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Abstract

Despite being a paradigm of quantitative linguistics, Zipf’s law for words suffers from three

main problems: its formulation is ambiguous, its validity has not been tested rigorously from

a statistical point of view, and it has not been confronted to a representatively large number

of texts. So, we can summarize the current support of Zipf’s law in texts as anecdotic. We

try to solve these issues by studying three different versions of Zipf’s law and fitting them to

all available English texts in the Project Gutenberg database (consisting of more than 30

000 texts). To do so we use state-of-the art tools in fitting and goodness-of-fit tests, carefully

tailored to the peculiarities of text statistics. Remarkably, one of the three versions of Zipf’s

law, consisting of a pure power-law form in the complementary cumulative distribution func-

tion of word frequencies, is able to fit more than 40% of the texts in the database (at the 0.05

significance level), for the whole domain of frequencies (from 1 to the maximum value), and

with only one free parameter (the exponent).

Introduction
Zipf’s law constitutes a striking quantitative regularity in the usage of language [1–4]. It states

that, for a large enough piece of text, the frequency of use n of any word decreases with its rare-

ness r in the text in an approximately hyperbolic way, i.e., n/ 1/r, where the symbol “/”

denotes proportionality. Technically, r is called the rank, and the most common (i.e., less rare)

word is assigned r = 1, the second most common, r = 2, and so on. A slightly more general for-

mulation includes a parameter in the form of an exponent α; then, the rank-frequency relation

takes the form of a power law,

n / 1

ra
: ð1Þ

with the value of α close to one.

This pattern Eq (1) has been found across different languages, literary styles, time periods,

and levels of morphological abstraction [2, 5–7]. More fascinatingly, the same law has been

claimed in other codes of communication, as in music [8] or for the timbres of sounds [9], and
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also in disparate discrete systems where individual units or agents gather into different classes

[10], for example, employees into firms [11], believers into religions [12], insects into plants [13],

units of mass into animals present in ecosystems [14], visitors or links into web pages [15], tele-

phone calls to users [16], or abundance of proteins (in a single cell) [17]. The attempts to find an

explanation have been diverse [3, 16, 18–25], but no solution has raised consensus [21, 26–28].

Despite its quantitative character, Zipf’s law has been usually checked for in a qualitative

way, plotting the logarithm of the frequency n versus the logarithm of the rank r and looking

for some domain with a roughly linear behavior, with slope more or less close to −1. A more

refined approach consists in fitting a straight line to the double-logarithmic plot by linear

regression [29]. But several authors have recently pointed out the limitations of this method

when applied to probability distributions [12, 30–32], and the advantages of using an asymp-

totically unbiased and minimum-variance procedure such as maximum likelihood (ML) esti-

mation [32], whose solutions, moreover, are invariant under reparameterizations [33, 34]. One

should consider then ML estimation as the most reliable procedure of estimation for paramet-

ric models (when a maximum of the likelihood does exist and the number of data is large).

Furthermore, for the particular case of linguistics, the search for Zipf’s law has been tradi-

tionally performed in very limited sets of texts (less than a dozen in a typical research article [6,

35], although in hundreds of languages [7]). More recently, however, large corpora have been

considered –these are representative collections of different texts aggregated together into a

single bag, so, instead of many separated texts one deals with one enormous mixed text. When

“rare” words are not considered (rare in terms of the frequency, i.e., frequencies below some

particular value), it seems that Zipf’s law still holds in these large collections, in the sense that

Eq (1) is valid only for high frequencies [2, 36–39].

At present, there is agreement that Zipf’s law is a rough approximation in lexical statistics,

but its range of validity is totally unknown, i.e., we ignore how good Zipf’s law is in order to

account for the appearance of words, and for which texts it should work –and with which level

of precision– and for which texts it should fail. We know, however, that this peculiar pattern

seems to hold in hundreds of different languages, in concrete in those languages in which some

electronic texts are available [7].

An extra difficulty emerges when one recognizes the ill-defined nature of Zipf’s law. In fact,

the law has two formulations, with the first one being Eq (1), which just counts the frequency

of words. For the sake of clarity, the words that are counted are referred to as word types, in

order to distinguish them from each repetition, which is called a token. The second formula-

tion of Zipf’s law arises when, after counting the frequency of word types, one performs a sec-

ond statistics and counts how many values of the frequency are repeated, that is, how many

word types have the same frequency. This means that the frequency n is considered the random

variable. One can realize that the rank, when normalized by its maximum value in text, is just

the empirical estimation of the complementary cumulative distribution function of n, and

then, the derivative of the expression for r(n) (the inverse of Eq (1)) yields a continuous

approximation for the probability mass function f(n) of the frequency n. From here one obtains

