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ABSTRACT

We survey the underlying theory behind the large-scale and linear scaling density functional theory code, CONQUEST, which shows excellent
parallel scaling and can be applied to thousands of atoms with diagonalization and millions of atoms with linear scaling. We give details of
the representation of the density matrix and the approach to finding the electronic ground state and discuss the implementation of molecular
dynamics with linear scaling. We give an overview of the performance of the code, focusing in particular on the parallel scaling, and provide
examples of recent developments and applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005074., s

I. INTRODUCTION

As computing power has increased and methods have become
more sophisticated, computational modeling of materials systems
has taken its place alongside experiment and theory in science.
Electronic structure methods give insight into bonding and elec-
tronic properties of systems, and density functional theory (DFT)
is now the de factomethod used in fields, such as diverse as physics,
chemistry, earth sciences, materials science, and biochemistry.1

However, almost all DFT calculations are focused on a rel-
atively small system size of a few hundred atoms (while feasible,
calculations involving more than a thousand atoms are still consid-
ered expensive). This size limitation mainly comes from the cost and

scaling of standard DFT implementations (asymptotically, the com-
puter time required scales with the cube of the number of atoms in
the system, while the memory scales with the square of the number
of atoms).

The use of increasingly large numbers of computational
cores is one route to larger scale DFT calculations. Indeed, high-
performance computing centers have recently scaled to tens of thou-
sands and hundreds of thousands of cores and exascale computing
is scheduled to arrive in the next few years. However, efficient use of
systems of this size requires care to ensure that the parallel scaling
of any given code remains efficient as the number of cores becomes
large. A real-space formulation and the use of local basis functions
to represent the Kohn–Sham (KS) eigenstates can help with the
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parallel efficiency of the code and enables calculations on larger sys-
tems, often with several thousand atoms.2–10 Moreover, there is no
inherent reason why DFT implementations should scale with the
cube of the system size;11 in fact, with local basis functions, DFT can
be formulated in a linear scaling approach.12,13

The use of a few hundred atoms in a calculation potentially
introduces many approximations and, in some cases, errors. There
are systems where larger scale calculations are necessary to model
the properties correctly. Features with dimensions in nanometres or
more or features with strain fields over nanometres will be seriously
restricted by a small calculation as the strain will not be fully relaxed.
Dilute alloys can change their properties if the concentration is
incorrect (for instance, the metal–insulator transition in doped sil-
icon occurs at around 2 × 1019 dopants per cubic centimetre or
one dopant per 50 000 silicon atoms). Calculations on biomolecules
often use a small quantum mechanical (QM) region embedded into
a larger forcefield (or molecular mechanics, MM) region, and it has
been shown14 that the size and choice of the QM region affect the
results strongly, with sizes of at least 500 atoms being required.
While accurate forcefields are available and new approaches to the
fitting of forcefields are being developed, simulations requiring the
electronic structure or bond making and breaking must use DFT or
a related approach.

CONQUEST is a large-scale and linear scaling DFT code, which
is designed to scale efficiently in parallel and to be applicable to
systems with thousands of atoms with full diagonalization for the
ground state and to systems withmillions of atoms with a linear scal-
ing solution of the ground state. It has recently been released under
an open-source MIT license,15 and in this paper, we describe the
implementation of the code and various recent applications.We first
describe the approaches to representing the density matrix and find-
ing the electronic ground state and then consider how eigenvectors
can be calculated for systems large enough to require linear scal-
ing. We also discuss the calculation of exact exchange (EXX) with
linear scaling. We then turn to the movement of atoms consider-
ing, in particular, the calculation of stress and the implementation
of molecular dynamics (MD), both with reference to linear scaling.
After presenting the performance of CONQUEST for various systems,
we then illustrate several applications withmany thousands of atoms
before concluding.

II. METHODS: ELECTRONIC STRUCTURE

A. Pseudopotentials and pseudo-atomic orbitals

The default pseudopotential format used in CONQUEST is the opti-
mized norm-conserving Vanderbilt pseudopotential (ONCVPSP)
developed by Hamann16 from Vanderbilt’s approach.17 This
approach has been used to generate two libraries covering most of
the periodic table: PseudoDojo18 and SG15.19 Both of these libraries
give very good values using the Delta comparison to all-electron
results,20 with PseudoDojo showing an accuracy comparable to the
best PAW (projector augmented wave) results (when using a fully
converged plane wave basis set).

This approach to pseudopotential generation is focused on
accuracy and, as a consequence, includes semi-core states for many
elements beyond the third row of the periodic table, as well as par-
tial core corrections21 in many cases. The spacing of the real-space

integration grid required for these pseudopotentials may be finer
than that other approaches would give. CONQUEST is also compatible
with pseudopotentials in the Troullier–Martins form as generated by
SIESTA, which are less stringent and thus less expensive.

As is common for local orbital approaches, we use a neutral
atom approach22 where the local part of the pseudopotential and a
(neutral) atomic density cancel out each other at large distances from
the atom; among other things, this removes the need for an Ewald
sum for the ion–ion energies. However, it has been shown23 that the
resulting potential can be deep and require a fine integration grid
for convergence. To alleviate this problem, we have implemented the
neutral atom projector approach23 and will report detailed testing in
a future publication.

CONQUEST can use pseudo-atomic orbitals (PAOs) as basis func-
tions to represent the support functions (discussed in Sec. II B
below), while the valence orbitals also serve to generate the atomic
density. We generate the PAOs24 by solving the Schrödinger equa-
tion for an isolated, confined atom with a pseudopotential. The basis
sets are formed from valence orbitals (with a given number of func-
tions, or zetas, for each angular momentum, each with its own con-
finement) and polarization functions (typically with lv + 1, where lv
is the angular momentum of the highest occupied state, and a given
different number of functions to the valence states).

The confinement is equivalent to a hard wall and can be applied
either as a radial cutoff or an energy shift for the orbital, which gen-
erates a different radius for each orbital. The default basis sets in
CONQUEST are generated either with the same radial cutoffs for all
shells or with the same energy shifts. For the energy shifts, we use
a tight confinement (a shift of 2 eV) and a loose confinement (a
shift of 0.02 eV) to generate two zeta functions, with a third gen-
erated when needed using the average radius of the first two. The
uniform radial confinement is found as the average of the radii for all
valence functions with the large or small energy confinement, with
the third radius again found as an average. Semi-core states only use
one function with a loose confinement (in this case, the orbital is
strongly confined so that even a very small energy shift gives good
results).

We have tested our default basis sets [single zeta with polar-
ization (SZP), double zeta with polarization (DZP), and triple zeta
with triple polarization (TZTP)] against converged plane wave cal-
culations using the same pseudopotentials.24 We used a wide variety
of systems: elemental semiconductors (C, Si, and Ge), oxides (SiO2

in both α-quartz and stishovite phases, MgO, SrTiO3, PbTiO3, and
MgSiO3), non-magnetic bcc Fe, and weakly bonded systems (ice XI
and BN sheets). In all cases, we showed that the TZTP basis sets
reproduced the converged plane wave results with excellent accu-
racy: better than 1% in bulk modulus and 0.1% of the lattice constant
for a variety of bulk systems (for full details, see Ref. 24).

B. Representing the density matrix

CONQUEST uses the densitymatrix as the fundamental description
of the system being modelled (in contrast to the wavefunctions as is
common in many DFT codes). The density matrix is represented in
terms of support functions,25,26 ϕiα(r), where i indexes the atom and
α is the function on the atom, and can be written as

ρ(r, r′) = ∑
iα,jβ

ϕiα(r)Kiα,jβϕjβ(r′). (1)
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(Note that the density matrix can easily be written in terms of the
wavefunctions when these are available or found by linear scal-
ing optimization, as described in Sec. II C. Note also that, while
we assume a non-spin-polarized calculation here, the extension to
spin polarization is straight-forward and has been implemented in
CONQUEST.)

The support functions are local functions that move with the
atoms and are strictly localized within a sphere. They are used to
form the Hamiltonian and overlap matrices and to represent the
density matrix,

Hiα,jβ = ∫ drϕiα(r)Ĥϕjβ(r). (2)

The support functions themselves are defined either as primi-
tive PAOs (in a one-to-one mapping) or are represented in terms of
one of two basis sets: the PAOs or blip functions.27 We write

ϕiα(r) =∑
s

biαsθs(r), (3)

where the basis functions θs(r) (either pseudo-atomic orbitals or
cubic B-splines) are discussed further below.

1. Multi-site support functions

Since the primitive PAOs are localized around the atoms, we
can use them as support functions without any modifications, and
a large PAO basis set gives high accuracy, as shown in Sec. II A.
However, the computational cost of calculations scales with the cube
of the number of support functions. For large-scale calculations, we
need to reduce the number of support functions as much as possible.
We note that there is a strong link between the basis set chosen and
the number of support functions that can be used.28

Multi-site support functions (MSSFs)29,30 offer one way to
reduce the number of support functions. TheMSSFs are constructed
as linear combinations of the PAOs not only on the target atom but
also on its neighboring atoms, defined by a cutoff radius rMS,

ϕiα(r) = i,neighbours

∑
k

∑
μ∈k

Ciα,kμχkμ(r), (4)

where χkμ is a PAO on atom k, α is the index of the support func-
tions of atom i, μ is the index of the PAOs of its neighboring atoms k
(including i itself), andCiα ,kμ are the linear combination coefficients.
Since the MSSFs are no longer atomic orbitals but local molecular
orbital (MO)-like functions, the number of MSSFs can be equal to
that of a minimal basis.

