/δ < 1

Table 3. Definition of filter parameters for scale decomposition.

boundary layer. Figure 1(a) shows a spectrogram for all wall-normal locations, where
each profile corresponds to the one-dimensional pre-multiplied energy spectra at
each wall-normal measurement station. Figure 1(b) is a contour view of the spectral
surface shown in figure 1(a). It is worth noting that the representation here in terms
of streamwise length scale (λx/δ) is only a reflected mirror image of the conventional
kxφuu/U 2

τ versus log(kxδ) plot. (Equal areas under the curve will still denote equal
energy.)

Two distinct peaks can be clearly observed in figure 1. (Their locations are marked
by the ‘+’ symbols in figure 1b, corresponding to the bold-lined one-dimensional
profiles in figure 1a). The first peak, located in the near-wall region, is the energetic
signature due to the viscous-scaled near-wall cycle of elongated high- and low-speed
streaks (Kline et al. 1967). The location of this peak is fixed in viscous coordinates:
z+ =15 and λ+

x = 1000. We will refer to this peak as the ‘inner peak’ in accordance
with Hutchins & Marusic (2007a). A second distinct peak appears in the logarithmic
region. We will refer to this peak as the ‘outer peak’. Initial observations of Hutchins &
Marusic (2007a) suggest that the location of this peak scales in boundary-layer
thickness: z/δ =0.06 and λx =6δ. It is of interest to note that this peak is not visible
at low Reynolds numbers (where Reτ � 1700; see Hutchins & Marusic 2007b) due
to insufficient separation of scales and a diminishing strength at low Re. This outer
peak is most likely the energetic signature due to the superstructure-type events (or
VLSM). It has been shown (Hutchins & Marusic 2007a) that the magnitude of this
peak (when kxφuu is scaled with Uτ ) increases with Reynolds number.

3.2. Scale decomposition

Using a decomposition for scales below and above a cutoff length scale, some
interesting features of the signal are observed. The decomposition used here is based
on a cutoff wavelength which is carefully selected from the pre-multiplied energy-
spectra map. The dot-dashed line in figure 1(b) shows the location of the cutoff,
and filter parameters are given in table 3. The cutoff λx/δ = 1 appears from the map
to be a reasonable location to separate the large- (above) and small-scale (below)
components of the fluctuating u signal.

Figure 2 shows the decomposition of a typical fluctuating signal u+ at wall-normal
position z+ = 15 (inner peak). The original signal, shown in figure 2(a), is divided into
two sub-signal components:

(i) the large-scale component u+
L which is assumed to be the signature of

superstructure-type events (where λx/δ > 1; figure 2b);
(ii) the small-scale component signal u+

S (where λx/δ < 1; figure 2c);
For the large-scale component shown in figure 2(b), a prolonged region of negative

fluctuation occurs (between the dashed lines), typical of the footprint caused by the
decelerated portion of a superstructure-type event (Hutchins & Marusic 2007a). It
appears that when this negative large-scale excursion occurs, the amplitude of the
small-scale fluctuations u+

S is significantly reduced (figure 2c). When similar analysis
is conducted for a positive large-scale excursion, the opposite scenario is true, and
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Figure 2. Example of fluctuating u signal in the near-wall region, z+ = 15; (a) raw fluctuating
component; (b) large-scale fluctuation λx/δ > 1; (c) small-scale fluctuation λx/δ < 1. Dashed
vertical lines show region of negative large-scale fluctuation.

the amplitude of the small-scale fluctuations is increased. These results suggest that
the low-wavenumber motions associated with the footprints of superstructure-type
events influence the near-wall u fluctuations in a manner akin to a pure amplitude
modulation. It should be noted that the definition of ‘superstructure-type’ events is
based on that given by Hutchins & Marusic 2007a, namely a spanwise alternating
sequence of highly elongated negative and positive streamwise velocity fluctuations
that are centred in the log region. Thus, in the proceeding analysis we consider the
amplitude modulation due to both positive and negative large-scale excursions.

Based on these initial observations, a careful analysis will be conducted in the
following sections using the Hilbert transform in order to define and properly
understand these amplitude modulation effects.

