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Abstract

Background: Chromosomal aneuploidy, that is to say the gain or loss of chromosomes, is the most common
abnormality in cancer. While certain aberrations, most commonly translocations, are known to be strongly
associated with specific cancers and contribute to their formation, most aberrations appear to be non-specific and
arbitrary, and do not have a clear effect. The understanding of chromosomal aneuploidy and its role in
tumorigenesis is a fundamental open problem in cancer biology.

Results: We report on a systematic study of the characteristics of chromosomal aberrations in cancers, using over
15,000 karyotypes and 62 cancer classes in the Mitelman Database. Remarkably, we discovered a very high co-
occurrence rate of chromosome gains with other chromosome gains, and of losses with losses. Gains and losses
rarely show significant co-occurrence. This finding was consistent across cancer classes and was confirmed on an
independent comparative genomic hybridization dataset of cancer samples. The results of our analysis are available
for further investigation via an accompanying website.

Conclusions: The broad generality and the intricate characteristics of the dichotomy of aneuploidy, ranging across
numerous tumor classes, are revealed here rigorously for the first time using statistical analyses of large-scale
datasets. Our finding suggests that aneuploid cancer cells may use extra chromosome gain or loss events to
restore a balance in their altered protein ratios, needed for maintaining their cellular fitness.

Background
Most cancer genomes undergo large scale alterations that
dramatically alter their content and structure [1]. This
phenomenon of genomic instability is responsible for the
wide repertoire of chromosomal aberrations observed in
cancer genomes. While the roles of most aberrations in
the carcinogenesis process remain to be determined, the
common perception [2] is that some of these aberrations
are functionally important to the initiation and growth of
cancer (drivers), while others merely represent random
somatic changes that carry no selective advantage to the
cancer cell (passengers). The identification of strong
associations among aberrations - that is, associations that
are observed significantly more than expected by chance
- may help in the detection of driver aberrations or point

to mechanisms that promote the selection of certain
aberrations. As data on chromosomal aberrations in can-
cer accumulate, the detection of such strong associations
can become more accurate and powerful.
Following the four-step model for colorectal cancer

evolution suggested by Vogelstein and colleagues [3,4],
several computational methods were developed for
reconstructing common evolutionary paths of chromoso-
mal aberrations in specific cancers. Some of these meth-
ods used tree models [5-7], later extended to acyclic
networks [8-10]. These evolutionary models enable
recognition of aberrations that occur at early stages of
cancer; often referred to as ‘primary’, they are suspected
of being cancer drivers. As these methods were designed
to analyze samples from the same cancer type, they were
applied to relatively small datasets, each containing a few
hundred samples. More recently, a statistical method
named GISTIC [11] was developed for identifying copy-
number aberrations whose frequency and amplitude are
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higher than expected. This method was used in [12] for
studying copy number alterations appearing at significant
frequencies across several cancer types. In another recent
study [13], profiles of frequent deletion events were ana-
lyzed in order to distinguish between driver and passen-
ger deletion events. The latter two studies focus on
copy number alterations of focal regions, derived by
high-resolution techniques, from a heterogeneous pool of
cancers with several hundred to a few thousand samples.
The Mitelman Database [14] is the largest depository of

chromosomal aberrations in cancer. Although the aberra-
tions are described using karyotypes of low resolution,
these methods are widely used, notably in hospital labs,
where the database is the leading source of information
for clinicians who diagnose and treat cancer. The large
number of samples in the database makes it ideal for sta-
tistical analyses, which are capable of overcoming random
errors. In this study we present the results of large-scale
analysis of chromosomal aberrations from over 15,000
karyotypes of the Mitelman Database. By exploiting the
huge number of karyotypes, reconstructing the aberrations
in them, and developing appropriate statistical tests, we
were able to recognize significant cross-cancer associations
among aberrations and to identify correlations among
tumor types.
Most observed alterations include chromosome gains/

losses and translocations. As translocations directly affect
a small number of genes, the role of many translocations
in cancer causation has become much clearer over the
years [15]. Chromosome gains and losses, on the other
hand, are broad alterations affecting numerous genes
whose significance to the carcinogenesis process is much
less understood. In this study we demonstrate strong asso-
ciations involving chromosome gain and loss aberrations,
suggesting selection preferences for aneuploid cells.
The results of our analysis, including the computed

associations and links to their underlying karyotypes, are
publicly available for further investigation via our website
[16]. Each karyotype is linked to its original record in the
Mitelman Database, thus allowing browsing of its full
details. To the best of our knowledge, this is the first
resource providing statistical results on such associations
among cancer karyotypes.