In CONQUEST, twomethods have been implemented to determine
the linear-combination coefficients of the MSSFs. One of the meth-
ods is the local-filter-diagonalization (LFD) method proposed by
Rayson and Briddon,5,29,31 and the other is numerical optimisation,30

which will be explained in Sec. II C. In the LFDmethod, as shown in
Eq. (5), the coefficients C for each atom are found by diagonalizing a
subspace Hamiltonianmatrix defined by a cluster of radius rLFD cen-
tered on the atom constructed with PAOs; the coefficients, Csub, for
the resulting eigenstates, or local molecular orbitals, are projected
onto trial support functions, t, localized on the target atom,

C = Csubf (ϵsub)CT
subSsubt, (5)

FIG. 1. Difference of total energy per atom (eV) with MSSFs from the full primitive
PAO result with respect to the multi-site range rMS. The local diagonalization range
rLFD was set to be equal to rMS. The circles and squares correspond to bulk Si and
Al. Data taken with permission from A. Nakata, D. R. Bowler, and T. Miyazaki,
J. Chem. Theory Comput. 10, 4813 (2014). Copyright 2014 American Chemical
Society.

where Ssub is the overlap matrix and f (ϵsub) is a Fermi function
with a local Fermi level ϵsub used to exclude high energy unoc-
cupied local molecular orbitals. Since the MSSFs will depend on
the charge density of the system, which will in turn depend on
the MSSFs, the linear-combination coefficients need to be deter-
mined self-consistently.29 rMS should be equal to or smaller than the
subspace region in the LFD method rLFD.

The accuracy of the MSSFs depends on rMS. In Fig. 1, we see
that the deviation from the full, unrestricted, primitive PAO result
decreases exponentially not only in a gapped system (bulk Si) but
also in a metallic system (bulk Al). The number of MSSFs per atom
is four, while that of the TZP PAOs is 17 in both Si and Al, giving a
fourfold reduction in number and a significant speed-up. An exam-
ple of the computational time with the MSSFs is demonstrated in
Sec. IV A.

2. On-site support functions

When using a linear scaling solver, as described in Sec. II C,
we require a sparse approximation to the inverse overlap matrix to
act as a metric.32 We have found that multiple zeta basis sets and
multi-site support functions are not compatible with our standard
linear-scaling method for finding this inverse overlap (Hotelling’s
method). The reasons for this failure are not yet clear and are under
investigation but are most likely to arise from the assumed sparsity
pattern of the matrix and the starting value used.33 As a result, we
have been limited in the basis sets that can be used for linear scaling.
Blip functions, which will be discussed in Sec. II B 3, offer a route to
an accurate linear scaling basis set; however, PAOs are often conve-
nient and efficient, and a restriction to SZ or SZP PAO basis sets is
limiting.

We have found recently, however, that an adaptation of the
MSSF approach allows linear scaling solution for a sparse inverse
overlap matrix while retaining accurate basis sets: on-site support
functions (OSSFs). We restrict the PAOs forming the support func-
tions for an atom i to its own PAOs; however, we must be careful to

J. Chem. Phys. 152, 164112 (2020); doi: 10.1063/5.0005074 152, 164112-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

respect any symmetry of the atomic lattice so that the space spanned
by the support functions of the atoms decomposes into complete
irreducible representations of the symmetry group.28 The simplest
way to ensure that this is respected is to increase the number of sup-
port functions such that it encompasses all angular momenta of the
PAOs (e.g., for PAOs including l = 0 → 2, we would need nine SFs,
while for PAOs only including l = 0 and l = 2, we would need six
SFs).

This approach bears some similarity to the polarized atomic
orbital method34,35 although that method imposes no restrictions
on the number of functions and uses a different approach to find
the orbital coefficients. In our approach, we use the LFD method
described in Sec. II B 1 using a trial vector, which is extended to
include the polarization orbitals. We find that the resulting support
functions can be inverted efficiently (interestingly, it is often more
efficient than a simple SZP PAO basis set).

When using OSSF with linear scaling, we are still investigat-
ing the most efficient approach for finding the ground state; this
involves optimizing the density matrix, the OSSF coefficients, and
the charge density. Introducing self-consistency between the OSSF
coefficients and the charge density is straightforward, but in a naive
loop would add considerably to the computational time. Optimizing
the energy with respect to the OSSF coefficients is also straightfor-
ward, but the most efficient approach (i.e., when to update which
parts of the optimization) requires further research.

The basis sets found using OSSFs are significantly better than
the simple SZP PAO basis set, as shown in Fig. 2. Here, we see that,
for a slightly disturbed eight atom bulk silicon cell, as the LFD range
is progressively increased, the rate of convergence of the density
matrix optimization improves. The quality of the resulting approx-
imate inverse overlap matrix is also improved, and the energy and
forces on the atoms are significantly better with the OSSF basis sets.
We show results for different basis sets in Table I: primitive PAOs
(SZP, DZP, and TZTP), MSSF for different ranges, and OSSFs. The
MSSF and OSSF calculations do not update the SF coefficients after
finding self-consistency; for MSSFs, the LFD range is set to 15 bohrs

FIG. 2. Convergence of linear scaling density matrix optimization for different basis
sets: SZP and OSSF with different LFD ranges. The system considered is an eight
atom bulk silicon cell, slightly disturbed from the perfect crystal structure.

TABLE I. Comparison of different basis sets for an eight atom bulk silicon cell slightly
disturbed from the perfect crystal structure. Primitive basis sets have 9, 13, and 27
support functions, respectively; MSSFs have four support functions and a LFD range
of 15 bohrs and OSSFs have nine support functions. MSSFs and OSSFs are not
updated after the initial calculation of the coefficients. The range on the density matrix
for the O(N) calculations was 16 bohrs.

Energy Force Time relative
Basis (hartree) (hartree/bohr) to TZTP

SZP −33.714 −0.001 70 0.12
DZP −33.819 −0.001 51 0.23
TZTP −33.838 −0.001 45 1.00

MSSF 5 bohrs −33.800 −0.001 54 0.68
MSSF 8 bohrs −33.821 −0.001 43 0.73
MSSF 10 bohrs −33.818 −0.001 43 0.73
MSSF 12 bohrs −33.828 −0.001 44 0.81

OSSF 8 bohrs −33.625 −0.001 62 0.63
OSSF 10 bohrs −33.813 −0.001 42 0.63
OSSF 12 bohrs −33.812 −0.001 42 0.60
OSSF 15 bohrs −33.820 −0.001 42 0.86

OSSFO(N) 8 bohrs −33.605 −0.001 74 4.20
OSSFO(N) 10 bohrs −33.784 −0.001 54 3.68
OSSFO(N) 12 bohrs −33.782 −0.001 54 2.87
OSSFO(N) 15 bohrs −33.792 −0.001 54 2.47

throughout. Note that the energy is not variational with respect to
the radius in this simple process, although with optimization (as
described in Sec. II C 3), it will be variational.

As seen in Fig. 2, it is evident that the OSSFs give a significant
improvement to the performance of the linear scaling solver, and
from Table I, we can see that they are comparable to the MSSFs for
the accuracy of forces and the timing. Most notably, we see that with
the OSSF found with the LFD radius set to 15 bohrs, the linear scal-
ing solver is only 2 times slower than diagonalization with the full
TZTP basis set and 8 times slower than the DZP basis set. This per-
formance difference is expected for such a small system where lin-
ear scaling solvers are less efficient than diagonalization and related
solvers. However, it suggests that the choice of basis functions is
important in implementing linear scaling. We note that the quality
of both OSSF and MSSF basis sets would be improved by the opti-
mization of the coefficients, as described in Sec. II C 3, but even with
these simple approximations, good performance is achieved.

3. Blip functions

While PAOs are a convenient basis set, they do not permit sys-
tematic convergence of the energy with respect to the basis: while
adding extra basis functions will increase the size of the variational
space and lower the energy, there are two parameters that offer dif-
ferent degrees of freedom (maximum angular momentum and the
number of radial functions, or zetas, per angular momentum chan-
nel), and there are no guarantees of how adding to each parameter
will change the energy.
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The blip functions,27 which are piecewise continuous cubic
splines defined on a cubic grid that moves with the atoms, are a
basis set that can be systematically converged. The blip grid spac-
ing corresponds directly to a plane wave cutoff, allowing the basis
set to be improved systematically (of course, the support functions
are confined within a radius, but it has been shown that the total
energy converges variationally and rapidly with this radius27,36). The
most efficient procedure for initialization and optimization of the
blip coefficients along with the charge density and for linear scaling
approaches to finding the density matrix is the subject of on-going
research.

C. Solving for the ground state

The ground state electronic structure in CONQUEST is defined by
three related quantities: the support functions, the density matrix,
and self-consistency between the charge density and the Kohn–
Sham potential. The self-consistency procedure is a standard part of
DFT and related codes,37 and we implement the Pulay approach,38

which works efficiently.
While the overall search for the ground state could be con-

sidered as an optimization in a space formed by both the support
function coefficients and the density matrix elements, it is easier
to consider how the density matrix is found for a given set of
support functions and then to discuss methods for optimizing the
energy with respect to the support function coefficients. We con-
sider first the two approaches to solving for the density matrix:
exact diagonalisation,39 which scales cubically but makes no approx-
imations, and linear scaling, which imposes a range on the density
matrix.

1. Density matrix: Exact diagonalization

We perform diagonalization of the Hamiltonian using ScaLA-
PACK40 and are also investigating the use of ELPA41 (which uses the
same interface and may scale better to large numbers of processes).

Since we apply periodic boundary conditions to our simula-
tion cell, the Brillouin zone must be sampled appropriately; we have
implemented the Monkhorst–Pack42 sampling method as a default
approach to Brillouin zone sampling, but any arbitrary set of k-
points can be used. (At present, we do not account for the sym-
metry of the simulation cell beyond time-reversal symmetry, as the
code is designed for large-scale simulations that are unlikely to show
significant symmetries.)