4. Hilbert transformation and amplitude modulation

The Hilbert transform is a tool which has several interesting features for
studying nonlinear processes. For an arbitrary real-valued signal x(t), the Hilbert
transformation of x(t), denoted X(t), is given by

X(t) = H{x(t)} =
1

π

P

∫ +∞

−∞

x(τ )

t − τ
dτ, (4.1)

where P indicates the Cauchy principal value of the integral and τ a time shift. Thus
X(t) is the convolution integral of x(t) and (1/πt), written as

X(t) = x(t) ∗ (1/πt). (4.2)

From the convolution theorem, in which the Fourier transform of (1/πt) is given by

H

{

1

πt

}

= −i sgn (f ) =

{

−i for f > 0,

i for f < 0.
(4.3)

It is easy to show that X(t) is the original signal x(t) with each sinusoidal Fourier
components shifted by −90◦ for positive frequencies and by +90◦ for each negative
frequency. With this definition, x(t) and X(t) form a harmonic conjugate pair, defining
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Figure 3. Example of amplitude modulation: (a) represents the carrier wave c(t) = sin(10t);
(b) represents the modulating wave m(t) = sin(2t); (c) represents the modulated signal
u(t) = [2 + m(t)]c(t) (solid line) and its envelope calculated from the Hilbert transform (dashed
line).

the associated complex analytic signal Z(t) of x(t) as

Z(t) = x(t) + iX(t) = A(t)eiφ(t), (4.4)

where A(t) and φ(t) indicate instantaneous modulus and phase respectively. In the
analytic signal all negative frequencies have been removed. It can be demonstrated
that the modulus A(t) of the analytic signal,

A(t) =
√

x2(t) + X2(t), (4.5)

represents the envelope of the original real-valued signal x(t) (see for example Papoulis
1962; Hahn 1996; Bracewell 2000; Papoulis & Pillai 2002; Mathis, Hutchins &
Marusic 2007). As will be seen, this relationship is very useful when attempting to
interpret (or demodulate) amplitude-modulated signals. A brief tutorial on the Hilbert
transform, with emphasis on physical interpretation, can be found in Bendat & Piersol
(1986).

Amplitude modulation refers to the modulation of a high-frequency signal (carrier
signal) with a low-frequency component (modulating signal). The principle is simple:
the carrier signal is multiplied by the modulating signal added to a judiciously selected
offset B . This is well illustrated if one considers a pure harmonic, with the carrier
signal defined as

c(t) = C sin(ωct + φc),

where C and φc are arbitrary constants. Here, for simplicity, these constants are set
to the values 1 and 0 respectively. Figure 3(a) shows a carrier signal with ωc =10. Let
us also consider an arbitrary waveform representing the modulating signal

m(t) = M sin(ωmt + φm),

where M and φm are again arbitrary constants also set to 1 and 0 for simplicity
(typically ωm <ωc; figure 3b shows an example modulating signal with ωm = 2).
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Amplitude modulation is attained by forming the product

u(t) = [B + m(t)]c(t), (4.6)

u(t) = [B + sin(ωmt)] sin(ωct), (4.7)

where B represents the offset (set to 2 for the present example). The modulation
depth M/B indicates the extent to which the modulated variable fluctuates around its
original level. This must be less than 1 to ensure a pure-amplitude-modulated signal.
It can be shown that the modulated signal is composed of three Fourier components,
a carrier wave (ωc) and two sinusoidal waves (known as sidebands) whose frequencies
are above and below the original carrier wave, (ωc ± ωm)/2π.

The modulus of the analytic signal formed from the Hilbert transformation of u(t)
would in this case return the original modulating signal m(t) shifted by the constant
B and is thus invaluable in demodulating amplitude-modulated signals. An example
of the modulated signal as given by (4.7) is shown in figure 3(c), with a modulation
depth of 0.5. The dashed line in figure 3(c) shows the envelope as calculated from
the Hilbert transform, which in this case exactly matches the modulating signal m(t)
with the appropriate applied shift B .

From this result, a simple analogy with the results of Hutchins & Marusic (2007b)
can be formulated. If we consider the existence of a modulating effect from the large-
scale structures imposed on the small scales of the near-wall region, this would imply
that the envelope of the high-frequency part of the signal (figure 2c) must be directly
correlated with the low-frequency part of the signal (figure 2b). We will introduce
in the following section the procedure used to highlight the coupling between these
different scales.

5. Decoupling procedure

The coupling between the low- and high-frequency components of the signal is
determined in the following way: In figure 1(b), the inner and outer peaks are
clearly separated in wavenumber space. Therefore, a ‘reasonable’ cutoff length scale
for the large-scale motions can be established. (We use λx/δ = 1 in accordance with
Hutchins & Marusic 2007b, as shown in § 3.2.) The short- and long-wavelength
components of the signals are obtained by applying spatial/wavelength filters on the
raw fluctuating u velocity signal (table 3).