Results
Figure 1 summarizes our karyotype analysis. Starting from
59,579 karyotypes in the Mitelman Database (November
2009 version), we used only 34,107 karyotypes that were
annotated as unselected in order to avoid over- or under-
estimation of aberration frequencies due to biases in
sample selection [17]. We then filtered out any partially
characterized or possibly redundant karyotypes, as well as
karyotypes that were not near diploid. Tumor classes
were defined according to tissue morphology and organ.

Karyotypes belonging to classes with small representation
(< 50 karyotypes) in the remaining dataset were omitted
from analysis, resulting in a total of 62 classes and 15,445
karyotypes (Table 1).
Each class was assigned to one of four sets: lymphoid

disorders, non-lymphoid hematological disorders, benign
solid tumors, and malignant solid tumors (Table 1). Due
to its higher rate of successful karyotypic analyses, the
group of hematological disorders dominated our dataset,
with 11,324 (73%) karyotypes, of which 6,913 (45%) belong
to non-lymphoid hematological disorders. We computed
for each karyotype a set of most likely aberrations involved
in its formation using 11 types of chromosomal rearrange-
ment, deletion, and duplication events (Materials and
methods; Additional file 1). Of those events, chromosome
gain/loss and translocation were most frequent (Addi-
tional file 2). An aberration was identified by its causing
event and the chromosomal locations it involved. For
example, the translocation involving bands 9q34 and
22q11 was identified by t(9;22)(q34;q11), following the
ISCN terminology [18].

Aberrations characteristic of specific tumor classes
The karyotypes in our dataset contained 5,179 distinct
aberrations, including all possible chromosome gains and
losses. We computed the significance of the correlation
of each aberration-class pair using the hypergeometric
test. Out of 9,208 distinct observed aberration-class pairs,
1,705 were found to be significantly correlated at a false
discovery rate (FDR) of 5% (website). These correlations
encompassed all 62 tumor classes in our dataset, invol-
ving 1,360 distinct aberrations, where more than half of
these correlations (907, 53%) involved translocations.
Many of these strong correlations, notably the ones
involving translocations, have been well documented in
the literature: for example, t(9;22) in chronic myelogen-
ous leukemia [19] and t(11;22) in Ewing sarcoma [20].
This supports the use of our dataset as a valid sample of
karyotypes from the considered classes, as well as the
soundness of our results.

Two distinct paths to aneuploidy?
We now address a question that can be answered only by
complex analysis of a large database: which aberrations
tend to co-occur? We seek pairs of aberrations that
appear together in karyotypes significantly more than
expected by chance. Such associations may reveal either
cooperation between different oncogenic events or com-
mon mechanisms creating chromosomal aberrations. To
answer this question we tested the significance of co-
occurrence for 7,202 aberration pairs in our dataset that
satisfied the following two conditions: each aberration
appeared in at least ten karyotypes, and the pair appeared
together in at least one karyotype. We first filtered pairs

Ozery-Flato et al. Genome Biology 2011, 12:R61
http://genomebiology.com/2011/12/6/R61

Page 2 of 12



with hypergeometric P-value > 0.001, leaving 623 pairs
whose significance was further evaluated by a permuta-
tion test. Our analysis yielded 218 significantly co-occur-
ring aberration pairs (P < 0.05, after Bonferroni
correction), of which 154 (71%) were chromosome gain
pairs, and 47 (22%) were chromosome loss pairs. The
induced network split clearly into two disjoint parts: one
dominated by chromosome gains and one by chromo-
some losses (Figure 2a). We carried out the same analysis
separately for lymphoid disorders, non-lymphoid hema-
tological disorders, solid tumors, and carcinomas (Figure
S2a-d in Additional file 3). Each of these groups showed
the same clear strong co-occurrence of specific gain-gain
and loss-loss pairs, with almost no cases of significant co-
occurrence for any mixed gain-loss pairs. We also
detected the trisomy of 1q [21], which appeared in all
tumor categories in the associations involving gain of

chromosome 1 (Figure 2a; Figure S2a-d in Additional
file 3).
We repeated this test on an extended dataset of

42,763 karyotypes, which included selected and partially
characterized karyotypes (omitting non-characterized
fragments). The two disjoint clusters of chromosome
gains and losses are still clearly evident in the obtained
results (Figure S2e in Additional file 3). The major
observed change in the results is the addition of many
new significant associations that involve aberrations
other than chromosome gains and losses. This addition
is explained by the growth in the amount of data, which
increased the power of the statistical test, allowing it to
uncover weaker associations. To confirm this, we exam-
ined an extended set of significant co-occurring aberra-
tions (FDR 5%) in the original (filtered) dataset and
obtained essentially the same results (not shown).