The Kohn–Sham eigenstates are represented in terms of the
support functions, with the density matrix found as

∣ ψnk⟩ =∑
iα

c
nk
iα ∣ ϕiα⟩, (6)

Kiα,jβ =∑
nk

fnkwkc
nk
iα (cnkjβ )⋆, (7)

where the weight of each k-point is given as wk and the occupancy
of the eigenstate is f nk (which is found using a simple Fermi–Dirac
distribution or the Methfessel–Paxton43 approach). The diagonal-
ization at each k-point can be assigned to a sub-group of pro-
cesses, enabling a calculation using many k-points to be sped up
significantly.

2. Density matrix: Linear scaling

To achieve linear scaling in computational time with the sys-
tem size, we restrict the range of the density matrix (the range of a
matrix Aiα ,jβ = 0 is defined in terms of the distance between atoms i
and j, Rij = ∣Ri − Rj∣, and is restricted by setting matrix elements to
zero when Rij is greater than a cutoff distance Rc), and optimize the
band energy, Eband = 2 Tr[KH], with respect to the density matrix
elements. When this approach is coupled with strictly local basis
functions, all matrices are sparse and all matrix operations scale
linearly with the system size.

During the optimization, we must constrain the electron num-
ber (a relatively straightforward task25) and also the idempotency of
the density matrix (a much more complex task in a variational con-
text). We follow the LNV (Li, Nunes, Vanderbilt) approach where
we write the density matrix K in terms of an auxiliary density matrix
L using the McWeeny transform,

K = 3LSL − 2LSLSL. (8)

This drives the density matrix, K, toward idempotency (strictly,
it is driven toward weak idempotency, where the eigenvalues lie
between zero and one, but may not be exactly zero and one). If,
as above, we write E = Tr[KH], then we can use the gradient
∂E/∂Liα ,jβ to minimize the energy with respect to the density matrix,
and the density matrix K will be driven toward idempotency as
the minimization proceeds. Here, the range of K is the same as
the range of the Hamiltonian (which is naturally sparse); it is L
whose range is restricted and this range sets the accuracy of the
calculation.

The initial density matrix is generated from the Hamilto-
nian using an iterative procedure based on a generalization of the
McWeeny transform.46,47 We use an approximate, sparse inverse
overlap matrix as the metric for the optimization, found using the
iterative Hotelling method. As discussed in Sec. II B, this has cer-
tain consequences for the basis sets that can be used, but both
OSSF and blip basis sets are promising for accurate, linear scaling
calculations.

3. Optimizing support functions

As mentioned in Sec. II B, we can construct support functions
by taking linear combinations of PAOs (MSSFs or OSSFs) or blips.
The linear combination coefficients can be optimized numerically by
minimizing the DFT total energy with respect to the coefficients.30

For MSSFs and OSSFs, the coefficients obtained by the LFD method
generally form good initial values for the numerical optimization.
The initial blip coefficients are found as a best fit to PAOs. In this sec-
tion, we demonstrate optimization of SF coefficients for the MSSFs,
although the formalism is identical for the other approaches. We
note that these optimization processes are liable to ill-conditioning,
which can be mitigated.48

Figure 3 shows the energy–volume (E–V) curves of bulk Si30

calculated with simple LFD (filled symbols) and optimization of
the MSSF coefficients (open symbols). The number of MSSFs per
atom is four, while that of the primitive TZDP (3s3p2d) PAOs is
22. Table II summarizes the lattice constant a0 obtained by fitting
the E–V curves with the Birch–Murnaghan equation. The results are
improved, i.e., becoming closer to the results of the primitive PAOs,
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FIG. 3. Energy–volume curves of bulk Si demonstrating the effect of optimizing
MSSF coefficients after the initial LFD process. Symbols correspond to the calcu-
lated energies by primitive TZDP PAOs and MSSFs with multi-site ranges (rMS)
17.0 bohrs, 8.0 bohrs, and 5.0 bohrs using the LFD method (filled symbols) and
numerical optimization (open symbols). The local filter diagonalization range rLFD

was set to be equal to rMS. Adapted with permission from A. Nakata, D. R. Bowler,
and T. Miyazaki, Phys. Chem. Chem. Phys. 17, 31427 (2015). Copyright 2015
PCCP Owner Societies.

by the numerical optimization in all cases. When rMS is large, e.g.,
17.0 bohrs, since the MSSFs found with LFD give accurate results,
the change from numerical optimization is small. When rMS is 8.0
bohrs, the difference with and without the numerical optimization
is significantly larger, but both LFD and the numerical optimiza-
tion show reasonable accuracy. On the other hand, when rMS is as
small as 5.0 bohrs, the result with the LFD method is not accurate,
with a 1% deviation from the full TZDP result, but we find signif-
icant improvement of the accuracy from numerical optimization,
reducing the percentage deviation to 0.2%.

TABLE II. Lattice constants a0 of bulk Si calculated with MSSFs with ranges rMS of
5.0 bohrs, 8.0 bohrs, and 17.0 bohrs and percent deviations (%D) from a0 calculated
with the primitive TZDP PAOs.

a0 %D

rMS LFD Opt LFD Opt

5.0 5.447 5.406 1.0 0.2
8.0 5.403 5.400 0.2 0.1
17.0 5.393 5.395 0.0 0.0

TZDP 5.395 . . .

D. Electronic structure for large systems

Linear scaling, or O(N), calculations that work with the den-
sity matrix implicitly integrate over energy and produce only the
sum of the occupied eigenvalues and not any of the Kohn–Sham
eigenstates of the system. However, we often want to know indi-
vidual eigenstates to analyze the electronic structure of the system,
although generally within a relatively small energy range. These can
be found efficiently from the converged ground-state Hamiltonian
by using the Sakurai–Sugiura (SS) method.49 The SS method50,51 is
an efficient interior eigenproblem solver for large sparse matrices
using contour integrals in the complex plane, which provides the
eigenvalues and eigenvectors in a finite eigenvalue range with high
parallel efficiency. We use the SS method as it is much more scalable
in parallel than other approaches, such as shift-and-invert Lanczos.52

Wefirst optimize the electronic Hamiltonian with theO(N)method
in CONQUEST and then obtain the eigenstates of the Hamiltonian in
a finite energy window with a one-shot SS calculation. Here, we
demonstrate the usefulness of the combination of the O(N) and SS
methods by showing two examples.

The first example is the energy-specific electron-density distri-
bution in a hut-shaped Ge cluster on the Si(001) surface consisting
of 23 737 atoms (the physical system is described in more detail
in Sec. V A). Figure 4 shows the electron density distribution in
the energy range [−0.01 eV: + 0.02 eV] around the Fermi level,
obtained by calculating the Kohn–Sham eigenvectors in this range
with the SS method. The calculation for the eigenvalues and eigen-
vectors required 146 s using 64 nodes of the K supercomputer. We
also calculated the eigenstates in the same energy range for a larger
Ge/Si(001) system, consisting of 194 573 atoms, in 2399 s using 6400
nodes. (Note that the times quoted are just for the SS eigensolu-
tions, which are performed as post-processing calculations using the
output from CONQUEST.)

The second example is the density of states (DOS) of a DNA
system in water, which consists of 3439 atoms. The DOS calculated
with MSSFs (see Sec. II B 1) (4774 functions) and primitive PAOs
(27 883 functions) and their difference are shown in Fig. 5. The DOS
from the MSSFs is very close to the full primitive PAO DOS in the
occupied states and in the unoccupied states near the Fermi level,
while the DOS in the unoccupied states far from Fermi level are quite
different. This is because the MSSFs are determined by optimizing
the occupied states with a small number of support functions, and
the accuracy of theMSSFs for unoccupied states often becomes poor.
To improve this poor description, we can use the SS method. First,
we optimize the electronic density of the target system using MSSFs,
and we re-construct the electronic Hamiltonian using the primitive
PAOs with the optimized density. Then, we use the SS method to

FIG. 4. Electronic density distributions (blue) of the Ge hut clusters (light gray) on
the Si(001) (dark gray) (totally 23 737 atoms) around the Fermi level. Reprinted
with permission from Nakata et al., J. Chem. Theory Comput. 13, 4146 (2017).
Copyright 2017 American Chemical Society.
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FIG. 5. Density of states of hydrated DNA obtained with (a) multi-site support functions (MSSFs) with multi-site range 8.0 bohrs (blue) and DZP PAOs using MSSF charge
density (red) and (b) DZP PAOs using DZP SCF charge density (black). The difference of (a) MSSF (blue) and DZP with the MSSF density (red) from (b) DZP is also shown in
(c). The eigenstates in (a) and (b) were obtained by using the SS method. Reprinted with permission from Nakata et al., J. Chem. Theory Comput. 13, 4146 (2017). Copyright
2017 American Chemical Society.

obtain the eigenstates. Thus, we can obtain the DOS even in unoc-
cupied states far from the Fermi level quite accurately, as shown in
Fig. 5.

