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Reliable orthology prediction is central to comparative genomics. Although orthology is defined
by phylogenetic criteria, most automated prediction methods are based on pairwise sequence
comparisons. Recently, automated phylogeny-based orthology prediction has emerged as a
feasible alternative for genome-wide studies.
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Homologous sequences - that is, those derived from a common

ancestral sequence - can be further divided into two different

classes according to the mode in which they diverged from

their last common ancestor [1]. The divergence of two

homologous sequences by a speciation event gives rise to

orthologous sequences, whereas a duplication event will

define a paralogous relationship between the duplicates.

Although such straightforward definitions could suggest that

distinguishing paralogs and orthologs is simple, it is

definitely not. For example, it is not unusual for multiple

lineage-specific gene loss or duplication events, as well as

other evolutionary processes, to result in intricate scenarios

that are difficult to interpret. Far from being a simple

curiosity, the establishment of correct orthology and

paralogy relationships is crucial in many biological studies.

For instance, phylogenetic analyses that aim to infer correct

evolutionary relationships between several species should be

based on orthologous sets of sequences [2]. Moreover, as

orthologs are, relative to paralogs, more likely to share a

common function, the correct determination of orthology

has deep implications for the transfer of functional informa-

tion across organisms [3]. Finally, the establishment of

equivalences among genes in different genomes is a pre-

requisite for comparative analyses of genome-wide data to

detect evolutionarily conserved traits [4,5].

Originally defined on an evolutionary basis, orthology

relationships are best established through phylogenetic

analysis. This usually involves the reconstruction of a phylo-

genetic tree describing the evolutionary relationships among

the sequences and species involved, so that speciation and

duplication events can then be mapped on the nodes of the

tree. This is the classical procedure for establishing

orthology relationships. However, the availability of whole

sequenced genomes means the need to detect orthology at a

genomic scale, a task for which the, mostly manual,

phylogeny-based approach is not suited. Automated

approaches were soon developed that inferred orthology

relationships from pairwise sequence comparisons. Although

these methods perform reasonably well, they have many

drawbacks that can lead to annotation errors or misinter-

pretation of data [6,7]. To avoid such pitfalls, and in an

attempt to approximate the classical approach for detecting

orthology, several automatic methods have been proposed

that delineate orthology relationships from phylogenetic

trees. Despite the greater accuracy of such methods com-

pared with pairwise approaches, the large demands of time

and computing power needed to generate reliable trees have

limited their use to datasets of moderate size. Recently,

however, the combination of automated large-scale phylo-

genetic reconstruction with newer algorithms is paving the

way for the use of phylogeny-based methods for orthology

detection at genomic scales [8,9]. This progress is likely to

have a deep impact on future comparative studies.

HHoommoollooggyy,,  oorrtthhoollooggyy  aanndd  ppaarraallooggyy
Homology is defined as the relationship that exists between

two biological entities - for example, two sequences or two

anatomic characters - that are derived from a common

ancestor. In 1970, Walter Fitch coined the concepts of

orthology and paralogy to distinguish two types of homology



relationships between biological sequences [1]. Orthologous

sequences are those that derive by a speciation event from

their common ancestor, whereas the origin of paralogous

sequences can be traced back to a gene-duplication event.

Despite this clear definition, orthology and paralogy are

often misinterpreted by biologists. This is partly due to the

fact that what may seem simple when comparing pairs of

closely related species, easily gets complicated when wider

groups of distantly related species are involved. It is some-

times wrongly claimed, for example, that only two sequences

from the same species can be regarded as paralogs, or that

two sequences from different species are orthologous to each

other only if they perform the same biological function. I will

briefly summarize here the main misunderstandings that

can arise when dealing with properties of orthologous

sequences (see [7] for a more thorough discussion), which

are key to understanding why some of the methods

discussed later would be more appropriate than others.

The first clarification is that orthology is a purely evolution-

ary concept, certainly related to, but not based on, the func-

tionality of the sequences involved. All homologous proteins

have a common ancestry and thus are expected to have

similar three-dimensional structures and to perform related

functions. But changes in functionality within a homologous

family of proteins caused by sequence variation or context-

dependency are not rare [10]. This is especially true in the

case of paralogs, because processes of neo- or subfunctionali-

zation may favor the retention of duplicate genes [11]. Ortholo-

gous sequences derived by speciation are, therefore, less prone

to functional shifts but are definitely not free from them.

