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Abstract

Intrinsically disordered proteins are predicted to be highly abundant and play broad biological roles

in eukaryotic cells. In particular, by virtue of their structural malleability and propensity to interact

with multiple binding partners, disordered proteins are thought to be specialized for roles in signaling

and regulation. However, these concepts are based on in silico analyses of translated whole genome

sequences, not on large-scale analyses of proteins expressed in living cells. Therefore, whether these

concepts broadly apply to expressed proteins is currently unknown. Previous studies have shown

that heat-treatment of cell extracts lead to partial enrichment of soluble, disordered proteins. Based

on this observation, we sought to address the current dearth of knowledge about expressed, disordered

proteins by performing a large-scale proteomics study of thermo-stable proteins isolated from mouse

fibroblast cells. Using novel multidimensional chromatography methods and mass spectrometry, we

identified a total of 1,320 thermo-stable proteins from these cells. Further, we used a variety of

bioinformatics methods to analyze the structural and biological properties of these proteins.

Interestingly, more than 900 of these expressed proteins were predicted to be substantially disordered.
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These were divided into two categories, with 514 predicted to be predominantly disordered and 395

predicted to exhibit both disordered and ordered/folded features. In addition, 411 of the thermo-stable

proteins were predicted to be folded. Despite the use of heat treatment (60 min. at 98 °C) to partially

enrich for disordered proteins, which might have been expected to select for small proteins, the

sequences of these proteins exhibited a wide range of lengths (622 ± 555 residues (average length ±

standard deviation) for disordered proteins and 569 ± 598 residues for folded proteins).

Computational structural analyses revealed several unexpected features of the thermo-stable proteins:

1) disordered domains and coiled-coil domains occurred together in a large number of disordered

proteins, suggesting functional interplay between these domains, and 2) more than 170 proteins

contained lengthy domains (>300 residues) known to be folded. Reference to Gene Ontology

Consortium functional annotations revealed that, while disordered proteins play diverse biological

roles in mouse fibroblasts, they do exhibit heightened involvement in several functional categories,

including, cytoskeletal structure and cell movement, metabolic and biosynthetic processes, organelle

structure, cell division, gene transcription, and ribonucleoprotein complexes. We believe that these

results reflect the general properties of the mouse intrinsically disordered proteome (IDP-ome)

although they also reflect the specialized physiology of fibroblast cells. Large-scale identification of

expressed, thermo-stable proteins from other cell types in the future, grown under varied

physiological conditions, will dramatically expand our understanding of the structural and biological

properties of disordered eukaryotic proteins.
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Introduction

Based on theoretical translations of whole genome sequences, approximately 30-40% of all

eukaryotic proteins are predicted to be either entirely disordered or contain long disordered

regions1, 2. Further, bioinformatics analyses have strongly suggested that these theoretical,

intrinsically disordered proteins (DPs) play broad roles in biological systems, especially in

molecular signaling and regulation 3-14, and that many DPs are involved in the pathogenesis

of a wide range of human diseases, including cancer, malaria, AIDS, and amyloid diseases
12, 14-17. However, despite their predicted high abundance and broad biological roles in

eukaryotes, few studies have focused on large-scale analysis of the subset of DPs that are

actually expressed in eukaryotic cells at a given time and under specific environmental

conditions. It is important to understand not only the theoretical upper limit of the number of

all DPs encoded by genomes, but also to understand which DPs are actually expressed under

certain physiological conditions and how cells vary their expressed DP repertoire in response

to changing conditions and external stimuli. Because it is not currently possible to predict

protein expression patterns on the basis of genome sequence information alone, experimental

methods are required for large-scale detection of expressed DPs.

We addressed this issue by developing proteomics techniques to study a large fraction of the

DPs that are expressed in mouse fibroblast cells. Previously, we and others reported that heat-

treatment of soluble cellular extracts afforded modest selectivity for DPs and selectivity against

highly abundant, folded proteins (FPs)18-20. This method, combined with two-dimensional

polyacrylamide gel electrophoresis (2D PAGE), allowed identification of 114 cytosolic and

nuclear DPs from mouse fibroblast cells, many of which are involved in cellular signaling and

regulation18. However, due to the inherent low dynamic range of this protein identification

method, the majority of these were high abundance proteins. While some are highly abundant,

many other proteins involved in signaling and regulation are present at low levels in cells.
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Thus, it was necessary to use techniques capable of greater proteome penetration to identify a

larger fraction of proteins in the intrinsically disordered proteome (referred to as the “IDP-

ome” here and the “unfoldome” by others21) of mouse fibroblast cells.

Improved penetrance of the IDP-ome in the current study was achieved using a two step

procedure. In the first step, we used multi-dimensional protein identification technology

(MudPIT)22, to identify 1,320 thermo-stable (TS) proteins in a heat-treated extract of mouse

fibroblast cells. Our past IDP-ome study showed that a large fraction of the proteins detected

in the heat-treated, soluble extract from mouse fibroblast cells were DPs18. Therefore, we

reasoned that the same selection procedure, combined with highly sensitive MudPIT, would

allow identification of a large number of additional, lower abundance, DPs. In the second step

of our procedure, the experimentally identified TS proteins were structurally analyzed using

bioinformatics methods. While MudPIT was capable of identifying more than 1,300 individual

proteins amongst the many thousands that were present in the heat-treated cell extract, it was

not possible to structurally characterize each of the identified proteins within the cell extract

using mass spectrometry or other analytical methods. Therefore, it was necessary to use

sequence analysis algorithms to computationally analyze the structural properties of the

identified TS proteins. Using several, well-validated disorder prediction programs, including

NORSnet23, IUPred24, and DISOPRED225, we demonstrated that proteins exhibiting

significant disorder were over-represented in the TS dataset with respect to the entire mouse

proteome, with up to 69% identified as being fully or partially disordered by these prediction

methods. In addition, we used the disorder prediction program, PONDR26, to analyze the

overall structural properties of each of the TS proteins and classified them as being

predominantly disordered (termed “disordered proteins”, DPs), predominantly folded (termed

“folded proteins”, FPs), or of mixed character (termed “mixed proteins”, MXPs). Using this

classification system, more than 900 proteins were predicted to contain disordered domains

and classified as DPs or MXPs. Interestingly, of these >900 proteins, only 53 have previously

been experimentally characterized as being either partially or wholly disordered, illustrating

the limitations of our current knowledge of disordered proteins that are expressed in living

cells.

Proteins in the TS dataset exhibited diverse and novel structural features. First, despite exposure

to an extreme temperature, the primary structures of these proteins spanned a wide range of

lengths (627 ± 646 residues; average length ± standard deviation), with 50 exceeding 2,000

residues. This range of lengths is generally representative of that for proteins in the entire mouse

and human proteomes. Second, a large number of disorder-containing proteins classified as

DPs and MXPs (21% and 14%, respectively) also contained segments predicted to be coiled-

coils. Since both disordered and coiled-coil domains are known to mediate protein-protein

interactions, this observation suggests that these independent domains may cooperate to

mediate biological function. Third, almost 200 proteins in the TS dataset were predicted to

contain lengthy (>300 residues in length), folded regions while 65 others were predicted to

contain trans-membrane (TM) domains. Many of these regions and domains occur in proteins

that are predicted to otherwise be extensively disordered, a factor which may mitigate the

tendency of folded, hydrophobic polypeptide segments (soluble and globular, and membrane-

spanning) to denature and precipitate upon heating. This survey of the unusual structural

characteristics of proteins with both disordered and ordered features within the TS dataset

highlights how little is currently known about the physical properties of the thousands of

proteins expressed in living mouse cells and emphasizes the need for large-scale studies of

expressed proteins.

Relationships between disorder (and order) and biological function were analyzed by

evaluating the sub-cellular localizations, biological processes and molecular functions

associated with all 1,320 proteins in the TS dataset using the Gene Ontology (GO) Consortium
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database (www.geneontology.org). Importantly, this analysis revealed that DPs and MXPs are

involved not only in signaling and regulation, as often noted, but also in a wide range of other,

previously uncharacterized biological functions and processes. Relationships between protein

disorder and biological function were further probed by analyzing the occurrence of post-

translational modifications and alternative splicing for the proteins in the TS dataset.

These novel insights into the structural and functional properties of proteins in the TS dataset

were gained by applying state-of-the-art methods to detect a very large number of expressed

mouse proteins. Bioinformatics analysis of the sequences of these expressed proteins revealed

that the majority were significantly disordered (514 DPs plus 395 MXPs), far exceeding the

number reported in our past proteomics study18. Significantly, we estimate that this represents

up to ∼75% penetrance of the mouse IDP-ome. This pattern of disordered protein expression

reflects the specialized physiology of fibroblasts and is likely to vary with cell type and

physiological state. These results provide motivation to apply similar protein detection and

analysis methods to other cell types in the future in order to further expand our understanding

of the relationships between disorder and biological function for proteins expressed in

eukaryotic cells.

Experimental Section

Cell Culture

Arf-null mouse NIH 3T3 fibroblast cells were maintained in Dulbeccos modified Eagles media

(DMEM) supplemented with 10% fetal bovine serum and 2 mM glutamine. Cells were grown

at 37 °C in a humidified incubator with a 5% CO2 atmosphere. For large-scale experiments

cells were grown on 20 cm × 20 cm plates that yielded approximately 1 × 107 cells at 80%

confluence.

Thermo-stable Protein Enrichment

Thermo-stable proteins were isolated from mouse fibroblasts as described previously18.

Briefly, mouse fibroblasts (8 × 107) were washed with cold PBS buffer, harvested with a cell

scraper and resuspended in 1 ml of Buffer A (10 mM sodium phosphate, pH 7.0, 50 mM NaCl,

50 mM DTT, 1 × protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN) and 0.1

mM sodium orthovanadate). The cells were lysed and then centrifuged at 16,000 × g for 30

min at 4 °C. The supernatant was transferred to a fresh tube, diluted to a protein concentration

of approximately 1 mg/ml with Buffer A and heated at 98 °C for 1 h. Following heating the

protein mixture was placed on ice for 15 min and then spun at 16,000 × g for 15 min at room

temperature to pellet aggregated and precipitated proteins. Soluble proteins in the supernatant

were precipitated with 20% TCA at -20 °C, washed three times with cold (-20 °C) acetone and

the pellet was stored at -80 °C for further analysis.