another power law,

f ðnÞ / 1

nb
; ð2Þ

with the new exponent β fulfilling β = 1 + 1/α, which yields values of β close to 2. The expres-

sion given by Eq (2) was in fact the first approach followed by Zipf’s himself [3], and is usually

considered as equivalent to Eq (1) [3, 10, 15, 16, 35]; however, as it is derived in the continuum

limit, both expressions can only be equivalent asymptotically, for large n [40]. Consequently, if

one wants to be precise, a natural question follows: which one is the “true” Zipf’s law (if any)?
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We cannot know a priori which of the two Zipf’s laws better describes real texts, but we can

argue which of the two representations (that of n(r), Eq (1), or that of f(n), Eq (2)) is better for

statistical purposes, independently of the functional dependency they provide. It is clear that the

rank-frequency representation, given by n(r), presents several difficulties, due to the peculiar

nature of the rank variable. First, in Ref. [41], Zipf-like texts were randomly generated following

Eq (1), keeping the original ranks “hidden” (as it happens in the real situation), and it was found

that the rank reconstructed from the sample deviated considerably from the original ranks

when these were taking large values (which for a power law happens with a high probability).

The resulting ML estimations of the exponent α were highly biased and the Kolmogorov-Smir-

nov test rejected the power-law hypothesis, although the original ranks were power-law indeed.

One might argue that the problem could be escaped by using an upper truncated power-law

distribution (introducing then an additional parameter for the truncation), in order to avoid

the inconsistency of the rank representation for high values. But a second problem is that the

rank is not a true random variable [42], as its values are assigned a posteriori, once the sample

(i.e., the text) is analyzed. This means that the rank does not show “enough” statistical fluctua-

tions, that is, if ra< rb, then the frequency of a is always larger, by construction, than the fre-

quency of b. This does not necessarily happen for a true random variable. The negative

correlation between the variable and its frequency of occurrence makes the power-law hypoth-

esis harder to reject. In fact, inflated p-values (not uniformly distributed between 0 and 1) have

been found when fitting truncated power laws to simulated power-law rank-frequency repre-

sentations [41]. This problem could still be avoided by choosing a low enough upper truncation

parameter (yielding a very short range of ranks, for which the fluctuations would be very little)

but at the expense of disregarding an important part of the data.

A third inconvenience is the impossibility, due to normalization, that a non-truncated

power law comprises values of the α—exponent smaller than 1. This yields the necessity of

introducing a truncation parameter that may be artifactual, i.e., not present in the real system.

All this leads to the conclusion that the most reliable method of parameter estimation (ML, in

a frequentist framework) cannot be directly applied to the rank-frequency representation. In

contrast, the representation in terms of the distribution of frequencies is devoid of these prob-

lems [41], as n is a well-defined random variable, and this will be the representation used in

this paper for statistical inference. Nevertheless, for alternative arguments, see Ref. [43].

The purpose of this paper is to quantify, at a large, big-data scale, different versions of Zipf’s

law and their ranges of validity. In the next section, we present and justify the three Zipf-like dis-

tributions we are going to fit, and we briefly explain the selected fitting method and the good-

ness-of-fit test. The corpus of texts under consideration is also detailed. The subsequent section

presents the results, with special attention to their statistical significance and their dependence

with text length. Finally, we end with a discussion, conclusions and some technical appendices.

Zipf-like Distributions
As implicit in the introduction, and in contrast with continuous random variables, in the dis-

crete case a power law in the probability mass function f(n) does not lead to a power law in the

complementary cumulative distribution or survival function S(n), and vice-versa. Let us specify

our definition for both functions, f(n) = Prob[frequency = n] (as usual), and S(n) = Prob[fre-

quency� n] (changing, for convenience, the usual strict inequality sign by the non-strict

inequality). Then, the relation between both is f(n) = S(n) − S(n + 1) and SðnÞ ¼P1
n0¼n f ðn0Þ.

We consider that the values the random variable takes, given by n, are discrete, starting at

the integer value a, taking values then n = a, a + 1, . . . up to infinity. In this study we will fix

the parameter a to a = 1, in order to fit the whole distribution and not just the tail. Then,
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although for large n and smooth S(n) we may approximate f(n)’ −dS(n)/dn, this simplifica-

tion is clearly wrong for small n. Note that the simplification leads to the implication that a

power law in f(n) leads to a power law in S(n), and vice-versa, but this is clearly wrong for small

values of n in discrete distributions. The simplification also lies in the equivalence between Eqs

(1) and (2), assuming that S(n) is proportional to the rank and inverting Eq (1).

