

University of Dundee

Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

Christophersen, Ingrid E.; Rienstra, Michiel; Roselli, Carolina; Yin, Xiaoyan; Geelhoed, Bastiaan; Barnard, John

Published in: Nature Genetics

DOI: 10.1038/ng.3843

Publication date: 2017

Document Version Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

Christophersen, I. E., Rienstra, M., Roselli, C., Yin, X., Geelhoed, B., Barnard, J., Lin, H., Arking, D. E., Smith, A. V., Albert, C. M., Chaffin, M., Tucker, N. R., Li, M., Klarin, D., Bihlmeyer, N. A., Low, S-K., Weeke, P. E., Mueller-Nurasyid, M., Smith, J. G., ... Ellinor, P. T. (2017). Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. *Nature Genetics*, *49*(6), 946-952. https://doi.org/10.1038/ng.3843

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain.
You may freely distribute the URL identifying the publication in the public portal.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

- 1
- 2

Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

3 4

Ingrid E. Christophersen*, MD, PhD,¹⁻³ Michiel Rienstra*, MD, PhD,⁴ Carolina Roselli, MSc*,^{1,5,6} Xiaoyan 5 Yin*, PhD,^{7,8} Bastiaan Geelhoed*, PhD,⁴ John Barnard, PhD,⁹ Honghuang Lin, PhD,^{7,8} Dan E. Arking, 6 PhD,¹⁰, Albert V. Smith, PhD,^{11,12} Christine M. Albert, MD, MPH,¹³ Mark Chaffin, MSc¹, Nathan R. Tucker, 7 PhD,^{1,2} Molong Li, MD,² Derek Klarin, MD,¹ Nathan A Bihlmeyer, BS,¹⁴ Siew-Kee Low, PhD,¹⁵ Peter E. 8 Weeke, MD, PhD,^{16,17} Martina Müller-Nurasyid, PhD,^{5,18,19} J. Gustav Smith, MD, PhD,^{1,20} Jennifer A. Brody, 9 BA,²¹ Maartje N. Niemeijer MD,²² Marcus Dörr, MD,^{23,24} Stella Trompet, PhD,²⁵ Jennifer Huffman, PhD,²⁶ 10 Stefan Gustafsson, PhD,²⁷ Claudia Schurman, PhD,^{28,29} Marcus E. Kleber, PhD,³⁰ Leo-Pekka Lyytikäinen, 11 MD,³¹ Ilkka Seppälä, MD,³¹ Rainer Malik, PhD,³² Andrea R. V. R. Horimoto, PhD,³³ Marco Perez, MD,³⁴ 12 Juha Sinisalo, MD, PhD,³⁵ Stefanie Aeschbacher, MSc,^{36,37} Sébastien Thériault, MD, MSc,^{38,39} Jie Yao, 13 MS,⁴⁰ Farid Radmanesh, MD, MPH,^{1,41} Stefan Weiss, PhD,^{24,42} Alexander Teumer, PhD,^{24,43} Seung Hoan 14 Choi, PhD,¹ Lu-Chen Weng, PhD^{1,2} Sebastian Clauss, MD,^{2,18} Rajat Deo, MD, MTR,⁴⁴ Daniel J. Rader, MD,⁴⁴ 15 Svati Shah, MD, MHS,⁴⁵ Albert Sun, MD,⁴⁵ Jemma C. Hopewell, PhD,⁴⁶ Stephanie Debette, MD, PhD,^{47–50} 16 Ganesh Chauhan, PhD,^{47,48} Qiong Yang, PhD,⁵¹ Bradford B. Worrall, MD, MSc,⁵², Guillaume Paré, MD, 17 MSc,^{38,39} Yoichiro Kamatani, MD, PhD,¹⁵ Yanick P. Hagemeijer, MSc,⁴ Niek Verweij, PhD,⁴ Joylene E. 18 Siland, MSc,⁴ Michiaki Kubo, MD, PhD,⁵³ Jonathan D. Smith, PhD,⁹ David R. Van Wagoner, PhD,⁹ Joshua C. 19 Bis, PhD,²¹ Siegfried Perz, MSc,⁵⁴ Bruce M. Psaty, MD, PhD,^{21,55–57} Paul M. Ridker, MD, MPH,¹³ Jared W. 20 Magnani, MD, MSc,^{7,58} Tamara B. Harris, MD, MS,⁵⁹ Lenore J. Launer, PhD,⁵⁹ M. Benjamin Shoemaker, 21 MD, MSCI,¹⁶ Sandosh Padmanabhan, MD,⁶⁰ Jeffrey Haessler, MS,⁶¹ Traci M. Bartz, MS,⁶² Melanie 22 Waldenberger, PhD,^{19,54,63} Peter Lichtner, PhD,⁶⁴ Marina Arendt, MSc,⁶⁵ Jose E. Krieger, MD, PhD,³³ Mika 23 Kähönen, MD, PhD,⁶⁶ Lorenz Risch, MD, MPH,⁶⁷ Alfredo J. Mansur, MD, PhD,⁶⁸ Annette Peters, PhD,^{19,54,69} 24 Blair H. Smith, MD,⁷⁰ Lars Lind, MD, PhD,⁷¹ Stuart A. Scott, PhD,⁷² Yingchang Lu, MD, PHD,^{28,29} Erwin B. 25 Bottinger, MD,^{28,73} Jussi Hernesniemi, MD, PhD,^{31,74} Cecilia M. Lindgren, PhD,⁷⁵ Jorge Wong, MD,⁷⁶ Jie 26 Huang, MD, MPH,⁷⁷ Markku Eskola, MD, PhD,⁷⁴ Andrew P. Morris, PhD,^{75,78} Ian Ford, PhD,⁷⁹ Alex P. 27 Reiner, MD, MSc,^{61,80} Graciela Delgado, Msc,³⁰ Lin Y. Chen, MD, MS,⁸¹ Yii-Der Ida Chen, PhD,⁴⁰ Roopinder 28 K. Sandhu, MD, MPH,⁸² Man Li, PhD,^{83,84} Eric Boerwinkle, PhD,⁸⁵ Lewin Eisele, MD,⁶⁵ Lars Lannfelt, MD, 29 PhD,⁸⁶ Natalia Rost, MD, MPH, FAAN,^{1,87} Christopher D. Anderson, MD, MMSc,^{1,41} Kent D. Taylor, PhD,⁴⁰ 30 Archie Campbell, MA,⁸⁸ Patrik K. Magnusson, PhD,⁸⁹ David Porteous, PhD,⁸⁸ Lynne J. Hocking, PhD,⁹⁰ 31 Efthymia Vlachopoulou, PhD,⁹¹ Nancy L. Pedersen, MA, PhD,⁸⁹ Kjell Nikus, MD, PhD,⁷⁴ Marju Orho-32 Melander, PhD,⁹² Anders Hamsten, MD, PhD,⁹³ Jan Heeringa, MD, PhD,²² Joshua C. Denny, MD,¹⁶ Jennifer 33 Kriebel, PhD, ^{54,63,69} Dawood Darbar, MD, ⁹⁴ Christopher Newton-Cheh, MD, MPH, ^{1,2} Christian Shaffer, 34 BS,¹⁶ Peter W. Macfarlane, PhD, DSc,⁹⁵ Stefanie Heilmann, PhD,^{96,97} Peter Almgren, MSc,⁹² Paul L. Huang, 35 MD, PhD,² Nona Sotoodehnia, MD, MPH,⁹⁸ Elsayed Z. Soliman, MD, MSc, MS,⁹⁹ Andre G. Uitterlinden, 36 PhD,¹⁰⁰ PhD, Albert Hofman, MD, PhD,²² Oscar H. Franco, MD, PhD,²² Uwe Völker, PhD,^{24,42} Karl-Heinz 37 Jöckel, PhD,⁶⁵ Moritz F. Sinner, MD, MPH,^{18,19} Henry J. Lin, MD,⁴⁰ Xiuqing Guo, PhD,⁴⁰ METASTROKE 38 Consortium of the ISGC, Neurology Working Group of the CHARGE Consortium, Martin Dichgans, 39 MD,^{32,101,102}, Erik Ingelsson, MD, PhD,^{27,103} Charles Kooperberg, PhD,⁶¹ Olle Melander, MD, PhD,¹⁰⁴ Ruth J. 40 F. Loos, PhD,^{28,29,105} Jari Laurikka, MD, PhD,¹⁰⁶ David Conen, MD, MPH,^{36–38} Jonathan Rosand, MD, 41 MSc,^{1,41} Pim van der Harst, MD, PhD,⁴ Marja-Liisa Lokki, PhD,⁹¹ Sekar Kathiresan, MD,¹ Alexandre Pereira, 42 MD, PhD,¹⁰⁷ J. Wouter Jukema, MD, PhD,^{25,108,109} Caroline Hayward, PhD,²⁶ Jerome I. Rotter, MD,¹¹⁰ 43 Winfried März, MD,¹¹¹ Terho Lehtimäki, MD, PhD,³¹ Bruno H. Stricker, MD, PhD,¹¹² Mina K. Chung, MD, 44