Trypsin Digest of Thermo-stable Proteins

Proteins (330 μg) were dissolved in a solution containing 50 mM Tris pH 8.0 and 8.0 M urea

and reduced with 10 mM DTT at 37 °C for 1 hour. Following carboxyamidomethylation by

adding iodoacetamide to a final concentration of 50 mM and incubating at room temperature

for 1 hour, the protein mixture was digested with 5 μg of endopeptidase lys-C (Sigma Aldrich,

St. Louis, MO) at 37 °C for 15 hours. The mixture was diluted 4 fold with a solution containing

10 mM ammonium bicarbonate, pH 8.0, 4 mM CaCl2 and then digested with 10 μg of trypsin

(Promega, Madison, WI) at 37 °C for 3 hours. The pH was adjusted to 10.0 by adding 200 mM

ammonium formate, pH 10.0, immediately prior to loading onto the reversed-phase HPLC

column.
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Reversed-phase Chromatography of Tryptic Peptides at High pH

The first dimension of the 2D-LC separation of tryptic peptides was performed off-line on a

reversed-phase column at high pH according to published protocols27, 28. Briefly, reversed-

phase experiments at high pH were performed on a Xterra MS C18 column (2.1 × 150 mm, 3.5

μm particle) (Waters Corporation, Milford, MA). Mobile phase A was water, B was acetonitrile

and C was 200 mM ammonium formate buffer at pH 10. Pump C was used to isocratically

deliver 10% of the solvent so that the chromatography solvent always contained 20 mM

NH4CO2H. Aliquots (50 μl) of trypsin digested, heat-treated, mouse fibroblast extract (200

μl) were loaded onto a column equilibrated at 30 °C at a flow rate of 200 μl/min. Tryptic

peptides were eluted using a gradient of 0 – 50% B buffer (60 min) at a flow rate of 200 μl/

min. Fractions (30 s) were collected into tubes containing 10 μl 2% formic acid, evaporated to

dryness in a Savant SC110 speedvac and then resuspended in 40 μl of 0.2 formic acid.

LC-MS/MS Analysis and Database Searching

LC-MS/MS analyses were carried out using a Finnigan LTQ linear ion trap mass spectrometer

(Thermo Fisher Scientific, Inc., Waltham, MA) in line with a nanoAcquity ultra performance

LC system (Waters Corporation, Milford, MA). Peptides were loaded onto a

“precolumn” (Symmetry C18, 180 μm i.d × 2 0mm, 5 μm particle) (Waters Corporation) which

was connected through a zero dead volume union to the analytical column (BEH C18, 75 μm

i.d × 100 mm, 1.7 μm particle) (Waters Corporation) equilibrated with solvent D (0.2% formic

acid / 98% water / 2% acetonitrile). The peptides were eluted using a gradient (0-70% E in 60

min, 70-100% E in 10 min, where solvent E was 70% acetonitrile, 0.2% formic acid in water)

at a flow rate of 250 nL/min and introduced online into the linear ion trap mass spectrometer

using electrospray ionization (ESI). Following acquisition of each full-scan mass spectrum, 10

precursor ions were chosen for collision-activated dissociation (CAD) in a data-dependent

manner (one microscan per MS2 spectrum; precursor isolation window m/z ± 1.5 Da, 35%

collision energy, 30 ms ion activation, 35 s dynamic exclusion, repeat count 2).

Product ions generated by CAD were searched against the Mus. musculus subset (11,747

sequences) of the SwissProt non-redundant protein sequence database (Version 50.9; 235,673

sequences; 86,495,188 residues) using the MASCOT search engine (Matrix Science Inc.,

London, U.K.). The following residue modifications were allowed: fixed, cysteine

(carbamidomethylation) and variable, methionine (oxidation). The following parameters were

used: enzyme, trypsin; mass values, monoisotopic; protein mass, unrestricted; peptide mass

tolerance, ± 1.5 Da; fragment mass tolerance, ± 1.5 Da; maximum number of missed cleavages,

2; instrument type, ESI-TRAP; and number of queries searched, 531,134. For display purposes,

the significance threshold of p < 0.05, an ions score cut-off of 35, and the requirement of bold

red were used. Identifications from the automated search were further validated through manual

inspection; this process yielded 1,320 validated protein identifications which is termed the TS

protein dataset (Suppl. Table 1).

Bioinformatics Analysis of Protein Disorder

Proteins in the TS dataset were analyzed with regard to order/disorder using several different

disorder prediction programs and different criteria for structural classification. First, we used

three complementary disorder predictors, NORSnet23, IUPred24, and DISOPRED229, to

predict the number of proteins in the TS protein dataset which contained at least one disordered

region ≥30 residues in length. We used these three predictors because they use complementary

sequence analysis methods and are known to give complementary results23, 30. For example,

NORSnet23 uses feed-forward neural networks trained on polypeptide regions predicted to lack

secondary structure to predict the location of disordered regions within proteins. In contrast,

IUPred24 uses an empirically-derived energy function based on the statistics of amino acid

contacts in proteins to predict the location of disordered regions. Finally, DISOPRED229 uses
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a support vector machine-based algorithm trained on residues that are disordered in high-

resolution X-ray crystal structures to predict the location of disordered regions. In order to

define a residue as disordered we used three different parameter sets to establish prediction

thresholds that were determined through independent studies on proteins listed in the DisProt

database [www.disprot.org]. The stringency levels associated with these parameter sets were:

1) 10% false positive rate on a per-residue basis (termed “Stringent”), 2) 1% false positive rate

on a per-protein basis (termed “Intermediate”), and 3) 5% false positive rate on a per-protein

basis (termed “Permissive”). Different protein training sets and/or empirical data were used to

develop the NORSnet, IUPred, and DISOPRED2 predictors. As noted, the three levels of

prediction stringency were achieved by empirical adjustment of prediction parameters using

experimentally verified disordered proteins in the DisProt database. The prediction results for

the TS protein dataset are largely independent of the methods used for establishing prediction

stringency because only a small fraction of the proteins in the TS dataset (4.9%) exhibited

sequence similarity to proteins in DisProt.

Second, we used the VL-XT disorder predictor and the charge-hydropathy analysis tool within

the PONDR suite of programs26, 31, 32 to classify the average structural features of each protein

in the TS dataset. The VL-XT algorithm predicts the likelihood that each residue in a protein

exists in an ordered or disordered conformation using 1) a feed-forward neural network trained

using the physical attributes of disordered regions from a small set of proteins (calcineurin

sequences from 13 species) and ordered regions from structured proteins in the NRL-3D

database32, and 2) two feed-forward networks trained on the sequences of 115 N-terminal and

84 C-terminal disordered regions, respectively, from proteins in the PDB-select-25

database31. Individual residue prediction scores ranged from 0 (order) to 1 (disorder) and these

values for each residue were averaged over all residues to give the average PONDR order/

disorder score. As was the case for the three predictors described above, we argue that the

prediction results for the TS protein dataset based on use of PONDR are largely independent

of the methods used to develop this predictor because 1) only two proteins in the TS dataset

are related to the calcineurin sequences used for training and 2) a relatively small number of

disordered terminal segments of structured proteins from many organisms were used for

training, making significant overlap with proteins in the TS dataset unlikely. In addition,

PONDR was used to compute the average charge (C) and hydropathy (H) score for each protein

according to Uversky, et al.33. Individual C and H values were related to a line defined by C

= 2.785 × H − 1.151 in a two-dimensional coordinate system; the (C, H) values for individual

proteins occurred either on the left-hand side or right-hand side of this line. Proteins were

classified as follows18: DPs exhibited an average disorder/order score > 0.5, or an average

disorder/order score ≤ 0.5 and > 0.32 and (C, H) scores which occurred to the left of the

boundary line; FPs exhibited an average disorder/order score < 0.32, or an average disorder/

order score ≤ 0.5 and ≥ 0.32 and (C, H) scores which occurred to the right of the boundary line;

and MXPs did not satisfy the previous criteria. Our classification system, while developed

independently, has relevance to an earlier report on computational methodologies used to

identify “mostly disordered” proteins2. This report, which also used PONDR disorder/order

and (C, H) scores to evaluate order and disorder within proteins although in a quantitatively

different manner than presented herein, noted that proteins that were predicted by both scores

to be disordered, and others which were predicted by the PONDR score to be disordered and

the (C, H) score to be ordered, were likely to constitute distinct structural classes, the former

corresponding to highly extended, disordered proteins and the latter corresponding to proteins

with collapsed but disordered polypeptide chains (e.g. molten globules). These observations

suggest that consideration of both PONDR and (C, H) scores allows different types of

disordered proteins to be discriminated, justifying our use of three structural categories (DP,

MXP, and FP) to classify the TS proteins detected in our study. The ability of these two

structural parameters to discriminate between different types of disordered proteins may arise

because they detect different structural features of polypeptide chains, as suggested by the
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observation of only a weak linear correlation between the PONDR and (C, H) scores for

proteins in the TS dataset (R = 0.69). Average hydropathy scores (Suppl. Table 3) exhibited a

similar poor linear correlation with PONDR scores (R = 0.69) and average charge scores were

even more weakly correlated with PONDR scores (R = 0.33). As noted earlier, we view our

PONDR-based disorder/order prediction results and structural classifications for mouse TS

proteins to be largely independent of the manner in which the various algorithms which

comprise PONDR were trained because many different proteins from many different organisms

were used for training. We are not aware that any of the training datasets were enriched in

thermostable proteins so as to introduce bias in our disorder/order prediction results.

The results of these analyses were stored in a MySQL database and accessed through a web

interface written in PHP. The web interface displayed protein identifications and PONDR

analysis results. Data could be sorted according to charge, hydropathy, average PONDR score,

and other parameters to facilitate manual analysis. The following information derived from

these structural analyses is included in Suppl. Table 3: protein length (number of residues),

average PONDR VL-XT score, average charge score, average hydropathy score, the distance

of these values from the boundary line between disordered and ordered proteins (as define

above), and structural classification. In addition, proteins in the TS dataset were searched

against the DisProt database (http://www.disprot.org/) 34 using BLAST to identify matches

with >20% identity. When matches were found, the ID number, source organism name and

percentage identity (with respect to the mouse TS dataset entry) for the DisProt entries were

included in Suppl. Table 3.