Mitelman  Database

60K karyotypes Filter ambiguous, redundant and 

15K karyotypes

62  tumor  classes

potentially  biased karyotypes; 

Classify; Categorize

4  categories

Kar class Aberrations

Reconstruct aberrations

1 C1 Ab1,Ab2,…Abn1

2 C2 Ab1,Ab2,…Abn2

…

15k

List  of  aberrations  

per  karyotype

Correlations  between  aberrations Aberration class correlations Tumor class similarities

Compute statistical significance

STACK website

Figure 1 Overview of karyotype analysis and the STACK website. A large fraction of the karyotypes in the Mitelman Database was removed
to avoid potential bias in the analysis. These included partially characterized karyotypes, multiple karyotypes from the same individual, and
karyotypes that were not randomly selected in the original report. Tumor type and location were used to classify karyotypes into tumor classes,
and classes with small representation (< 50 karyotypes) were removed from the dataset. An algorithm was used to reconstruct the set of
aberrations leading to each remaining karyotype. Three types of statistical correlations were computed: aberration co-occurrence, association
between class and aberration, and class similarity (based on their common aberrations). All computed correlations, with their P-values, are
available for further investigation via our website [16] and are directly linked to the full description of the relevant karyotypes in the Mitelman
Database. Repeating the analysis without filtering ambiguities and selected karyotypes (yielding 42,763 karyotypes, 83% of the Mitelman
Database) led to essentially the same conclusions.
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To test our result on independent data obtained using a
different technology, we used data from comparative geno-
mic hybridization (CGH), a laboratory method to measure
gains and losses in the copy number of chromosomal
regions in tumor cells. We analyzed an independent data-
set of 1,084 samples obtained by CGH, downloaded from
the NCI and NCBI’s SKY/M-FISH and CGH database (16
March 2009 version). This database contains CGH records
contributed by molecular cytogeneticists for open investi-
gation. Each sample was assigned a corresponding set of
whole chromosome gain/loss aberrations, yielding 648
(60%) samples with non-empty aberration sets. Using a
permutation test similar to the one used for karyotype
data (Materials and methods), we computed a P-value for
the co-occurrences of specific aberration pairs in the CGH
dataset. Out of 856 distinct co-occurring aberration pairs,
47 were significantly co-occurring at a FDR of 5%. The
picture obtained with these pairs (Figure 2b) is strikingly
similar to that produced by the karyotype data. This reaf-
firms our observation that the progression of aneuploidy
in cancer is driven by either multiple chromosomal gains
or multiple chromosomal losses.

Table 1 Tumor classes and categories in the dataset

Class Number of karyotypes

Benign solid tumors 1,567

Ad-large intestine 100

Ad-salivary gland 191

Ad-thyroid 66

Benign-breast 69

Ch hamartoma-lung 99

Leiomyoma-uterus 214

Lipoma-ST 269

Mnng-brain 508

Oncocytoma-kidney 51

Non-lymphoid hematological disorders 6,913

AML 1,026

AML M0 144

AML M1 315

AML M2 776

AML M3 525

AML M4 621

AML M5 266

AML M5a 52

AML M6 133

AML M7 168

BBL 137

CMD 69

CML at 409

CML t(9;22) 808

CMML 147

Id myelofibrosis 115

JML 50

MDS 187

Polycythemia vera 166

Rf anemia 374

Rf anemia EB 344

Rf anemia RS 81

Lymphoid disorders 4,411

ALL 1,817

Adult T-cell lymphoma 64

Ang T-cell lymphoma 71

Burkitt lymphoma 248

CLL 884

DL B-cell lymphoma 197

Follicular lymphoma 274

HCL 57

M B-cell neoplasm 166

MCL 78

Multiple myeloma 385

Per T-cell lymphoma 62

SMZ B-cell lymphoma 108

Malignant solid tumors 2,554

Table 1 Tumor classes and categories in the dataset
(Continued)