For the first distribution that we consider, the power-law form is in f(n), then,

f1ðnÞ ¼ 1

zðb; aÞnb
: ð3Þ

This is just the normalized version of Eq (2), and then,

S1ðnÞ ¼ zðb; nÞ
zðb; aÞ

with β> 1 and zðb; aÞ ¼P1
k¼0

ðaþ kÞ�b
the Hurwitz zeta function, which ensures normaliza-

tion of both expressions of the distribution (f1(n) and S1(n)). A preliminary analysis of texts in

terms of this distribution was done in Ref. [44].

In contrast, when the power law is in S(n), this leads to our second case,

f2ðnÞ ¼ a

n

� �b�1

� a

nþ 1

� �b�1

ð4Þ

and

S2ðnÞ ¼ a

n

� �b�1

with β> 1 again. Note that this corresponds to a power law in the empirical rank-frequency

relation. As S2(a) = 1 this ensures normalization of S2(n), and also of f2(n), which is derived

from S2(n).

Finally, it is interesting to consider also the frequency distribution derived by Mandelbrot

[40] when ranks are generated independently from a power law in Eq (1), which is,

f3ðnÞ ¼ ðb� 1ÞGðaÞ
Gðaþ 1� bÞ

Gðnþ 1� bÞ
Gðnþ 1Þ ð5Þ

and

S3ðnÞ ¼ GðaÞGðnþ 1� bÞ
GðnÞGðaþ 1� bÞ ;

with 1< β< 2, and GðgÞ ¼
R1
0
xg�1e�xdx denotes the gamma function [45]. In this case the

power law is the underlying theoretical rank-frequency relation n(r). Note that f3(n) can be

written as

f3ðnÞ ¼
Bðnþ 1� b; bÞ

Bðaþ 1� b; b� 1Þ

using the beta function [45], B(x, y) = Γ(x)Γ(y)/Γ(x + y), with an analogous expression for

S3(n) (nevertheless, do not confuse this distribution with the beta distribution).

In all three cases it is easy to show that we have well-defined, normalized probability distri-

butions, when n takes values n = a, a + 1, . . ., with a being a positive integer. Moreover, in the

limit n!1 all of them yield a power-law tail, f(n)/ 1/nβ, so β will be referred to as the
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power-law exponent. Indeed, it is easy to show that

f2ðnÞ!
n!1 ðb� 1Þ a

b�1

nb
;

whereas

f3ðnÞ!
n!1 ðb� 1ÞGðaÞ

Gðaþ 1� bÞnb

using Stirling’s formula [45]. The main difference between the three distributions is in the

smaller values of n, taking f2(n) a convex shape in log-log-scale (as seen “from above”); f3(n) a

concave one; and f1(n) being somehow in between, as it is neither concave nor convex.

Methodology and Data
In order to fit these three distributions to the different texts, and test the goodness of such fits,

we use maximum likelihood estimation [46] followed by the Kolmogorov-Smirnov (KS) test

[47]. The procedure seems similar to the one proposed in Ref. [12], but as a is fixed here, the

problems resulting from the search of the optimum a[34, 48] do not arise in this case.

The method of ML estimation proceeds in the following simple way. Given a set of data {ni}

with i = 1, 2, . . .N, and a probability mass function parameterized by β, denoted as f(n; β) = f

(n), the log-likelihood function is obtained as

lðbÞ ¼
X

N

i¼1

ln f ðni; bÞ: ð6Þ

We are assuming that the data points ni are independent from each other, in other words, we

are calculating the likelihood that the data are generated independently from f(n; β). The ML

estimation of β is obtained as the value of β which maximizes l(β); we undertake this numeri-

cally, using Brent’s method in the range 1< β� 4 [47]. In the case of the distribution f1 the

log-likelihood function takes the simple form l1(β)/N = −ln(z(β, a)) − β lnG, with G the geo-

metric mean of the set {ni}. For the other distributions no closed-form expression is possible

and we use Eq (6) directly.

As mentioned, the goodness-of-fit test is done through the Kolmogorov-Smirnov statistic

[12, 47], in the discrete case [49], for which the p-value is calculated fromMonte Carlo simula-

tions (due to the fact that, as the value of the exponent is calculated from the same data is going

to be tested, the procedure would be biased towards the empirical value and the theoretically

computed p-value [47] would be inflated). In this paper we use 100 Monte Carlo simulations for

each test. The proper simulation of the 3 distributions is explained in the Appendix. Remember

that a small enough p-value leads to the rejection of the fit. Although we performmultiple test-

ing, we do not incorporate any Bonferroni-like correction [50–52], due to the fact that these cor-

rections increase the number of non-rejected null hypotheses (that is, decrease the number of

type I errors), inflating the performance of the fits, in the case of goodness-of-fit tests. Without

Bonferroni-like corrections, our acceptance (i.e., non-rejection) of the fits is more strict.