Analysis of GO terms and other bioinformatics analyses

The biological properties of proteins within the TS protein dataset were analyzed by reference

to the classification system of the Gene Ontology (GO) Consortium35. For these analyses, the

TS proteins were divided into two groups: disordered proteins (DPs + MXPs; 909 proteins)

and folded proteins (FPs; 411 proteins). For each group, the proteins were functionally

classified using GO terms for three categories (level-0 terms): cellular component, biological

process, and molecular function. The mouse gene and GO term association file available from

Mouse Genome Informatics (MGI, ftp://ftp.informatics.jax.org/pub/reports/index.html#go)

was used and all the mouse protein or gene identifiers were converted to Swiss-Prot primary

accession numbers for the downstream analyses. Fisher's exact test was used to determine the

over-represented or under-represented GO terms for the three ontology categories noted above

and the P values were corrected for multiple testing using the false discovery rate (FDR)

controlling procedure of Benjamini and Hochberg36. A cutoff of FDR < 0.01 was used to score

significantly over- or under-represented GO terms, corresponding to a 1% false positive rate.

The results of these analyses for level-2 terms are summarized in Fig. 3 and the results for

terms at all levels are given in Suppl. Table 10. In Fig. 3, only the results for over-represented

or under-represented level-2 GO terms associated with ≥10 disordered or folded/ordered

proteins are presented. We have focused our functional analysis of proteins in the TS dataset

on level-2 terms in three level-0 categories (cellular component, biological process, and

molecular function) because, at level-2, a modest number of GO terms were shown to be over-

or under-represented, allowing the overall results to be discussed in the text. Further, level-2

term names often provide insights into specific biological function of proteins with which they

are associated. We report all over- or under-represented GO terms in Suppl. Table 10 to provide

more detailed insights into the biological functions of proteins in the TS dataset.

In addition, information on the occurrence of known sites of post-translational modification

and alternative splicing for proteins in the TS dataset was obtained using the proteomics

software suite ProteinCenter (Proxeon Biosystems A/S, Odense Denmark).
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In the course of these proteomics studies, the SwissProt identifications for 37 proteins in the

TS dataset were updated; the original names for these appear in Suppl. Table 1 and the new

names, with synonyms indicated in brackets, appear in Suppl. Table 3.

Protein-Protein Interactions

The OPHID database (http://128.100.65.8/ophidv2.201/index.jsp) was queried to identify

proteins having known or predicted protein-protein interactions. This database is comprised

of 295,131 interactions of which 162,054 are known and 133,885 are predicted. The Protein

Information Resource (PIR; http://pir.georgetown.edu/) was used to extract information

regarding protein three-dimensional structures (RSCB database). The disordered protein

database DisProt (http://www.disprot.org/) was searched to identify proteins having

experimentally characterized disordered regions.

Prediction of Protein Transmembrane Helices

We used two methods to predict integral transmembrane helices: TMHMM2 37 and PHDhtm
38. These two methods were among the best such predictors in recent assessments 39, 40.

TMHMM2 is based on a hidden Markov model while PHDhtm utilizes a neural network. We

ran the two methods with default parameters and reported the number of proteins predicted to

have at least one transmembrane helix. Overall TMHMM2 and PHDhtm predicted 65 such

proteins, 54 of them in common (Suppl. Table 8).

Prediction of Coiled-Coil Regions

In order to predict coil-coiled regions we used the program MARCOIL 41, a hidden Markov

model-based method that was evaluated as the best performing such predictor by a recent

assessment 42. We ran MARCOIL with default parameters on several datasets: the entire mouse

genome, the TS protein dataset, and individually on the DP, MXP, and FP protein subsets of

the TS dataset.

Identification of Folded Domains

The sequences of all proteins in the TS protein dataset were compared to all sequences in the

Protein Data Bank (PDB) using the program BLAST43. The list of PDB sequences was

retrieved from the Research Collaboratory for Structural Bioinformatics FTP site

(ftp://ftp.rcsb.org) and formatted as a searchable database for BLAST using the NCBI program

“formatdb”. The BLAST analyses were performed twice, once saving all sequences in which

domains of ≥ 60 residues exhibited sequence identities of ≥25% with respect to at least one

sequence in the PDB, and a second time saving all sequences in which domains of ≥ 300

residues exhibited sequence identities of ≥25% with respect to at least one sequence in the

PDB. In cases where more than one structure matched the query protein, only the structure

with the highest bit score was retained.

Results

Large-scale Identification of Thermo-stable Proteins from Mouse Fibroblast Cells

Thermo-stable (TS) mouse proteins were obtained by heating the soluble extract from

fibroblast cells at 98 °C for 1 hour, followed by centrifugation to remove precipitates. Proteins

were digested with endoproteinase Lys-C and trypsin. The resulting peptides were fractionated

by two-dimensional ultra-high performance liquid chromatography, and subjected to tandem

mass spectrometry to identify the proteins from which they were derived. For this purpose, the

eluent stream from the second chromatographic separation was introduced into a linear ion-

trap mass spectrometer and subjected to electrospray ionization. From the ions detected in full-

scan spectra, precursors were selected in a data-dependent manner for collision-activated
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dissociation. The resulting product ion spectra were assigned to peptide sequences, and these

sequences were compiled to form a protein list, by using the MASCOT search engine. A total

of 1,320 non-redundant TS proteins were identified (Suppl. Table 1A). All proteins were

identified with two or more peptides and 1,289 proteins (97.7%) were identified by 5 or more

peptides (Suppl. Table 1B). This is approximately 5-fold and 10-fold higher than the number

of proteins previously identified by 2D polyacrylamide gel electrophoresis (2D PAGE) analysis

of untreated and heat-treated extracts, respectively 18. Additional details of the configuration

and performance of the instruments used in the MudPIT procedure employed to identify these

soluble, heat-stable proteins will be provided in a separate manuscript (submitted).

Structural Analysis of Thermo-stable Mouse Proteins

We used two different approaches to computationally analyze the occurrence of disorder in

proteins in the TS dataset. In a first approach, we used three complementary disorder predictors,

NORSnet23, IUPred24 and DISOPRED225, to estimate the frequency with which disordered

segments of ≥30 residues occurred within these proteins. For each predictor, three different,

empirically-derived levels of stringency were applied for these predictions corresponding to

different false positive rates (Suppl. Table 2). At the intermediate stringency level

corresponding to a 1% false positive rate per protein, 488 (836) proteins (37% (63%) of all TS

proteins) were predicted to contain at least one disordered segment of ≥30 residues by all three

(at least one) of the predictors. The percentage of all theoretical proteins in the mouse proteome

predicted by all three predictors to contain at least one disordered segment of ≥30 residues was

40% and the percentage predicted by at least one of the three predictors was 46%. The former

percentage is similar to that obtained for proteins in the TS dataset while the latter is

significantly smaller, suggesting that proteins with at least one disordered segment of ≥30

residues are over-represented in the TS dataset. These analyses indicate that the TS protein

dataset is a rich source of expressed, disordered proteins.

In a second computational approach, we used the program PONDR26 to predict the average

structural properties of and to structurally classify each protein in the TS dataset (Suppl. Table

3). Based on this analysis, proteins were classified as being predominantly disordered (termed

“disordered proteins”, DPs), predominantly folded/ordered (termed “folded proteins”, FPs), or

of mixed disordered and folded character (termed “mixed proteins”, MXPs). While the

computational analysis approach discussed above accurately predicted the occurrence of short

disordered segments within TS proteins, the probability of occurrence of these segments

increased with protein size. Since the proteins in the TS dataset exhibited a remarkably wide

range of lengths (627 ± 646 residues), we also used the second analysis approach, which

classified proteins on the basis of average disorder/order and charge-hydropathy scores, to

normalize for protein length. The details of our structural classification system are given under

Materials and Methods. For clarity, proteins classified as DPs or FPs were predicted to be

predominantly disordered or folded, respectively. Proteins classified as having mixed character

often exhibited both disordered segments and folded domains. However, proteins in this class

may also exhibit structural features which fall between disorder and order; for example proteins

in this class may exhibit collapsed but disordered structures (e.g. molten globules), as was

previously suggested2. Interestingly, the proportions of DPs, MXPs and FPs in the current TS

dataset (39%, 30% and 31%, respectively) were similar to those reported previously for

proteins identified by 2D PAGE (Figure 1 and Suppl. Table 4)18. Proteins in each structural

category exhibited a wide range of sequence lengths: DPs, 622 ± 555 residues; MXPs, 693 ±

784 residues; and FPs, 569 ± 598 residues. These values are slightly larger than the average

value for mouse proteins in SwissProt (average length, 485 residues)44 and all predicted human

proteins (510 ± 604 residues)45 and indicate that the length distribution of proteins in the TS

dataset is generally representative of that observed in the entire mouse and human proteomes.

We note, however, that the MudPIT methods that were used to detect TS proteins may introduce

Galea et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



bias toward the detection of proteins with long sequences since these proteins are more likely

to yield multiple, detectable tryptic peptides. However, because the length distribution of the

TS proteins is in accord with that observed for other proteomes, we believe that this potential

bias was a minor factor in our study.

Coexistence of Disordered and Coiled-coil Domains in Thermo-stable Mouse Proteins

We previously noted that a significant number of TS proteins from mouse fibroblasts exhibited

segments predicted to fold into oligomeric coiled-coil structures46. We believe that proteins

containing coiled-coil domains survive our heat-treatment procedure because these domains

are comprised predominantly of charged and polar residues and, therefore, are highly soluble,

even under conditions of thermal denaturation. For example, the leucine-zipper heptad motif,

which comprises coiled-coil polypeptide segments, consists of two hydrophobic residues47,

48 separated by several charged and hydrophilic residues which confer high solubility under

conditions of heat-treatment. Therefore, proteins which contain coiled-coil domains, possibly

in addition to other disordered and/or folded domains, may remain soluble at 98° C. In addition,

while coiled-coil domains are known in hundreds of cases to adopt folded structures49, the

chemical nature of residues in this motif (five of seven are either charged or small and

polar47, 48) causes many coiled-coil segments to be predicted to be disordered by PONDR18.

Therefore, because we identified coiled-coil proteins in the past in heat-treated mouse

fibroblast extracts18 and because these segments are likely to be folded but are predicted by

PONDR to be disordered18, we used several approaches to analyze the occurrence of coiled-

coil segments within the proteins in our TS dataset. Initially, all TS protein sequences were

analyzed using the coiled-coil prediction program MARCOIL41. In total, 13% (166) of the TS

proteins were predicted to contain a least one coiled-coil segment ≥30 residues in length (99%

confidence limit per residue). Most of these coiled-coil proteins were structurally classified as

DPs (108, 21% of all DPs) or MXPs (48, 12% of all MXPs) (Suppl. Figure 1) and relatively

few as FPs (10, 2% of all FPs). We tested our hypothesis that heat-treatment may enrich for

coiled-coil domain-containing proteins by comparing coiled-coil predictions for proteins in the

TS dataset and the entire mouse proteome. Using a more stringent cutoff for prediction of

coiled-coil segments by MARCOIL (90% confidence limit per protein), we determined that

coiled-coil segments were over-represented for proteins in the TS dataset (7.6% of the proteins

identified contained coiled-coil segments) in comparison with all proteins in the mouse

proteome (3% contained coiled-coil segments). These results suggested that heat-treatment is

selective for coiled-coil domain-containing proteins but that, overall, these proteins constitute

very small factions of the TS protein dataset and theoretical mouse proteome, respectively.