A second important point to note is that the orthology or

paralogy relationship between two genes will extend to their

descendants as they disperse by further speciation or

duplication events. Thus, groups of orthologs, and not just

pairs, may more adequately represent the ancestral relation-

ships of the genes in a set of organisms. An important

corollary of its definition is that orthology, in contrast to

homology, is not transitive. If a gene A is orthologous to B

and B to C, A and C are not necessarily orthologous to each

other. For instance if A and C are related by a duplication

event, they will be paralogous to each other while both being

co-orthologous to B. This is best explained with a graphical

example (Figure 1). The human tumor suppressor protein

p53 belongs to a wider family of proteins that also includes

p73 and p73L. The tree shown in Figure 1 depicts the

evolutionary relationships among several metazoan members

of the family, ranging from insects to mammals. As can be

inferred from the tree, several duplications (nodes marked

with gray circles) occurred at different periods. Most signifi-

cantly, two consecutive duplications at the base of the verte-

brates originated three sister groups (shadowed regions in

the tree) that correspond to the p53, p73 and p73L sub-

families. Human p53 can be considered orthologous to the

sequences in other vertebrates that cluster within the same

shadowed region, because they all derive by speciation

events. Paralogous relationships can be drawn between human

p53 and human p73 and p73L, because their common ances-

tral node always corresponds to a duplication node. The

same reasoning can be used to infer paralogous relationships

between any sequence within the p53 subfamily and those in

the p73 and p73L subfamilies, even though they might not

be encoded in the same genome, such as human p53 and

mouse p73L. The only criteria to mark them as paralogs is

the fact that they derived by the duplication of an ancestral

gene. Human p53 is also orthologous to any of the two Ciona

intestinalis sequences, because they diverged from a

speciation node (marked with an arrow). Note that this is the

only node that is important in defining their orthology

relationship, and we do not consider the fact that, subse-

quent to that speciation, both lineages experienced duplica-

tion events. These later duplication events are, however,

important to define other proteins at the same orthology

level. In fact, human p53, p73 and p73L all are orthologous

to any of the sequences in C. intestinalis because they

diverged at the same speciation node. To accurately define

the orthology relationships between human and C. intestinalis

members of this family one should say that human p53,

p73L and p73 are all co-orthologous to the two C. intestinalis

proteins.

Yet another complication in defining orthology relationships

among proteins is that they often comprise distinct domains

that may have followed different evolutionary histories [12].

Such evolutionary chimeras can be created by fusion and

recombination events between different genes and may lead

to situations in which, for example, a single member of a

given protein family has recently acquired a new domain

through recombination with another family. In such cases

the different domains should in principle be treated as

independent evolutionary units and orthology relationships

be delineated accordingly. Thus, in multidomain families,

orthology relationships should be first established among

core domains and then extended, where possible, to adjacent

regions.

PPaaiirrwwiissee  mmeetthhooddss  ffoorr  oorrtthhoollooggyy  iinnffeerreennccee
The need to compare sets of genomic sequences has prompted

the development of several automatic methods that infer

orthology relationships from pairwise sequence comparisons.

The first, and still most widely used, method for auto-

matically establishing orthology relationships is based on

the detection of best bi-directional best hits (BBH), also

known as best reciprocal hits (BRH), which consists of the

detection of pairs of sequences from different species that

are, reciprocally, the best hit of each other in a sequence search

[13] (Figure 2a). This operational definition of orthology is

fairly adequate when comparing two closely related genomes.

At larger evolutionary distances, however, the scenario

becomes more complicated. By definition, the BBH approach
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can only account for one-to-one orthology relationships.

Therefore, if gene duplications have taken place in any of the

two compared lineages after their divergence, a one-to-many

or a many-to-many relationship will be necessary to properly

describe their orthology relationships. In such cases the

BBH approach will miss many true orthologs.

To avoid these pitfalls and extend the procedure to multiple

genome comparisons, Tatusov and colleagues introduced the

concept of clusters of orthologous groups (COGs) [14]

(Figure 2b). COGs are derived from the search for

‘triangular’ BBH relationships across a minimum of three

species, and their subsequent combination into larger

groups. This strategy has been followed by many groups and

is the operational definition of orthology used by many

databases such as EGO [15] and STRING [16].

Other extensions of the BBH approach include recent

implementations such as Inparanoid [17] (Figure 2c) or

OrthoMCL [18], which achieve higher sensitivity through

sequence-clustering techniques that consider a range of BLAST

scores beyond the absolute best hits. For instance, Inparanoid

predicts paralogs resulting from lineage-specific duplications,

which it calls ‘in-paralogs’, by including intraspecific BLAST

hits that are reciprocally better than between-species BLAST

hits. So, to a certain level, Inparanoid is able to include one-to-

many and many-to-many relationships. Its limitation is that it

is designed for comparing pairs of genomes only. OrthoMCL

expands the procedure to comparisons of multiple genomes. It

first uses a similar strategy to Inparanoid to define orthologous

relationships between each pair of genomes. The comparisons

of all possible pairs of genomes are represented as a graph in

which the nodes represent genes and the edges represent
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FFiigguurree  11
p53 phylogeny. Phylogenetic tree representing the evolutionary relationships among p53 and related proteins. Sequences were obtained from the p53
tree at phylomeDB [35] (entry code Hsa0012331). After selecting a group of representative sequences, a maximum likelihood tree was reconstructed
using the same parameters used for the JTT tree in PhylomeDB. Shaded boxes indicate vertebrate members of the p53, p73 and p73L subfamilies.
Duplication nodes are marked with a gray circle. The arrow indicates the speciation node that marks the bifurcation between urochordates and
vertebrates.
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orthology relationships. A Markov clustering algorithm (MCL)