In order to check the consistency of our fitting procedure, we also perform a direct compari-

son of models through the likelihood ratio (LR) test [12, 53]. Taking distributions f1 and f2, the

log-likelihood-ratio between both is

R1;2 ¼
X

N

i¼1

ln f1ðniÞ � ln f2ðniÞð Þ;

and, under the null hypothesis that both models are equally good to describe the data, R1,2

should be normally distributed with zero mean and a variance that can be estimated as Nσ2,

Large-Scale Analysis of Zipf’s Law in English Texts
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with σ
2 the variance of the random variable lnf1(n) − lnf2(n). Large absolute values of R1,2 will

lead to the rejection of the null hypothesis.

In order to apply this methodology we consider a set of 36 813 texts in UTF-8 encoding

downloaded from the Project Gutenberg database (accessed July 2014 [54]). These texts corre-

spond to different languages, styles, and time periods, although most of them are works of liter-

ature from the Western cultural tradition [55]. First of all, parts of text that do not pertain to

the piece under consideration (copyright notes, headers,. . .) are removed by an automatized

process. Books that have not been filtered in this step (mainly because they do not have stan-

dard delimiters) are discarded. After this, we still keep 98.2% of the total (i.e., 36 147). To per-

form our study, we restrict ourselves to the subset of texts in English, which represent the 86%

of these 36 147 (i.e., 31 102).

An important characteristic of each text is its length, L, counting the number of word tokens

contained in the text. It turns out to be that in the database L expands from very small values

up to 4 659 068 tokens, with a distribution that is shown in Fig 1. Observe the roughly uniform

distribution up to about L = 105, and the decay afterwards.

For our analysis we consider only the 31 075 English texts that consist of more than 100

word tokens, as smaller texts would not have statistical value. For each of these texts we select

then actual word types (punctuation signs, numbers and any character different from letters

are not considered) to count their frequencies n, which will be our primary object of study. The

values of these frequencies, for each text, are available on http://dx.doi.org/10.6084/m9.

figshare.1515919, in order to facilitate the reproducibility of our results.

In summary, we apply the above described fitting and goodness-of-fit procedure –using ML

estimation and the Kolmogorov-Smirnov test– to a total of 31 075 texts from the English Proj-

ect Gutenberg database, using three different possibilities for the distribution of frequencies: f1
(Eq (3)), f2 (Eq (4)), and f3 (Eq (5)). This yields a total of 3 × 31075 fits and associated p-values,

which we analyze and interpret in what follows.

Results
Contrary to previous studies where the number of texts considered was, at most, in the order of

tens, the large-scale approach taken in this work requires a statistical analysis of the fitting

results, as a case-by-case interpretation is out of hand. We first focus on the distribution of

Fig 1. Estimation of the probability density function of text length L in the English Project Gutenberg
database, using logarithmic binning (5 bins per decade). Texts with less than 100 tokens are not
considered. A power-law fit of the tail [34] yields an exponent 2.92 ± 0.15.

doi:10.1371/journal.pone.0147073.g001
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p-values, see Figs 2 and 3. If all texts were truly generated by a mechanism following a given

distribution, the corresponding p-values for that distribution would be uniformly distributed

between zero and one [56] (see p. 28), [57] (see p.441). As seen in Fig 2, this is not the case and,

furthermore, most texts have rather small p-values for the three fits; nevertheless, for distribu-

tions f1 and f2 there are still many texts that yield high enough p-values.

This implies that, although we cannot conclude that the whole database is generated by any

of these distributions, these cannot be rejected as good descriptions for large subsets of the

database. Regarding distribution f3, it is clear from the histogram of p-values that it can be dis-

carded as a good description of the distribution of frequencies in any non-negligible subset of

texts. So, from now on, we will concentrate on the remaining options, f1 and f2, to eventually

quantify which of these better describes our corpus. In essence, what we are interested in is

which version of Zipf’s law, either distribution f1 or f2, fits better a reasonable number of texts,

and which range of validity these simple one-parameter distributions have.

The outcome is that, independently of the significance level (as long as this is not below our

resolution of 0.01 given by the number of Monte Carlo simulations), the ratio between the

number of texts fitted by distribution f2 and those fitted by f1 is nearly constant, taking a value

around 2.6. For example, considering significance level (i.e., minimum p-value) equal to 0.05,

Fig 3 shows that distribution f2 fits about 40% of all texts, whereas distribution f1 fits just 15%.