The observation that coiled-coil segments were predicted to primarily occur in DPs and MXPs

was a concern because it was possible that inaccurate prediction of these segments as being

disordered influenced the structural classification of the proteins in which they occur. However,

it was also possible that inaccurate disorder predictions of coiled-coil domain-containing

proteins did not lead to structural misclassification and that disordered and coiled-coil segments

coexist within these proteins. To distinguish between the two possibilities, we determined

whether disordered and coiled-coil segments occurred separately, or coincidently, within

protein sequences. To address this issue, for all proteins in the TS dataset predicted to contain

a coiled-coil domain (and all theoretical mouse proteins), we determined the number of residues

that were predicted to exhibit disordered character, coiled-coil character, and both structural

features, and then determined the percentage of disordered and coiled-coil residues that

exhibited both structural characteristics (Suppl. Table 5). These analyses were performed

individually for coiled-coil domain-containing DPs, MXPs, and FPs, as well as for all of these

proteins together. Further, these analyses were performed using three disorder predictors

(NORSnet, DISOPRED2, and IUPred) that are independent of PONDR. The results indicate

that, using either NORSnet or DISOPRED2, the extent of overlap between disordered and
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coiled-coil character in coiled-coil domain-containing proteins is very small (<5% as a

percentage of the number of disordered residues and <4% as a percentage of the number of

coiled-coil residues). The results using IUPred suggest extensive overlap of disordered and

coiled-coil character in the proteins under study; however, this is an artifact of the algorithm

used by IUPred, which bases its predictions of disorder on the likelihood of pair-wise contact

between amino acids. Due to the infrequent occurrence of hydrophobic residues in coiled-coil

segments, which have a high likelihood for pair-wise contacts in folded proteins, coiled-coils

are predicted to be disordered (data not shown). In summary, these computational sequence

analysis results strongly suggest that a significant fraction of disordered proteins within the TS

protein dataset (21% of the DPs and ∼12% of the MXPs) contain at least one coiled-coil

segments of ≥30 residues. Further, results from two disorder predictors (NORSnet and

DISOPRED2) indicate that coiled-coil and disordered domains overlap to only a very small

extent. Considering the prevalence of coiled-coil segments in the disordered proteins identified

in this study, we suggest that new disorder predictors be developed, that detect the heptad repeat

pattern of coiled-coil segments in addition to disordered polypeptide segments, to determine

the generality of our findings regarding the coexistence of disordered and coiled-coil segments

within proteins.

Validation of Protein Structural Classifications by Reference to the DisProt Database

The availability of the DisProt database of experimentally characterized, disordered proteins

(http://www.disprot.org/)34 provided the opportunity to validate our PONDR-based structural

classification system. We note that while some of the proteins that are now in the DisProt

database were used in the training of the various PONDR algorithms, these algorithms were

developed well before DisProt was established. Therefore, our PONDR-based predictions of

protein disorder/order are largely independent of the current content of DisProt. Unfortunately,

we observed that less than 5% of the mouse TS proteins exhibited sequence similarity to

proteins archived in DisProt: 36 DPs, 17 MXPs, and 12 FPs (Suppl. Table 3). It must be

emphasized that proteins deposited in the DisProt database exhibit a wide range of structural

features and are disordered to widely varied extents; for example, some protein entries have

been shown experimentally to be entirely disordered while others may exhibit only one short

disordered segment. Therefore, it was necessary to evaluate the primary structural data for

proteins in DisProt that exhibited sequence matches to proteins in the TS protein dataset in

order to evaluate the validity of our structural classifications. Such a review confirmed that the

proteins that we classified as DPs have been shown experimentally be extensively disordered,

including but not limited to 4E-BP1, calpastatin, CREB, p21Cip1, p27Kip1, Sp1, stathmin, and

WASP (Suppl. Table 3). Further, similar review of information regarding the 17 MXPs noted

above indicated that the “mixed” structural classification was appropriate. For example, the

500 residue long N-terminal domain of one MXP, glucocorticoid receptor, was predicted and

has been experimentally shown to be disordered50 while the C-terminal, ligand binding domain

(∼280 residues long) was predicted to be folded and its structure has been previously

determined51 (Suppl. Figure 2). In another case, the N-terminal domain of nucleoplasmin-3

was predicted to be ordered and the Xenopus ortholog has been shown experimentally to fold

into a pentameric β-propeller structure52 while the shorter C-terminal domain of both the

Xenopus and mouse proteins was predicted and experimentally demonstrated to be

disordered53 (Suppl. Figure 3). In these two examples, the term “mixed” applies in the sense

that the proteins exhibit both disordered and structured/ordered features. An example of an

MXP which exhibits a different “mixed” structural profile is 60S acidic ribosomal protein P1

(Suppl. Figure 4). The N-terminus of this 108 residue long protein was predicted by PONDR

to be ordered and the C-terminus, disordered; these features led to our classification as an MXP.

However, experimental studies showed that the foldedness of the P1 protein depended on pH,

being folded below pH 3.9 and disordered above54. While PONDR was not developed to

predict the pH dependence of structural properties, the algorithm is sensitive to the sequence
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features that give rise to this pleomorphic behavior. Finally, virtually all of the proteins

classified by us as FPs that also appear in the DisProt database possess one or more folded

domains which comprise a large portion of the polypeptide sequence but which also exhibit

one or more experimentally characterized disordered segments, often at the N- and/or C-

termini. An exception is cystatin B (Suppl. Figure 5), a small protein which was predicted to

and is known to be almost entirely folded55. This protein appears in the DisProt database

because a disease-associated truncation mutant, that interrupts the globular fold, is unstructured

in solution56; thus, our assignment of full-length mouse cystatin B as an FP is appropriate. This

critical review of structural information for DPs, MXPs and FPs that appear in the TS dataset

as well as in the DisProt database independently validates our method of structural

classification by documenting a strong correlation between predicted and experimentally

observed protein structural features. In addition, it serves to strengthen our view that

assignment of the term “intrinsically disordered” to a particular protein must be qualified with

information about the fraction of residues within a given protein that are disordered. We have

strived for this by creating three structural classifications which differentiate between proteins

that are predominantly disordered (DPs), ordered (FPs) and of mixed character (MXPs).

Finally, this review, showing that <5% of the TS proteins we identified have been

experimentally characterized as being disordered, underscores the need for broader

experimental characterization of disordered proteins expressed in eukaryotic cells.

The Occurrence of Both Small and Large Folded Regions within Thermo-stable Mouse

Proteins

As an additional means to validate our structural classification system and to determine the

extent to which regions of known three-dimensional (3D) structure occurred within proteins

in the TS dataset, we used BLAST43 to search for matches between the sequences of all TS

proteins and those deposited in the protein data bank (PDB; http://www.rcsb.org/pdb). As was

true for our predictions of disorder, we believe that our predictions of folded proteins are largely

independent of the protein sets used to train the PONDR algorithms. For example, a reduced,

non-redundant form of the PDB was used in the training of PONDR in 199732; since that time,

the total PDB has grown approximately 8-fold (from 6,570 entries in 1997 to 52,821 in 2008)
57. Therefore, it is unlikely that a significant fraction of the proteins or domains in the TS dataset

that were predicted to be folded using PONDR were used in training the PONDR algorithms.

Remarkably, we found that structural information was available for one or more regions of

≥60 residues for most DPs, MXPs and FPs in the TS dataset based on BLAST analysis against

the PDB using 25% identity as the cut-off for sequence similarity (Suppl. Table 6A-C). We

used these criteria because the minimal size for folded protein domains is approximately 60

residues and 25% identity is an approximate lower limit for domains with similar folds. Only

116 of the 1,320 TS proteins we identified did not exhibit sequence similarity according to the

above criteria to proteins in the PDB (Suppl. Table 7). As would be expected based upon their

reduced propensities to exist in folded/ordered states, the vast majority of these were classified

as either DPs (80 proteins) or MXPs (19 proteins). It must be noted, however, that this method

of sequence analysis is not an absolute indicator that a particular ≥60 residue region of a TS

protein exists in a folded conformation. La Gall, et al.58, showed that between 5% and 21% of

residues in a non-redundant sub-set of PDB entries also listed in Swiss-Prot were predicted to

be disordered by various disorder predictors. This observation is consistent with

conformational restriction of residues due to the influence of crystal packing of segments at

the N- and C-termini of folded regions, and/or within loops, that would otherwise be flexible

in solution.

Each of the proteins detected in our study necessarily remained soluble after heat-treatment at

98 °C for 1 hour. Therefore, it is remarkable that such a large number of short, predominantly

folded regions (≥60 residues), often subject to thermal denaturation, non-specific aggregation
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and precipitation upon heating, were identified in the TS protein dataset. However, it must be

remembered that these domains exist in the context of very long proteins (627 ± 646 residues)

and portions of these proteins outside the putative folded regions may confer thermo-stability.

To further explore the ordered/folded features of proteins in the TS dataset, we performed an

additional BLAST analysis to identify proteins which contained large regions of known

structure. For this, we increased the region length that was searched from ≥60 to ≥300 residues.

Remarkably, 17 DPs, 57 MXPs and 100 FPs exhibited long regions (≥300 residues) of known

3D structure. Together, these results indicate that a large fraction of all proteins in the TS dataset

are likely to contain at least one small (≥60 residues in length), folded regions. A much smaller

fraction of proteins contain large (≥300 residues in length), folded regions, with those classified

as MXPs and FPs most likely to exhibit such a region. While some proteins in the TS dataset

are predicted to be exclusively disordered, these results show that disordered polypeptide

regions most often occur in proteins which exhibit at least one short, folded region. Similarly,

most folded proteins we detected exhibit some segments which are disordered, either at the N-

or C-termini, or within loops. Thus, the expressed TS proteins we detected in mouse fibroblasts

exhibit a wide range of structural features which fall along a continuum from complete disorder

to complete order59. Most proteins, however, exhibit some aspects of disorder and order rather

than falling at the extremes of this structural continuum. Analysis of sequences and structures

of the folded regions within these proteins in the future may provide insights into their apparent

and remarkable thermo-stability.