In order to determine the relationship between the large- and small-scale structures
contained in any velocity signal, the small-scale component of the signal (u+

S ) was
analysed using the Hilbert transformation. This allows us to extract an envelope
(E(u+

S )) representative of any modulating effect (assumed here to be the large-scale
component u+

L ). From the very simple amplitude modulation example outlined in
§ 4, the envelope returned by the Hilbert transform would ideally indicate just the
long-wavelength signal of the ‘modulator’. However, for the case of the fluctuating
turbulent signal shown in figures 2, 5 and 6, this is not strictly the case. The ‘carrier’ is
here defined as the small-scale part of the signal (λx <δ), which of course is comprised
of a broad range of amplitudes and wavelengths (as opposed to the single sinusoid
of the idealized amplitude modulation example given in § 4). As such the envelope
returned by the Hilbert transformation will track not only the large-scale modulation
due to the log-region events but also the small-scale variation in the ‘carrier’ signal.
To remove this effect, we filter the envelope at the same cutoff as the large-scale signal
(λx/δ > 1). Hence, a filtered envelope (EL(u+

S )) describing the modulation of small-
scale structures is obtained. It is now possible to compute a meaningful correlation
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Figure 4. Decoupling procedure.

coefficient R of the filtered envelope with the large-scale velocity fluctuation u+
L :

R =
u+

L EL(u+
S )

√

u+
L

2

√

EL(u+
S )

2
, (5.1)

where
√

u2 denotes the root mean square value of the signal u. A flow chart of
the complete decoupling procedure is given in figure 4. In the following section, we
will show that this procedure is equally applicable to both single-point and two-
point measurements. For two-point measurements, the procedure outlined in figure 4
allows us to estimate the degree to which small scales at any wall-normal location are
amplitude-modulated by the large-scale motions from any other wall-normal position.

It should be noted that the procedure employed here is similar to the work
of Bandyopadhyay & Hussain (1984), except that here we use the Hilbert transform
to calculate the envelope of the small-scale component.

6. Example of sample analysis

The decoupling procedure developed in § 5 is applied here to instantaneous
streamwise fluctuating velocity signals at Reτ = 7300. Each step of the procedure
is demonstrated by showing corresponding example fluctuating signals (large- and
small-scale components, envelope and filtered envelope). This affords a clear view
of the amplitude modulation effect of the outer-scale events on the near-wall cycle.
Since the modulation is mainly assumed to be caused by the action of the large-scale
log-region structures on the near-wall small-scale events, the decoupling procedure
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is first applied to the synchronized two-point measurements, located at z+ = 15 and
z/δ =0.06 (as described in table 2). Each location represents the peak activity of the
two kinds of structures considered in the modulation process: the modulated small-
scale motions associated with the inner peak and the modulating superstructure-type
events associated with the outer peak. A second analysis is then undertaken on
a single-point measurement at z+ = 15. This is to demonstrate that a single-point
measurement is sufficient to characterize the degree of amplitude modulation.

6.1. Two-point analysis

For the synchronized samples the subscript ‘o’ refers to the outer signal and the
subscript ‘i’ to the inner signal. A time shift of �T + = 90 is applied to the inner
signal, to account for a structural inclination angle of θ = 14.5◦ (this time shift was
found to give the maximum correlation), and is consistent with the structure angle
reported across many wall-bounded flows by Marusic & Heuer (2007).

Figure 5 represents raw signals u+
o and u+

i (plots I) and their corresponding large-
scale components u+

oL and u+
iL (plots II). A visual comparison of the inner and outer

signals indicates a significant degree of correlation. This is confirmed by calculating
the long-time average correlations between the signals, found to be 37 % for the
raw signals and 72 % for the large-scale components. The high degree of correlation
between large-scale components is not surprising. Townsend (1976) already assumed
this behaviour through the attached eddy hypothesis, where events close to the
wall feel wall-parallel motions due to all attached eddies centred above that height.
As shown later by Metzger & Klewicki (2001) this results in a long-wavelength
component superimposed on the near wall. Moreover, Hutchins & Marusic (2007a)
have shown from DNS data (Reτ = 934; del Álamo et al. 2004) the occurrence in the
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near-wall region of a strong footprint owing to large-scale log-region events, which is
basically what we observe here.

The decoupling procedure presented in § 5 is applied here on the inner-signal u+
i .

The only difference is that instead of correlating the filtered envelope with the
large-scale component at the same location (u+

iL), we use as a modulating signal
the large-scale component at the outer location (u+

oL), which is presumed to be
the origin of the modulation. Each step of the decoupling is presented in figure 6.
Figure 6(a) shows the short-wavelength pass-filtered inner signal (λx/δ < 1). This plot
shows the modulated small-scale component. Figures 6(b) and 6(c) show respectively
the envelope and the filtered envelope (calculated with the Hilbert transform). The
large outer-scale component is superimposed in figure 6(c) as a dot-dashed line.
(The filtered envelope is amplified by a factor 2 in order to enhance the reading of
the figures.) A large-scale low-momentum region is marked by dashed vertical lines.
The previously observed attenuation of small-scale near-wall activity within these
large-scale low-momentum regions is clearly visible in the small-scale filtered inner
signal u+

iS of figure 6(a) and in the Hilbert calculated envelope of figure 6(b). The
filtered envelope, given in figure 6(c), appears to be well correlated to the large
outer-scale component, with (5.1) giving R = 0.33. This represents strong quantitative
evidence that the near-wall cycle resides under an amplitude modulation influence
imparted by superstructure-type events of the log region.