45 46	Roden,	tephan B. Felix, MD, ^{23,24} Vilmundur Gudnason, MD, PhD, ^{11,12} Alvaro Alonso, MD, PhD, ¹¹³ Dan M. MD, ¹⁶ Stefan Kääb, MD, PhD, ^{18,19} Daniel I. Chasman, PhD, ^{1,114} Susan R. Heckbert, MD, PhD, ^{55,56}					
47 48	Emelia J. Benjamin ⁺ , MD, ScM, ^{7,58,115} Toshihiro Tanaka ⁺ , MD, PhD, ^{116,117} Kathryn L. Lunetta ⁺ , PhD, ^{7,8} Steven A. Lubitz ⁺ , MD, MPH, ^{1,2,118} Patrick T. Ellinor ⁺ , MD, PhD, ^{1,2,118} for the AFGen Consortium						
49 50	*Contri	ibuted equally					
50	*Contributed equally						
51 52	JOINUY	/ supervised the work					
52	Affiliati	ions					
54	1.	Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard,					
55	1.	Cambridge, MA, USA.					
56	2.	Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.					
57	3.	Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Norway.					
58	3. 4.	Department of Cardiology, University of Groningen, University Medical Center Groningen,					
59	ч.	Groningen, The Netherlands.					
60	5.	Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for					
61	5.	Environmental Health, Neuherberg, Germany.					
62	6.	Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology,					
63	0.	Ludwig-Maximilians-Universität, Munich, Germany.					
64	7.	NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA.					
65	8.	Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.					
66	9.	Departments of Cardiovascular Medicine, Cellular and Molecular Medicine, Molecular					
67		Cardiology, and Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA.					
68	10.	McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,					
69		Baltimore, MD, USA.					
70	11.	Icelandic Heart Association, Kopavogur, Iceland.					
71	12.	Faculty of Medicine, University of Iceland, Reykavik, Iceland.					
72	13.	Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital & Harvard					
73		Medical School, Boston, MA, USA.					
74	14.	Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic					
75		Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.					
76	15.	Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama,					
77		Japan.					
78	16.	Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.					
79	17.	The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet,					
80		Copenhagen, Denmark.					
81	18.	Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University, Munich,					
82		Germany.					
83	19.	DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart Alliance,					
84		Munich, Germany.					
85	20.	Molecular Epidemiology and Cardiology, Clinical Sciences, Lund University, Lund, Sweden.					
86	21.	Cardiovascular Health Research Unit, Department of Medicine, University of Washington,					
87		Seattle, WA, USA.					

88	22.	Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the
89		Netherlands.
90	23.	Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.
91	24.	DZHK (German Centre for Cardiovascular Research), partner site: Greifswald, Germany.
92	25.	Department of Cardiology, Leiden University Medical Center, The Netherlands.
93	26.	MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of
94		Edinburgh, UK.
95	27.	Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory,
96		Uppsala University, Uppsala, Sweden.
97	28.	The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount
98		Sinai, New York, NY, USA.
99	29.	The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at
100		Mount Sinai, New York, NY, USA.
101	30.	Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Germany.
102	31.	Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of
103		Medicine, Tampere, Finland.
104	32.	Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-
105		Maximilians University, München, Germany.
106	33.	Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao
107		Paulo, Brazil.
108	34.	Stanford University, Stanford, CA, USA.
109	35.	Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland.
110	36.	University Hospital Basel, Switzerland.
111	37.	Cardiovascular Research Institute Basel, Switzerland.
112	38.	Population Health Research Institute, Hamilton, Canada.
113	39.	Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
114	40.	Institute for Translational Genomics and Population Sciences, Department of Pediatrics,
115		LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA.
116	41.	Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA.
117	42.	Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-
118		Moritz-Arndt-University Greifswald, Greifswald, Germany.
119	43.	Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.
120	44.	Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at
121		the University of Pennsylvania, Philadelphia, PA, USA.
122	45.	Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham,
123		NC, USA.
124	46.	CTSU - Nuffield Department of Population Health, University of Oxford, Oxford, UK.
125	47.	Inserm Center U1219 (Bordeaux Population Health Centre), Bordeaux, France.
126	48.	University of Bordeaux, Bordeaux, France.
127	49.	Department of Neurology, Bordeaux University Hospital, Bordeaux, France.
128	50.	Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
129	51.	Biostatistics Department, School of Public Health, Boston University, Boston, MA, USA.
130	52.	University of Virginia Health System, Departments of Neurology and Public Health Science,
131		Charlottesville, VA, USA.
		, ,

132	53.	RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
133	54.	Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for
134		Environmental Health, Neuherberg, Germany.
135	55.	Department of Epidemiology and Cardiovascular Health Research Unit, University of
136		Washington, Seattle, WA, USA.
137	56.	Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA.
138	57.	Department of Health Services, University of Washington, Seattle, WA, USA.
139	58.	Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
140	59.	Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda,
141		MD, USA.
142	60.	Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre,
143		University of Glasgow, Glasgow, UK.
144	61.	Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA.
145	62.	Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of
146		Washington, Seattle, WA, USA.
147	63.	Research unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research
148		Center for Environmental Health, Neuherberg, Germany.
149	64.	Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for
150		Environmental Health, Neuherberg, Germany.
151	65.	Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital, University
152		Duisburg-Essen, Germany.
153	66.	Department of Clinical Physiology, Tampere University Hospital and University of Tampere
154		School of Medicine, Tampere, Finland.
155	67.	University Institute of Clinical Chemistry, University of Bern, Switzerland and labormedizinisches
156		zentrum Dr. Risch, Schaan, Liechtenstein.
157	68.	Heart Institute, University of Sao Paulo, Sao Paulo, Brazil.
158	69.	German Center for Diabetes Research, Neuherberg, Germany.
159	70.	Division of Population Health Sciences, University of Dundee, Scotland, UK.
160	71.	Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala,
161		Sweden.
162	72.	Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai, New
163		York, NY, USA.
164	73.	Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount
165		Sinai, New York, NY, USA.
166	74.	Department of Cardiology, Heart Hospital, Tampere University Hospital and University of
167		Tampere School of Medicine, Tampere, Finland.
168	75.	Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
169	76.	Division of Cardiology, Hamilton Health Sciences, McMaster University, Hamilton, Ontario,
170		Canada.
171	77.	Boston VA Research Institute, Inc., Boston, MA, USA.
172	78.	Department of Biostatistics, University of Liverpool, Liverpool, UK.
173	79.	Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK.
174	80.	Department of Epidemiology, University of Washington, Seattle, WA, USA.

175	81.	Cardiovascular Division, Department of Medicine, University of Minnesota Medical School,
176		Minneapolis, MN, USA.
177	82.	Division of Cardiology, University of Alberta, Edmonton, Canada.
178	83.	Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
179	84.	Division of Nephrology & Hypertension, Internal Medicine, School of Medicine, University of
180		Utah, UT, USA.
181	85.	Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
182	86.	Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala,
183		Sweden.
184	87.	Acute Stroke Services, Massachusetts General Hospital, Boston, MA, USA.
185	88.	Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and
186		Molecular Medicine, University of Edinburgh, UK.
187	89.	Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
188		Sweden.
189	90.	Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen,
190		Aberdeen, UK.
191	91.	Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland.
192	92.	Department of Clinical Sciences, Lund University, Malmö, Sweden.
193	93.	Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of
194		Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
195	94.	University of Illinois, Chicago, IL, USA.
196	95.	Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of
197		Glasgow, UK.
198	96.	Institute of Human Genetics, University of Bonn, Germany.
199	97.	Department of Genomics, Life & Brain Research Center, University of Bonn, Germany.
200	98.	Cardiovascular Health Research Unit, University of Washington Medical Center, Seattle, WA,
201		USA.
202	99.	Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine,
203		Winston Salem, NC, USA.
204	100.	Department of Epidemiology and Internal Medicine, Erasmus University Medical Center
205		Rotterdam, the Netherlands.
206	101.	Munich Cluster for Systems Neurology (SyNergy), München, Germany.
207	102.	German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
208	103.	Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of
209		Medicine, Stanford, CA, USA.
210	104.	Department of Internal Medicine, Clinical Sciences, Lund University, Malmö, Sweden.
211	105.	The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai,
212		New York, NY, USA.
213	106.	Department of Cardio-Thoracic Surgery, Heart Hospital, Tampere University Hospital and
214		University of Tampere School of Medicine, Tampere, Finland.
215	107.	Laboratory of Genetics and Molecular Biology, Heart Institute, University of Sao Paulo, Sao
216		Paulo, Brazil and Department of Genetics, Harvard Medical School, Boston, MA, USA.
217	108.	Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands.
218	109.	Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.