AdC-breast 323

AdC-kidney 610

AdC-large intestine 125

AdC-ovary 56

AdC-prostate 124

AdC-thyroid 84

AdC-uterus 62

Astrocytoma-braina 234

BCC-skin 87

Ewing-skeleton 181

Giant cell-skeleton 60

Hpblastoma-liver 65

Liposarcoma M-ST 59

Melanoma-eye 72

SqCC-larynx 58

SqCC-lung 64

Synovial sarcoma-ST 58

Wilms-kidney 232

Ad, adenoma; Adc, adenocarcinoma; ALL, acute lymphoblastic leukemia; AML,
acute myeloid leukemia; Ang, angioimmunoblastic; BBL, bilineage or
biphenotypic leukemia; BCC, basal cell carcinoma; Ch hamartoma, chondroid
hamartoma; CLL, chronic lymphocytic leukemia; CMD, chronic
myeloproliferative disorder; CML, chronic myeloid leukemia; CML at, CML
aberrant translocation; CMML, chronic myelomonocytic leukemia; DL, diffuse
large; HCL, hairy cell leukemia; Hpblastoma, Hepatoblastoma; Id, idiopathic;
JML, juvenile myelomonocytic leukemia; Liposarcoma M, liposarcoma myxoid/
round cell; M B-cell, mature B cell; MCL, mantle cell lymphoma; MDS,
myelodysplastic syndrome; Mnng, meningioma; Per, peripheral; Rf anemia,
refractory anemia; Rf anemia EB, refractory anemia with excess of blasts; Rf
anemia RS, refractory anemia with ringed sideroblasts; SMZ, splenic marginal
zone; SqCC, squamous cell carcinoma; ST, soft tissue.
aAstrocytoma grade III-IV
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A similarity map of tumor classes
Which tumor classes have highly similar aberrations?
Using the set of significant (FDR 5%) aberration-class
correlations, we assessed the statistical significance of the
overlap in aberrations for every pair of tumor classes. Of
all 1,891 possible class pairs, 56 were found to signifi-
cantly share common aberrations at a FDR of 5% (Figure
S3a1 in Additional file 4). Considering benign and

malignant solid tumors as one category, all but three (53,
95%) of these pairs belong to the same category, with two
of the three exceptions linking between lymphoid disor-
ders and (malignant) solid tumors. We repeated the ana-
lysis, expanding the set of correlative aberrations by
considering also weaker correlations with (uncorrected)
P-value < 0.05. The results show a remarkably similar
partition, with 86 significant class pairs (FDR 5%),

Chr. loss

Chr. gain

Other

(a)

(b)

Figure 2 Highly co-occurring aberration pairs. Highly co-occurring aberrations in the entire karyotype dataset are connected by lines.
Aberrations that are involved only in expected links (for example, a link between a translocation and a gain/loss of one of its derivative
chromosomes; a link between two (two-break) translocations originating from one three-break [18] rearrangement) are not shown. For
explanations of aberration names, see Additional file 1. (a) Highly co-occurring pairs in the Mitelman Database karyotypes (links are significant at
P < 0.05, after Bonferroni correction). (b) Highly co-occurring pairs in the comparative genomic hybridization dataset (links are significant at FDR
5%). The only gain-loss link is (+1, -16), which has the second worst (that is, highest) P-value among the 47 pairs that passed the FDR 5%
criterion. The figure was drawn using Cytoscape [40].
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forming three distinct clusters, with only six links
between the sets of lymphoid disorders and solid tumors
(Figure S3a2 in Additional file 4). The fact that the cate-
gories were very well separated serves as confirmation of
the data and of our methodology.
For more in-depth study of similarity among classes,

we defined a similarity measure between classes based

on the significance of their common aberrations (Mate-
rials and methods) and used it to hierarchically cluster
the classes (Figure 3). As before, classes of the three sets
- non-lymphoid-hematological disorders, lymphoid dis-
orders and solid tumors - clustered separately. A deeper
look into each cluster (Figure 3) revealed that many clo-
sely clustered classes were histologically related. For

Colors:
3

1.5

0

-1.5

-3

0.566

0.0

Figure 3 Hierarchical clustering of classes based on class similarity in sharing common aberrations. The square at the intersection of
each two diagonals shows the similarity of their classes as measured by the aberrations associated with them (Materials and methods). (An
aberration was associated with a tumor class if the correlation had a (uncorrected) P-value < 0.05.) Names of cancer classes are colored as
follows: orange, lymphoid disorders; red, non-lymphoid hematological disorders; light green, benign solid tumors; dark green, malignant solid
tumors. Classes that showed no significant similarity to any other class at FDR 5% were not included in the clustering.
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example: diffuse large B-cell lymphoma, follicular lym-
phoma, and mature B-cell neoplasm (B-cell lymphomas);
adenoma and adenocarcinoma in the large intestine; and
AML M5 and AML M5a. The correlated aberrations
shared by two similar classes can be viewed through our
website. One of the interesting results was the close
proximity of three embryonic cancers: Wilms’ tumor
(kidney), Ewing sarcoma (skeleton) and Hepatoblastoma
(liver).

The website
All the associations described above can be viewed via the
website [16], which contains summary tables for the differ-
ent types of associations: aberration-class, class-class, and
aberration-aberration. Table rows can be filtered textually
and numerically, allowing investigations of associations for
a specific group of cancer types, a set of aberrations of
interest, or both. For example, the user can view all aber-
rations whose correlation with a certain tumor class is
below some specified P-value. Alternatively, all aberrations
significantly co-occurring with a specified aberration can
be examined, with their P-values. For aberration-class and
aberration-aberration associations, researchers can exam-
ine the karyotypes that led to these associations, where
each karyotype is linked to its corresponding record in the
Mitelman Database website.
To demonstrate the utility of the website, we focused on