E. Exact exchange

Exact exchange (EXX) correction to the original Kohn–Sham
formulation of DFT, leading to the class of hybrid exchange-
correlation functionals, has become very popular, since in the vast
majority of cases, it improves the overall reliability of the DFT
predictions. Depending on the implementation—mainly basis set
and boundary conditions—orbital dependence is introduced to the
KS-DFT formalism via the EXX energy standard expression,

Ex = −
1
4 ∫ drdr′

ρ(r, r′)ρ(r′, r)∣r − r′∣
= −∑

n,m
∫ drdr′

ψ∗m(r)ψ∗n (r′)ψn(r)ψm(r′)∣r − r′∣ , (9)

where {ψn} is the set of N occupied KS states, and can bring the
computational cost to a prohibitive level more rapidly than the
pure local-density approximation (LDA)/GGA (generalized gradi-
ent approximation) DFT when increasing the system size. Within
the framework of CONQUEST, where the density matrix of Eq. (9) is
expanded onto a set of M localized and real basis functions, the
exchange energy reads Ex = −Tr{KX}, with the exchange matrix
(X) elements given by

Xiα,jβ = ∑
kμ,lν
∫ drdr′

ρiα,kμ(r)Kkμ,lνρlν,jβ(r′)∣r − r′∣
= ∑

kμ,lν
∫ drdr′

ϕiα(r)ϕkμ(r)Kkμ,lνϕlν(r′)ϕjβ(r′)∣r − r′∣ . (10)

As a result, calculation of X requires to evaluate at most M4 elec-
tron repulsion integrals (ERIs) defined by the integrand of Eq. (10).
The first equality in the equation above outlines the fact that eval-
uating an ERI is similar to computing the Hartree energy, with in

place of the full electronic density localized pair densities (ρiα ,kμ,
ρlν ,jβ) coupled by the density matrix elements Kkμ , lν. Consequently,
ERI calculation can be performed by solving a Poisson equation into
a predefined local cell. Note that, contrary to the Hartree energy,
the solution of this equation should be free of periodic boundary
conditions.

When dealing with a numerical basis set, such as the PAOs, sev-
eral options to compute the ERIs are available, with, for instance,
the semi-analytic solution given by Toyoda and Ozaki53,54 com-
bining the fast-spherical Bessel transform for the radial integration
and a more traditional analytic method for the spherical harmonic
part. Another approach is based on the experience of Gaussian-type
orbital (GTO) ERI solvers.55 In that case, the PAO-ERIs are trans-
formed into a set of contracted GTO-ERIs, which are then calculated
analytically.56,57 Instead, we use a route that circumvents the calcu-
lation of the ERIs and works for any smooth finite-range functions,
which is particularly well suited for O(N) approaches based on the
pseudopotential approximation. The key part is to perform the sum
over the index lν before solving for the Coulomb potential of the pair
densities; this simple re-ordering increases the efficiency of the pro-
cedure markedly. For this, we introduce the contraction functions,
Φkμ(r

′), as

Φkμ(r′) =∑
lν

Kkμ,lνϕlν(r′). (11)

It should be noted that the domain over which these functions are
defined requires some care.58 The sum over lν needs only to include
those support functions ϕlν overlapping with ϕjβ, asΦkμ will be mul-
tiplied by this function. Contracted densities are then defined as

ρ̄kμ,jβ(r′) = Φkμ(r′)ϕjβ(r′), (12)

and the resulting Coulomb potential,

v̄kμ,jβ(r) = ∫ dr′
ρ̄kμ,jβ(r′)∣r − r′∣ , (13)
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is calculated by solving Poisson’s equation. Once the potential has
been found, a further contraction over kμ is performed to create

Ωjβ(r) =∑
k

v̄kμ,jβ(r)ϕkμ(r), (14)

where, again, the sum over support functions kμ needs only to
include those functions that overlap with functions iα. The exchange
matrix elements are then calculated by numerical integration,

Xiα,jβ = ∫ drϕiα(r)Ωjβ(r). (15)

The process—from Eqs. (11)–(15)—by which the EXX is calculated
in CONQUEST will be referred to as the contraction reduction integral
(CRI). The set of function Ωjβ is effectively defined by the density
matrix range and the need for jβ to overlap with atoms lν, which
naturally controls the number of functions entering in the sums of
Eqs. (12) and (14). Note that the calculation time can be reduced
by imposing a range condition (RX) on the exchange matrix. This is
related to the sparsity property11 of ρ(r, r′) and the truncation of all
the operators involved in the Hamiltonian.25

Practical tests on the efficiency of this approach algorithm were
carried out on a set of isolated water clusters (H2O)n (n ≤ 20) with
fused cubes structures.59 Calculations of the exchange energy were
performed after the KS density matrix had been converged using the
standard self-consistent-field (SCF) method. As a result, the timings
presented below for exact exchange (EXX) energy can be compared
to a single SCF cycle, as found in the hybrid-DFT calculation. For
this demonstration, SZP PAO orbitals have been used for hydro-
gen and oxygen with cutoff radii of 4.7 a.u. and 3.8 a.u., respectively.
We emphasize that the main conclusions of this work can be easily
extended to more flexible basis sets as long as the support functions
are localized. The central processing unit (CPU) times used for the
computation of EXX are reported in Fig. 6 as a function of the num-
ber of atoms using (i) the explicit evaluation of the full set of ERI, (ii)
the CRI approach, and (iii) the CRI approach with partial storage of
the PAO on the grids. Comparing the formal scalings obtained for

FIG. 6. Comparison of CPU times necessary to compute EXX in isolated water
clusters as a function of number atoms (N) using the explicit ERI calculation and
the CRI method. Ideal N

4 and N
3 scalings are given by plain lines.

the CRI methods against the full ERI approach, it becomes clear that
the former reduces the quartic scaling to cubic with respect to the
size of the system.

At this point, we should emphasize that exchange energy values
obtained with the three schemes are fully identical, their accura-
cies being only dependent on the Poisson solver used to evaluate
the pair potential in Eq. (13). Among the various numerical meth-
ods, one can choose to evaluate the Coulomb potential in reciprocal
or real space. Whereas the former is the most appropriate for peri-
odic neutral systems—when the positively charged nuclei compen-
sate exactly the electronic charge density—it becomes less reliable for
isolated and/or charged systems.60 Several schemes have been devel-
oped to tackle this problem.61–64 Alternatives based on the discrete
variable representation (DVR) of Eq. (13), which avoids the direct
resolution of the Poisson equation, have been proposed.65 The den-
sity is generally expanded in a direct product of one-dimensional
localized real-space basis functions65–67 as, for instance, interpolat-
ing scaling functions (ISF). After extended comparisons between the
DVR-ISF developed by Genovese et al.68,69 and corrected FFT-based
schemes,70–72 we found that systematic convergence of the ERI is
obtained with a better accuracy and at a lower cost using the real
space Poisson solver.

As shown in Fig. 7, if a finite range RX is introduced within the
CRI algorithm, the CPU time can be significantly reduced, allow-
ing linear scaling to be achieved for clusters with more than 36
atoms (with RX = 7.0 au). Computational resources further decrease
with shorter EXX ranges along with faster onset of the linear-scaling
regime. The EXX accuracy with respect to the range of the exchange
matrix is shown in Fig. 8 for the cluster (H2O)20 presenting the
“boxkite” structure. After somewhat erratic behavior at low values,
it is found that an accuracy below 0.5 mhartree is reached for RX ≥ 8.
Even though the non-local nature of the EXX interaction may need
some special care when introducing a cutoff radius on X elements,
it is reasonable to believe that the CRI implementation, along with
a judicious choice of convergence parameters, is opening the way to
exact exchange calculations on 100 000+ atoms with CONQUEST for a
fair efficiency/accuracy ratio.

FIG. 7. Variation of the CPU time with respect to the range RX (in a.u.) for the
calculation of EXX in isolated water clusters using the CRI method.
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FIG. 8. Convergence of the EXX energy with respect to the exchange range RX

for the cluster (H2O)20. Error is given with respect to the exact calculation.

III. METHODS: MOVING ATOMS

A. Forces and stresses

Forces have been available in CONQUEST for some time, as
described elsewhere,73,74 with the force being the exact differential
of the energy, including Pulay forces where appropriate.

Calculation of the stress tensor has been recently implemented
within the current release of CONQUEST. The definition of the stress
tensor is standard,2

σαβ =
∂E

∂ϵαβ
=

∂E

∂rα
rβ, (16)

where α and β are Cartesian directions indices, and the second equal-
ity holds for most contributions to the stress. In this case, the first
term is the force, so most contributions to the stress tensor can be
calculated at the same time the forces are calculated. There are a few
exceptions to this, but they are easily evaluated.2,75

The original formulation of stress within DFT is traced back to
the pioneering work of Nielsen and Martin,76,77 where a formula-
tion for the stress was expressed for the first time in the framework

of the local-density approximation (LDA) and later derived in more
detail.78,79 We have chosen to omit the factor of 1

Ω in Eq. (16) since
it averages the total stress over the macroscopic simulation cell and
in a case where the volume Ω is not well defined would give spu-
rious results. Note that pressure, as calculated at present, uses the
volume of the simulation cell for the purpose of conversion, and if
there is vacuum in any direction, the pressure should not be con-
sidered accurate. For this reason, CONQUEST internally uses values of
stress to optimize simulation cells.

Stress is an extremely useful quantity: it is used to optimize
simulation cell parameters, although this requires care to converge
both the integration grid spacing and the numbers of k-points.
Additionally, it is used in the NPT ensemble formolecular dynamics.

Our implementation of stress is valid for both exact diago-
nalization and linear scaling solvers. However, we have found that
the stress converges extremely slowly with respect to density matrix
truncation. Figure 9 shows the convergence of force (i.e., energy dif-
ferences), total energy, and stress with density matrix truncation for
three different elemental semiconductors with very different gaps:
carbon, silicon, and germanium. Calculations were performed on
the diamond structure (with a small perturbation in the case of the
force calculation) at the optimal lattice parameter found using exact
diagonalization, with an integration grid spacing of 0.1 bohr radii
and an 8 × 8 × 8 Γ-centered Monkhorst–Pack grid. To aid compar-
ison between exact diagonalization and linear scaling calculations,
we used the simplest basis set, i.e., single zeta, although this does not
change the final results significantly. The plots show the difference
between the O(N) and full diagonalization results. The full diag-
onalization results for the stresses were all less than 0.001 hartree
(less than 0.1 GPa when converted to a pressure). For the forces,
the full diagonalization results were 0.036 hartree/bohr for C, 0.016
hartree/bohr for Si, and 0.014 hartree/bohr for Ge. The total ener-
gies were −47.891 hartree for C, −33.611 hartree for Si, and −39.589
hartree for Ge.