219	110.	Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and						
220		Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA.						
221	111.	Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz,						
222		Graz, Austria and Synlab Academy, Synlab Services GmbH, Mannheim, Germany.						
223	112.	Department of Epidemiology and Internal Medicine, Erasmus University Medical Center						
224		Rotterdam, the Netherlands and Inspectorate of Health Care, Utrecht, the Netherlands.						
225	113.	Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA,						
226		USA.						
227	114.	Divisions of Preventive Medicine and Genetics, Brigham and Women's Hospital & Harvard						
228		Medical School, Boston, MA, USA.						
229	115.	Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.						
230	116.	Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences,						
231		Yokohama, Japan.						
232	117.	Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University						
233		Graduate School of Medical and Dental Sciences, Tokyo, Japan.						
234	118.	Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA.						
235								
236								
237								
238	Word c	ount: 2,229 (excl. online methods, references, and figure legends)						
239								
240	Short ti	tle: Novel genetic loci for atrial fibrillation						
241 242	Those	uthors contributed equally to this work: Ingrid E. Christophersen, Michiel Rienstra, Carolina						
242		Xiaoyan Yin, Bastiaan Geelhoed.						
243	Nosem,	Naoyan III, Bastiaan Geenloed.						
245	These a	uthors jointly supervised this work: Emelia J. Benjamin, Toshihiro Tanaka, Kathryn L. Lunetta,						
246		A. Lubitz, Patrick T. Ellinor.						
247	oteven							
248	Corresp	oonding author:						
249	•	T. Ellinor, MD, PhD,						
250		n in Medical and Population Genetics,						
251	-	ad Institute of MIT and Harvard						
252								
253	Cardiov	vascular Research Center,						
254	Massac	husetts General Hospital;						
255	Boston, MA 02129							
256	T: 617-7	724-8729						
257	E: ellino	or@mgh.harvard.edu						
258								
259		subject codes: Atrial fibrillation, population genetics, genome-wide association studies, gene-						
260	express	ion						
261								

- 262 **Disclosures:** Dr. Ellinor is the PI on a grant from Bayer HealthCare to the Broad Institute focused on the
- 263 genetics and therapeutics of atrial fibrillation. The remaining authors have no disclosures.

264 Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death.^{1,2} Fourteen genetic loci have been associated with atrial fibrillation in European 265 and Asian ancestry groups.^{3–7} To further define the genetic basis of atrial fibrillation, we performed 266 267 large-scale, multi-racial meta-analyses of common and rare variant association studies. The genome-268 wide association studies (GWAS) included 18,398 individuals with atrial fibrillation and 91,536 269 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) 270 involved 22,806 cases and 132,612 referents. We identified 12 novel genetic loci that exceeded 271 genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into 272 the molecular basis of atrial fibrillation, and may facilitate new potential targets for drug discovery.⁸ 273 274 275 Atrial fibrillation is a common cardiac arrhythmia that can cause serious complications such as stroke, heart failure, dementia, and death.^{1,2} The lifetime risk of atrial fibrillation is one in four⁹ and it 276 277 has been estimated that more than 33 million individuals worldwide are affected.¹ During the last 278 decade, GWAS have identified 13 genetic loci associated with atrial fibrillation in Europeans and one 279 Asian specific atrial fibrillation locus, of which a region near the gene encoding the transcription factor PITX2 has shown the strongest association. $^{3-7}$ Recently, genome and exome sequencing studies have 280 identified rare atrial fibrillation-associated mutations in MYL4,¹⁰ MYH6,¹¹ CACNB2,¹² and CACNA2D4.¹² 281 282 Given the incomplete understanding of the biology of atrial fibrillation and the modestly sized prior 283 genetic association analyses, we sought to identify additional susceptibility loci by increasing the size 284 and diversity of the atrial fibrillation studies.

285

We therefore investigated both common and rare variants in a large collection of individuals in the
Atrial Fibrillation Genetics (AFGen) Consortium, by meta-analyses of GWAS, ExWAS, and RVAS in 33

studies, including 22,806 individuals with atrial fibrillation and 132,612 referents (Online methods). Fig.
1 illustrates our study design and Supplementary Tables 1 and 2 show baseline characteristics of the
study participants.

291

292 In a meta-analysis of GWAS in 31 studies, we identified 10 new genetic loci associated with atrial fibrillation (P < 5x10⁻⁸) at METTL11B/KIFAP3, ANXA4/GMCL1, CEP68, TTN/TTN-AS1, KCNN2, 293 KLHL3/WNT8A/FAM13B, SLC35F1/PLN, ASAH1/PCM1, SH3PXD2A, and KCNJ5 (Table 1, Figs. 2 and 3, 294 295 Supplementary Fig. 1, Supplementary Table 3). The 13 genetic loci previously associated with atrial 296 fibrillation in Europeans were again observed, while one locus previously reported in Asians only, did not 297 reach genome-wide significance in our study (CUX2). 298 299 In a meta-analysis of ExWAS in 17 studies, we identified two additional novel genetic loci (SCN10A 300 and SOX5, $P < 1.04 \times 10^{-6}$) as well as one new locus also identified in the GWAS meta-analysis 301 (SLC35F1/PLN) (Table 2, Supplementary Fig. 2 and 3). Variants at each of these three loci have 302 previously been associated with electrocardiographic traits (Supplementary Table 3). 303 304 Finally, in an RVAS or burden test of rare variants, one gene, SH3PXD2A, reached genome-wide 305 significance. This association was mainly driven by a rare coding variant that is unique to individuals of 306 Asian ancestry (rs202011870, minor allele frequency (MAF) 0.18%, odds ratio (OR) 4.68, 95% confidence 307 interval (CI) 2.97-7.39, P=3.3x10⁻¹¹, Supplementary Tables 3-5) and the same locus was significantly 308 associated with atrial fibrillation in the GWAS meta-analysis. Out of the 11 variants in the Asian ancestry 309 burden test, rs149867987 also reached genome-wide significance and had an effect in the same 310 direction as rs202011870. There was no genome-wide significant signal at SH3PXD2A in RVAS analyses in 311 individuals of European or African American ancestry.

312 313

314	Ancestry-specific GWAS analysis revealed a significant association between African Americans (641
315	cases and 4956 referents) with atrial fibrillation and variants on chromosome 4q25 upstream of <i>PITX2</i>
316	(rs6843082, OR 1.40, 95% Cl 1.24-1.58, P=4.31x10 ⁻⁸ , Supplementary Table 6, Supplementary Fig. 4).
317	Similarly, the 4q25/PITX2 region is the most significant locus for atrial fibrillation in individuals of
318	Japanese ancestry (rs2723334, OR 1.94, 95% CI 1.68-2.25, <i>P</i> =8.46x10 ⁻¹⁹) and European ancestry
319	(rs2129977, OR 1.45, 95% CI 1.41-1.49, <i>P</i> =7.25x10 ⁻¹³⁶), and the lead SNPs in all three ancestry groups are
320	in strong linkage disequilibrium, with an r ² >0.94. Further ancestry-specific meta-analyses did not
321	produce additional robust associations for atrial fibrillation (Supplementary Results, Supplementary
322	Table 6-7, and Supplementary Figs. 4-6). Separate meta-analyses of incident and prevalent atrial
323	fibrillation in Europeans did reveal one additional genome wide signal at chromosome 12p11/PKP2 that
324	was only present in the prevalent atrial fibrillation analysis (Supplementary Results, Supplementary
325	Tables 8-9, Supplementary Figs. 7-8); however, since this locus was not present in the combined
326	analyses it was not pursued further.
327	
328	We then performed an in silico replication of our results using two ethnically distinct studies. First,
329	we replicated the atrial fibrillation associated variants in 8,180 cases and 28,612 referents from the

Biobank Japan study (**Online methods, Supplementary Table 10**). The novel atrial fibrillation variant

intronic to *CEP68* reached genome-wide significance among Japanese, whereas the atrial fibrillation

variants at *KCNN2* and *SOX5* achieved significance when correcting for multiple testing of 33 variants

333 (*P*<1.5x10⁻³). The loci at *ASAH1, TTN,* and *METTL11B* reached nominal significance in Japanese (*P*<0.05).

Of note, approximately 10% of the cases in the GWAS discovery analysis and Japanese replication

analysis were overlapping (837 cases and 3293 referents). The lack of replication of the remaining loci

336 likely reflects the heterogeneous nature of atrial fibrillation across different ancestries.

338	Second, we performed replication in 3,366 cases and 139,852 referents of mainly European ancestry
339	in the UK Biobank (Online methods, Supplementary Table 11). The atrial fibrillation locus at SH3PXD2A
340	reached genome-wide significance in the UK Biobank, whereas the loci METTL11B, CEP68, and
341	KLHL3/WNT8A/FAM13B were significantly associated when correcting for multiple testing of 31 variants
342	(P<1.6x10 ⁻³), and the loci at TTN, ASAH1, KCNJ5, and SCN10A reached nominal significance (P<0.05). The
343	lack of replication of all of the atrial fibrillation loci is likely caused by reduced statistical power due to
344	decreased sample size in the replication sample (18,398 versus 3,366 atrial fibrillation cases). However,
345	there was a consistent direction of effects for all atrial fibrillation loci in the discovery and replication
346	analyses.
347	
348	Conditional analyses based on the summary level results of the GWAS meta-analysis were
349	performed to identify multiple, independent signals on each chromosome containing atrial fibrillation
350	loci (Online Methods). We confirmed that the two loci <i>METTL11B/KIFAP3</i> and <i>PRRX1</i> , located ~350
351	kilobases (kb) apart on chromosome 1, were independent signals, as were the two loci SH3PXD2A and
352	NEURL1, ~200 kb apart on chromosome 10 (Supplementary Table 12, Supplementary Fig. 9).
353	
354	We found that seven of the known or new atrial fibrillation loci were associated with atrial
355	fibrillation-related phenotypes, such as electrocardiographic traits, left ventricle internal diastolic
356	diameter, and stroke (Supplementary Table 3 and 13, Supplementary Fig. 10). Given the close relation
357	between atrial fibrillation and cardioembolic stroke, we then sought to determine whether the novel
358	atrial fibrillation variants were associated with stroke risk. We performed an in silico lookup in GWAS
359	data for stroke subtypes from the Neuro-CHARGE and METASTROKE consortia. None of the novel loci for

atrial fibrillation were associated with ischemic stroke, cardioembolic stroke, small, or large vessel
 disease (Supplementary Tables 14-15).