hyperdiploid multiple myeloma (H-MM), a subtype of
multiple myeloma (MM) with better prognosis, character-
ized by having 48 to 74 chromosomes [22-24]. Our dataset
included 385 MM karyotypes, 110 (29%) of which were
hyperdiploid. H-MM is associated with recurrent gains of
chromosomes 3, 5, 7, 9, 11, 15 and 19 [22]. Indeed, the
website’s class-aberration table, filtered for MM associa-
tions, confirmed this observation: +3, +5, +9, +11, +15,
and +19 were the aberrations most associated with MM,
and the 142 karyotypes involved in these associations
spanned all H-MM karyotypes (hyper-geometric P < 1E-
76). Chng et al. [25] suggested a FISH-based trisomy
index test for identifying H-MM, employing probes for
chromosomes 9, 11 and 15, and designating a tested MM
cell as H-MM if it contains two or more trisomies in these
chromosomes (see Materials and methods). They reported
specificity of 0.98 and sensitivity of 0.69 for that index.
The corresponding F-score (a measure combining sensitiv-
ity and specificity; see Materials and methods) was 0.8. We
analyzed the 385 MM karyotypes in the same fashion as
[25]; the criterion of any two trisomies in 9, 15, 19 was
best with specificity 0.996 and sensitivity 0.88 (F-score
0.93). In fact, the same combination has the highest F-
score on the data from [25] as well (0.83). Thus, the criter-
ion of two or more trisomies of chromosomes 9, 15, 19
should be considered for identifying H-MM.

Discussion
In this study we computationally analyzed a large number
of cancer karyotypes from the Mitelman Database, the lar-
gest available compendium of cancer karyotypes. Based on
statistical analysis of more than 15,000 karyotypes, our
results provide strong additional evidence for the non-ran-
domness of many chromosomal aberrations in cancer.
Our approach is validated by the demonstration of known
relationships, including associations between specific aber-
rations and specific tumor types, and similarities among
certain tumors (for example, adenoma and adenocarci-
noma of the large intestines). More importantly, the analy-
sis led to new discoveries, most notably that chromosomal
aneuploidy tends to consist of either a pattern of chromo-
somal gains or a pattern of chromosomal losses. This
discovery was verified on an independent CGH database.
A similar tendency was observed by Höglund et al. [9] for
a small number of specific solid cancers. The karyotypic
evolution models of [9] contained two converging paths,
one dominated by gains of chromosomal fragments and
the other by losses. To the best of our knowledge, our
results provide the first rigorous demonstration of this
widespread association within chromosomal aneuploidy in
cancer cells.
To avoid ambiguities and reduce potential biases in the

results, we excluded from our dataset karyotypes that
were not random samples (that is, reported because of a
specific/unusual karyotypic feature), and those with miss-
ing information. Inclusion of partially characterized kar-
yotypes (omitting non-characterized fragments) and
karyotypes marked as selected (that is, non-random sam-
ples) increased the number of karyotypes to 42,763 (83%
of the Mitelman Database). The results with that set clo-
sely match those reported here (Figures S2e in Additional
file 3 and S3b in Additional file 4), indicating the robust-
ness of both the results and our statistical methods.
Chromosome gains/losses and translocations were the

most abundant aberrations in our dataset. While many
translocations were shown to contribute to carcinogen-
esis, the role of chromosomal aneuploidy in cancer has
been debated for almost a century. Aneuploidy generally
interferes with cellular growth and proliferation, but is
frequently associated with the disease of uncontrolled
proliferation, cancer. In yeast, aneuploid cells show a
transcriptional response similar to that described in yeast
cells grown under many different stress conditions [26].
As protein expression levels largely scale with chromo-
some copy numbers [27], this may reflect the aneuploid
cell’s effort to reestablish protein stoichiometry [26]. The
detrimental role of accumulated proteins in aneuploid
cells is supported by a recent report demonstrating that
mutations accelerating protein degradation increased the
tolerance for anueploidy [28]
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These observations may explain the striking chromo-
some gain/loss dichotomy that we observed and suggest a
partial explanation for the following conundrum: a germ-
line or experimentally acquired single chromosome gain/
loss is usually detrimental, both at the cellular and the
organism levels, while the abundance of chromosome
gains/losses in cancer cells implies that aneuploidy is ben-
eficial, or at least not harmful, to their vitality [29-33]. As
most chromosomes contain dosage-sensitive genes, the
strong gain-gain and loss-loss correlations may imply a
mechanism for balancing the ratios of proteins that func-
tion in complexes. Such balancing may be required to pro-
tect the cancer cell from the detrimental effects of partially
assembled protein complexes or free subunits by molecu-
lar chaperones caused by prior chromosome gain/loss
events.
An alternative explanation for these observations is that