The spatial decay of the density matrix is not analytically
described for complex materials but can be shown to decay approx-
imately exponentially with gap,80–82

ρ(r, r′)∝ exp(−γ ∣ r − r′ ∣). (17)

We can see in Fig. 9 that the rates of convergence of the different
materials with density matrix truncation decrease with the decrease

FIG. 9. Plots of difference between the exact diagonalization result and O(N) result for (a) force, (b) total energy, and (c) stress (not normalized by the simulation cell volume)
for carbon (cross symbols), silicon (plus symbols), and germanium (diamond symbols).
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in gap size, as expected. It is notable that the initial errors are largest
for the stresses and that significant differences in the stress remain
even at very large density matrix ranges. We will investigate this
fully in a future publication, but we are confident that this comes
from the implicit dependence of energy on the density matrix trun-
cation range, which should be included in a stress calculation as it
will change as the unit cell is changed; however, an analytic form for
this stress is not available.

B. Structure optimization

Structural optimization can be performed using a variety of
standard approaches: the L-BFGS algorithm for atomic optimiza-
tion, conjugate gradients for atomic and simulation cell optimiza-
tion, and quenched molecular dynamics (both in a simple form
and using the FIRE algorithm83). We note that some form of pre-
conditioning will become increasingly important as system sizes
increase, and we are planning to implement some recently proposed
preconditioners.84,85

C. Molecular dynamics

Since the calculated forces are accurate and we can treat
large systems, it is reasonable to expect that we can perform reli-
able molecular dynamics of large complex systems using CONQUEST.
Unfortunately, it is not so easy to realize reliable MD simulations
with the linear-scaling DFT technique or with MSSF. We have two
key issues here. First, the calculation time for each MD step should
be small enough to reach a meaningful simulation time. Second,
density matrix should be sufficiently accurate to produce reliable
MD simulations. During structure optimization, we can refine the
accuracy step by step, without significant penalty. In many cases,
we need a rather high accuracy only in the later stages of structure
optimization. On the other hand, for MD simulations, we need
to calculate the density matrix accurately at every step to ensure
that the correct trajectory is followed. The accuracy of the density
matrix depends on the tolerance to which it is optimized. Here,
the optimized quantities are the auxiliary density matrix L in the
linear-scaling calculations and PAO coefficients of the support func-
tions in the MSSF method. Hereafter, we focus on the linear-scaling
calculations.

For efficiency, we need a good initial guess of the L matrix at
each MD step, and the simplest way, which should be efficient, is to
use the L matrix optimized at the previous step. However, as is well
known, this breaks the time-reversibility of the dynamics, resulting
in a “drift” in the constant of motion over time.86 Figure 10 shows
the Born–Oppenheimer total energy (EBO), defined as the sum of
the ionic kinetic energy T and the DFT total energy VBO, for linear-
scaling MD simulations of a 64-atom silicon crystalline system with
different tolerances on the optimization of the L matrix. The simu-
lations are performed with the velocity-Verlet integrator with a time
step of 0.5 fs in a microcanonical (NVE) ensemble with initial veloc-
ities set so that the system temperature is 300 K. The symbols in
the figure show the time evolution of EBO, which should be con-
stant in reliable NVE-MD simulations. The results show that we
need a very strict tolerance for stable MD simulations. Note that,
if we use McWeeny initialization at every MD step (shown by the
solid line in Fig. 10), EBO is almost constant even if we use a rough

FIG. 10. Time evolution of the Born–Oppenheimer total energy (EBO) obtained by
McWeeny initialization at every step (solid line) and by reusing the L matrix from
the previous step for different tolerances (symbols). Symbols indicate tolerances of
1.6 × 10−5 (circles), 1.6 × 10−7 (squares), and 1.6 × 10−9 (triangles). Reprinted
with permission from M. Arita, D. R. Bowler, and T. Miyazaki, J. Chem. Theory
Comput. 10, 5419 (2014). Copyright 2014 American Chemical Society.

tolerance. However, this leads to a high computational cost at each
iteration.

To solve this problem, CONQUEST uses the XLBOMDmethod86–88

with the density matrix minimization (DMM) method. The
extended Lagrangian used in CONQUEST is89

L
XBO(X, Ẋ,R, Ṙ) = LBO(R, Ṙ) + 1

2
μTr[Ẋ2]

−
1
2
μω2Tr[(LS −X)2], (18)

where S is the overlapmatrix andX is a sparsematrix associated with
LS rather than L to maintain the orthogonal metric. μ is the fictitious
electronic mass and ω is the curvature of the electronic harmonic
potential. If we take the limit μ→ 0, LXBO becomes LBO and we have
equations of motion for nuclear positions and X, and for X,

Ẍ = ω2(LS −X). (19)

If we apply the Verlet scheme to calculate X, we have

X(t + δt) = 2X(t) −X(t − δt) + δt2ω2∥L(t)S(t) −X(t)∥,
i.e., the trajectory of X(t) is time-reversible and evolves in a har-
monic potential centered on the ground-state density L(t)S(t). The
matrix XS−1 is then used as the initial guess for the L-matrix.

If we use this method, the total energy EBO is stable and the
MD trajectories do not strongly depend on the tolerance or the
range RL in the O(N) calculations.89 Figure 11 shows the varia-
tion of the total energy EBO with the simulation time for different
values of RL. The fluctuations in the energy are smaller for larger
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FIG. 11. Variation of EBO during the NVE MD simulation of crystalline Si, with
RL = 13 bohrs (top), 16 bohrs (middle), and 20 bohrs (bottom). Reprinted with
permission from M. Arita, D. R. Bowler, and T. Miyazaki, J. Chem. Theory Comput.
10, 5419 (2014). Copyright 2014 American Chemical Society.

RL, but even with RL = 13 bohrs, the energy drift in EBO is very small,
meaning that the MD simulation is stable.

In practice, the X-matrix sometimes moves away from the har-
monic center over time, increasing the number of SCF iterations
required to reach the ground state over the course of a simulation.
To remove this instability, the dissipative term, a∑M

m=0 cmX(t−mδt),
is included.90 In principle, this dissipation term may break the time-
reversible symmetry, but it is made to have a minimal effect and it is
found that the MD simulations with the term is stable.

Using this XLBOMD + DMM method, we can also treat the
canonical ensemble and perform constant temperature (NVT) MD

simulations, for example, using the Nosé–Hoover chain (NHC)
method.91 The detailed explanation of the integration scheme used
for the canonical ensemble is provided in Subsection 2 a of the
Appendix. Figure 12 shows the time evolution of the tempera-
ture, the constant of motion for the NHC method, and the DFT

FIG. 12. Time evolution of the MD simulations of 64-atom Si crystalline systems
in the canonical ensemble for (a) temperature, (b) constant of motion for the NHC
method, and (c) the potential energy (VBO). The results with the XLBOMD method
and those without using the XLBOMD method, referred to as DMM-BOMD, are
compared. Reproduced with permission from Hirakawa et al., J. Phys.: Condens.
Matter 29, 405901 (2017). Copyright 2017 IOP Publishing.
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potential energy VBO in NVT-MD simulations of the same crys-
talline 64-atom silicon system at 300 K with and without the
XLBOMDmethod.We find that temperatures are stable and close to
300 K in both simulations. However, we again observe the problem
of drift in the constant of motion when we do not use the XLBOMD
method, while there are no such problems in the XLBOMD
+ DMM simulations. More importantly, the profile of VBO is
completely different between the usual DMM and XLBOMD +
DMMMD simulations. CONQUEST can also performNVT simulations
using the SVR (stochastic velocity rescaling) thermostat,92 which
is extremely efficient and provides excellent conservation of the
constant of motion, as described in Subsection 2 d of the Appendix.

Since the stress tensors can be also calculated using CONQUEST

with the DMM method, as shown in Sec. III A, it is also possible
to include the degrees of freedom of the unit cell for NPT simula-
tions with a given pressure using the Parrinello–Rahman equations
of motion.93 CONQUEST uses the Martyna–Tobias–Tuckerman–Klein
modification,94 coupling the constant pressure equations of motion
to a Nosé–Hoover chain thermostat to recover the NPT ensemble.
The integration scheme used in the NPT ensemble is also explained
in Subsection 2 b of the Appendix.

This scheme is tested on a bulk crystalline silicon system con-
taining 1000 atoms and the O(N) method for finding the elec-
tronic ground state, as shown in Fig. 13. A minimal basis set (SZ)
was employed together with a grid cutoff of 100 hartree and the
PBE (Perdew, Burke, Ernzerhof) exchange-correlation functional.
The extended-Lagrangian scheme described above was used, with
a velocity Verlet integrator for the X matrix and fifth order dissi-
pation. The system was equilibrated using a Berendsen-type weak
coupling thermostat and barostat at a temperature of 300 K and
a pressure of 0.1 GPa. The cell volume was allowed to vary but

constrained to be cubic. An integration time step of 0.5 fs was used,
with a 5th-order Yoshida–Suzuki integration scheme and thermo-
stat and barostat coupling time periods of 15 fs and 160 fs, respec-
tively. An ad hoc drag was applied to the barostat, reducing the
velocities of the cell and its Nosé–Hoover thermostats by 5% for each
time step. This was found to improve the stability, preventing the
amplification of “ringing” of the barostat, with a minimal impact on
energy conservation.

It can be seen that in order to achieve good energy conserva-
tion, the L-tolerance should lower than 10−5, with a significant drift
in the conserved quantity occurring at looser tolerances; without the
XL-BOMD scheme, the tolerance required would be much tighter.
We note that the NPT integrator is considerably more sensitive to
the time step due to coupling between the thermostat and baro-
stat degrees of freedom and that in this case, a time step of 1.0 fs
also resulted in a significant energy drift, although we are seeking to
alleviate this sensitivity.