362

363 Next, we performed an in silico evaluation of the known and newly identified atrial fibrillation 364 associated loci (Online Methods, Supplementary Results). We compared the atrial fibrillation loci 365 (n=24) to other trait-associated loci from the NHGRI-EBI GWAS catalog (n=3,381) and matching control 366 loci selected for similar architectural properties (n=9,093). Interestingly, the atrial fibrillation loci were 367 significantly conserved across species, and were also significantly enriched for active enhancers in 368 cardiac tissues as denoted by H3K27ac marks, compared to other trait-associated loci from the NHGRI-EBI GWAS catalog and matching control loci (Supplementary Fig. 11). Moreover, the genes at atrial 369 370 fibrillation loci displayed enrichment for Gene Ontology terms important for cardiac action potential 371 propagation and cardiac contractility compared to the control loci, although this enrichment was not 372 significant when corrected for multiple hypothesis testing (Supplementary Table 16). 373 374 We also performed expression quantitative trait locus (eQTL) analyses of the atrial fibrillationassociated genetic loci using two additional approaches (Online Methods). We identified significant 375 376 eQTLs for seven of the twelve novel atrial fibrillation associated loci (closest gene;eQTL gene: 377 METTL11B;KIFAP3, ANXA4;ANXA4/GMCL1/PCYOX1/SNRNP27, CEP68;CEP68, KCNN2;KCNN2, 378 KLHL3;FAM13B/REEP2, ASAH1;ASAH1/PCM1/RP11-806O11.1, and KCNJ5;KCNJ5/C11orf45) and eight of 379 the thirteen previously reported atrial fibrillation loci (Supplementary Tables 17-20, Supplementary Fig. 380 12). 381 382 In the current work, we have identified 12 novel genetic loci for atrial fibrillation in our large-scale

analyses of common, coding, and rare genetic variation for atrial fibrillation (Supplementary Table 3).

384 When considered together with the known atrial fibrillation loci, the genes at these loci broadly encode 385 ion channels, sarcomeric proteins, and transcription factors that underlie this common arrhythmia. 386 Genes at five of the genetic loci identified encode potassium or sodium channels, including two novel 387 loci at the genes KCNN2 and KCNJ5 that are known to be involved in the maintenance of the atrial 388 cardiac action potential. Since the cellular hallmark of atrial fibrillation is shortening of the atrial action 389 potential duration and calcium overload, the KCNN2 and KCNN3 genes are particularly interesting. The 390 lead variant at chromosome 5q22 is located intronic to and has a significant eQTL with KCNN2, which 391 encodes the calcium dependent potassium channel SK2. The SK2 protein is known to form heteromeric 392 channel complexes with SK3, which is a product of the KCNN3 gene that is strongly associated with atrial fibrillation in the present and previous atrial fibrillation GWAS meta-analyses.^{5,6} 393 394 395 Similarly, KCNJ5 encodes the potassium channel Kir3.4 or GIRK4 that is known to form heteromeres 396 with Kir3.1/GIRK1/KCNJ3 and assemble to form the inwardly rectifying, I_{KAch} channel complex. The I_{KAch} 397 complex is regulated by G protein signaling, is well-known to regulate the membrane potential in the 398 sinoatrial node and atria, and has been considered as a therapeutic target for atrial fibrillation. 399 400 Interestingly, the gene identified in our rare and common variant analyses, SH3PXD2A, is expressed 401 in human atria and ventricles and encodes TKS5, a tyrosine kinase substrate. The rare variant association 402 was largely driven by the variant rs202011870, which results in a leucine to arginine substitution at 403 position 396. TKS5 has been shown to be important in determining the invasiveness of cancer cells¹³ and 404 has been suggested to mediate the neurotoxic effect of beta-amyloid in Alzheimer disease in association with the matrix metalloproteinase gene ADAM12.¹⁴ Developmentally, SH3PXD2A is important for neural 405 406 crest migration; homozygous knockout in mice result in complete cleft in the secondary palate and

407 neonatal death;¹⁵ however, the relation between *SH3PXD2A* and atrial fibrillation is unclear and as with
408 any rare variant association, replication in a large, independent dataset will ultimately be required.
409

Finally, we found that the atrial fibrillation loci have significant conservation across species, and are enriched for active enhancers in cardiac tissues, compared to other GWAS or control loci. Since many of the identified atrial fibrillation loci include genes that encode transcription factors (*PITX2, ZFHX3, PRRX1, SOX5*, and *TBX5*), we hypothesize that these loci may be more conserved, because they may underlie a canonical program for left atrial and/or pulmonary venous development.

415

While the strengths of our study include the large sample sizes, analyses of common and rare genetic variation, and the inclusion of different races and ethnicities, our study was subject to some limitations. Specifically, it is important to note that the estimates of variance explained by genetic variation can be challenging for qualitative traits such as atrial fibrillation, particularly given the marked variability in prevalence of the disease according to age. Thus, as with GWAS for other common conditions, we anticipate that the newly described loci for atrial fibrillation would only explain a small portion of the variance of atrial fibrillation.

423

In conclusion, we have nearly doubled the number of known genetic loci associated with atrial fibrillation through meta-analysis of more than 22,000 individuals with atrial fibrillation. We have identified a series of novel atrial fibrillation-associated variants, which lie proximal to genes involved in atrial electrical and mechanical function. Our results will facilitate downstream research establishing the mechanistic links between identified genetic loci and atrial fibrillation pathogenesis, potentially aiding in the discovery of new therapeutic targets for the treatment of atrial fibrillation.⁸

431	Code availability
432	The computer code that support the results of the present study are available from the corresponding
433	author upon request.
434	
435	Data availability
436	The datasets generated during and/or analyzed during the current study are available from the
437	corresponding author on reasonable request.
438	
439	Acknowledgments
440	A full list of acknowledgments appears in the Supplementary Note.
441	
442	Author Contributions
442 443	Author Contributions I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors
443	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors
443 444	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors contributed to and discussed the results, and commented on the manuscript. GWAS and ExWAS
443 444 445	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors contributed to and discussed the results, and commented on the manuscript. GWAS and ExWAS analyses: A.V.S, N.A.B., M.M-N., I.S., C.S., P.E.W., S.A., S.T., J.A.B., J.C.B., H.L., J.H., J.Y., X.G., F.R., M.N.N.,
443 444 445 446	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors contributed to and discussed the results, and commented on the manuscript. GWAS and ExWAS analyses: A.V.S, N.A.B., M.M-N., I.S., C.S., P.E.W., S.A., S.T., J.A.B., J.C.B., H.L., J.H., J.Y., X.G., F.R., M.N.N., D.E.A., G.P., S-K.L., Y.K., M.K., A.C.P., A.R.H., J.S., L-P.L., M.A., M.E.K., J.G.S., R.M., S.G., S.T., M.D., S.W.,
443 444 445 446 447	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors contributed to and discussed the results, and commented on the manuscript. GWAS and ExWAS analyses: A.V.S, N.A.B., M.M-N., I.S., C.S., P.E.W., S.A., S.T., J.A.B., J.C.B., H.L., J.H., J.Y., X.G., F.R., M.N.N., D.E.A., G.P., S-K.L., Y.K., M.K., A.C.P., A.R.H., J.S., L-P.L., M.A., M.E.K., J.G.S., R.M., S.G., S.T., M.D., S.W., J.W., D.I.C., M.V.P., Q.Y., T.B.H., M.F.S., J.S., D.v.W., M.K. Individual dataset quality control and GWAS
443 444 445 446 447 448	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors contributed to and discussed the results, and commented on the manuscript. GWAS and ExWAS analyses: A.V.S, N.A.B., M.M-N., I.S., C.S., P.E.W., S.A., S.T., J.A.B., J.C.B., H.L., J.H., J.Y., X.G., F.R., M.N.N., D.E.A., G.P., S-K.L., Y.K., M.K., A.C.P., A.R.H., J.S., L-P.L., M.A., M.E.K., J.G.S., R.M., S.G., S.T., M.D., S.W., J.W., D.I.C., M.V.P., Q.Y., T.B.H., M.F.S., J.S., D.v.W., M.K. Individual dataset quality control and GWAS and ExWAS meta-analyses: I.E.C., K.L.L., C.R., X.Y., M.R., B.G., Y.P.H., N.V., J.E.S. Replication in
443 444 445 446 447 448 449	I.E.C., C.R., X.Y., T.T., K.L.L., E.B.J, S.A.L., M.R., B.G., P.T.E. wrote and edited the manuscript. All authors contributed to and discussed the results, and commented on the manuscript. GWAS and ExWAS analyses: A.V.S, N.A.B., M.M-N., I.S., C.S., P.E.W., S.A., S.T., J.A.B., J.C.B., H.L., J.H., J.Y., X.G., F.R., M.N.N., D.E.A., G.P., S-K.L., Y.K., M.K., A.C.P., A.R.H., J.S., L-P.L., M.A., M.E.K., J.G.S., R.M., S.G., S.T., M.D., S.W., J.W., D.I.C., M.V.P., Q.Y., T.B.H., M.F.S., J.S., D.V.W., M.K. Individual dataset quality control and GWAS and ExWAS meta-analyses: I.E.C., K.L.L., C.R., X.Y., M.R., B.G., Y.P.H., N.V., J.E.S. Replication in METASTROKE and Neuro-CHARGE: Q.Y., J.H., S.D., G.C., B.B.W. Replication in UK Biobank: S.K., D.K., C.N-

453

454 **Competing Financial Interests Statement**

- 455 Dr. Ellinor is the PI on a grant from Bayer HealthCare to the Broad Institute focused on the genetics and
- 456 therapeutics of atrial fibrillation. The remaining authors have no disclosures.