6.2. Single-point analysis

While the two-point synchronized measurements shown above are ideal for studying
the modulation influence of the outer-region motions on the near-wall region, these
kind of measurements are not easy to perform systematically, and the majority of
existing data sets have only single probe traverses across the boundary layer. Thus,
a method requiring only single-point measurements would be more immediately
applicable and is considered in this section. The main assumption for this analysis is
that the footprint at z+ =15 of the superstructure-type events is sufficient to provide
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a reasonable estimate of the degree of amplitude modulation (without the need
for a separate synchronized measurement at the outer peak). This is basically the
assumption made in the initial observations of Hutchins & Marusic (2007a) who
analysed only single-point streamwise velocity signals at z+ = 15.

The decoupling procedure applied here is the same as in the previous section,
except that the filtered envelope is now correlated to the local large-scale component
u+

iL, which is as originally described by the decoupling procedure shown in figure 4.
Figure 7 shows the filtered enveloped EL(u+

iS) against the large-scale component u+
iL.

(Again, the filtered envelope is amplified by a factor 2 in order to enhance the reading
of the figures.) The filtered envelope E+

L (u+
iS) has a significant level of correlation

with the large-scale signature of the inner signal u+
iL, R = 0.25. This value is only

slightly lower than the one determined using two points (since it comprises only the
footprint of the superstructures). Therefore, the single-point analysis seems to provide
a reasonable estimate with which to evaluate the degree of modulation and will be
used for the analysis of the remaining data at the various Reynolds numbers.

7. Global evidence of the amplitude modulation effect

In the previous sections we have considered only the degree of amplitude
modulation at the location of the inner peak z+ = 15. To provide more complete
evidence of the amplitude modulation effect, the decoupling procedure has been
applied at all wall-normal measurement stations across the boundary layer. This
results in the correlation coefficient R(z+), representing the degree of modulation
(between the large scales and the filtered envelope) as a function of the wall-normal
location. This analysis is applied on the single point traverses described in table 1.

Figure 8 shows the correlation coefficient R(z+) across the boundary layer together
with the corresponding spectrogram and mean velocity profile for Reτ = 7300. An
interesting variation of R(z+) with wall-normal location can be observed. A high
level of correlation is observed in the viscous layer of the boundary layer, decreasing
progressively towards a plateau occurring between the near-wall region and the log
layer. This is interpreted as strong evidence that the near-wall cycle associated with
the viscous layer is strongly modulated by low-wavenumber motions associated with
the log region. In the log region, the correlation decreases progressively to reach a zero
value at about z+ ≃ 300, corresponding reasonably well to the position of the outer
energetic peak as can be seen in figure 8(a). In addition, the zero degree of amplitude
modulation as well as the outer peak seem to be located at the approximate mid-point
of the log region. The reversal in correlation behaviour observed in figure 8(b) for
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higher z+ is very much as predicted by Hutchins & Marusic (2007b) who found
that the small-scale energy was smaller within large-scale negative fluctuations up
to z+ ≈ 300, after which a reversal occurred (and the small-scale fluctuations were
more energetic within negative large-scale excursions for z+ > 300). At the outermost
part of the boundary layer, the high negative peak in the correlation is attributed to
intermittency effects. Here the common observation is that the small-scale fluctuations
appear only within large-scale signatures (the vast majority of which are negative).

As a side comment, it is interesting to note that the shape of the amplitude
modulation correlation coefficient presented in figure 8(b) exhibits a strong similarity
to the shape of the skewness profile for the streamwise fluctuating velocity. Metzger &
Klewicki (2001) have shown that with increasing Reynolds number the local minima
of skewness in the buffer layer move to increasingly positive values. A similar trend
is observed for the modulation coefficient R. Such similarities are surprising, given
that there are clear fundamental differences between skewness, which is a measure of
asymmetry in the probability distribution of a signal, and R, which is the degree of
amplitude modulation between small and large scales.

7.1. Validation and robustness

The purpose of this section is to demonstrate that the results presented above are
an intrinsic and robust phenomenon of the flow and not mathematical artefacts due
to the decoupling procedure. In the first instance, a synthetic signal is studied in
order to show that no artificial degree of modulation can result from the different
mathematical tools. The subsequent sections are devoted to studying the effect of
the cutoff wavelength employed by the filters. This involves an investigation into
the effects of the assumed convection velocity (which is used to obtain length scale
information from a time signal). A comparison shows that use of local or global
convective velocity causes only insignificant changes to the calculated degree of
amplitude modulation. Finally, a set of several cutoff wavelengths located between
the inner and outer peaks are tested, showing only a weak variation of the degree of
amplitude modulation across the boundary layer.