IV. PERFORMANCE

Here, we demonstrate the performance of CONQUEST showing
two examples, one for the MSSFs with diagonalization and another
for theO(N) calculations.
A. Performance of MSSF

A recent study on the graphene/Rh(111) interface10 showcases
both the accuracy and efficiency of the MSSFs. This study used large
basis sets of PAOs contracted to a minimal size using the MSSF
formalism, i.e., 15 and 22 PAOs of rhodium and carbon atoms
are contracted to 6 and 4 MSSFs, respectively. In Ref. 10, it was

FIG. 13. NPT molecular dynamics on the
1000 atom bulk silicon system. The three
lines demonstrate the effect of varying
the tolerance applied to the optimiza-
tion of the energy with respect to the
density matrix during the O(N) solution
(“L-tolerance”).

J. Chem. Phys. 152, 164112 (2020); doi: 10.1063/5.0005074 152, 164112-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 14. Density of states of m14 graphene/Rh(111) calculated with plane-waves
(black), PAOs (green), and MSSFs (blue). The red line in the lower panel repre-
sents the difference between the DOS calculated with PAOs and MSSFs. Repro-
duced with permission from Romero-Muñiz et al., J. Phys.: Condens. Matter 30,
505901 (2018). Copyright IOP Publishing.

demonstrated that the PAOs and MSSFs show comparable accu-
racy with plane-waves for the electronic and atomic structures of
graphene/Rh(111), as shown in Fig. 14. The accuracy of PAOs has
been further investigated in Ref. 24.

This study then demonstrates the great reduction in compu-
tational effort by using MSSFs. Table III shows the computational
times of a SCF step for the graphene/Rh(111) systems consisting of
1544 and 3088 atoms (shown in Fig. 15). MSSFs clearly require more
computational time for matrix construction than the PAOs, which
comes from the calculations of the linear combination coefficients,
as explained in Sec. II. On the other hand, the time to diagonalize
the electronic Hamiltonian is reduced significantly by using MSSFs
because the diagonalization time scales cubically with the number
of support functions. For the 1544-atom system, the total time, i.e.,
the summation time of matrix construction and diagonalization, is
reduced by a factor of ≈3 from 1256.9 s to 439.6 s. For the 3088-atom

TABLE III. Computational time for the self-consistent-field calculation step with PAOs
and MSSFs for graphene/Rh(111) performed on the supercomputer SGI ICE X in
NIMS (data from Ref. 10).

1544 atoms 3088 atoms

PAO MSSF PAO MSSF MSSF

No. of MPI process 432 432 108 108 864

Time (s)
Matrix construction 64.3 400.4 155.7 1455.4 405.9
Diagonalization 1192.5 39.2 37 647.7 700.8 165.9
Totala 1256.9 439.6 37 803.5 2156.3 571.8

aSummation of matrix construction and diagonalization.

FIG. 15. Atomic structure of the graphene/Rh(111) system (3088 atoms).

systems, when using 108 processes, the total time is reduced by a fac-
tor of ≈18 from 37 803.5 s to 2156.3 s, which indicates that the use of
MSSFs becomes more efficient as systems become larger. Compar-
ing the time for the matrix construction for the 1544 atoms with 432
MPI processes and that for the 3088 atoms with 864 MPI processes,
i.e., when both the system size and the number of processes are dou-
bled, the times are very close to each other, which indicates that the
construction of the MSSFs isO(N) and parallelized ideally.

B. Performance of O(N) calculations on massively
parallel computers

The performance of CONQUEST on the Japanese Fujitsu-made K-
computer is of real significance.95 This computer once topped the
TOP500 list96 (June and November 2011) and 8 years later still fea-
tured on the list in 20th place (November 2019) due to its impressive
peak performance of 11 280.4 TFLOPS from its 705 024 physical
cores. CONQUEST was found to display almost ideal parallel efficiency,
as shown in Fig. 16(c), utilizing up to 200 000 physical cores95 on
systems up to 2 × 106 atoms.6 (At present, there is no dynamic fault-
tolerance built in to CONQUEST to account for failure of nodes during
a run; however, the frequency with which restart files are written can
be controlled at a fine-grained level, which makes recovery from a
crash easy.) Using crystalline silicon systems as a benchmark, it was
demonstrated that in the O(N)mode of operation that both strong
scaling (the wall time for a fixed number of atoms, increasing the
physical core count) and weak scaling (the wall time for a fixed num-
ber of atoms/physical core, increasing the number of atoms) perform
very well. Specifically, for strong scaling, it is found that performance
is good should the number of atoms/core be ≥4, but for weak scal-
ing, the performance is close to perfect for any given number of
atoms per core all the way up to 2 000 000 atoms.6 Strong scaling
has also been tested on the UK national supercomputer ARCHER,
a Cray XC30 MPP system [Fig. 16(a)]. This also demonstrates the
high efficiency of the code until about 5 atoms/core. Going to fewer
atoms/core than this starts to significantly impact the performance
of CONQUEST; for this particular test, more than 50 atoms/core was fea-
sible, but for more stringent tests, it would require large amounts of
memory. When testing the scalability of the O(N) algorithm itself
[Fig. 16(b)], we see that we achieve near-perfect linear scaling with
the system size even in the range of 2560–24 565 atoms.

V. APPLICATIONS

There are a multitude of physical systems to which CONQUEST

has been applied. Studies using both exact diagonalization (with and
without the use of MSSFs) and the O(N) mode of operation have
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FIG. 16. Scaling performance for CONQUEST on the K-computer and ARCHER. (a) Strong scaling on the UK national supercomputer, ARCHER, up to 4920 processors (from
50 atoms/core up to 5 atoms/core). Calculations are performed on bulk PbTiO3 with an Lrange of 14a0 and a SZ basis. (b) Demonstration of the scaling of the O(N) algorithm
on ARCHER for the same material system as (a). (c) Weak scaling on the K-computer up to 1 000 000 atoms for bulk Si.

all been exploited in large-scale structural relaxations and molec-
ular dynamics. In the solid state, the code has been used to study
the properties of nanowires,97,98 Ge hut clusters on Si (001) sur-
faces,99 charge transport properties,100 interfaces between graphene
with metals,10 and ferroelectric domain morphologies in perovskite
oxide heterostructures. The code has also been applied to complex
biological systems including hydrated DNA101,102 and gramicidin-
A.103 It is the purpose of this section to outline some of these studies
and to suggest areas that the code could find new applications.

A. Nanoscale Ge/Si systems

One of the most important targets for the large-scale DFT study
is nano-structured semiconductors. Among them, Ge/Si systems

have many attractive properties as a candidate for next-generation
devices. Heteroepitaxy and strained growth in Ge/Si systems can be
used as important techniques to control the structures and to explore
new favorable properties.

CONQUEST was first applied to study the stability of Ge three-
dimensional islands on the Si substrate, called hut clusters, made
of four equivalent Ge(105) facets. Experimentally, this 3D struc-
ture appears when the coverage of Ge atoms becomes large after
the formation of a two-dimensional (2D) structure with defects.104

Here, CONQUEST calculations were performed with LDA and non-self-
consistent mode using a minimal basis set (SZ), whose accuracy was
thoroughly investigated for Ge/Si systems.105 The stability of the 3D
structure in the heteroepitaxy systems is usually determined by the
competition between the energy gain of the strain relief by the 3D
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structure and the energy loss due to the increase in the surface area
due to the formation of facets in the 3D structures. However, the
Ge/Si(001) system has the unique property that the strained Ge(105)
facet is more stable than the strained Ge(001) surface,106,107 even
accounting for the increase in surface area. Thus, in order to clar-
ify the stability of the 3D structure, it is necessary to include the
effects of the edges between the facets and the finite area of the
actual facets. For this, we need to treat the actual size of the hut
clusters with a Si substrate. Standard DFT methods cannot treat the
3D structure with a size similar to experiments, but it is possible
using CONQUEST with structure optimization. In the early study with
CONQUEST, the total energies of systems having the same coverage of
Ge atoms were compared between the 2D and 3D structures and
it was found that the 3D structure becomes more stable when the
coverage of Ge is larger than 2.7 monolayers.99 This is close to the
minimum coverage showing the transition from 2D to 3D growth
in experiments, supporting the high accuracy of the present DFT
method.

Further studies considered the stability of a single Ge dimer
adsorbed at various sites on the facets.108 This study aimed to clarify
the initial process during the formation of a new facet layer. Exper-
imentally, it has been reported that elongated hut clusters tend to
grow, under certain growth conditions, by increasing the length of
the longer side while keeping the width (shorter side) unchanged
[see Fig. 17(a)109]. The detailed mechanism underlying the growth
of new facet layers is extremely difficult to obtain from experiments,
since the complete facet is formed rapidly. We expect large-scale
DFT calculations to play a significant role in clarifying these pro-
cesses. By performing structure optimization for more than 100 dif-
ferent sites for the adsorption site of a single Ge dimer, as shown
in Fig. 17(c), it was suggested that the top or the edges of the facets
are the most preferable sites and higher positions are more stable
than lower ones. This kind of study is now possible with CONQUEST

using a parallel supercomputer. The largest system in this study con-
tains about 200 000 atoms, whose structure is shown in Fig. 17(b).

Together with the study of double and triple dimer adsorptions, it
was concluded that the new layer of the facet is very likely to grow
from top to bottom.