458 References

- Chugh, S. S. *et al.* Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010
 Study. *Circulation* **129**, 837–47 (2014).
- 461 2. January, C. T. et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial
- 462 Fibrillation: Executive Summary: A Report of the American College of Cardiology/American Heart
- 463 Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol.
- **64,** 2246–2280 (2014).
- 465 3. Gudbjartsson, D. F. *et al.* Variants conferring risk of atrial fibrillation on chromosome 4q25.
 466 *Nature* 448, 353–357 (2007).
- 467 4. Benjamin, E. J. *et al.* Variants in ZFHX3 are associated with atrial fibrillation in individuals of
- 468 European ancestry. *Nat. Genet.* **41**, 879–81 (2009).
- 469 5. Ellinor, P. T. *et al.* Common variants in KCNN3 are associated with lone atrial fibrillation. *Nat.*470 *Genet.* 42, 240–4 (2010).
- 471 6. Ellinor, P. T. *et al.* Meta-analysis identifies six new susceptibility loci for atrial fibrillation. *Nat.*
- 472 *Genet.* **44,** 670–5 (2012).
- 473 7. Sinner, M. F. *et al.* Integrating genetic, transcriptional, and functional analyses to identify 5 novel
 474 genes for atrial fibrillation. *Circulation* 130, 1225–35 (2014).
- 475 8. Nelson, M. R. *et al.* The support of human genetic evidence for approved drug indications. *Nat.*
- 476 *Genet.* **47**, 856–860 (2015).
- 477 9. Lloyd-Jones, D. M. *et al.* Lifetime risk for development of atrial fibrillation: the Framingham Heart
- 478 Study. *Circulation* **110**, 1042–1046 (2004).
- 479 10. Gudbjartsson, D. F. *et al.* Large-scale whole-genome sequencing of the Icelandic population. *Nat.*480 *Genet.* 47, 435–444 (2015).
- 481 11. Holm, H. *et al.* A rare variant in MYH6 is associated with high risk of sick sinus syndrome. *Nat.*

482 *Genet.* **43**, 316–20 (2011).

- 483 12. Weeke, P. *et al.* Exome sequencing implicates an increased burden of rare potassium channel
- 484 variants in the risk of drug-induced long QT interval syndrome. J. Am. Coll. Cardiol. 63, 1430–7
- 485 (2014).
- 486 13. Seals, D. F. *et al.* The adaptor protein Tks5/Fish is required for podosome formation and function,
- 487 and for the protease-driven invasion of cancer cells. *Cancer Cell* **7**, 155–65 (2005).
- Laumet, G. *et al.* A study of the association between the ADAM12 and SH3PXD2A (SH3MD1)
 genes and Alzheimer's disease. *Neurosci. Lett.* 468, 1–2 (2010).
- 490 15. Cejudo-Martin, P. *et al.* Genetic disruption of the sh3pxd2a gene reveals an essential role in
- 491 mouse development and the existence of a novel isoform of tks5. *PLoS One* **9**, e107674 (2014).
- 16. Pruim, R. J. *et al.* LocusZoom: Regional visualization of genome-wide association scan results.
- 493 *Bioinformatics* **26**, 2336–2337 (2010).
- 494

496	Figure legends
497	
498	Figure 1. Study flow-chart.
499	Overview of the approach employed for genome-wide and exome-wide association analyses.
500	
501	Figure 2. Manhattan plot of the combined ancestry GWAS meta-analyses.
502	Manhattan plot showing novel (red) and replicated (blue) genetic loci associated with atrial fibrillation in
503	the combined ancestry GWAS meta-analysis. The dotted line represents the threshold of statistical
504	significance (5x10 ⁻⁸). The gene names represent the gene in closest proximity to the most significant
505	variant at each locus. There is a break in the Y-axis to increase the resolution of the genetic loci near the
506	genome-wide significance threshold.
507	
508	Figure 3. Regional plots from combined ancestry GWAS meta-analysis.
509	The most significant variant at each locus is plotted (purple, diamond-shaped) and identified with rsID.
510	Each dot in the plots represent a single variant present in our results and the color of the dot indicates
511	the degree of linkage disequilibrium with the most significant variant, as shown on the top left color
512	chart on each panel. The lower part of each panel shows the locations of genes at the respective loci. r ² ,
513	degree of linkage disequilibrium; chr, chromosome; Mb, megabases; cM, centiMorgan. Regional plots

were created using LocusZoom.¹⁶

rsID	Chr	Gene(s)	Location relative to gene	Risk allele/ reference allele	Risk allele frequency, %	OR	95% CI	P-value	Mean imputation quality
				Novel associati	ions				
rs72700118	1q24	METTL11B/KIFAP3	Intergenic	A/C	12	1.14	1.10-1.19	2.60x10 ⁻¹¹	0.959
rs3771537	2p13	ANXA4/GMCL1	Intronic	A/C	53	1.09	1.06-1.12	7.92x10 ⁻¹²	0.987
rs2540949	2p14	CEP68	Intronic	A/T	61	1.08	1.06-1.11	2.93x10 ⁻¹⁰	0.991
rs2288327	2q31	TTN/TTN-AS1	Intronic	G/A	20	1.09	1.06-1.13	2.05x10 ⁻⁸	0.994
rs337711	5q22	KCNN2	Intronic	T/C	39	1.07	1.05-1.10	2.93x10 ⁻⁸	0.995
rs2967791	5q31	KLHL3/WNT8A/FAM13B	Intronic	T/C	54	1.07	1.05-1.10	2.73x10 ⁻⁸	0.961
rs4946333	6q22	SLC35F1/PLN	Intronic	G/A	50	1.08	1.05-1.10	1.89x10 ⁻⁹	0.995
rs7508	8p22	ASAH1/PCM1	3'UTR	A/G	72	1.09	1.06-1.12	5.16x10 ⁻¹⁰	0.977
rs35176054	10q24	SH3PXD2A	Intronic	A/T	13	1.14	1.10-1.18	8.63x10 ⁻¹²	0.939
rs75190942	11q24	KCNJ5	Intronic	A/C	8	1.17	1.11-1.24	1.59x10 ⁻⁸	0.744
			Pre	viously known as	sociations				
rs11264280	1q21	KCNN3	Intergenic	T/C	31	1.12	1.09-1.15	6.41x10 ⁻¹⁷	0.942
rs520525	1q24	PRRX1	Intronic	A/G	71	1.12	1.09-1.15	6.39x10 ⁻¹⁶	0.955
rs11718898	3p25	CAND2	Exonic	C/T	65	1.08	1.05-1.10	4.68×10^{-8}	0.969
rs6843082	4q25	PITX2	Intergenic	G/A	25	1.45	1.41-1.49	3.41x10 ⁻¹⁵⁵	0.989
rs12664873	6q22	GJA1	Intergenic	T/G	70	1.08	1.05-1.11	1.19x10 ⁻⁸	0.968
rs1997572	7q31	CAV1/2	Intronic	G/A	59	1.10	1.08-1.13	6.64×10^{-15}	0.988
rs7026071	9q22	C9orf3	Intronic	T/C	40	1.09	1.07-1.12	1.31x10 ⁻¹²	0.970
rs7915134	10q22	SYNPO2L	Intergenic	C/T	85	1.12	1.08-1.16	1.68×10^{-10}	0.975
rs11598047	10q24	NEURL1	Intronic	G/A	16	1.18	1.14-1.21	1.67×10^{-22}	0.971
rs883079	12q24	TBX5	3'UTR	T/C	70	1.11	1.09-1.14	1.80×10^{-15}	0.991
rs1152591	14q23	SYNE2	Intronic	A/G	46	1.09	1.06-1.11	1.04×10^{-10}	0.960
rs74022964	15q24	HCN4	Intergenic	T/C	17	1.12	1.08-1.15	2.37x10 ⁻¹¹	0.970
rs2106261	16q22	ZFHX3	Intronic	T/C	19	1.20	1.17-1.24	8.18x10 ⁻³²	0.973

Table 1. Results from combined ancestry GWAS meta-analysis

518 The most significant variant at each genetic locus associated with atrial fibrillation is listed. Gene names in bold font indicate that the variant

- 519 is located within the gene, whereas additional gene names indicate eQTL gene or gene strongly suspected to be causal due to the function of
- 520 the encoded protein. For intergenic variants, the closest gene(s) are listed. Chr, chromosome; Cl, confidence interval; OR, odds ratio.