is then applied. In brief, OrthoMCL simulates random walks on

the graph of orthology predictions to determine the transition

probabilities among the nodes, that is, the probabilities that

two nodes are connected in a random walk. The graph is parti-

tioned into different orthologous groups on the basis of these

probabilities.

Yet another type of method that cannot be strictly

considered pairwise-based but that does not specifically

build phylogenetic trees to define orthology, aims to refine

previously made COGs. Generally, these methods organize

clusters of orthologous genes into a hierarchical structure by

using some evolutionary information. For instance, COCO-

CL subdivides a given orthologous group on the basis of the

correlation coefficient between their sequences, as inferred

from a multiple sequence alignment [19]. In contrast,

OrthoDB uses the information regarding the species to

which a given sequence belongs, to organize an orthologous

group in a hierarchy that is guided by the species tree [20].
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FFiigguurree  22
Orthology prediction methods. ((aa--cc))  Pairwise-based and ((dd,,ee)) phylogeny-based methods. Circles of different colors indicate proteins encoded in genomes
from different species. Black arrows represent reciprocal BLAST hits. Proteins within dashed ovals are predicted by the method to belong to the same
orthologous group. (a) Best bi-directional hit (BBH). All pairs of proteins with reciprocal best hits are considered orthologs. Note that this method is
unable to predict the othology with the yellow protein 2. (b) COG-like approach. Proteins in the nodes of triangular networks of BBHs are considered
as orthologs (for example, green, red and yellow protein 1 in the example). New proteins are added to the orthologous group if they are present in BBH
triangles that share an edge with a given cluster; for example, the gray protein will be added to the orthologous group because it forms a BBH triangle
with the red and green proteins. Note that a BBH link with yellow protein 1 is not required. The COG-like approach can add additional proteins from
the same genome if they are more similar to each other than to proteins in other genomes, or if they form BBH triangles with members of the cluster.
This is not the case for yellow protein 2, which is, again, misclassified. (c) Inparanoid approach. This is similar to (a), but other proteins within a
proteome (yellow protein 2 in this example) are included as ‘in-paralogs’ if they are more similar to each other than to their corresponding hits in the
other species. (d) Tree-reconciliation phylogenetic approach. Duplication nodes (marked with a D) are defined by comparing the gene tree (small tree at
the top) with the species tree (small tree at the bottom) to derive a reconciled tree (big tree on the right) in which the minimal number of duplication
and gene loss (dashed lines) events necessary to explain the gene tree are included. In this case, both the yellow proteins are included in the orthologous
group but the red and gray proteins are excluded. (e) Species-overlap phylogenetic approach. All proteins that derive from a common ancestor by
speciation are considered members of the same orthologous group. Duplication nodes are detected when they define partitions with at least one shared
species. A one-to-many orthology relationship emerges because of a recent duplication in the lineage leading to the yellow proteome.
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PPhhyyllooggeennyy--bbaasseedd  oorrtthhoollooggyy  iinnffeerreennccee  iinn  ttrreeee
rreeccoonncciilliiaattiioonn
In the classical procedure for determining orthology

relationships a phylogenetic tree is constructed from an

alignment of homologous sequences and subsequently com-

pared to a species tree. This comparison allows the geneticist

to infer the events of gene loss and duplication that have

occurred along the evolution of the sequence family

considered. The first strategy for inferring such relationships

automatically was proposed by Goodman and colleagues

[21], who developed an algorithm for fitting a given gene tree

to its corresponding species tree and inferring the minimum

set of duplications needed to explain the data. This problem

came to be known as ‘tree reconciliation’ (Figure 2d), and

several other algorithms have been implemented that solve

it efficiently [22-24]. These tree-based algorithms for

orthology detection are very intuitive, as they simply imple-

ment automatically what an expert would do manually and,

provided that correct species and gene trees are given, the

algorithm will infer the correct orthology relationships. A

number of databases have been developed that use such

algorithms to derive orthology relationships from auto-

matically reconstructed trees [25-27].