Occurrence of Transmembrane Domains (TMs) within Thermo-stable Mouse Proteins

Disordered polypeptide segments play important biological roles not only in soluble proteins,

but also in proteins localized to membranes. For example, a large fraction (∼40%) of human

plasma membrane proteins were previously predicted to possess intrinsically disordered

domains of ≥30 residues, with most of these domains predicted to be exposed to the

cytoplasm60. Therefore, we investigated the occurrence of TM domains within proteins in the

TS dataset using TM domain prediction programs, TMHMM237 and PHDhtm38. This analysis

showed that 65 proteins contained TM domains (Suppl. Table 8); 11 of these were predicted

to be DPs, 9 were predicted to be MXPs, and 45 were predicted to be FPs (Suppl. Table 9,

Figure 2). The 45 TM domain-containing FPs exhibited a wide range of sequence lengths (1004

± 1066 residues) and numbers of TM helices (5.4 ± 4.6 TM helices), as did the 9 MXPs (884

± 673 residues in length, 2.3 ± 2.1 TM helices). The 11 TM domain-containing proteins

classified as DPs exhibited a similar, wide range of sequence lengths (1058 ± 543 residues)

but on average contained between 1 and 2 TM domains (1.6 ± 1.8 TM helices). Overall, 55%

of the TM domain-containing proteins exhibited 1 or 2 TM helices, with the remainder

exhibiting between 4 and 16 TM helices. In summary, while present in the TS protein dataset,

TM domain-containing proteins constitute a minor portion of all proteins identified.

Biological Classification of Thermo-stable Mouse Proteins

We investigated relationships between the biological characteristics of proteins in the TS

dataset and their structural classification in order to understand the biological roles of both

disordered and folded/ordered proteins expressed in mouse fibroblasts. Specifically, to perform

this analysis in an unbiased manner, we determined the Gene Ontology (GO) Consortium

database (http://www.geneontology.org/)35 terms in three categories, cellular component

(CC), biological process (BP), and molecular function (MF), associated with the TS proteins

that are over- or under-represented relative to results for the entire theoretical mouse proteome.

For these analyses, DPs and MXPs were grouped together to represent disordered proteins and

FPs were used to represent folded/ordered proteins. Fisher's exact test was used to identify GO

terms that were over- or under-represented in the (DP + MXP) and FP data subsets relative to

their occurrence in the mouse proteome and only those terms characterized by a false discovery

rate (FDR) values less than 0.01 are discussed. Figure 3 graphically summarizes these results
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for level-2 terms while Suppl. Tables 10A-F lists all GO terms in the three categories that were

significantly over- or under-represented for disordered and folded/ordered proteins. In total,

152, 278, and 173, terms for the level-0 GO categories, cellular component, biological process,

and molecular function, were analyzed. In the following section, we focused our functional

analyses on over- or under-represented level-2 GO terms because theirs numbers were

manageable and their names in many cases offered specific insights into biological function.

Cellular Component—Of 152 level-2 GO terms describing cellular components, only 19

were over- or under-represented amongst proteins in the TS dataset relative to all proteins in

the mouse proteome (Figure 3A). Further, a cellular component GO term was found for 756

of 909 total disordered proteins and for 336 of 411 total folded proteins. For disordered proteins,

the GO terms for cellular component that are most highly populated (e.g. GO terms that are

associated with the largest numbers of proteins considering the whole mouse proteome) and

that were over-represented include, “non-membrane-bounded organelle” (220 proteins),

“intracellular organelle part” (696 proteins), “organelle part” (218 proteins), “membrane-

bounded organelle” (434 proteins), and “intracellular organelle” (527 proteins). Additional,

over-represented terms for disordered proteins included, “leading edge” (18 proteins), “cell

projection” (52 proteins), “cell projection part” (11 proteins), and “ribonucleoprotein

complex” (86 proteins). In addition, both disordered and folded/ordered (FPs) proteins

exhibited significant over-representation of several terms, including “protein complex” (106

(DPs + MXPs); 72 FPs), “intracellular” (705 (DPs + MXPs); 275 FPs), and “intracellular

part” (696 (DPs + MXPs); 267 FPs), indicating that thermo-stable proteins, in general, exhibit

these localization features. Finally, both disordered and folded proteins exhibited significant

under-representation of two highly populated GO terms, “membrane part” and “membrane”.

Detailed information regarding these analyses is provided in Suppl. Table 10A and 10B for

(DPs and MXPs) and FPs, respectively, including all over- and under-represented level-2 and

lower level cellular component GO terms, statistics of over- or under-representation relative

to all mouse proteins, and the Swiss-Prot names of the over- and under-represented proteins.

Biological Process—Of 278 level-2 GO terms describing biological process, only 28 were

over- or under-represented amongst proteins in the TS dataset relative to all proteins in the

mouse proteome (Figure 3B). Further, a biological process GO term was found for 705 of 909

total disordered proteins and for 336 of 411 total folded proteins. Eleven significantly over-

represented terms were associated only with TS disordered proteins, including

“macromolecular complex disassembly” (13 proteins), “chromosome segregation” (10

proteins), “cell division” (29 proteins), “cell cycle” (73 proteins), “cell cycle process” (47

proteins), “macromolecule metabolic process” (370 proteins), “biosynthetic process” (212

proteins), “gene expression” (236 proteins), “establishment of protein localization” (58

proteins), “macromolecule localization” (68 proteins), and “cellular component organization

and biogenesis” (161 proteins). Both disordered and folded/ordered proteins and, thus, TS

proteins in general, were over-represented in several categories, several of which are highly

populated, including “primary metabolic process” (384 (DPs + MXPs); 194 FPs), “cellular

metabolic process” (385 (DPs + MXPs); 200 FPs), “cellular localization” (61 (DPs + MXPs);

31 FPs), “establishment of localization in cell” (58 (DPs + MXPs); 30 FPs), “cellular

macromolecular complex subunit organization” (45 (DPs + MXPs); 20 FPs) and

“macromolecular complex assembly” (36 (DPs + MXPs); 21 FPs). Both disordered and folded/

ordered proteins were under-represented in two categories, “system process” and “cell

communication”. Folded/ordered proteins alone were under-represented in several additional,

highly populated categories, including “regulation of metabolic process”, “regulation of

biological process”, and “regulation of cellular process”. Finally, disordered proteins were

significantly under-represented in the following categories, “immune response”, “response to

chemical stimulus”, and “response to external stimulus”.
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Molecular Function—Of 173 level-2 GO terms describing molecular function, only 23 were

over- or under-represented amongst proteins in the TS dataset relative to all proteins in the

mouse proteome (Figure 3C). Further, a molecular function GO term was found for 758 of 909

total disordered proteins and for 361 of 411 total folded proteins. Twelve significantly over-

represented terms were associated with TS disordered proteins, including, “structural

constituent of cytoskeleton” (10 proteins), “structural constituent of ribosome” (36 proteins),

“microtubule motor activity” (10 proteins), “translation factor activity, nucleic acid

binding” (22 proteins), “transcription activator activity” (22 proteins), “transcription cofactor

activity” (20 proteins), “nucleic acid binding” (216 proteins), “protein binding” (404 proteins),

and “nucleotide binding” (216 proteins). Folded/ordered proteins were also over-represented

for “nucleotide binding” (93 proteins) but were under-represented for “nucleic acid binding”.

Amongst these molecular function GO terms, only “nucleic acid binding”, “protein binding”,

and “nucleotide binding” are highly populated considering all mouse proteins while each of

the other terms are populated to the extent of 1.3% or less. Several molecular function GO

terms are under-represented amongst disordered proteins, including “substrate-specific

transporter activity”, “transmembrane transporter activity”, “signal transducer activity”,

“hydrolase activity”, and “transferase activity”. Amongst folded/ordered proteins, several

terms associated with catalytic activity are over-represented, including, “isomerase

activity” (15 proteins), “oxidoreductase activity” (36 proteins), “cofactor binding” (18

proteins), “vitamin binding” (10 proteins), “ligase activity” (31 proteins), and “hydrolase

activity” (85 proteins). Finally, folded/ordered proteins are under-represented in two highly

populated categories, including “signal transducer activity” and “nucleic acid binding”.

Overall, these results indicate that the two structural classes of proteins under investigation,

disordered and folded/ordered proteins, exhibit distinct functional characteristics when

compared using GO terminology, including GO terms for three functional categories, cell

component, biological process and molecular function. These comparisons have been

performed to reveal GO terms that are over- or under-represented relative to their occurrence

in the background of all proteins encoded by the mouse genome. A relatively small fraction

(10-13%) of the level-2 GO terms in these three functional categories exhibited over- or under-

representation amongst disordered and folded/ordered TS proteins. Further, in the majority of

cases, either disordered or folded/ordered proteins, but not both structural types, were over- or

under-represented, suggesting that TS proteins with these different structural features perform

distinct, specialized biological functions. In contrast to previous analyses which have relied

upon the analysis of disordered proteins within theoretical whole proteomes, the results

presented herein represent the first large-scale analysis of disordered proteins that are expressed

in a particular eukaryotic cell type, in this case mouse fibroblast cells. While the heat-treatment

procedure used was a significant factor in determining which mouse proteins were detected in

our study, correlations of protein disorder with over-represented functional categories is

meaningful in clarifying the actual roles performed by disordered proteins in fibroblast cells.

In contrast, under-representation of certain functional classes in disordered proteins cannot be

meaningfully interpreted due to the possibility that under-representation stems from heat

sensitivity.

Post-translational Modifications of Thermo-stable Mouse Proteins

Proteins in all structural classes, including intrinsically disordered proteins, experience post-

translational modifications (PTMs). However, because their sequences are generally enriched

in amino acids that are subject to post-translational modification (e.g. Ser, Thr, Lys, and Arg)
61 and because disordered polypeptide segments are accessible to enzymes that catalyze

modifications, it has been proposed that disordered proteins experience PTMs to a greater

extent than do rigid, folded proteins12. We used the ProteinCenter software package, which

searches the UniProt database, to identify proteins in the TS dataset that were previously shown
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to experience post-translational modifications (Suppl. Table 11A and B). More than half of the

DPs (66%) contained previously characterized PTM sites (Figure 2, blue bars), with 95% of

these corresponding to phosphorylation sites (Figure 2, red bars). Similarly, 53% of MXPs

contained PTM sites, with >90% of these corresponding to phosphorylation sites. A somewhat

smaller percentage of FPs (43%) contained known sites of PTM while 68% of these were due

to phosphorylation. These data support the view that expressed mouse proteins containing

disordered segments experience extensive post-translational modification, especially

phosphorylation.