522 Table 2. Results from combined ancestry ExWAS meta-analysis

523

rsID	rsID Chr Gene(s) Location relative to gene		Risk allele/ reference allele	Risk allele frequency, %	OR	95% CI	P-value	
			Nove	l associations				
rs6800541	3p22	SCN10A	Intronic	T/C	61	1.08	1.05-1.12	8.79x10 ⁻⁷
rs89107	6q22	SLC35F1/PLN	Intronic	G/A	58	1.07	1.04-1.10	9.51x10 ⁻⁷
rs11047543	12p12	SOX5	Intergenic	G/A	86	1.14	1.10-1.19	2.47x10 ⁻¹²
			Previously	known associations	5			
rs13376333	1q21	KCNN3	Intronic	T/C	23	1.13	1.09-1.16	1.46x10 ⁻¹²
rs17042171	4q25	PITX2	Intergenic	A/C	21	1.64	1.59-1.69	8.31x10 ⁻²²⁷
rs3807989	7q31	CAV1	Intronic	G/A	58	1.09	1.06-1.12	6.52x10 ⁻⁸
rs60632610	10q22	SYNPO2L	Exonic; nonsyn	C/T	85	1.12	1.08-1.15	1.54x10 ⁻¹⁰
rs10151658	14q23	SYNE2	Exonic; nonsyn	C/A	49	1.07	1.04-1.09	5.16x10 ⁻⁷
rs2106261	16q22	ZFHX3	Intronic	A/G	17	1.21	1.16-1.26	4.00x10 ⁻¹⁹

524

525 The most significant variant at each genetic locus associated with atrial fibrillation is listed. Gene names in bold font indicate that the

variant is located within the gene, whereas additional gene names indicate eQTL gene or gene strongly suspected to be causal due to the

527 function of the encoded protein. For intergenic variants, the closest gene(s) are listed. Chr, chromosome; Cl, confidence interval; OR, odds

528 ratio; nonsyn, nonsynonymous.

529 Online METHODS

530 Study population

531 The Atrial Fibrillation Genetics Consortium (AFGen) is a collaboration between multiple studies

- with the aim of investigating the genetic causes of atrial fibrillation. In this study, we included 33
- 533 studies from AFGen, of which 31 participated in the GWAS meta-analysis, whereas 17 studies
- 534 were part of the exome chip analyses. **Supplementary Table 21** shows per study overlap of
- samples between the GWAS and exome chip analyses. The majority of the participants were of
- 536 European ancestry (15,993 cases, 113,719 referents). We also included studies with African-
- 537 American (3 studies; 641 cases, 4956 referents), Japanese (1 study; 837 cases, 2456 referents),
- Hispanic (1 study; 277 cases, 3081 referents), and Brazilian (1 study; 187 cases, 550 referents)
- ancestry (Supplementary Table 1). The ExWAS and RVAS involved 22,806 cases and 132,612
- referents of European (13,496 cases, 96,273 referents), African American (681 cases, 4,871
- referents), and Asian (8,180 cases, 28,612 referents) ethnicities (Supplementary Table 2). Overall,
- adjudication of atrial fibrillation included either documented atrial fibrillation on an
- 543 electrocardiogram and/or one in-patient or two out-patient diagnoses of atrial fibrillation.
- 544 Referents were free of atrial fibrillation. All participating studies had obtained informed consent
- from all cases and referents and had obtained approval from their respective ethics committees or
- 546 institutional review boards.
- 547

548 **GWAS meta-analyses**

Each study performed genotyping and imputation to the 1000 Genomes Project Phase 1 reference
panel (March 2012 release). Detailed methods for each study are described in the Supplementary
Note and in Supplementary Table 22. Cox proportional hazards models were used for incident
data with time-to-event from study enrollment. Logistic regression models were used for

553 prevalent and case-control data. Models were adjusted for age and sex if available, and if 554 appropriate, for principal components of the genotype matrix to control for population 555 stratification. For studies with prevalent cases at time of enrollment (or blood draw) and incident 556 cases identified during follow up, two analyses were performed: 1) Prevalent analysis at 557 baseline/blood draw: all individuals who were diagnosed with atrial fibrillation prior to baseline 558 were defined as cases, and all individuals who were not diagnosed with AF prior to baseline were 559 defined as referents in a logistic regression analysis (future cases were controls in this analysis); 2) 560 Incident analysis looking forward from baseline: prevalent cases were excluded and time-to-atrial 561 fibrillation diagnosis was analyzed, using Cox proportional hazards models, with censoring at last 562 follow-up. The two analyses are approximately independent, because they consider different periods of risk, as described by Benjamin et al.¹ 563 564 Pre- and post-GWAS filtering was performed according to predefined quality control filters 565 (Supplementary Table 23). Briefly, variants with MAF <1%, imputation quality <0.3 (IMPUTE), or 566 that were present in <2 studies were excluded. 567 568 We meta-analyzed summary level GWAS results using an inverse variance-weighted fixed-effects model with METAL software.² For the combined ancestry GWAS meta-analysis, we tested 569 570 11,795,432 variants. The traditional Bonferroni correction for number of variants tested is often 571 regarded as too conservative, because the tests are not independent due to LD. Thus, we chose 572 the most widely used and accepted significance threshold for GWAS in our GWAS meta-analyses.^{3–} ⁶ Variants that reached a genome-wide P-value <5x10⁻⁸ were considered statistically significant. 573 574 Meta-analyses were also performed separately for each ethnicity group and for incident and 575 prevalent atrial fibrillation to identify potentially differential associations and effects.

577 ExWAS and rare variant meta-analyses

578	Each study performed exome variant genotyping and association analyses locally, using a logistic
579	model that combined incident and prevalent cases and referents (Supplementary Table 24).
580	Individual variants that passed quality control filters and were present in at least 2 studies with
581	average MAF≥0.5% (Supplementary Table 23), were meta-analyzed using the score test
582	implemented in the seqMeta package of R statistical software. ⁷ For the combined ancestry ExWAS
583	meta-analysis, we tested 48,133 variants and used a significance level of 1.04x10 ⁻⁶ , which is
584	approximately a Bonferroni adjustment of 0.05/48,133. For MAF > 0.5%, we had approximately
585	80% power to detect variants with a multiplicative genotype relative risk of 1.4. RVAS was
586	performed on rare variants from the exome chip array using SKAT ⁸ and burden tests with three
587	approaches: 1) all non-synonymous and splice site variants, 2) non-synonymous variants
588	annotated as possibly damaging, and 3) loss-of-function variants only. For each gene-based test
589	we excluded variants with MAF >5% and excluded genes with cumulative MAF <0.05%.
590	
591	Approximate joint and conditional analysis
592	To identify independent variants within the 12 significant genetic loci, we performed an
593	approximate joint and conditional association analysis implemented in the software GCTA ⁹ using
594	summary level statistics from the meta-analysis. We used a stepwise procedure for detecting
595	additional independent variants with a European ancestry reference panel from the Framingham
596	Heart Study (n=2764 unrelated individuals).

597

598 **Functional annotation**

599 *Functional element enrichment:* Loci were defined as regions encompassing variants that were in

600 linkage disequilibrium with the query variant (r²>0.8 in CEU population) and that were no greater

601	than 500 kb from the query variant. Loci had to encompass at least 5 kb both upstream and
602	downstream of the query variant. Overlapping loci were merged. The GWAS control loci were
603	calculated from unique variants from the NHGRI-EBI GWAS catalog (as of May 31, 2016) that had a
604	P-value <5x10 ⁻⁸ . The 1000 Genomes control loci were calculated using 24,000 matched variants
605	based on MAF, gene density, distance to nearest gene, and number of nearby variants in linkage
606	disequilibrium determined by the SNPsnap tool. ¹⁰ The SNPsnap matched variants were calculated
607	using the European population and an r2 cutoff of 0.8, but otherwise default parameters. Each
608	locus in each experimental set was intersected with various markers for functional elements to
609	determine the median percent overlap of each experimental set. The markers included phastCons
610	46-way primate and mammalian conserved elements, Roadmap Epigenome H3K27ac gapped
611	peaks, and ENCODE DNaseHS sites. Statistical significance was calculated by one-tailed
612	bootstrapping for enrichment with 1,000 random sub-samplings of each control set.
613	
614	Gene ontology analysis of atrial fibrillation loci: RefSeq genes that overlapped atrial fibrillation-
615	associated loci as well as genes that overlapped the GWAS catalog control loci and the 1000
616	Genomes matched control loci were used for gene ontology enrichment analysis. The genes that
617	overlapped the control loci were used as two separate background sets. Enrichment calculations
618	were provided by the GOrilla tool. ¹¹
619	
620	In silico database interrogation: All statistically significant variants and genes from GWAS and
621	RVAS analyses were selected for an in silico assessment through lookups in the following

622 databases: The Gene Tissue Expression database (GTEx),¹² RegulomeDB,¹³ HaploREG,¹⁴ GeneCards

623 (www.genecards.org/), dbSNP.¹⁵ From the GTEx search, we report statistically significant eQTLs in

624 cardiac and skeletal muscle tissues. The NHGRI-EBI GWAS catalog¹⁶ was interrogated with the aim

of identifying possible pleiotropy with other cardiovascular phenotypes. At each locus, we defined a region based on LD span ($r^2 > 0.2$) with the lead SNP. We searched the GWAS catalog for all SNPs within these regions and report LD of proxies with the lead SNP when available. LD information was identified using the SNiPA tool¹⁷ (Available at http://www.snipa.org. Accessed 6-24-2016.)