chromosomal gains and losses are caused by different
mechanisms of genomic instability. This is less likely, how-
ever, as it implies that defects in the mitotic checkpoint
result in non-random distribution of the aneuploidy chro-
mosomes between two daughter cells. There are no
experimental data to support that hypothesis. A third pos-
sible explanation is that the correlation of gains with other
gains and losses with other losses is driven by catastrophi-
cally failed mitoses, where many chromosomes fail to
separate during anaphase. In this scenario one daughter
cell wound up with many more, and the other with many
fewer chromosomes. However, this scenario does not
explain why many specific chromosome pairs are signifi-
cantly co-gained/co-lost, even when the statistical test is
corrected for chromosome gain-loss dichotomy (results
not shown). Additional experimental data are needed to
substantiate or refute these hypotheses.
Interestingly, gain-gain correlations are more prevalent

and more significant than loss-loss co-occurrences (com-
pare Figure 2 and the website). There may be two expla-
nations for why gains of chromosome pairs are more
common than losses. The first is simply mathematical:
trisomy means 30% more dosage for a set of genes, while
a loss implies a more dramatic 50% drop. The second is
experimental - Rancati et al. [34] have shown that the
higher the ploidy the better the adaptation to aneuploidy
is. Hence, gains of multiple chromosomes may be advan-
tageous in the evolution of human cancer karyotypes.
One limitation of the use of the Mitelman Database is

the very low resolution of the karyotypes, disallowing
identification of low-level and focal events. On the other
hand, the huge number of karyotypes allowed us to carry
out rigorous statistical analysis on a very large scale.
Another limitation is its inherent bias towards hematolo-
gical cancers. However, the number of solid karyotypes
in the database is still substantial, and allowed us to
obtain results on class similarity among solid cancers

(Figure 3). Moreover, the results on aberration co-occur-
rence tendency were similar using the full data (Figure 2)
and the solid karyotypes only (Figure S2c in Additional
file 3). Cytogenetic techniques are still widely used in
cancer studies, and have some advantages over current
high-resolution techniques. Cytogentic methods allow
distinguishing between different clones that co-exist in a
cancer sample, and are often used in verifying the exis-
tence of specific aberrations. We emphasize that in our
analysis we analyzed all types of aberrations identifiable
by cytogentic techniques, including translocations, iso-
chromosomes, partial deletions, and more. Nevertheless,
the strongest associations we revealed among aberrations
involved mainly whole chromosome gains and losses,
most likely since other aberrations (for example, specific
translocations, or deletions) are less common and more
difficult to detect using cytogentic techniques.
The methodologies developed in this study can be used

on other large datasets describing genetic events. As high-
resolution genetic information on tumors (for example,
from array-CGH and deep sequencing) accumulates, simi-
lar analysis can be applied to it. For example, Beroukhim
et al. [12] demonstrated that a large majority of somatic
focal copy-number alterations identified in individual can-
cer types are present in several cancer types. Our method
can be used to assess whether common somatic focal
copy-number alterations tend to be shared by related can-
cers, as has been the case for cytogentic aberrations. The
main challenges in adapting our methods for array-based
data are assigning each sample with a set of aberrations
(aka ‘aberration calling’), and handling intersecting aberra-
tions (for example, two deletions with overlapping seg-
ments). Another major difficulty in uncovering strong
associations in cancer data is the requirement for a large
number of cancer samples. To obtain a large dataset, we
performed pooled analysis of heterogeneous cancer sam-
ples, similarly to [12,13]. Pooled analysis has the potential
of revealing associations possibly pertinent to common
cellular mechanisms shared by different cancer types.
Recent examples include: cancer-related genes hosted in
highly frequent copy-number alterations in cross-cancer
data [12], structural signatures of driver/passenger homo-
zygous deletions [13]; and the whole chromosome gain/
loss dichotomy phenomenon reported here.
Finally, our website can be useful both for additional

global investigations like those reported here and for in-
depth analysis of individual associations.

Conclusions
Cancer is a common name for many different diseases:
there is large variability among different cancers, and
even among cancers of the same morphological and
topographical origin. Nevertheless, different cancers may
share similar mechanisms. Analyzing a heterogeneous
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set of cancers has the potential of uncovering patterns
that are related to such common mechanisms. In this
study we performed a large-scale analysis of karyotypes
from heterogeneous cancer samples. We show that
many aberrations, including some whole chromosome
gains and losses, are highly specific to certain cancers.
Other aberrations exhibiting weaker specificity were
shown to be shared among cancers of related morphol-
ogy. The investigation of aberration pairs revealed a
striking non-random, cross-cancer pattern of aneu-
ploidy, where whole chromosome gains are associated
with other gains and whole chromosome losses are asso-
ciated with other losses. Despite being very common,
the role of aneuploidy in cancer initiation or progression
is unclear, but one explanation of the non-random pat-
tern of aneuploidy that we have found and quantified is
that it is necessary for a clonal growth advantage. We
hope that this finding will lead to a better understanding
of the mechanisms that allow cancer cells to balance the
harms with the potential growth advantage caused by
aneuploidy.