Recently, CONQUEST was also applied to study Si/Ge and Ge/Si
core–shell nanowires using the SZP basis set with self-consistency.
Semiconductor nanowires are promising candidates for the next-
generation vertical-type transistors111 and have been extensively
studied both experimentally and theoretically. The core–shell type
nanowires have many interesting and attractive properties112–114 for
next-generation electronics. All of these properties, however, will
depend strongly on the size of the core and shell. Using CONQUEST

with the O(N) method, strain distributions were calculated for
nanowires with different sizes, shown in Fig. 18(a) up to exper-
imentally accessible sizes. These are hexagonal Si/Ge core–shell
nanowires along the ⟨110⟩ direction and with numbers of atoms
ranging from 612 to 2404. The strain distributions in the core region
of these nanowires are shown in Fig. 18(b). We can see that the
strain is distributed anisotropically, depending on the direction of
the bonds, and that large variations of strains exist in the interface
and surface regions.

The structure of a more circular Si/Ge core–shell nanowire
was also investigated and its band structure was calculated with the
Sakurai–Sugiura (SS) method explained in Sec. II D using the opti-
mized structure and the self-consistent charge density obtained by
O(N) calculations. The occupied eigenstates near the Fermi level
were also calculated and are shown in Fig. 18(c). We can clearly
see that the distribution is anisotropic and localized in the Ge-shell
region. The effect of arsenic doping and its dependence on the dop-
ing sites in the Si nanowires were also recently reported98 using a
rather high quality basis set (TZTP), with the MSSF method.

B. PbTiO3 films on SrTiO3 substrates

Studies of the perovskite oxides can also make good use of
large-scale electronic structure calculations. CONQUEST can be used to

FIG. 17. Linear-scaling DFT study of the Ge 3D structure on the Si substrate using CONQUEST. (a) Experimental observation showing that Ge hut clusters grow, under certain
conditions, by increasing the length of the longer side while keeping the width (shorter side) unchanged. (b) The optimized structure of the largest structural model for the Ge
hut cluster on the Si substrate, which contains about 200 000 atoms. (c) Adsorption energy map of single Ge dimers adsorbed on the {105} facets. Disks show the position
of a given dimer on a facet projected on the x–y plane. Dimers are labeled according to their height. Adsorption energy of dimers increases from red to green. top: energy
values of single Ge dimers on small (circles) and large (rectangles) facets. (a) Reprinted with permission from M. R. McKay, J. A. Venables, and J. Drucker, Phys. Rev. Lett.
101, 216104 (2008). Copyright 2008 American Physical Society. [(b) and (c)] Reproduced with permission from T. Miyazaki, ECS Trans. 86, 269–279 (2018). Copyright 2018

IOP Publishing.110

J. Chem. Phys. 152, 164112 (2020); doi: 10.1063/5.0005074 152, 164112-15

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 18. (a) Structural models used in the
study of Si/Ge nanowires along the⟨110⟩
direction labeled C_S, where the index
C represents the number of layers in
the core and S represents the surface.
Shell thickness increases from left to
right and core thickness from top to bot-
tom. (b) Average bond strain map for
the cross section of the Ge shell of the
SiGe-NWs. Maps for the bonds along dif-
ferent directions are shown, with exten-
sion illustrated in blue and compres-
sion in red. (c) Band structure of the
circular Si/Ge core–shell nanowire and
the charge density constructed from the
occupied orbitals near the Fermi level
(in the range shown in the band struc-
ture). (a) and (b) are reproduced with
permission from O’Rourke et al., J.
Phys.: Condens. Matter 30, 465303
(2018). Copyright 2018 IOP Publishing.
(c) is reproduced with permission from
T. Miyazaki, ECS Trans. 86, 269–279
(2018). Copyright 2018 IOP Publishing.

study large supercells of technologically relevant piezoelectric alloys
such as PbZrxTi1−xO3, where approximations designed to circum-
vent the need for large supercell calculations (such as the virtual
crystal approximation) are unable to quantify local structural distor-
tions.115 The study of ferroelectric domains in thin films is another
problem requiring large-scale electronic structure calculations and

accurate structural relaxations. Using the MSSF method and a large
basis set of PAOs (DZDP), the nature of the ferroelectric flux closure
domains in thin PbTiO3 films on SrTiO3 substrates was revealed.
Using the initial geometry displayed in Fig. 19(a), we were able
to relax the system to a stringent 0.01 eV/Å force tolerance using
quenched molecular dynamics. The force reduction for the first 50

FIG. 19. The results of structural relax-
ation calculations with CONQUEST. (a) The
initial geometry used to study ferro-
electric flux closure domains in PbTiO3

films on SrTiO3 substrates. This exam-
ple shows a three unit cell deep film
with a domain period of six unit cells. (b)
The evolution the magnitude of the max-
imum force on any atom for the first 50
quenched molecular dynamics steps for
three different film configurations. (c) The
local polarization vector field of a nine
unit cell deep PbTiO3 film (2088 atoms)
on a SrTiO3 substrate.
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FIG. 20. (a) Structure model for the
ion channel gramicidin A embedded in
DMPC lipid bilayers sandwiched with
bulk water regions. (b) Left: compari-
son of 1MAG (in blue) and 1JNO (in
red) experimental structures. Middle and
right: optimized (red/light) and initial
(black/dark) structures of the isolated gA
molecule starting from 1MAG (middle) or
1JNO (right) models. (c) Change of the
residual during the density matrix mini-
mization (DMM) step in the O(N) cal-
culations of the gA system shown in (a).
In this calculation, the search direction
in the minimization was reset at every
40 iterations. (a) and (b) are reproduced
with permission from Todorović et al., J.
R. Soc. Interface 10, 20130547 (2013).
Copyright Royal Society (UK).

steps is shown in Fig. 19(b). Figure 19(c) shows the local polariza-
tion vector field of a nine unit cell deep film. Such a field is calculated
using the relaxed structure, the deviation in displacement from high
symmetry sites, and the Born effective charge tensors.116

C. Biological systems

Complex biological systems are one of the most important tar-
gets for large scale DFT simulations.14 CONQUEST has already been
applied to several biological systems, such as hydrated DNA,101,102

dihydrofolate reductase (DHFR),117 and the gramicidin A (gA) ion
channel103 systems. In the study of the gA system, the optimized
structure of the isolated gA molecule, shown in Fig. 20(b), was first
calculated for the two previously reported structural models, 1MAG
and 1JNO. The electronic structure of the gA molecule was also

analyzed, and it was concluded that the side chains of gA do not
affect the electrostatic potential in the pore of gA. This kind of study
of the isolated gA molecule cannot explain the selectivity of the
ion permeation in the gA system, and it suggests the importance
of simulating the system in the channel environment. We should
treat the gA molecule in lipid bilayers sandwiched by bulk water
regions, as shown in Fig. 20(a). Using CONQUEST, we can perform
stable self-consistent DFT calculations of such a complex system
made of 17 102 atoms, having a rather irregular charge distribution.
Figure 20(c) shows that the density matrix minimization, for a SZP
basis set, of this system is robust. It is important to note that, for sta-
bility in the self-consistency process, we need to update the charge
density as well as the density matrix at each step in the calculation.
More detailed information about this large-scale DFT study on the
gA system will be reported in the future.

FIG. 21. Snapshot structures for (a) Ge/Si core–shell and
(b) Si/Ge core–shell nanowires at 3000 K and (c) melting
SiO2 at 3000 K and 10 GPa. (d) Hydrated DNA system
(details of the simulation are found in Ref. 102).
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D. Large-scale MD simulations with CONQUEST

In Sec. V A, we introduced energetically stable structures of the
perfect epitaxial models for Si/Ge core–shell nanowires. However,
it is also important to investigate defects or Si–Ge intermixing at
the interface for the actual nanowires. In addition, we sometimes
need to clarify the thermodynamic stability or the dynamical pro-
cesses. In such cases, molecular dynamics simulations based on DFT
(DFT-MD) are useful and important. Using the XLBOMD + DMM
method, explained in Sec. III C, we are now able to do practical and
reliable self-consistent DFT-MD simulations of very large systems.
The MD simulations in this section used SZ (NWs, SiO2) and SZP
(hydrated DNA) basis sets.

For perfect, epitaxial Si/Ge core–shell nanowires, DFT-MD
simulations of nanowires containing 4788 atoms, whose diameter
is 10.4 nm (Si core is 7.2 nm and the thickness of the Ge shell
part is 1.6 nm), at 900 K were recently performed. The DFT-MD
simulations confirmed that the structure is stable at least up to
10 ps. This does not guarantee that the perfect epitaxial model is
more stable than other structures containing defects or intermix-
ing, but it indicates that the model is at least a meta-stable structure.
We also performed DFT-MD simulations of Si/Ge and Ge/Si core–
shell nanowires at 3000 K, whose snapshot structures are shown in
Figs. 21(a) and 21(b). We observed that the Ge region melted first
in both cases. As linear-scaling DFT-MD simulations on such large
systems are now practical, we expect that they can be used to explore
possible structures of various types of defects or intermixing effects
at the Si/Ge interfaces by a local heating technique. Such study is
now in progress. Furthermore, as we explained in Sec. III C, we
can now perform DFT-MD simulations at a constant high tempera-
ture and a given high pressure. Structural properties of melting SiO2

[Fig. 21(c)] are now being investigated using CONQUEST.
Of course, complex biomolecules, such as DNA in water, are

also an important target for large-scale DFT-MD studies using CON-

QUEST, with a snapshot shown in Fig. 21(d). It is noteworthy that free
energy calculations based on the blue moon ensemble method are
now available with CONQUEST.118 We expect that a variety of dynam-
ical processes or enzyme reactions in biological systems will be
studied with CONQUEST in the future.