Alternative Splicing of Thermo-stable Mouse Proteins

Analysis using ProteinCenter software indicated that 347 of the 1,320 TS proteins (26%) are

known to experience alternative splicing (Figure 2, black bars). The percentage of DPs which

experience alternative splicing (34%) was more than 2-fold greater than that for FPs (15%).

These observations are consistent with a previous report which showed that alternative splicing

occurs most frequently within RNA regions which encode disordered protein segments62.

Protein-protein Interactions Involving Thermo-stable Mouse Proteins

Many disordered polypeptides exhibit multiple, short motifs that are either known or predicted

to mediate protein-protein interactions. Moreover, these motifs have the potential to interact

with multiple binding partners by adopting different conformations when bound to different

targets. These observations have led to the suggestion that disordered proteins may serve as

hubs in protein-protein interaction networks (24-26, 42). Since the TS dataset contained many

proteins with disordered segments, we queried the OPHID protein-protein interaction

database63 to determine the number of interaction partners for each as a measure of their hub-

like qualities (Suppl. Tables 12-13). The results show that most proteins in each structural class

interact with fewer than 50 other proteins and that the decrease in the percentage of proteins

with a certain number of interaction partners as the number of partners increases is similar for

DPs, MXPs and FPs (Figure 4). This trend is maintained for proteins with both small numbers

and large numbers of interaction partners (Figure 4, inset), indicating that the proteins in the

different structural classes exhibit similar and widely ranging promiscuity toward interactions.

Based on this, we conclude that DPs, MXPs and FPs in the TS dataset exhibit similar, rather

than differing, hub-like characteristics. Protein-protein interactions are mediated by both short

and long domains, and proteins with long sequences are likely to exhibit the largest number of

interaction partners because they are most likely to contain these interaction domains. The

interaction profiles for proteins in the TS dataset in the different structural classes may be

similar because the average protein length in these classes, and the standard deviation of length,

are very similar. These results do not support the suggestions of others noted above.

Interestingly, in agreement with our observations, Schnell, et al.64, failed to observe a

correlation between protein topological connectivity (hub-like character) and disorder for

proteins in whole proteome interaction networks from humans and several other species.

However, since our analysis was based upon the information from the OPHID protein-protein

interaction database and that of Schnell, et al.64, on information from the Biomolecular

Interaction Network Database 65, any biases and limitations in the information in these

databases will have influenced the conclusions reached. For example, hub-like DPs may bind

to their partners through as yet unknown interaction domains. Protein-protein interactions

mediated by such unknown domains are not represented in interaction databases; therefore,

the analyses described above may underestimate the number of interactions any protein can

experience. As greater numbers of disordered interaction domains are identified and cataloged,

the completeness of large-scale interaction databases will improve. Despite these limitations,

our analysis suggests strongly that DPs, MXPs and FPs in the TS dataset participate in protein-

protein interactions to approximately similar extents.
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Discussion

Bioinformatics analyses have predicted that intrinsically disordered proteins constitute a large

proportion (30-40%) of proteins which comprise eukaryotic proteomes and that these proteins

are extensively involved in cellular processes such as signaling and regulation. However,

despite the significance of the roles played by DPs in normal biological processes and in disease

(>75% of human cancer-associated proteins are predicted to be intrinsically disordered14),

relationships between their physical properties and biological functions are understood in detail

for relatively few and few large-scale proteomics studies have been performed. To begin to

address these deficiencies, we previously developed a method for partial enrichment and

detection of DPs from mammalian cells18. We showed that heat-treatment of the soluble extract

from mouse fibroblast cells resulted in modest enrichment of cytosolic and nuclear DPs

involved in cell signaling and regulation. However, a relatively small number of DPs, in

comparison with that predicted by bioinformatics studies, were identified primarily due to the

low dynamic range of gel-based proteomic analysis. In the present study, we used a novel

MudPIT scheme involving both alkaline and acidic reversed phase ultra-high performance

liquid chromatography to mine deeper into the mammalian IDP-ome. Using these procedures,

we identified a total of 1,320 TS proteins in a mouse fibroblast extract; of these proteins, >900

were predicted to be significantly disordered, about 15-fold more than we had reported

previously18. Using three different disorder predictors, we estimate that between 12.4% and

23.4% of the approximately 25,000 proteins in the mouse proteome contain one or more

disordered segment(s) of ≥ 30 residues (data not shown). Based upon this, we estimate that the

mouse IDP-ome theoretically is comprised of between ∼3,000 and ∼6,000 disordered proteins.

However, it is generally accepted that only ∼10,000 mouse proteins (∼40% of the total

predicted open reading frames) are expressed in any one cell type at any given time. Therefore,

we estimate that on the order of between 1,200 and 2,400 disordered proteins are actually

expressed in mouse fibroblasts. Of the 1,320 proteins identified in the TS dataset, ∼900 were

predicted to be significantly disordered (514 DPs and 395 MXPs). Based on these figures, we

estimate that we have achieved ∼38-75% penetrance of the mouse IDP-ome.

Based on the analysis given above, this work constitutes the largest scale proteomics study of

experimentally detected, significantly disordered proteins from mammalian cells reported to

date. It should be noted that our structural classification system relied on the use of well-

established bioinformatics tools to analyze the sequences of the more than 1,300 TS proteins

that were identified using MudPIT. At present, it is not possible to experimentally determine

the structural properties of individual proteins within such a large dataset. While proteins with

a wide range of predicted structural features were detected, heat-treatment of the soluble extract

from mouse fibroblast cells afforded modest selectivity for proteins predicted to be DPs and

MXPs. While our study did rely on the use of bioinformatics methods for structural analysis,

it differs from past in silico, whole proteome analyses in that our results reflect the protein

expression pattern associated with a particular biological state of mouse fibroblast cells; in this

case, cells which had reached 80% confluence in culture. Knowledge of the proteins which are

actually expressed under these conditions, and thus could be detected using MudPIT, has

provided the opportunity to study on a large scale the structural (using bioinformatics tools)

and biological (by reference to the GO database) properties of TS proteins expressed in living

cells, a large fraction of which were predicted to be intrinsically disordered.

We made several remarkable and unexpected observations in the course of this IDP-omics

study. First, while the range of protein lengths comprising the heat-treated TS dataset is

generally representative of the lengths of all proteins predicted to exist in the mouse proteome,

it is remarkable that many proteins with lengths >1,000 residues survive our harsh heat-

treatment procedure. Of course, many of these “thermo-survivors” are DPs, which are known

in general to be thermo-stable66. However, many others are MXP or FPs which possess folded
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domains, with a large number containing large (>300 residues), folded domains. These proteins

may be inherently thermo-stable, either in isolation or within multi-protein assemblies. For

example, multi-protein assemblies often contain both DPs and FPs and, in some cases, are

known to be highly thermo-stable67. Alternatively, some of the thermo-survivors may

thermally denature at 98 °C and refold upon cooling prior to processing for MudPIT analysis.

Some of the proteins present in the complex fibroblast extract, possibly MXPs or DPs, may

serve as chaperones for other proteins, promoting refolding and conferring thermo-stability.

An additional explanation is that proteins comprised of both disordered and ordered domains

may have been subject to partial digestion by endogenous proteases prior to heat treatment and

trypsin digestion, which may have enhanced their ability to survive heat treatment. A key point

is that disordered polypeptide segments occur within large proteins which are additionally

comprised of many other disordered and folded/ordered domains. The fact that many

functional, disordered domains are relatively short in length68 suggests that the, on average,

rather large, extensively disordered proteins we have detected in our study may individually

perform diverse and complex biological functions. The concept of “one (folded) protein = one

biological function” from the earliest days of protein structure/function analysis is passé in

light of the rich diversity of disordered and ordered/folded polypeptide segments detected here

in proteins expressed in mouse fibroblast cells.

A second unexpected observation was coexistence of disordered and coiled-coil domains

within a large fraction of proteins structurally classified as either DPs (21%) or MXPs (12%).

While disordered protein domains are known to have the potential to interact with many

partners, coiled-coil domains generally mediate homo-meric or hetero-meric interactions

amongst coiled-coil domains. This observation suggests a mechanism by which disordered

proteins mediate the assembly of protein complexes by coordinating several modes of

interaction: 1) homo- or hetero-meric oligomerization mediated by coiled-coil segments, and

2) folding-upon-binding mediated by disordered segments. Precedent for this concept is found

in studies of the intrinsically disordered transporter protein, dynein intermediate chain (IC),

and its interactions with the folded and dimeric hub protein, LC8 (reviewed in 69). The sequence

of IC is predicted to contain both disordered and coiled-coil segments; however, in isolation,

IC is intrinsically disordered. Interestingly, in the presence of dimeric LC8, disordered

segments—termed interaction motifs (IMs)—from two molecules of IC fold upon binding in

hydrophobic grooves on opposite surfaces of the LC8 dimer, which further promotes

dimerization via one of the coiled-coil segments of IC (Figure 5). This coupled folding-upon-

binding of a disordered IM segment of IC to LC8 and dimerization of a separate coiled-coil

segment of IC, may be a general mechanism of cooperation between disordered binding

domains and coiled-coil polypeptide segments in disordered proteins. In the case of IC/LC8

interactions, the assembly which forms has a highly extended structure and plays a role in the

transport of cargo along microtubules. The identification of coiled-coil segments within a large

number of DPs and MXPs in this proteomics study provides the opportunity to test this

hypothesis in the future through protein structural studies. Such studies would be aided by the

development of disorder predictors that can reliably identify both short interaction motifs and

coiled-coil segments.

Additional unexpected observations were made regarding the functional properties of the

disordered proteins we detected in our study. Here we provide a brief review of these

observations considering the three GO functional categories that were analyzed, cellular

component, biological process and molecular function. First, under cellular component, Figure

3A shows over-representation of three level-2 GO terms associated with cell movement

(“leading edge”, 18 proteins; “cell projection”, 52 proteins; and “cell projection part”, 11

proteins). In addition to these three level-2 GO terms, many hierarchically related, lower level

GO terms are over-represented (according to the same criteria used to analyze level-2 terms,

data not shown), including terms such as “myosin complex”, “stress fiber”, “actin filament

Galea et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



bundle”, “actin cytoskeleton”, “cell cortex”, and “cortical cytoskeleton”. These observations

suggest that disordered proteins play a specialized role in fibroblasts in cytoskeletal structure

and cell movement. Another notable observation regarding subcellular localization (Figure

3A) is the association of disordered proteins with level-2 GO terms that include the term

“organelle” (5 terms in total, several hundred proteins associated with each term). This

indicates that disordered proteins play roles in the organization of biomolecules into organelles,

an observation which is likely to be general rather than specific to fibroblast cells. Finally, the

association of disordered proteins with GO terms associated with ribonucleoprotein complexes

(“ribonucleoprotein complex”, 86 proteins) is noteworthy but not unexpected. Significantly

over-represented, lower-level GO terms in this branch of the ontology include “nucleolus”,

“ribosome”, and “spliceosome”.