Both percentages include a 2.7% of texts that are fitted by both distributions simultaneously,

although this number does not keep a constant ratio with the other two, rather, it decreases

when the significance level is increased (as it is implicit in the values of Fig 3). Given that the

aforementioned ratio of 2.6 is independent of the significance level, it is fair to say that distribu-

tion f2 provides, compared to f1, a better description of our database. As a visual illustration of

the performance of the fits we display in Fig 4 the word frequency distribution of the longest

texts that have p> 1/2, for distributions f1, f2 and f3.

The next question we address is the dependence of the performance of fits on text length L.

In order to asses this, note that from the shape of the histograms in Fig 2 we can distinguish

two groups of texts: those that lie in the zero bin (whose p-value is strictly less than 0.01), and

the rest. Taking the last group, i.e., texts with p� 0.01, and partitioning it into different subsets

according to text length (i.e., looking at the distribution of p conditioned to p� 0.01 for

Fig 2. Histograms of p-values obtained when the Zipf-like distributions f1, f2, and f3 are fitted to the
texts of the English Project Gutenberg. The histograms just count the number of texts in each bin of width
0.01. Note the poor performance of distribution 3 and the best performance of 2. Power-law approximations
to the histograms for f1 and f2, with respective exponents 0.74 and 0.78, are shown as a guide to the eye.

doi:10.1371/journal.pone.0147073.g002
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different ranges of L), it holds that the shape of the resulting distribution of p does not strongly

depend on L, as shown in Fig 5. In contrast, the number of texts that yield p-value near zero

certainly varies with L, see Fig 6. Therefore, in order to compare the performances of f1 and f2
as a function of the text length L, it is enough to consider a single value of the significance level

(greater than zero) as the results for any other significance level will be the same, in relative

terms.

Indeed, Fig 7(a) shows how distribution f1 fits some more texts than distribution f2 for small

values of L, up to about 13000 tokens. But for larger texts, distribution f2 clearly outperforms

distribution f1, which becomes irrelevant for L beyond 100000 (at 0.05 significance level),

whereas distribution f2 is able to fit many texts with L larger than 200000. The figure shows

that this is the case no matter if the significance level is 0.05, 0.20, or 0.50; the collapse of the

curves in Fig 7(b) confirms this fact. From Fig 6 one could infer the same for significance level

equal to 0.01. This stability of the performance of the fits for different significance levels arises

from the observed fact that the distributions of p-values (conditioned to p� 0.01) are nearly

identical for different L, as shown in Fig 5.

Next, we apply the LR test to all texts that have been fitted, considering 0.05 as significance

level, by at least one of the two distributions f1 and f2. Table 1 merges the results of this test and

our previous procedure (based on ML estimation plus the KS test). The total number of texts

previously fitted by f1 or/and f2 is displayed depending on the sign of the corresponding log-

ratio R1,2. However we must take into account that the sign of the obtained value of R1,2 could

be a product of just statistical fluctuations if the true value were zero and thus, the sign of R1,2

cannot be trusted in order to discriminate between two models. The probability under the null

hypothesis, of obtaining an absolute value of the log-ratio greater than the empirical value |

R1,2| is computed through:

pLR ¼ erfc
jR1;2j
ffiffiffiffiffiffiffiffiffiffiffi

2Ns2
p
� �

where erfc is the complementary error function [45]. We will take as statistically significant

Fig 3. Complementary cumulative distributions (i.e., survival functions) of p-values obtained when
our three distributions are fitted to the texts of the English Project Gutenberg. This corresponds, except
for normalization, to the integral of the previous figure, but we have included a fourth curve for the fraction of
texts whose p-values for fits 1 and 2 are both higher than the value marked in the abscissa. Note that the
values of p can play the role of the significance level. The value for p = 0 is not shown, in order to have higher
resolution.

doi:10.1371/journal.pone.0147073.g003
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Fig 4. Complementary cumulative distribution and probability mass function of text frequencies, for:
(a) A Chronicle of London, from 1089 to 1483 (anonymous); (b) TheWorks of Charles andMary Lamb,
Vol. V, edited by E. V. Lucas; (c) A Popular History of France from the Earliest Times, Vol. I, by F.
Guizot. These texts are the ones with the largest length L (83 720, 239 018 and 2 081 respectively) of those
that fulfill p > 1/2, for fits 1, 2 and 3 respectively. The exponent β takes values 1.96, 1.89, and 1.82, in each
case.

doi:10.1371/journal.pone.0147073.g004
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those R1,2 that yield pLR < 0.05. Equivalently, at 0.05 significance level, R1,2 is significant if its

absolute value is greater than Rc ¼ 1:96
ffiffiffiffiffiffiffiffiffi

Ns2
p

. The results are shown in Table 2

Note that the LR test cannot conclude if a fit is good or bad, as it only compares the relative

performance of two fits; in other words, if the LR test selects a particular distribution, that dis-

tribution can still yield a bad fit, in absolute terms. Anyway, there is no mismatch between the

results of both tests: any time the ML-KS method selects one distribution over the other, the

LR test either supports the selection or does not give significant results, but it never selects the

other option (as shown in Table 2).