VI. CONCLUSIONS

We have summarized the principles behind the implementa-
tion of the CONQUEST code, which enables it to address large scale DFT
simulations up to around 10 000 atoms with exact diagonalization,
and significantly larger systems, at least up tomillions of atoms using
linear scaling DFT. We showed how support functions can be repre-
sented in three ways, leading to a powerful approach for representing
the density matrix. We also gave details on approaches to find the
electronic structure of large systems, even with linear scaling, and
indicated how hybrid DFT methods can be extended to extremely
large systems.

We gave details of atomic movement, particularly molecu-
lar dynamics, and how the implementation and performance are
affected by the use of linear scaling methods. We demonstrated that
accurate, linear scaling MD is feasible with reasonable computa-
tional time for standard ensembles (NVE, NVT, and NPT, although
care is needed with the calculation of stress and linear scaling). We

then showed the performance of the MSSF approach, and how it
opens up the possibility of exact diagonalization simulations with
many thousands of atoms. We also investigated the parallel perfor-
mance of the code, both with MSSF and linear scaling, finding excel-
lent performance including perfect scaling for certain approaches.
We ended by giving examples of applications of the code on systems
with sizes ranging from hundreds of atoms to hundreds of thousands
of atoms.

While large scale DFT calculations are challenging, in terms
of the preparation of the system, the computing resources required,
and the analysis of large data sets, it is clear that they are also now fea-
sible for themajority of users. It is expected that the size of most DFT
calculations will grow from a few hundred atoms tomany thousands,
enabling greater accuracy, and new systems will be addressed.
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APPENDIX: FURTHER DETAILS OF MD
IMPLEMENTATION

Here, we explain the details of the integration scheme used
in the molecular dynamics, since it is important for the actual
implementation, and those related to the stability of the molecular
dynamics.
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1. Microcanonical ensemble

The microcanonical ensemble is generated simply by solving
Hamilton’s equation of motion for the Hamiltonian

H =

N

∑
i=1

p2i
2mi

+U(ri), (A1)

resulting in the following equations of motion:

ṙi =
pi
mi

, (A2)

ṗi =
∂U(ri)
∂ri

= Fi. (A3)

These equations are integrated using the velocity Verlet algo-
rithm.

2. Non-Hamiltonian molecular dynamics

Hamiltonian dynamics describe systems that are isolated from
their surroundings, and in order to generate the canonical and
isobaric–isothermal ensembles, the system must be coupled to an
external bath (heat for the former and heat and stress in the case
of the latter). In the extended system approach, a set of non-
Hamiltonian equations of motion including degrees of freedom for
a thermostat and/or barostat are posited and shown to generate the
correct statistical ensemble post hoc.

a. Canonical (NVT) ensemble

The Nosé–Hoover Hamiltonian119,120 for the canonical ensem-
ble can be written as

H =∑
i

1
2
mis

2
ṙ
2
i +U(ri) + 1

2
Qṡ

2
− (nf + 1)kBT ln s, (A4)

where ri and ṙi are the position and velocity of particle i, respectively,
U is the potential energy (in this case, the DFT total energy), s is
a dimensionless quantity that can be interpreted post hoc as a time
step scaling factor, Q is the fictitious mass of the heat bath, and nf
is the number of ionic degrees of freedom. Hamilton’s equations of
motion can then be solved to generate the Nosé–Hoover equations
of motion. However, Martyna et al. demonstrated that this method
does not generate an ergodic trajectory and proposed an alternative
formulation with a chain ofM coupled heat thermostats of mass Qk,
each with “position” ηk and conjugate momentum pηk ,

121 resulting
in the following equations of motion:

ṙi =
pi
mi

, (A5)

ṗi = −
∂U(r)
∂ri

−
pη1
Q1

pi, (A6)

η̇k =
pηk
Qk

, (A7)

ṗη1 = ( N

∑
i=1

pi
mi
− nf kBT) − pη2

Qη2

pη1 , (A8)

ṗηk =
⎛⎝
p2ηk−1
Qk−1

− kBT
⎞⎠ − pηk+1

Qk+1
pηk , (A9)

ṗηM =
⎛⎝
p2ηM−1
QM−1

− kBT
⎞⎠. (A10)

These equations are integrated by constructing an appropriate
Liouvillian and translated into an algorithm via the Trotter–Suzuki
expansion, as described by Hirakawa et al.91

b. Isobaric–isothermal (NPT) ensemble

The Parrinello–Rahman equations of motion93 extend the con-
stant volume equations of motion to include the degrees of free-
dom of the unit cell via the extended system approach. CONQUEST

uses the Martyna–Tobias–Tuckerman–Klein modification,94 cou-
pling the constant pressure equations of motion to a Nosé–Hoover
chain thermostat to recover the NPT ensemble. For a cell uncon-
strained unit cell, the equation of motion are

ṙi =
pi
mi

+
pg

Wg
ri, (A11)

ṗi = Fi −
pg

Wg
pi − ( 1

Nf

)Tr∥pg∥
Wg

pi −
pξ

Q
pi, (A12)

ḣ =
pgh

Wg
, (A13)

ṗg = V(Pint − IPext) + [ 1
Nf

N

∑
i=1

p2i
mi
]I − pξ

Q
pg , (A14)

ξ̇ =
pξ

Q
, (A15)

ṗg =
N

∑
i=1

p2i
mi

+
1
Wg

Tr∥pTg pg∥ − (Nf + d
2)kT, (A16)

where ri, pi, andmi are the position, momentum, and mass of parti-
cle i, respectively, ξ, pξ , andQ are the position, momentum, andmass
of the thermostat, respectively, and h, pg and Wg are the matrix of
lattice vectors, their velocities, and the barostat mass, respectively.
For simplicity, only a single Nosé–Hoover thermostat is included,
but in CONQUEST, a Nosé–Hoover chain is used. The Liouvillian is
constructed, and the integrator is constructed using the splitting of
Shinoda et al.,122

iL = iLr + iLh + iLv + iLbath, (A17)

which can be further decomposed,

iLbath = iLbox + iLparticles, (A18)

iLbox = iLvbox + iLξ + iLvξ1 + iLvξk + iLvξM , (A19)

iLparticles = iLvpart + iLξ + iLvξ1 + iLvξk + iLvξM . (A20)
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Then, using Liouville’s theorem, we have

iLr =
N

∑
i=1
∥vi + vgri∥ ⋅ ∇ri , (A21)

iLh =∑
α,β

vg,αβhαβ
∂

∂hαβ
, (A22)

iLv =
N

∑
i=1
( Fi
mi
) ⋅ ∇vi , (A23)

iLbath = iLvpart + iLvbox + iLξ + iLvξ1 + iLvξk + iLvξM

=

N

∑
i=1
[−{vg + 1

Nf

Tr(vg) + vξ1}vi]∇vi

+ ∑
α,β

[Fbox
W
− vξ1vg,αβ] ∂

∂vg,αβ
+

M

∑
k=1

vξk

∂

∂ξk

+ [FNHC1

Q1
− vξ1vξ2] ∂

∂vξ1

+
M

∑
k=2

[ 1
Qk

(Qk−1v
2
ξk−1 − kText) − vξkvξk+1] ∂

∂vξk

+ [ 1
QM
(QM−1v

2
ξM−1 − kText)] ∂

∂vξM

. (A24)

In this instance, we use M Nosé–Hoover heat baths. The
equations of motion can then be expanded via the Trotter–Suzuki
identity and directly translated into an algorithm,

e
iLΔt
= e

iLbath
Δt
2 e

iL
v

Δt
2 e

iLh
Δt
2 e

iLrΔte
iLh

Δt
2 e

iL
v

Δt
2 e

iLbath
Δt
2 . (A25)

This integrator is tested on a bulk crystalline silicon system, as
explained in Sec. III C.

c. Weak-coupling thermostat and barostat

The Berendsen weak coupling method124 involves global cou-
pling to a pressure and/or heat bath via a Langevin-type equation of
motion with a global friction constant. In the case of the thermostat,
the ionic velocities are rescaled by a factor λ, which is scaled toward
the target temperature T0 by the coupling frequency 1/τT ,

λ = [1 + Δt

τT
(T0

T
− 1)] 1

2

. (A26)

Similarly, for the barostat, the cell is rescaled by the matrix μ,
which is scaled toward a target pressure tensor P0 by the pressure
coupling frequency 1/τP and the estimated bulk modulus β,

μ = I −
βΔt

3τP
(P0 − P). (A27)

While trivial to implement, weak coupling will not generate the
correct canonical or isobaric–isothermal velocity distribution, and
the thermostat has the pathological effect of systematically trans-
ferring energy to the most slowly changing degrees of freedom (the
“flying ice cube” effect). However, it may be useful for equilibration.

d. Stochastic velocity rescaling

Stochastic velocity rescaling123 is essentially a modification of
the weak coupling method that does not suffer from the flying ice
cube effect. A correctly constructed random force is added to enforce
the correct NVT (or NPT) phase space distribution. The kinetic
energy is rescaled such that the change in kinetic energy between
ionic steps is

dK = (K̄ − K)dt
τ
+ 2

¿ÁÁÀKK̄

Nf

dW√
τ
, (A28)

where K̄ is the target kinetic energy (i.e., heat bath temperature), dt is
the time step, τ is the time scale of the thermostat, N f is the number
of degrees of freedom, and dW is a Wiener process. In practice, the
particle velocities are rescaled by a factor α, defined as

α2 = e−Δt/τ +
K̄

NfK
(1 − e−Δt/τ)⎛⎝R2

1 +
Nf

∑
i=2

R
2
i

⎞⎠
+2e−Δt/2τ

¿ÁÁÀ K̄

NfK
(1 − e−Δt/τ)R1, (A29)

where Ri is a set of N f normally distributed random numbers with
unitary variance. This thermostat can be used in NPT dynamics92 by
barostatting the system via the Parrinello–Rahmanmethod, but with
additional Ri’s for the cell degrees of freedom, thermostating the cell
velocities as well as the ionic velocities.
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