Under biological process (Figure 3B), an unexpected observation was the extensive association

of disordered proteins with level-2 GO terms containing the descriptors,

“metabolic” (“macromolecule metabolic process”, 370 proteins; “primary metabolic process”,

384 proteins; “cellular metabolic process”, 385 proteins; and “regulation of metabolic process”,

151 proteins) or “biosynthetic” (“biosynthetic process”, 212 proteins). We are not aware of

previous studies showing that disordered proteins play extensive roles in the fundamental

cellular processes of metabolism and biosynthesis. It is extremely unlikely that extensively

disordered proteins play direct roles in these processes, for example as catalysts; however, our

results suggest that they play diverse, indirect roles which influence the roles played by folded/

ordered catalysts. Another unexpected observation was the association of disordered proteins

with processes related to the structural organization of cells. For example, six level-2 GO terms

including the descriptors “localization” or “organization” (“cellular localization”, 61 proteins;

“establishment of localization in cell”, 58 proteins; “establishment of protein localization”, 56

proteins; “macromolecule localization”, 68 proteins; “cellular component organization and

biogenesis”, 161 proteins; and “cellular macromolecular complex subunit organization”, 45

proteins) were shown to be over-represented amongst disordered proteins. These functional

associations amongst disordered proteins may be relevant to the associations with cell

component GO terms pertaining to organelle structure and organization that were discussed

above. Other over-represented level-2 biological process terms associated with disordered

proteins were those involved in cell division (“chromosome segregation”, 10 proteins; “cell

division”, 29 proteins; “cell cycle”, 73 proteins; “cell cycle process”, 47 proteins) and gene

expression (“gene expression”, 236 proteins). These functional associations of disordered

proteins, however, were not unexpected; it is well known that disordered proteins are involved

in the regulation of cell division59 and gene expression70.

Finally, our analysis of over-represented level-2 molecular function GO terms (Figure 3C)

confirmed the observations noted above made on the basis of GO terms for cellular component

and biological process. For example, over-represented GO terms associated with disordered

proteins include descriptors such as “cytoskeleton”, “ribosome”, or “microtubule” (“structural

constituent of cytoskeleton”, 10 proteins; “structural constituent of ribosome”, 36 proteins; and

“microtubule motor activity under molecular function”, 10 proteins), or “translation” or

“transcription” (“translation factor activity, nucleic acid binding”, 22 proteins; “transcription

activator activity”, 22 proteins; and “transcription cofactor activity”, 20 proteins). Further,

several highly populated, over-represented GO terms include the descriptor,

“binding” (“nucleic acid binding”, 216 proteins; “protein binding”, 404 proteins; and

“nucleotide binding”, 216 proteins). These observations are consistent with the general concept

that disordered proteins function by folding upon binding their biomolecular targets4, 66.

In conclusion, the expressed proteins we detected in the heat-treated TS dataset that exhibit a

significant extent of disorder, classified here as DPs and MXPs, play diverse biological roles

in mouse fibroblasts. However, our functional analysis reveals heightened involvement of
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disordered proteins in several functional categories, including, cytoskeletal structure and cell

movement, metabolic and biosynthetic processes, organelle structure, cell division, gene

transcription, and ribonucleoprotein complexes. This disordered protein/function expression

pattern reflects the specialized biology of mouse fibroblasts at 80% confluence in culture. It is

likely that disordered proteins are specialized to perform many of these biological functions

in other cell types and in other organisms; however, some of these disordered protein functional

classes may be specifically upregulated in fibroblast cells, for example, cytoskeletal structure

and cell movement. In addition to exhibiting diverse biological features, the expressed

disordered proteins we identified exhibited diverse structural features. We propose that the

structure of proteins be considered in the context of a continuum which extends from complete

disorder to complete order. Our results show that the majority of the disordered proteins we

detected, while dominated by disordered domains, also exhibited ordered features. Similarly,

the majority of the ordered proteins we detected, while dominated by ordered/folded domains,

also exhibited disordered features. Thus, we believe that most proteins fall within central region

of proposed structural continuum, rather than exhibiting features corresponding to either

extreme. The complex biological functions of proteins arise from partnerships between

disordered and folded domains, which have evolved to perform distinct aspects of biological

function. While many folded proteins were detected, our results confirm the predominance of

disorder in mammalian proteomes pointed out previously based on studies of theoretical whole

proteomes by others1, 2. Because we have substantially penetrated the mouse IDP-ome

(∼38-75%), the disordered proteins we identified can serve in the future as quantitative probes

of the biological pathways and processes in which they participate. Application of the MudPIT

procedures we developed will allow the state of the IDP-ome to be broadly monitored, allowing

its role in cell physiology to be more completely understood.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

2D PAGE  

two-dimensional polyacrylamide gel electrophoresis

DPs  

disordered proteins

FPs  

folded proteins

IDP-ome  

intrinsically disordered proteome

MXPs  

proteins having mixed order/disorder character
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MudPIT  

multi-dimensional protein identification technology

PDB  

protein databank

PTM  

post-translational modification

TM  

transmembrane

TS  

thermo-stable

References

1. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete

genomes. Genome Inform Ser Workshop Genome Inform 2000;11:161–71.

2. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK. Comparing and combining

predictors of mostly disordered proteins. Biochemistry 2005;44:1989–2000. [PubMed: 15697224]

3. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z. Intrinsic disorder and protein

function. Biochemistry 2002;41:6573–82. [PubMed: 12022860]

4. Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol

2005;6:197–208. [PubMed: 15738986]

5. Minezaki Y, Homma K, Kinjo AR, Nishikawa K. Human transcription factors contain a high fraction

of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 2006;359:1137–

49. [PubMed: 16697407]

6. Namba K. Roles of partly unfolded conformations in macromolecular self-assembly. Genes Cells

2001;6:1–12. [PubMed: 11168592]

7. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002;27:527–533. [PubMed:

12368089]

8. Tompa P, Csermely P. The role of structural disorder in the function of RNA and protein chaperones.

Faseb J 2004;18:1169–75. [PubMed: 15284216]

9. Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci

2002;11:739–56. [PubMed: 11910019]

10. Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional

anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental

processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res

2007;6:1899–916. [PubMed: 17391015]

11. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function

paradigm. J Mol Biol 1999;293:321–331. [PubMed: 10550212]

12. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional

anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated

with intrinsically disordered proteins. J Proteome Res 2007;6:1917–32. [PubMed: 17391016]

13. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. Functional

anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered

regions. J Proteome Res 2007;6:1882–98. [PubMed: 17391014]

14. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK. Intrinsic disorder in cell-signaling

and cancer-associated proteins. J Mol Biol 2002;323:573–584. [PubMed: 12381310]

15. Bertoncini CW, Rasia RM, Lamberto GR, Binolfi A, Zweckstetter M, Griesinger C, Fernandez CO.

Structural Characterization of the Intrinsically Unfolded Protein beta-Synuclein, a Natural Negative

Regulator of alpha-Synuclein Aggregation. J Mol Biol 2007;17:17.

16. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN. Abundance of intrinsic disorder in protein

associated with cardiovascular disease. Biochemistry 2006;45:10448–60. [PubMed: 16939197]

Galea et al. Page 21

J Proteome Res. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



17. Feng ZP, Zhang X, Han P, Arora N, Anders RF, Norton RS. Abundance of intrinsically unstructured

proteins in P. falciparum and other apicomplexan parasite proteomes. Mol Biochem Parasitol

2006;150:256–67. [PubMed: 17010454]

18. Galea CA, Pagala VR, Obenauer JC, Park CG, Slaughter CA, Kriwacki RW. Proteomic studies of

the intrinsically unstructured mammalian proteome. J Proteome Res 2006;5:2839–48. [PubMed:

17022655]

19. Csizmok V, Szollosi E, Friedrich P, Tompa P. A novel two-dimensional electrophoresis technique

for the identification of intrinsically unstructured proteins. Mol Cell Proteomics 2006;5:265–73.

[PubMed: 16223749]

20. Irar S, Oliveira E, Pages M, Goday A. Towards the identification of late-embryogenic-abundant

phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics 2006;6:S175–85. [PubMed:

16511814]

21. Cortese MS, Baird JP, Uversky VN, Dunker AK. Uncovering the unfoldome: enriching cell extracts

for unstructured proteins by acid treatment. J Proteome Res 2005;4:1610–8. [PubMed: 16212413]

22. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by

multidimensional protein identification technology. Nat Biotechnol 2001;19:242–7. [PubMed:

11231557]

23. Schlessinger A, Liu J, Rost B. Natively Unstructured Loops Differ from Other Loops. PLoS Comput

Biol 2007;3:e140. [PubMed: 17658943]

24. Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically

unstructured regions of proteins based on estimated energy content. Bioinformatics 2005;21:3433–

4. [PubMed: 15955779]

25. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT. The DISOPRED server for the prediction

of protein disorder. Bioinformatics 2004;20:2138–9. [PubMed: 15044227]

26. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered

protein. Proteins 2001;42:38–48. [PubMed: 11093259]

27. Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RP-

HPLC system with different pH in first and second separation dimensions. J Sep Sci 2005;28:1694–

703. [PubMed: 16224963]

28. Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid

chromatography. Anal Chem 2005;77:6426–34. [PubMed: 16194109]

29. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native

disorder in proteins from the three kingdoms of life. J Mol Biol 2004;337:635–645. [PubMed:

15019783]

30. Schlessinger A, Punta M, Rost B. Natively unstructured regions in proteins identified from contact

predictions. Bioinformatics 2007;23:2376–84. [PubMed: 17709338]

31. Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting Protein Disorder for N-, C-, and

Internal Regions. Genome Inform Ser Workshop Genome Inform 1999;10:30–40.