Taking now those texts whose frequency distributions could be approximated by f1 or f2, we

draw attention to the distribution of the estimated exponents (i.e., the parameter β). The origi-

nal formulation of Zipf’s law implies β = 2 and Fig 8 shows that β is certainly distributed

around 2, with a bell-like shape, and the range of variation is, more or less, between 1.6 and 3.

The lower value β’ 1.6 is in surprising good agreement with the results of the information-

theoretic model of Ref. [58], whereas the upper limit β’ 3 is somewhat larger than the results

Fig 5. Estimated probability density functions of p-values conditioned to p� 0.01 separating for
different ranges of text length L. p-values correspond to the fitting of word frequencies to (a)
distribution f1 and (b) distribution f2.We divide the distribution of text length into 15 intervals of 2 000 texts
each. For distribution f1 only the first seven groups (up to length 34 400) are displayed (beyond this value we
do not have enough statistics to see the distribution of p-values greater than 0.01, as displayed in Fig 6; for
distribution 2 this happens only in the last two groups). The intervals Li range from L1 = [115, 5291] to L6 =
[25739, 34378] and to L13 = [89476, 103767].

doi:10.1371/journal.pone.0147073.g005
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of that model. Moreover, the distributions of β are not symmetric, and the upper limit cannot

be defined so sharply as the lower limit. Notice also that texts with limiting values of the expo-

nents do not correspond, in principle, to pathological texts, as claimed in Ref. [58]; rather, for

the smallest β we find theatre (including Tosltoy and Ibsen) and children books (some by Jane

L. Stewart), whereas the largest β correspond to short poems.

If we check the effect of the text length L in the distribution of β, we find a decreasing trend

of β with L, as can be seen in Figs 9 and 10. We have tested that this observation is not an arti-

fact of the fitting method, as synthetic texts generated with fixed β do not show this behavior.

This trend is not in disagreement with the claims of Ref. [35], where the stability of the expo-

nent β was demonstrated for a single growing text (i.e., comparing small parts of a text with the

whole). A possible explanation for the decrease of β with L could be a systematic dependence of

β with genre, and a bias of L with genre. At present we do not have an automatic way to assign

genres to texts and we cannot test this hypothesis.

Discussion and Conclusions
Zipf’s law is probably the most intriguing and at the same time well-studied experimental law

of quantitative linguistics, and extremely popular in its wider sense in the science of complex

systems. Although the previous literature is vast, as far as we know our work constitutes the

first large-scale analysis of Zipf’s law in single (non-aggregated) texts. Thus, we are in a position

to make a well-grounded statement about the validity of Zipf’s law in such texts (when those

are written in English).

Let us first briefly summarize, however, some key technical points of our study. First, we

have analyzed a total of 31 075 English texts from the Project Gutenberg database using rigor-

ous fitting procedures, and have tested how well they are described by three Zipf-like distribu-

tions. Our choice of distributions has not been exhaustive; rather, we have limited ourselves to

different interpretations of what can be understood as “Zipf’s law”, in the sense of having a per-

fect power law either in the probability mass function of word frequencies, or in the comple-

mentary cumulative distribution function (whose empirical estimation leads to the rank-

frequency relation of the sample), or in the rank-frequency relation of an underlying popula-

tion. Remarkably, the resulting distributions have a unique parameter, β, which in all cases is

Fig 6. Number of texts with p-value near zero (p < 0.01) in different ranges of L divided by the number
of texts in the same ranges, for the fits of distributions f1 and f2. Values of L denote the geometric mean
of ranges containing 1000 texts each. The higher value for the fit of f1 (except for L below about 13000
tokens) denotes its worst performance.

doi:10.1371/journal.pone.0147073.g006
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Fig 7. (a) Histograms showing the fraction of accepted texts by the three distributions as a function of their
text length, for three different significance levels p0: 0.05 (upper curves), 0.20 (middle), 0.50 (lower). To be
concrete, for each range of L, the ratio between the number of texts with p� p0 and the number of texts in that
range is calculated. (b) Same curves (removing those for distribution 3) under rescaling. We rescale the y—

axis by the number of p� p0, in each case, showing that the relative performance of each fit with regard L is
independent on the significance level. Bins are selected to contain 1000 texts each.

doi:10.1371/journal.pone.0147073.g007

Table 1. Number of texts fitted by f1, f2 or both.