Materials and methods
Karyotype selection and analysis
Starting from all 59,759 karyotypes present in the Mitel-
man Database on 17 November 2009, we carried out sev-
eral aggressive filtering steps aiming to reduce ambiguity
and avoid any possible bias (see Additional file 5 for the
full details). Briefly, we evaluated all 34,107 karyotypes
marked as unselected (that is, chosen in a non-biased
manner). Karyotypes were parsed using the CyDAS ISCN
parser [35], and any karyotype detected as invalid during
the parsing was excluded, leaving 29,911 (88%) valid
karyotypes. We filtered all karyotypes that are not well-
defined. For a multiclonal karyotype, we avoided depen-
dency between its karyotypes by choosing only the first
well-defined karyotype it contained. In case of multiple
karyotypes from the same patient (’case’ in the Mitelman
Database), only one karyotype was taken into account. To
avoid potential biases in chromosome gain/loss aberra-
tions, we excluded any karyotype that was not near-diploid
(that is, we omitted karyotypes whose total chromosome
number was <35 or >57). Altogether, 18,813 karyotypes
were selected for analysis.

Aberration reconstruction
We previously identified 11 frequent chromosomal events
in tumor karyotypes (chromosome gain/loss, translocation,
deletion, duplication and more; Additional file 1), and
developed an algorithm for reconstructing a most plausi-
ble set of these events leading to a given karyotype [36].
Briefly, our algorithm mimics the intuitive way a
researcher would perform this task manually: starting with
the cancer karyotypes, the algorithm selects the simplest

and most evident step of ‘undoing’ one event at a time,
bringing the karyotype closer to the normal one. We
applied the algorithm to all relevant karyotypes from the
Mitelman Database, obtaining unambiguous reconstruc-
tion in 99% (18,600) of the karyotypes. We recorded each
karyotype’s set of aberrations, where an ‘aberration’ is
defined by an event and the chromosomal locations
involved. See Additional file 5 for further details.

Karyotype classification
We classified karyotypes by their tissue morphology and
topography as specified in the Mitelman Database. To
permit robust statistical analysis, we omitted all karyo-
types whose class had less than 50 karyotypes. Our final
dataset contained 15,445 karyotypes.

Comparative genomic hybridization data
To validate our results for co-occurrence of chromosome
gains and losses, which were obtained using karyotype
data, we searched for an alternative independent dataset.
We used the NCBI’s SKY/M-FISH and CGH database
[37] (16 March 2009 version), consisting of 1,084 records.
Every record has a list of chromosomal segments with
abnormal copy number, each classified as a gain or a loss,
and the header of the record contains information on the
cancer tissue. As most tumor classes in this dataset were
relatively small, we ignored the histological classification.
For each record we derived chromosome gain/loss aberra-
tions in the following manner: every gained (lost) chromo-
somal fragment that spanned the centromere was
considered a whole chromosome gain (loss). Gain/loss
aberrations that were internal to a chromosome arm (that
is, not spanning the centromere) were ignored.

Computing P-values for aberration-class correlations
For an aberration Ab and a tumor class C, we calculated
the significance of the enrichment of karyotypes with Ab
in C using the hypergeometric test.

Computing P-values for classes sharing common
aberrations
We say that an aberration Ab is t-correlative to a tumor
class C if the enrichment of karyotypes with Ab in C had a
hypergeometric P-value ≤ t. For a fixed t, we developed
the following method for evaluating the significance of
shared aberrations between tumor classes. We constructed
a binary matrix Mt whose rows and columns correspond
to aberrations and classes, respectively. We set Mt[Ab,C] =
1 if Ab is t-correlative to C, and otherwise Mt[Ab,C] = 0.
For t = 0.05, the maximal t used in our analysis, the matrix
Mt was already quite sparse, with less than 2% of the
values being 1.
For two classes, C1 and C2, we computed a P-value

for their number of shared events as follows. Let nt.C1,
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C2 be the number of t-correlative aberrations that C1
and C2 share. More formally:

nt.C1,C2 = �AbMt[Ab, C1] × Mt[Ab, C2]

For every pair of classes, C1 and C2, we estimated the
probability of having at least nt, C1, C2 t-correlative aber-
rations by chance by sampling N = 107 randomized per-
mutations of Mt that preserve row and column sums.
Every such permutation corresponds to an assignment
of aberrations to tumor classes that keeps the general
properties of the original data: aberrations that occur in
few (or many) cancer classes remain so, and tumor
classes that had many (or few) correlative aberrations
preserve this property. The randomization is done by a
long sequence of edge swaps [38]. The P-value for C1
and C2 is defined as r(C1,C2,N,t)/N, where r(C1,C2,N,t)
is the total number of Mt permutations in which the
number of aberrations that C1 and C2 share is ≥ nt, C1,
C2. In case r(C1,C2,N,t) = 0, we defined the P-value to
be 1/N. Therefore, the minimal P-value we could
achieve was 10-7.