7.1.1. Synthetic signal

The synthetic signal is constructed using an original signal at z+ = 15. The original
signal has been converted into the spectral domain, using a Fourier transformation,
in which the phases are scrambled. (The phase of each Fourier coefficient is replaced
with a randomly generated number between 0 and 2π.) The amplitude remains the
same. Figure 9(a) shows portions of the original and synthetic signals (left- and right-
hand plots respectively). Note that from a cursory inspection, both signals look very
much like turbulent fluctuating u velocity signals. Figure 9(b) shows the corresponding
energy spectra for each of the two signals. This technique produces a synthetic signal
with exactly the same energy spectra and turbulence intensity as the original signal
yet without any realistic phase information. By analysing the filtered signals shown in
figure 9(c) it is clear that the synthetic signal (right-hand side) does not exhibit any
signs of amplitude modulation. Indeed if we compare the negative excursions of the
large-scale filtered signal (occurring within the dashed vertical lines) it is clear that
the modulating influence on the small-scale u+

S components, clearly evident for the
original signal, is completely absent for the phase-scrambled case. When this analysis
is extended to the full signals at all wall-normal locations (figure 9d), we note that the
correlation coefficient R(z+) for the synthetic signal effectively exhibits a zero level
across the entire boundary layer. This is in stark contrast to the left-hand plot of
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figure 9(d) (which is reproduced from figure 8b), which shows that, for the original
signal, R(z+) can return high levels of correlation and that it is a strong function of
wall-normal position.

7.1.2. Effect of the convection velocity

As shown in § 5, the demodulation process is based on spectral filters. Indeed, the
first step of the procedure is to decompose the raw signal below and above a cutoff
length scale to separate large- and small-scale components. The convection velocity
used to construct the pre-multiplied energy-spectra map is thus an important factor,
since this determines the energetic length scale λ+

x of the spectra map. Changing
the convection velocity will alter the shape of the pre-multiplied energy-spectra map
and thus shift the relative position of cutoff wavelengths (perhaps modifying the
modulation estimation). Determination of the true convection velocity in turbulent
boundary layers remains a controversial subject (Dennis & Nickels 2008). Regarding
it as local (where local convection velocity is determined from the local mean
Uc(z

+) = u(z+)) or global (where the convection velocity is given by some constant
across the boundary layer, e.g. Uc =0.82U∞) results in changes to the shape of the
pre-multiplied energy-spectra map, as shown in figure 10(a). The shaded contours
represent the energy spectra obtained using a local convective velocity Uc(z

+) (used
throughout this paper). Solid lines show contours obtained using a global convection
velocity Uc = 0.82U∞. Significant changes can be observed in wavelength throughout
the buffer and log regions, while weak modification appears at the top edge of
the boundary layer. Consequently this changes the relative position of the cutoff
wavelength, compared to the inner- and outer-peak locations. Indeed, the inner-peak
location changes from λ+

x = 1000 to λ+
x ∼ 2200, while the outer peak is approximately

in the same location. However, the cutoff (λx/δ = 1) still remains located between these
two peaks. It is noteworthy that the aim here is not to study the veracity of the local
or global convection velocity but to show that whatever pre-multiplied energy-spectra
map is constructed, the estimation of the degree of amplitude modulation is only
weakly affected. Figure 10(b) compares the degree of amplitude modulation R(z+)
obtained using each convective velocity. The solid line represents the original results
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obtained using the local convective velocity, whereas the dotted line corresponds to
results based on global convection velocity. Except for a weak underestimation of the
degree of modulation in the buffer region (5 % difference), the wall-normal evolution
of the correlation coefficient is in close agreement for both cases. This result shows
that the demodulation procedure outlined in figure 4 is only weakly dependent on
the choice of convection velocity to build the pre-multiplied energy-spectra map.
Furthermore, this analysis would also seem to indicate that the decoupling procedure
is somewhat robust to the choice of cutoff wavelength for the filtering. This is explored
in more detail below.