R1,2 > 0 R1,2 < 0 Total ML-KS

f1 (exclusively) 3614 81 3695

f2 (exclusively) 120 11366 11486

f1 and f2 431 398 829

Total LR 4165 11845 16010

The number of texts that are fitted by f1 or f2 or both at 0.05 significance level of the ML-KS procedure,

separated into two columns according to the sign of R1,2. Positive R1,2 means that the likelihood for f1 is

greater than that for f2, and conversely for negative R1,2. Nevertheless, the sign of R1,2 is not an indication

of significance, for significant LR tests see Table 2.

doi:10.1371/journal.pone.0147073.t001
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the exponent of an asymptotic power law in the probability mass function of the frequency. It

is left to explore how other, more complicated extensions of Zipf’s law perform on this large

corpus, but it is obvious that, by including additional parameters, one might provide good fits

to a larger number of texts (although in this case, proper model selection will require to balance

number of parameters and parsimony).

Our aim in this paper has not been to fit as many texts as possible, but to test the perfor-

mance of the simplest Zipf-like distributions within a very strict, conservative framework.

Indeed, by requiring the three versions of Zipf’s law to hold on the full range of frequencies

n = 1, 2, . . . (and not only on the tail of the distribution) we put ourselves in the strictest range

of demands. It is hence remarkable that, e.g., at the standard significance level of 0.05, and for

text lengths between 104 and 105 word tokens, more than 40% of the considered texts are statis-

tically compatible with the pure power law in the complementary cumulative distribution func-

tion represented by distribution f2 (see Fig 7). So, we can state that, for the corpus under

consideration, the most appropriate version of Zipf’s law is given by a probability mass

Table 2. Number of texts with a significant LR test.

R1,2 > Rc R1,2 < −Rc

f1 (exclusively) 1666 0

f2 (exclusively) 0 9423

f1 and f2 0 3

Total LR test 1666 9426

None (neither f1 nor f2) 510 11431

Number of texts with a significant LR test, at the 0.05 level, either favouring distribution f1 (R1,2 > Rc) or

distribution f2 (R1,2 < −Rc), for different outcomes of the ML-KS procedure (at the 0.05 level also). Note that

these cases correspond to a subset of the previous table. An additional row shows the number of texts that

are fitted neither by distribution f1 nor f2; notice that in this case a significant LR test does not guarantee a

good fit.

doi:10.1371/journal.pone.0147073.t002

Fig 8. Estimation of the probability density of the Zipf’s exponent β for texts yielding p� 0.05 in the
fits of f1 and f2. Curves have been calculated from the histograms via normal kernel smoothing method as
implemented in MatLab (ksdensity function). Estimated mean and standard deviation of β are 2.03 and 0.15
respectively for the fit of f1, and 2.02 and 0.17 for f2.

doi:10.1371/journal.pone.0147073.g008
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function

f ðnÞ ¼ Prob½frequency ¼ n� ¼ 1

nb�1
� 1

ðnþ 1Þb�1
;

or, equivalently, by a complementary cumulative distribution function

SðnÞ ¼ Prob½frequency � n� ¼ 1

nb�1
:

Due to the broad coverage of the Project Gutenberg corpus we speculate that this distribution

should fit a large fraction of generic (non-technical) English texts. Of course, testing this specu-

lation in front of all possible corpora is an impossible task.

We have also shown that our conclusions regarding the relative performance of a pure

power law in the probability mass function, given by distribution f1, versus distribution f2 are

robust with respect to changes in the significance level: about twice as many texts are statisti-

cally compatible with distribution f2 than those compatible with f1, at any significance level

(obviously, in absolute terms, the number of accepted texts varies with the significance level).

Hence we can conclude that distribution f2 gives a better description of English texts than dis-

tribution f1, at least for the corpus considered in this work.

Fig 9. Estimated probability density of β for fits with p� 0.05, in different length ranges.We have
divided both groups of accepted texts into 4 percentiles according to L. As in the previous figure, the normal
kernel smoothing method is applied. (a) For distribution f1. (b) For distribution f2.

doi:10.1371/journal.pone.0147073.g009
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We may speculate that the predominance of f2 in front of f1 (and in front of f3) may be a

peculiarity of the English language, caused by its poor inflectional morphology. Indeed, the dif-

ference between these distributions is in the lowest frequencies (mainly n = 1, n = 2. . .). Lan-

guages with a richer inflectional morphology should yield a larger proportion of low-frequency

words (in comparison to the other words) than English, favoring perhaps f1 in front of f2. This

analysis is left for future studies. Lemmatization of texts [6] would be very helpful to test this

speculation, but at present we cannot afford large-scale lemmatization.