Hierarchical clustering of classes
We performed average-linkage hierarchical clustering of
the classes using the Expander software package [39].
The similarity measure between classes was defined as
follows. We first built a symmetric matrix, S, satisfying S
[C1,C2] = -log(p), where p is the P-value described above
for the significance of the number of t-correlative aber-
rations that C1 and C2 share, nt.C1, C2. For each class C,
we set S[C,C] = log(N), where N = 107 as above. The
similarity between classes was now defined as the Pear-
son correlation between their rows of S. Classes showing
no significant similarity at FDR 5% to any other class
were removed from this analysis.

Computing P-values for co-occurring aberration pairs
For two aberrations, Ab1 and Ab2, let n(Ab1, Ab2) be the
total number of karyotypes that contain both aberrations.
We estimated the significance of n(Ab1, Ab2) for all pairs
of distinct aberrations using a permutation test (similar
to the one described above) as follows. We constructed a
binary matrix, M, whose rows correspond to aberrations
that occur in at least ten karyotypes, and columns to kar-
yotypes. For an aberration Ab and karyotype K, we set M
[Ab,K] = 1 if K contained Ab, and M[Ab,K] = 0 otherwise.
We randomly sampled permutations of M that preserved
row and column sums. Thus, each permutation corre-
sponds to a random set of karyotypes with the same dis-
tributions of (i) number of aberrations per karyotype, and
(ii) number of karyotypes per aberration. Moreover, to
account for the different distributions of aberrations
within each tumor class, the sampled permutations were

also required to preserve (sub-)row sum corresponding
to each class. We enhanced the performance of this test
by filtering aberration pairs whose hypergeometric test
P-value was > 0.001, and removing from M any aberra-
tion that did not appear in the remaining pairs.
We performed a similar test for the CGH dataset, but

since it was smaller in size we used all aberrations (that
is, irrespective of the number of samples in which they
were found), and without the step of filtering pairs by
the hypergeometric test.

Trisomy index test
To demonstrate the utility of our website, we used it to
define a trisomy index test (TI-T), a test that uses speci-
fic trisomies (that is, chromsome gains) in order to dis-
tinguish between prognostically different subgroups of a
certain disease. Similar to Chng et al. [25], we focused
on H-MM, a subtype of MM. For a given TI-T, the sen-
sitivity (respectively, specificity) was calculated as the
percentage of H-MM (respectively, non-H-MM) karyo-
types that are correctly identified as such by the TI-T.
The positive predictive value (PPV) was calculated as
the percentage of H-MM karyotypes among all karyo-
types identified as H-MM by TI-T. The F-score was cal-
culated as the harmonic mean of sensitivity and PPV:
F = 2 × PPV × Sensitivity/(PPV + Sensitivity).

Additional material

Additional file 1: Table S1. Chromosomal events allowed in the
reconstruction algorithm.

Additional file 2: Figure S1. Event frequencies.

Additional file 3: Figure S2. Highly co-occurring aberration pairs. Highly
co-occurring aberrations (P < 0.05 after Bonferroni correction) are
connected by lines. Aberrations that are involved only in expected links
are not shown. See Additional file 1 for aberration name abbreviations.
(a) Lymphoid disorders, (b) non-lymphoid hematological disorders, (c)
solid tumors, (d) carcinomas, (e) all karyotypes. Results were obtained on
a dataset that includes partially defined and selected karyotypes (83% of
the Mitelman Database). Legend is as in Figure 2 for (a-d), and for (e)
with the addition of light red and light green colors corresponding to
partial deletions and partial duplications, respectively.

Additional file 4: Figure S3. Tumor classes with similar common
aberrations. (a) Tumor class pairs with significantly high numbers of
common aberrations are connected by lines (FDR 5%). Aberrations
assigned to tumor classes are: (a1) significantly correlated at FDR 5%, (a2)
correlated with P-value < 0.05 (uncorrected). (b) Hierarchical clustering of
classes based on class similarity in sharing common aberrations. Results
were obtained with a dataset that includes partially defined and selected
karyotypes (83% of the Mitelman Database). Legend is as in Figure 3.

Additional file 5: Text S1. Description of the algorithm for
reconstructing aberrations from karyotypes.

Abbreviations
CGH: comparative genomic hybridization; FDR: false discovery rate; FISH:
fluorescence in situ hybridization; H-MM: hyperdiploid multiple myeloma;
MM: multiple myeloma; PPV: positive predictive value; TI-T: trisomy index
test.
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