7.1.3. Effect of the cutoff wavelength

Ten cutoff wavelengths are considered, logarithmically spaced between the inner and
outer peaks (from λx/δ = 0.2 to λx/δ = 4). The shaded region in figure 11(a) shows
the range of tested cutoff wavelengths on the pre-multiplied energy-spectra map.
The demodulation procedure is performed for each cutoff case, and the resulting
correlation curves are shown in figure 11(b). As the cutoff wavelength is reduced, the
magnitude of the measured correlation increases, until a broad maximum is reached
at λx/δ ≈ 0.2. For even smaller cutoff filters, the magnitude of the correlation will
reduce. The general form of the R(z+) results are seen to remain nominally the same
and are thus only weakly dependent on the chosen cutoff wavelength. Moreover, the
zero value of the amplitude modulation is only minutely affected by the choice of the
cutoff wavelengths. This confirms the robustness and the reliability of the decoupling
procedure to determine the level of amplitude modulation imparted on the small scale
by the large scales.

8. Reynolds number effects

It is now well known that the peak of the inner-scaled streamwise turbulence
intensity increases with Reynolds number (for example DeGraaff & Eaton 2000;
Metzger & Klewicki 2001). In particular, it has been shown that this additional
energy in the near-wall streamwise fluctuation comes from low-wavenumber
events (Metzger & Klewicki 2001), which we now associate with the large-scaled
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τ ).

outer peak. Hutchins & Marusic (2007a) have shown that the magnitude of the outer
peak becomes increasingly comparable to that of the inner peak as Reynolds number
increases. Thus, we might expect the modulation caused by the large-scale events
on the near-wall cycle to show a similar increase with Reτ . To study this, five sets
of hot-wire experimental measurements acquired in the high-Reynolds-number wind
tunnel at the University of Melbourne and a set of sonic anemometer measurements
from the ASL (SLTEST) are considered. These data cover a range of three decades of
Reτ , from 2800 to 650 000. (Details of experimental conditions are given in table 1.)

Figure 12 presents the pre-multiplied energy-spectra maps kxφuu/U 2
τ for all sets

of measurements, in the same manner as presented in figure 1(b). The inner peak
is marked by the ‘+’ symbols and is seen to scale well in viscous units (z+ = 15;
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λ+
x = 1000) for all cases in which it has been measured. The location of the outer

peak was found by Hutchins & Marusic (2007a) to be at z/δ = 0.06 and λx/δ = 6,
but this was based on a study over a limited Reynolds number range. Here, the
data in figure 12, which cover a larger Reynolds number range, show the location
of the outer peak to correspond well with the geometric centre of the logarithmic
region (on a log plot), which is indicated by the vertical dashed lines on each plot in
figure 12. Over the full range of Reτ considered, it appears that the cutoff λx/δ =1
remains well located to separate large- and small-scale structures (regarding locations
of inner and outer peaks). It should be cautioned that for figure 12(f ), the data
from SLTEST are considerably less reliable than the laboratory data presented in
plots (a)–(e). For the SLTEST data, fluctuating signals (and energy spectra) are
only available at nine locations within the log region. These fluctuating signals have
a limited sample frequency (�T + ≈ 100), and hence the small-wavelength end of
the spectra is not captured. In addition, as was previously discussed in § 2, the
1 h of available data equates to only approximately 350 boundary-layer turnover
times. Hence the large-wavelength end of the spectra must be considered improperly
converged. Each large-scale ‘superstructure’ event will take several minutes to advect
past the measurement array, and thus the occurrences of these events within the 1
h of data are limited. In short, figure 12(f ) should only be considered as indicative
of the general form of the spectra at high Reynolds numbers. The apparent peak
which is observed in the map at λx ≈ 4δ, z+ ≈ 20 000 is more likely the upper edge of
some broadband outer peak. It is noted that in a similar study at SLTEST, Metzger
et al. (2007) observed that this peak was approximately located at z+ =2500–3000 for
similar Reynolds number (although these data require the usual caveats with regard
to limited convergence, roughness and non-stationarity effects).

To gain a better insight into the Reτ effects on the amplitude modulation
phenomenon, the demodulation procedure has been applied on each data set, at
all wall-normal locations across the boundary layer. The resulting R(z+) profiles are
respectively plotted in figures 13(a) and 13(b) in terms of inner scaling and outer
scaling. The global shape of each curve is seen to be the same for all Reτ (the
form of which was analysed in § 7). However, certain interesting features can be
observed as Reτ increases. When outer scaled with z/δ, it is interesting to note that
figure 13(b) exhibits an approximate collapse of the correlation R(z/δ) over three
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orders of magnitude in Reynolds number. This reinforces the assumption that the
source of the amplitude modulation mechanism is the large δ-scaled events that
inhabit the log region. In figure 13(a), the degree of amplitude modulation for all
Reynolds numbers attains an approximate plateau between the viscous and log
regions, 20 <z+ < 100. The magnitude of this plateau is observed to grow as Reτ