Another conclusion is that distribution f3, first derived by Mandelbrot [40], is irrelevant for

the description of texts in this corpus. Finally, we have corroborated that the exponent β of

Zipf’s law certainly varies from text to text, as had been previously claimed using other

approaches for defining what Zipf’s law is [5, 6]. Interestingly, the value β = 2 originally pro-

posed by Zipf himself is among the most frequent ones.

We believe that our analysis constitutes a major advancement in the understanding of Zipf’s

law. It is astonishing how good the simplest one-parameter Zipf-like distributions perform on

such a large set of texts, particularly with the strict set of requirements we have imposed. This

is in sharp contrast for instance with Zipf’s law in demography [59] and in the distribution of

income [60], where the power law seems to be valid only for the tail corresponding to the larg-

est sizes, as it happens also for the distribution of word frequency in large text corpora, as men-

tioned above [2, 36–39].

Zipf’s law has been subject to much debate, and will probably continue to be so for many

years. Indeed, one can always cast doubt on its validity on the basis of some particular exam-

ples. Yet it seems clear to us that, in our modern times of big data and large computational

capabilities, more efforts should be put towards large-scale analysis of Zipf’s law. We hope this

paper constitutes a first step in this direction.

Appendix: Simulation of Discrete Zipf-like Distributions
As part of the testing procedure, we need simulated samples from f1, f2, and f3, which are dis-

crete distributions defined for n = a, a + 1, . . .. We will give the recipe of simulation for an arbi-

trary positive integer value of the lower cut-off a. It is simpler to start with f2, as this is used as

an auxiliary distribution in the simulation of the other two.

Fig 10. Mean value and standard deviation (represented by the shaded regions) of the distribution of
the Zipf’s exponent β as a function of text length L for distributions f1 and f2. Note that the last bin of f1
contains a single datapoint, and so its standard deviation is not defined.

doi:10.1371/journal.pone.0147073.g010
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Simulation of f2
Fixed a and given the parameter β, we want a set of random numbers whose complementary

cumulative distribution function is a discrete power law: S2(n) = (a/n)β−1. For that, we first gen-

erate a random number u from a uniform distribution in the interval (0, umax), with umax = 1/

aβ−1. The inversion method [56, 57] guarantees that if we take x = 1/u1/(β−1), the values of x

yield a continuous power law with Sc
2
ðxÞ ¼ ða=xÞb�1

, for x� a, where the superscript c distin-

guishes the continuous distribution from its discrete analogous one. So, taking n equal to the

integer part of x, i.e., n = int(x), yields a discrete distribution with S2(n) = (a/n)β−1, as desired.

This is so because, for any X, int(X)� n is equivalent to X� n for n integer. In a recipe:

1. generate u from a uniform distribution in (0, 1/aβ−1],

2. calculate x = 1/u1/(β−1),

3. take n = int(x).

By means of the so-called rejection method [56, 57], simulated integers distributed following

f2 can be used for the simulation of integers following f1 or f3. The key point to achieve a high

performance in the rejection method is to use a “good” auxiliary function, i.e., one that leads to

a low rejection rate. This is certainly the case in our framework, as explained below.

Simulation of f1
In this case, the steps are:

1. generate n from f2(n),

2. generate v from a uniform distribution in the unit interval,

3. n is accepted if

v � f1ðnÞ
f2ðnÞC

;

and rejected otherwise, where C is the rejection constant given by C = maxn � a{f1(n)/f2(n)}.

Note that the rejection method [56, 57] guarantees that the resulting (non-rejected) n will

be distributed according to f1.

It is easy to check that the maximum of f1/f2 is reached at n = a as this is a decreasing func-

tion [41]. The acceptance condition above can be simplified by taking τ = (1 + n−1)β−1, and b =

(1 + a−1)β−1, then, the condition becomes:

bvnðt� 1Þ � aðb� 1Þt;

which is devoid of the calculation of the Hurwitz-zeta function. This is a generalization for

a> 1 of the method of Ref. [56]. The choice of f2 as the auxiliary distribution function is justi-

fied by the small value that C takes, as this is the expected number of generated values of n until

we accept one. For instance, for β = 2 and a = 1 we get C = 1.2158.

Simulation of f3
Proceeding similarly, we get in this case low values of C = maxn � a{f3(n)/f2(n)} as well (we get

C = 2 in the limit β! 2 for a = 1). The maximum of f3(n)/f2(n) is numerically seen to be

reached at n = a. In summary, the steps are:

1. generate n from f2(n)
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2. generate v from a uniform distribution in the unit interval

3. n is accepted if

vf2ðnÞ � a 1� a

aþ 1

� �b�1
 !

Gðn� ðb� 1ÞÞ
Gðnþ 1Þ

GðaÞ
Gð1þ a� bÞ

and rejected otherwise.
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