The main limitation of the tree-reconciliation method is that

for many scenarios the species tree is not known with

confidence. Moreover, it has been shown that another

assumption of the tree-reconciliation problem, the correct-

ness of the gene tree, is frequently violated [28]. In such

cases, erroneous gene trees will inevitably led to incorrect

orthology and paralogy assignments and the inference of

many extraneous duplications and gene losses. As a result,

these methods are very sensitive to slight variations in the

topology or the rooting of the gene tree and, when applied at

a large scale they perform similarly to and even worse than

standard pairwise methods [29] and need manual curation

[30]. Even if the gene tree is correctly reconstructed, it may

not conform to the species tree in cases where horizontal

gene transfer events have occurred. Such gene trees are hard

to reconcile with the species tree and are often confused by

apparent events of massive gene loss.

One possible solution to cope with the existing ambiguity in

gene and species trees is to account for this uncertainty

during the process of tree reconciliation. Some approaches

consider the uncertainty of the different nodes of the gene

tree as inferred from their bootstrap, or equivalent, values,

and weight the gene loss and duplication events accordingly

[31,32]. Another approach that tackles the uncertainty of

both the gene and the species tree was recently proposed by

the group of David Liberles [33]. This algorithm, called ‘soft

parsimony’, modifies uncertain or poorly supported branches

by minimizing the number of gene duplication and loss

events implied by the tree. It starts by generating all possible

rooted trees that can be derived from a given gene tree. Then

the edges that have a support value under a given threshold

are collapsed. Each tree is subsequently reconciled with the

species tree, which can include multifurcations at unresolved

nodes, and the number of duplications is computed. If more

than one tree minimizes the necessary duplications, these

are compared in terms of the number of gene losses implied.

Finally, the collapsed nodes are reconstituted.

Soft parsimony is able to solve the most obvious errors

arising from tree reconciliation, which normally implies a

multitude of gene losses and duplications. It also allows the

use of species trees with unresolved nodes, which usually

better represent what we really know about relationships

within most phylogenetic groups. Nevertheless, these algor-

ithms still need a certain level of resolution in the species

trees and have a number of underlying assumptions that

should be taken into account. For instance, the scenario with

the minimal number of losses and gene duplications is not

necessarily the real one, as losses and duplications can be

rampant in some cases [34]. Furthermore, the number of

iterations and tree-reconciliation steps that these methods

involve may limit its use in large-scale datasets.

SSppeecciieess--oovveerrllaapp  mmeetthhooddss
Yet another way out of the problem of ambiguity in species

and gene trees is to consider the gene tree topology in a very

relaxed way and minimize the need to know the true evolu-

tionary relationships of species. This approach is followed in

recent algorithms that are based on the level of overlap

between the species encountered within a tree. Basically,

these algorithms examine the level of overlap in the species

connected to two related nodes to decide whether their

parental node represents a duplication or speciation event

(Figure 2e). They assume that a node represents a duplication

event if it is ancestral to two tree-partitions that contain sets

of species that overlap to some degree. Conversely, if the two

partitions contain sets of species that are mutually exclusive,

the node is considered to represent a speciation event. The

only evolutionary information that such algorithms require is

that needed to root the tree so that a polarity (ancestors to

descendants) between the internal nodes is defined.

One such algorithm has been used in the prediction of all

orthology and paralogy relationships for all human genes

and their homologs in 38 other eukaryotic species [8]. The

reason for using this type of algorithm was its speed and the

high degree of topological diversity observed in the human

phylome, something that would have resulted in many

wrong assignments if a reconciliation algorithm had been

used. This orthology-prediction methodology is now imple-

mented in all phylomes deposited at PhylomeDB [35]. Van

der Heijden and colleagues implemented a species-overlap

algorithm in a program called LOFT (Levels of Orthology

From Trees) [36]. Besides predicting orthology relationships

between genes in a phylogenetic tree, LOFT assigns a

hierarchy to the orthology relationships. Similar to the
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Enzyme Clasification (EC) numbers, each gene of a family is

given a code that indicates its level within the orthology

hierarchy. In this way orthologous groups can be defined at

different levels and the orthology and paralogy relationships

can be readily inferred from the code.

In conclusion, the prediction of orthology, rather than just

homology, relationships among genes in sequenced genomes

is a necessary task that often needs to be performed in an

automated way. Most automatic strategies to derive such

orthology relationships still use rough approximations that

are far away from the original definition of orthology.

Nowadays, however, the increasing speed at which computer

programs can generate phylogenetic trees, as well as the

availability of new algorithms, allows the possibility of

actually predicting orthology by mapping the speciation and

duplication events on a tree, thus following the formal

definition of orthology. It is likely that soon this strategy will

become the most commonly used in genome-wide searches

for orthology. The expected increase in the accuracy of the

predicted relationships will result in a higher reliability of

transfer of information across species. Recent analyses show

that phylogeny-based methods are less prone to error than

similarity-based approaches. The same analyses show,

however, that there is still room for improvement and that

future algorithms will need to take into account the inherent

topological variability that is expected in any genome-wide

phylogenetic analysis.
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