630 Expression Quantitative Trait Locus analyses

631 1. eQTL analyses in the Cleveland Clinic Atrial Tissue Bank and Arrhythmia Biorepository: We 632 performed analyses of gene expression in human left atrial tissue samples obtained from the 633 Cleveland Clinic Atrial Tissue Bank and Arrhythmia Biorepository. Genotypes were determined 634 using the Illumina Human Hap550 v3 or Hap610 v1 chips; whereas RNA expression levels were 635 determined using the Illumina HumanHT-12 v3 or v4 chips. The atrial samples were obtained from 636 289 individuals of European American (EA) ethnicity and 40 individuals of African American (AA) 637 ethnicity. Of the EA individuals, 80 were female, 70 had no history of atrial fibrillation, and 136 638 were in atrial fibrillation at the time of tissue acquisition; 266 samples were from left atrial 639 appendage (LAA) tissue and 23 the left atrial pulmonary vein junction tissue (LA-PV). Of the AA 640 individuals, 25 were female, 16 had no history of atrial fibrillation, and 12 were in atrial fibrillation 641 at the time of tissue acquisition; 34 samples were from LAA and 6 from LA-PV tissue. Methods have previously been described in depth by Deshmukh et al.¹⁸ We performed cis-eQTL analyses for 642 643 all statistically significant genetic variants identified in GWAS analyses. The Benjamini and 644 Hochberg adjustment was applied to the results to control the false discovery rate (FDR).¹⁹ P-645 values were adjusted based on the FDR of both genome-wide testing and specific variant sets, 646 respectively. Probe-variant pairs with a genome-wide adjusted P-value less than 0.05 were 647 deemed significant.

2. Examination of eQTLs in cardiac and skeletal muscle tissues from the GTEx database: The GTEx
database was interrogated for all genetic loci associated with atrial fibrillation in the present
meta-analyses. We selected the index variants and all proxies at the atrial fibrillation loci and
looked for eQTLs in a subset of the GTEx database for right atrial, left ventricular, and skeletal
muscle tissues that are most relevant to atrial fibrillation.

654

3. GTEx region based analyses were performed by comparing the percent of atrial fibrillation loci
with at least one eQTL to the percent of control loci with at least one eQTL. All tissues in the GTEx
database were used for this analysis. Atrial fibrillation loci and control loci were defined as
described in the "Functional element enrichment" section above. Statistical significance was
calculated by a one-tailed test based on 1,000 bootstrap samples from each set of control loci.

661 Replication of genetic variants specific to African American ancestry GWAS meta-analysis 662 We sought to replicate variants specific to the African American ancestry GWAS meta-analysis in 663 447 atrial fibrillation cases and 442 referents of African American ancestry. Custom TaqMan® genotyping probes for rs115339321 and rs79433233 were obtained from Life Technologies. 664 Genotyping was performed on 5 ng of DNA input using the TaqMan[®] genotyping master mix on a 665 666 Bio-Rad CFX384 real time PCR instrument. Genotyping was performed in 447 atrial fibrillation 667 cases and 442 referents obtained from four studies (BioVU, Duke Biobank, MGH, and Penn 668 Biobank), with genotype calls being performed by end state fluorescence after 40 cycles. See 669 Supplementary Results and Supplementary Tables 25-26 for further details.

671 In silico replication in the BioBank Japan (BBJ) study

672 The variant with the lowest P-value at each independent novel atrial fibrillation locus was selected 673 for in silico replication in the results from GWAS analysis in 8180 individuals with atrial fibrillation 674 and 28,612 referents from the BioBank Japan study. The cases were selected from the Biobank 675 Japan which contains DNA and serum samples collected throughout Japan and atrial fibrillation 676 was defined as persistent or paroxysmal atrial fibrillation diagnosed by a physician. The referents were selected from the Tohoku Medical Megabank organization,²⁰ the Japan Public Health Centre-677 678 based Prospective study, and the Japan Multi-institutional Collaborative Cohort (J-MICC) Study. 679 Samples were genotyped using the Illumina Human OmniExpress BeadChip Kit and Infinium 680 OmniExpressExome BeadChip Kit. Only autosomal variants were included in the GWAS. Variants 681 with call rate <99%, variants that deviated from Hardy-Weinberg equilibrium among control samples ($<1x10^{-6}$), and non-polymorphic variants were excluded. 682 683

684 In silico replication in the UK Biobank study

694

685 Replication was performed using 143,218 unrelated adults of primarily European ancestry (>80%), 686 aged 40-69 years old between 2006 and 2010, from the UK Biobank interim dataset released in 687 May 2015. We defined atrial fibrillation as reported during a baseline interview; presence of a 688 procedure code for cardioversion, atrial flutter or fibrillation ablation, or atrioventricular node 689 ablation; billing code for atrial fibrillation; or atrial fibrillation reported on a death record (specific 690 codes used in the definition are available upon request). Of the 143,218 individuals in the 691 replication dataset, we identified 3366 individuals with atrial fibrillation, according to the criteria 692 above. Details of genotyping, imputation, and calculation of principal components of ancestry in 693 the UK biobank interim dataset can be found on the UK biobank website (http://www.ukbiobank.ac.uk/). Briefly, samples were genotyped either by UK BiLEVE Axiom array 695 (UKBL) or UK Biobank Axiom array (UKBB). Both arrays include ~800,000 SNPs and more than 95% 696 of common marker contents are similar. Imputation was phased by modified version of SHAPEIT2 697 and imputed by IMPUTE2, using a combined panel of UK10K haplotype and 1000G phase 3 as the 698 reference panel. All significant variants detected in the discovery study passed quality control 699 filters in the UK biobank data (imputation quality info \ge 0.4, variant missing rate < 5%, individual 700 missing rate < 10%, and variant genotype probability > 0.9 in > 90% of the individuals). Variants 701 were then transformed to hard-called genotypes (probability threshold \geq 0.9, minor allele 702 frequency (MAF) \ge 0.01, and missing rate per variant <5%). We used logistic regression to test the 703 association between each hard-called variant and risk of atrial fibrillation using an additive genetic 704 model, adjusting for baseline age, sex, array, and the first 15 principal components of ancestry. 705 Quality control, transformation and analyses were performed by QCTOOL and Plink v1.90b. Since 706 we performed an in silico replication of 31 variants, we set a conservative significance threshold of 707 1.6 x 10-3 (0.05 / 31).

708

709 Pathway analyses

Pathway analyses provide a potential route to investigate the collective effects of multiple genetic
variants on biological systems (see Supplementary Results and Supplementary Tables 27-29). We
utilized two different methods for pathway analysis:

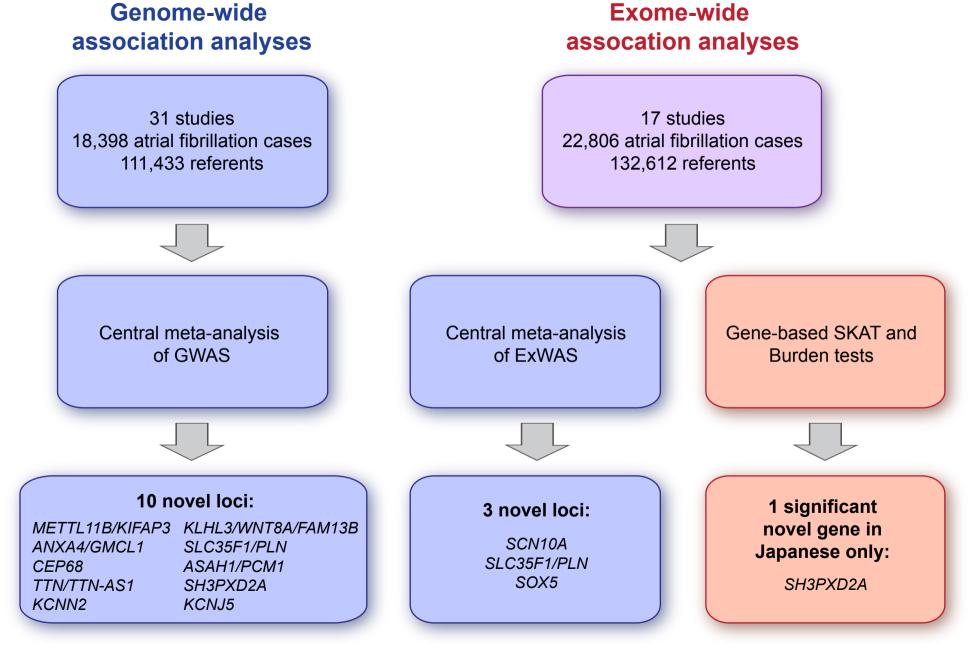
713

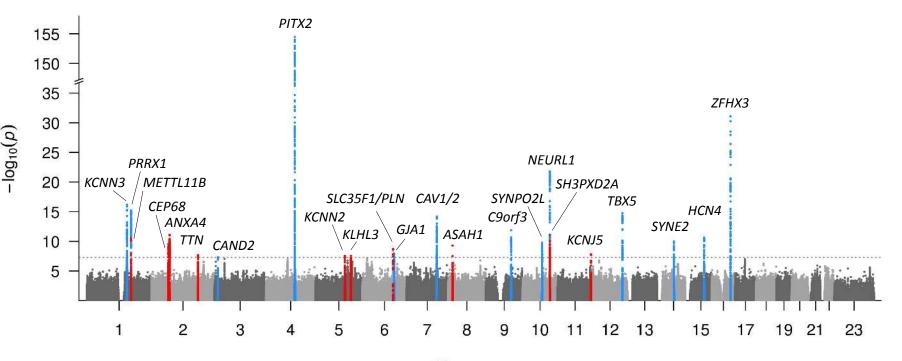
714 **1. DEPICT**

715 We ran the analysis DEPICT,²¹ which integrates multiple layers of evidence to identify causal genes

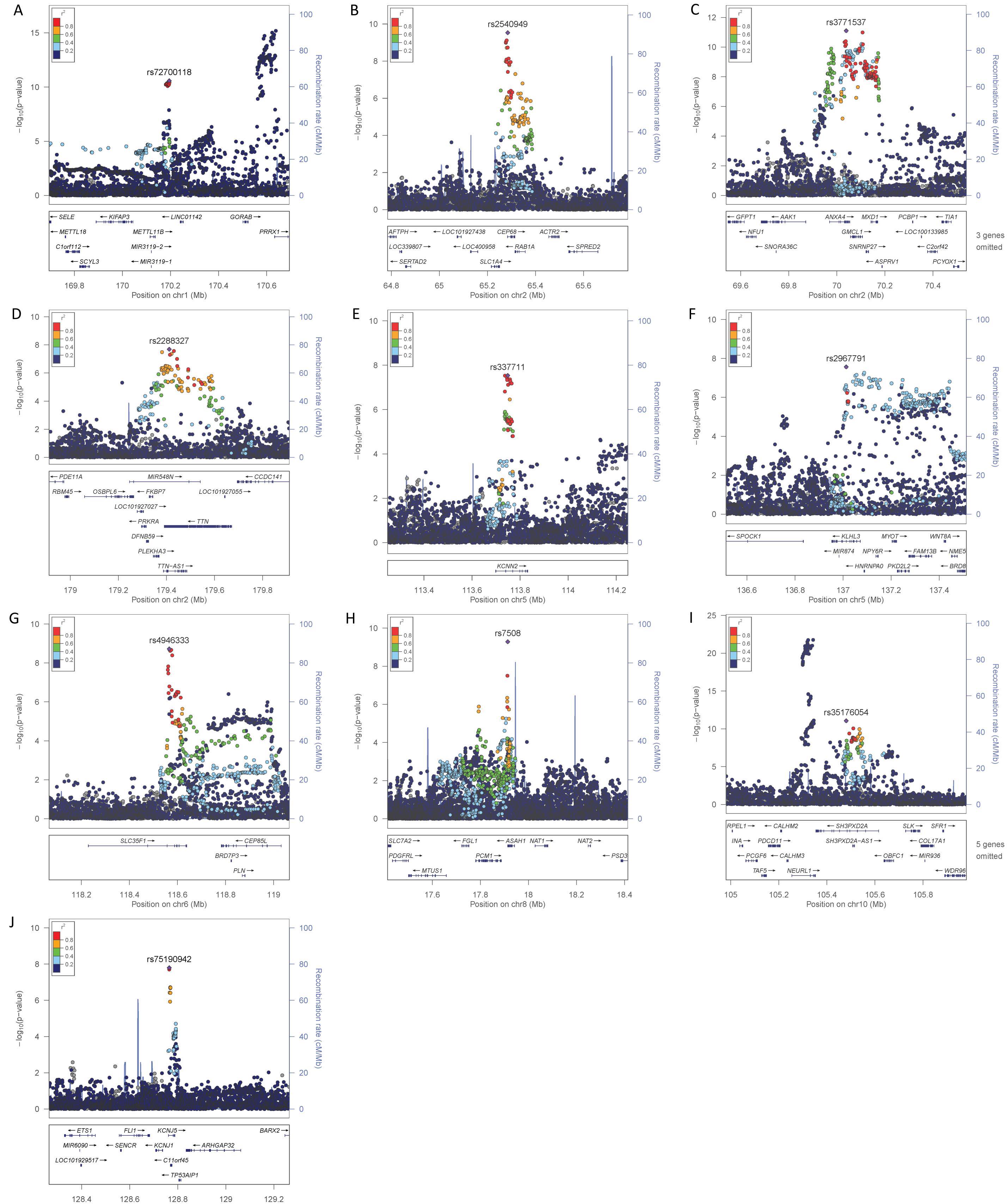
- at GWAS loci. From meta-analysis results, we first performed clumping to identify independent
- 717 loci using plink.²² We then performed analysis using DEPICT with the default settings.
- 718

719 2. Ingenuity Pathway Analysis (IPA)


720	Data were analyzed through the use of QIAGEN's Ingenuity® Pathway Analysis (IPA®, QIAGEN
721	Redwood City, www.qiagen.com/ingenuity). For each of the tested genetic variants, we mapped it
722	back to the reference human genome (NCBI Build 37, 2009) and examined its location relative to
723	RefSeq genes (May 15, 2016). The gene score was defined as the most significant variants that
724	were located within 110kb upstream and 40kb downstream of the gene's most extreme transcript
725	boundaries. Of the 27,011 genes evaluated, 338 reached a score less than 5x10 ⁻⁶ . These genes
726	were then imported into IPA analysis. Fisher's exact test was used to justify the enrichment of
727	each of the canonical pathways.
728	
720	
729	Assessment of pleiotropy with the ischemic stroke phenotype
	Assessment of pleiotropy with the ischemic stroke phenotype In order to evaluate pleiotropy with the ischemic stroke phenotype, we selected the variant with
729	
729 730	In order to evaluate pleiotropy with the ischemic stroke phenotype, we selected the variant with
729 730 731	In order to evaluate pleiotropy with the ischemic stroke phenotype, we selected the variant with the lowest P-value at each independent novel atrial fibrillation locus and performed a lookup in
729 730 731 732	In order to evaluate pleiotropy with the ischemic stroke phenotype, we selected the variant with the lowest P-value at each independent novel atrial fibrillation locus and performed a lookup in the results from 1000 Genomes imputed GWAS meta-analyses from the Neurology Working Group
729 730 731 732 733	In order to evaluate pleiotropy with the ischemic stroke phenotype, we selected the variant with the lowest P-value at each independent novel atrial fibrillation locus and performed a lookup in the results from 1000 Genomes imputed GWAS meta-analyses from the Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium


737 **Online methods references**

- 739 Benjamin, E. J. et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals 1.
- 740 of European ancestry. Nat. Genet. 41, 879-81 (2009).
- 741 2. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide 742 association scans. Bioinformatics 26, 2190–2191 (2010).
- 743 3. Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden 744 for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32,
- 745 381-385 (2008).
- 746 4. Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. & Balding, D. J. Genome-wide
- 747 significance for dense SNP and resequencing data. Genet. Epidemiol. 32, 179–185 (2008).
- 748 5. Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide 749 association scans. Genet. Epidemiol. 32, 227–234 (2008).
- 750 6. Sham, P. C. & Purcell, S. M. Statistical power and significance testing in large-scale genetic 751 studies. Nat. Rev. Genet. 15, 335–346 (2014).
- 752 Lumley, T., Brody, J., Dupuis, J. & Cupples, A. Meta-analysis of a rare-variant association 7. 753 test. (2012).
- 754 8. Lee, S., Wu, M. C. & Lin, X. Optimal tests for rare variant effects in sequencing association 755 studies. Biostatistics 13, 762–775 (2012).
- 756 9. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics
- 757 identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
- 758 10. Pers, T. H., Timshel, P. & Hirschhorn, J. N. SNPsnap: a Web-based tool for identification
- 759 and annotation of matched SNPs. *Bioinformatics* **31**, 418–20 (2015).


760	11.	Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and
761		visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
762	12.	The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45,
763		580–5 (2013).
764	13.	Boyle, A. P. et al. Annotation of functional variation in personal genomes using
765		RegulomeDB. <i>Genome Res.</i> 22, 1790–1797 (2012).
766	14.	Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation,
767		and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids
768		<i>Res.</i> 40 , D930-4 (2012).
769	15.	Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29,
770		308–11 (2001).
771	16.	Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.
772		Nucleic Acids Res. 42 , D1001-6 (2014).
773	17.	Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmüller, G. SNiPA: An interactive,
774		genetic variant-centered annotation browser. <i>Bioinformatics</i> 31 , 1334–1336 (2015).
775	18.	Deshmukh, A. et al. Left atrial transcriptional changes associated with atrial fibrillation
776		susceptibility and persistence. Circ. Arrhythm. Electrophysiol. 8, 32–41 (2015).
777	19.	Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful
778		approach to multiple testing. J. R. Stat. Soc. 289–300 (1995).
779	20.	Kuriyama, S. et al. The Tohoku Medical Megabank Project: Design and Mission. J.
780		Epidemiol. 26 , 493–511 (2016).
781	21.	Pers, T. H. et al. Biological interpretation of genome-wide association studies using
782		predicted gene functions. Nat. Commun. 6, 5890 (2015).

783	22.	Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based
784		linkage analyses. Am. J. Hum. Genet. 81 , 559–75 (2007).
785	23.	Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic
786		Epidemiology (CHARGE) Consortium, Stroke Genetics Network (SiGN) & International
787		Stroke Genetics Consortium (ISGC). Identification of additional risk loci for stroke and
788		small vessel disease: a meta-analysis of genome-wide association studies. Lancet. Neurol.
789		15 , 695–707 (2016).
790	24.	Malik, R. et al. Low-frequency and common genetic variation in ischemic stroke: The
791		METASTROKE collaboration. Neurology 86, 1217–26 (2016).

Chromosome

Position on chr11 (Mb)