increases. An average value of this plateau is reported in figure 14, which allows us
to estimate the Reynolds number dependence of the modulation. The error bars in
figure 14 indicate the uncertainty in the plateau magnitude due to choice of cutoff
wavelength, as discussed in § 7.1.3 and as shown in figure 11(b). Within these errors,
the amplitude modulation effect appears to become significant above Reτ ≃ 2000
which is consistent with observations of Hutchins & Marusic (2007a) who noted the
emergence of the outer energy site at approximately Reτ =1900. Beyond Reτ = 2000
the degree of amplitude modulation appears to follow an approximate log law
(with Reτ ). This is consistent with previous work that has shown that the energetic
signature of the large-scale motions will increase as compared to the near-wall cycle
with increasing Reynolds number. (Hutchins & Marusic 2007a have shown this
increase to be approximately logarithmic with Reτ .) A logarithmic growth of the
plateau magnitude is fitted to the data in figure 14 and shown by the dot-dashed
line. At very high Reynolds numbers such a growth is unsustainable. Extrapolation
of the fit suggests that the correlation would exceed unity when friction Reynolds
numbers exceeds 2 × 106 − 4 × 106 (depending on cutoff filter). Since a correlation
coefficient cannot exceed unity, a more realistic scenario would be that the magnitude
of R could asymptotically approach unity as Reynolds number approaches infinity.
This scenario would imply that at very high Reynolds numbers, the near-wall cycle
is almost fully driven by the passage of large-scale structures in the log layer. Indeed
the basic trend evident in figure 14 would imply that the near-wall cycle at SLTEST
will experience a very high degree of amplitude modulation due to the large-scale
structures (R ≈ 0.8 ± 0.05).

Another feature of interest is the wall-normal location at which the degree of
amplitude modulation crosses zero. This point delineates the wall-normal position at
which R(z+) changes sign or to be more precise the location at which the amplitude of
the small-scale fluctuations is completely uncorrelated with the large-scale envelope (i.e
a position with no amplitude modulation). In figure 8, for Reτ = 7300, the wall-normal
position at which R = 0 (marked with the vertical dashed line) is seen to correspond
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Figure 15. Wall-normal location at which the degree of amplitude modulation is zero (R = 0)
versus Reynolds number (filled symbols): (a) with inner length scaling ( z+); (b) with outer
length scaling (z/δ). Lines represent the location of the middle of the log layer, corresponding
to (solid) 100 <z+ < 0.15Reτ and (dashed) based on Reynolds-number-dependent boundaries
KRe1/2

τ <z+ < 0.15Reτ (here K = 1.2). The open symbol is the estimated location of the outer
u-spectral peak measured at SLTEST in 2005 by Metzger & McKeon (private communication).

well with the location of the outer peak which, as discussed previously, agrees well
with the nominal mid-point of the log region. Figure 15 shows as solid symbols
the location of the zero amplitude modulation (plotted in inner and outer scalings)
for all Reynolds numbers considered here. (It is important to note that the Utah
results have large error bars, given the large experimental uncertainties associated
with those measurements.) There are considerable differences in the literature as to
what constitutes the bounds of the log law. Here, our attention is on a nominal
location (rather than a precise one). However, for comparison two lines are shown
in figure 15 as estimates of the centre of the logarithmic region (on a log plot).
The solid line corresponds to a definition of the log region as 100 <z+ < 0.15Reτ ,
giving z+

M = 3.9Re1/2
τ , while the dotted line is based on KRe1/2

τ < z+ < 0.15Reτ , giving
z+

M = 0.42Re3/4
τ , from suggestions by Klewicki et al. (2007) and others that the lower

bound of the log region is Reynolds-number-dependent.



334 R. Mathis, N. Hutchins and I. Marusic

Overall, the results in figures 12 and 15 support the notion that the outer peak in
the streamwise energy spectra is coincident with the wall-normal location at which the
degree of amplitude modulation crosses zero and that this nominally agrees with the
centre of the log region (all of which are Reynolds-number-dependent). It is difficult
to interpret this result within a mechanistic description of the boundary layer. Close
to the wall, the positive values of correlation are as expected. A large-scale deviation
in the local streamwise velocity will produce a corresponding change in the local
velocity gradient at the wall, altering the turbulence production (or input of vorticity)
in the near-wall region. Thus, in this region the magnitude (or envelope) of the small-
scale fluctuations would be expected to follow the sign of the large-scale fluctuations
(hence the positive values of R). Based on the hairpin packet paradigm, one would
expect opposite behaviour to occur at some point within the log region. A regime of
hairpin packets would imply that most of the small-scale vortical activity would be
located within or about the large-scale regions of negative velocity fluctuation (hence
the negative values of R in the log region). However, at present we lack an adequate
explanation for why the reversal in sign between these two regions should correspond
so well to the location of the ‘outer site’ in the energy spectra.