32. Romero P, Obradovic Z, Dunker AK. Sequence data analysis for long disordered regions prediction

in the calcineurin family. Genome Informatics 1997;8:110–124. [PubMed: 11072311]

33. Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under

physiologic conditions? Proteins 2000;41:415–27. [PubMed: 11025552]

34. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J,

Uversky VN, Obradovic Z, Dunker AK. DisProt: the Database of Disordered Proteins. Nucleic Acids

Res 2007;35:D786–93. [PubMed: 17145717]

35. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight

SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE,

Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat Genet 2000;25:25–9. [PubMed: 10802651]

36. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. J R Stat Soc 1995;57:289–300.

37. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology

with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–80.

[PubMed: 11152613]

Galea et al. Page 22

J Proteome Res. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



38. Rost B, Fariselli P, Casadio R. Topology prediction for helical transmembrane proteins at 86%

accuracy. Protein Sci 1996;5:1704–18. [PubMed: 8844859]

39. Chen CP, Kernytsky A, Rost B. Transmembrane helix predictions revisited. Protein Sci

2002;11:2774–91. [PubMed: 12441377]

40. Cuthbertson JM, Doyle DA, Sansom MS. Transmembrane helix prediction: a comparative evaluation

and analysis. Protein Eng Des Sel 2005;18:295–308. [PubMed: 15932905]

41. Delorenzi M, Speed T. An HMM model for coiled-coil domains and a comparison with PSSM-based

predictions. Bioinformatics 2002;18:617–25. [PubMed: 12016059]

42. Gruber M, Soding J, Lupas AN. Comparative analysis of coiled-coil prediction methods. J Struct Biol

2006;155:140–5. [PubMed: 16870472]

43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol

Biol 1990;215:403–410. [PubMed: 2231712]

44. Zhuang Y, Ma F, Li-Ling J, Xu X, Li Y. Comparative analysis of amino acid usage and protein length

distribution between alternatively and non-alternatively spliced genes across six eukaryotic genomes.

Mol Biol Evol 2003;20:1978–85. [PubMed: 12885959]

45. Sakharkar MK, Kangueane P, Sakharkar KR, Zhong Z. Huge proteins in the human proteome and

their participation in hereditary diseases. In Silico Biol 2006;6:275–9. [PubMed: 16922691]

46. Galea C, Bowman P, Kriwacki RW. Disruption of an intermonomer salt bridge in the p53

tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci

2005;14:2993–3003. [PubMed: 16260757]Epub 2005 Oct 31

47. Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to

a new class of DNA binding proteins. Science 1988;240:1759–64. [PubMed: 3289117]

48. O'Shea EK, Rutkowski R, Kim PS. Evidence that the leucine zipper is a coiled coil. Science

1989;243:538–42. [PubMed: 2911757]

49. Lupas AN, Gruber M. The structure of alpha-helical coiled coils. Adv Protein Chem 2005;70:37–78.

[PubMed: 15837513]

50. Baskakov IV, Kumar R, Srinivasan G, Ji YS, Bolen DW, Thompson EB. Trimethylamine N-oxide-

induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human

glucocorticoid receptor. J Biol Chem 1999;274:10693–6. [PubMed: 10196139]

51. Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, Calles K, Engstrom O, Harlan J,

Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist

M. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid

receptor ligand-binding domain: RU-486 induces a transconformation that leads to active

antagonism. J Biol Chem 2003;278:22748–54. [PubMed: 12686538]

52. Dutta S, Akey IV, Dingwall C, Hartman KL, Laue T, Nolte RT, Head JF, Akey CW. The crystal

structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol

Cell 2001;8:841–53. [PubMed: 11684019]

53. Hierro A, Arizmendi JM, De Las Rivas J, Urbaneja MA, Prado A, Muga A. Structural and functional

properties of Escherichia coli-derived nucleoplasmin. A comparative study of recombinant and

natural proteins. Eur J Biochem 2001;268:1739–48. [PubMed: 11248694]

54. Zurdo J, Gonzalez C, Sanz JM, Rico M, Remacha M, Ballesta JP. Structural differences between

Saccharomyces cerevisiae ribosomal stalk proteins P1 and P2 support their functional diversity.

Biochemistry 2000;39:8935–43. [PubMed: 10913306]

55. Martin JR, Craven CJ, Jerala R, Kroon-Zitko L, Zerovnik E, Turk V, Waltho JP. The three-

dimensional solution structure of human stefin A. J Mol Biol 1995;246:331–43. [PubMed: 7869384]

56. Rabzelj S, Turk V, Zerovnik E. In vitro study of stability and amyloid-fibril formation of two mutants

of human stefin B (cystatin B) occurring in patients with EPM1. Protein Sci 2005;14:2713–22.

[PubMed: 16155205]

57. (RCSB), R. C. f. S. B.

http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100

58. Le Gall T, Romero PR, Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in the Protein Data

Bank. J Biomol Struct Dyn 2007;24:325–42. [PubMed: 17206849]

Galea et al. Page 23

J Proteome Res. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100


59. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW. Regulation of cell division by intrinsically

unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry

2008;47:7598–609. [PubMed: 18627125]

60. Minezaki Y, Homma K, Nishikawa K. Intrinsically disordered regions of human plasma membrane

proteins preferentially occur in the cytoplasmic segment. J Mol Biol 2007;368:902–13. [PubMed:

17368479]

61. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The

importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004;32:1037–49.

[PubMed: 14960716]Print 2004

62. Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M,

LeGall T, Obradovic Z, Dunker AK. Alternative splicing in concert with protein intrinsic disorder

enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A

2006;103:8390–5. [PubMed: 16717195]

63. Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics 2005;21:2076–

82. [PubMed: 15657099]

64. Schnell S, Fortunato S, Roy S. Is the intrinsic disorder of proteins the cause of the scale-free

architecture of protein-protein interaction networks? Proteomics 2007;7:961–4. [PubMed:

17285562]

65. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW. BIND--The Biomolecular

Interaction Network Database. Nucleic Acids Res 2001;29:242–5. [PubMed: 11125103]

66. Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE. Structural studies of p21(waf1/cip1/sdi1)

in the free and Cdk2-bound state: Conformational disorder mediates binding diversity. Proc Natl

Acad Sci USA 1996;93:11504–11509. [PubMed: 8876165]

67. Bowman P, Galea CA, Lacy E, Kriwacki RW. Thermodynamic characterization of interactions

between p27(Kip1) and activated and non-activated Cdk2: intrinsically unstructured proteins as

thermodynamic tethers. Biochim Biophys Acta 2006;1764:182–9. [PubMed: 16458085]Epub 2006

Jan 11

68. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets. The roles of intrinsic

disorder in protein interaction networks. FEBS J 2005;272:5129–48. [PubMed: 16218947]

69. Barbar E. Dynein light chain LC8 is a dimerization hub essential in diverse protein networks.

Biochemistry 2008;47:503–8. [PubMed: 18092820]

70. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription

factors. Biochemistry 2006;45:6873–88. [PubMed: 16734424]

Galea et al. Page 24

J Proteome Res. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 1. Percentage of proteins identified as DPs, MXPs and FPs in control and heat-treated
samples from mouse fibroblasts

The percentages of proteins classified as DPs (blue bars), MXPs (open bars), and FPs (orange

bars) in datasets derived from 2D PAGE analyses of untreated (left) and heat-treated (center)

mouse fibroblast cell extracts are compared to those determined through MudPIT analysis

(right) of a similar heat-treated extract. The total number of proteins detected in each

experiment is shown at the top in parentheses.
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Figure 2. Percentage of proteins classified as DPs, MXPs and FPs in the mouse TS protein dataset
that contain known sites of post-translational modification (PTM) and phosphorylation, alternate
splice variants or transmembrane domains

Key: blue bars, PTMs; red bars, phosphorylation; black bars, alternative splice variants; and

white bars, transmembrane domains. The total number of proteins in each structural class is

shown at the top in parentheses.
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Figure 3.

Biological functions associated with disordered (DPs + MXPs) and folded/ordered proteins

(FPs) in TS dataset. Graphical representation of over- and under-representation of GO terms

for disordered proteins (DPs + MXPs) and folded ordered proteins (FPs) for three functional

categories, (A) cell component, (B) biological process, and (C) molecular function. Results

are shown only for over- and under-represent GO terms with false discover rate (FDR) values

<0.01 and with ≥10 associated proteins. The column labeled Background indicates the

percentage of all theoretical mouse proteins that exhibited a particular GO term using a gray

scale. The columns labeled (DPs + MXPs) and FPs indicate the extent of over- (red scale) or

under-representation (green scale) of a particular GO term, given as [(LH/LT) – (BH/BT)]/
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(BH/BT) × 100; where: LH is the number of disordered or folded proteins associated with a

particular GO term, LT is the total number of disordered or folded proteins with any GO term,

BH is the number of theoretical mouse proteins associated with a particular GO term, and BT

is the number of theoretical mouse proteins associated with any GO term. The color and gray

scales are defined in the lower right. Gray boxes in the columns labeled (DPs + MXPs) and

FPs indicate that the noted GO term was not over- or under-represented for the indicated

structural class and have the same shade as the box labeled Background; asterisks in the

columns labeled (DPs + MXPs) and FPs indicate that zero proteins in the indicated structural

class were associated with the noted GO term.
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Figure 4. Analysis of the number of protein interaction partners for proteins in the different
structural classes in the TS protein dataset

The percentage of DPs (blue diamonds), MXPs (black squares) and FPs (orange circles) which

interact with up to the given numbers of interaction partners is plotted versus the number of

interaction partners. The boxed region is expanded in the upper right. The data represent totals

over bins incremented by 5 interaction partners (e.g., 0-5 partners, 6-10 partners, etc.).
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Figure 5. Cooperation amongst intrinsically disordered and coiled-coil segments within IC
promotes binding to LC8

(A) A short interaction motif (IM) from two molecules of the intrinsically disordered protein,

IC (residues 84-260 illustrated), adopt rigid, extended structure when bound on opposite faces

of the folded, dimeric protein, LC8. While not directly involved in binding to LC8, two leucine-

zipper (LZ) motif-containing segments of IC, that are unfolded and monomeric in the absence

of LC8, form a coiled-coil dimer when the IM segments of IC bind to LC8. IC is illustrated as

a yellow tube, with the IM segments and LZ motifs colored red or green, respectively, in the

two molecules. The two subunits of the LC8 dimer are shown in surface representation in dark

and light blue, respectively. (B) The LC8 dimer was rotated 90° relative to (A) and only the

IM segments of the two IC molecules are illustrated as red and green tubes, respectively.

[Modeled after Figure 2 in ref. 69, with permission from the author.]
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