Also included in figure 15 is an estimate for the location of the outer peak in u-
spectra as obtained by Metzger & McKeon (private communication 2009) in separate
SLTEST measurements. These data correspond to conditions different from our own
and were taken in 2005 with hot wires much closer to the surface – as reported by
Metzger et al. (2007) and Guala, Metzger & McKeon (2009). The error bars for the
SLTEST measurements are difficult to estimate, and as such these results should be
used with due caution. In any event, the estimate of z+ ≈ 2500 for the outer spectral
peak location agrees well with the line indicating the centre of the log region following
the Re1/2

τ formulation.
The results in figure 15 also have significance in the context of the study of the

mean momentum balance by Klewicki et al. (2007) and Fife et al. (2005). From
their theory, a line following z+ = C(δ+)1/2 (C = O(1)) is associated with the location
above which viscous force is negligible and below which the viscous force is of the
same order as turbulent inertia. (This line tracks the boundary of layers III and IV;
see table 2 in Klewicki et al. 2007). Conversely, a line tracking a 3/4 power resides in
the middle of the inertially dominated layer IV of the mean momentum balance. This
therefore leads to different interpretations of the R = 0 crossing location (relative to
the mean dynamics), depending on whether we consider the data best described by
Re1/2

τ or Re3/4
τ . At this stage we consider the question open. Though the present results

in figure 15 tend to better support an Re1/2
τ trend, there is significant uncertainty in

the ASL results. This further highlights the need for high-fidelity measurements in
the very high-Reynolds-number range (Reτ ≈ 100 000).

9. Conclusions

An analysis of scale-decomposed fluctuating velocity using the Hilbert trans-
formation has revealed strong supporting evidence to confirm the initial assumptions
proposed by Hutchins & Marusic (2007b). In addition to the low-wavenumber
energy superimposed on the near-wall streamwise fluctuation (Metzger & Klewicki
2001), it is found that a nonlinear phenomenon of amplitude modulation takes place
between large- and small-scale motions. Indeed, it is shown that in the viscous and
buffer layers, the large-scale component is analogous to a modulating signal, while
the small-scale component can be viewed as a modulated signal. This apparent
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amplitude modulation, imposed by large-scale log-region events on near-wall
viscous-scaled structures, has numerous implications for our assumptions concerning
turbulent boundary layers. The near-wall cycle, assumed for some time now to be an
autonomous process, is shown here to reside under the modulating influence of the
superstructure-type events associated with the log region.

The demodulation procedure built upon the initial observations of Hutchins &
Marusic (2007b) constitutes a valuable tool to analyse the relationship between
large- and small-scale structures in turbulent wall-bounded flows. By studying several
parameters of the demodulation process, it is shown that the estimation of the
amplitude modulation is only weakly affected by possible approximations or errors
introduced by the different steps in the demodulation procedure (pre-multiplied
energy-spectrum map, convection velocity and spectral filter). This reinforces that the
results presented here are robust.

As shown by Hutchins & Marusic (2007a), the large-scale log-region activity
increases in intensity with Reynolds number. This is confirmed by the present study,
where an increase of the amplitude modulation is observed as the Reynolds number
increases. These experimental data covering three orders of magnitude in Reynolds
number have also revealed that the zero magnitude of the modulation collapses
well with the mid-point of the log layer, as well as with the location of the outer
peak. All of this points towards the conclusion that the large-scale structures play
an increasingly important role in high-Reynolds-number turbulent boundary layers.
Future efforts will be directed towards using this information for the active control of
turbulence, through drag reduction or lift enhancement, at high Reynolds numbers.
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Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to

Reτ = 2003. Phys. Fluids 18, 011702.
Hristov, T., Friehe, C. & Miller, S. 1998 Wave-coherent fields in air flow over ocean waves:

Identification of cooperative behaviour buried in turbulence. Phys. Rev. Lett. 81 (23), 5245–
5248.

Huang, N. E., Shen, Z. & Long, S. R. 1999 A new view of the nonlinear water waves: the Hilbert
spectrum. Annu. Rev. of Fluid Mech. 31, 417–457.

Hunt, J. C. R. & Morrison, J. F. 2000 Eddy structure in turbulent boundary layers. Eur. J. Mech.
B 19, 673–694.

Hutchins, N. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry
measurements in turbulent boundary layers. J. Fluid Mech. 541, 21–54.

Hutchins, N. & Marusic, I. 2007a Evidence of very long meandering features in the logarithmic
region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

Hutchins, N. & Marusic, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R.
Soc. Lond. A 365, 647–664.

Hutchins, N., Nickels, T., Marusic, I. & Chong, M. S. 2009 Spatial resolution issues in hot-wire
anemometry. J. Fluid Mech. In press.
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