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Abstract 9 

Public health authorities whole-genome sequence thousands of pathogenic isolates each month for microbial 10 

diagnostics and surveillance of pathogenic bacteria. The computational methods have not kept up with the 11 

deluge of data and need for real-time results.  12 

We have therefore created a bioinformatics pipeline for rapid subtyping and continuous phylogenomic analysis 13 

of bacterial samples, suited for large-scale surveillance. To decrease the computational burden, a two-level 14 

clustering strategy is employed. The data is first divided into sets by matching each isolate to a closely related 15 

reference genome. The reads then are aligned to the reference to gain a consensus sequence and SNP based 16 

genetic distance is calculated between the sequences in each set. Isolates are clustered together with a 17 

threshold of 10 SNPs. Finally, phylogenetic trees are inferred from the non-redundant sequences and the 18 

clustered isolates are placed on a clade with the cluster representative sequence. The method was 19 

benchmarked and found to be accurate in grouping outbreak strains together, while discriminating from non-20 

outbreak strains. 21 

The pipeline was applied in Evergreen Online, which processes publicly available sequencing data from 22 

foodborne bacterial pathogens on a daily basis, updating the phylogenetic trees as needed. It has so far placed 23 

more than 100,000 isolates into phylogenies, and has been able to keep up with the daily release of data. The 24 

trees are continuously published on https://cge.cbs.dtu.dk/services/Evergreen  25 
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Main 32 

Epidemiological typing of bacteria is used by hospitals and public health authorities, as well as animal health 33 

authorities, to detect outbreaks of infectious diseases and determine trends over time. Traditionally, that 34 

includes culturing and isolating the pathogen, followed by species identification and subtyping using various 35 

conventional microbiological and molecular methodologies.  36 

For outbreak investigation, it is necessary to place the infectious agent into a more discriminatory category 37 

than species, to establish links between cases and sources. Multi-locus sequence typing (MLST) has been a 38 

frequently used molecular subtyping method, where sequence types are assigned to the isolates based on the 39 

combinations of alleles for 6-10 housekeeping genes1.  40 

Whole-genome sequencing (WGS) has opened a new chapter in microbial diagnostics and epidemiological 41 

typing. WGS data can be used to determine, amongst other properties, both MLST types and serotype of 42 

several bacterial species2,3. Several studies for multiple bacterial species have shown the value of WGS for 43 

elucidating the bacterial evolution and phylogeny, and identifying outbreaks4–6.  44 

The use of WGS has enabled the unbiased comparison of samples processed in different laboratories, boosting 45 

surveillance and outbreak detection, but the methods for sharing and comparing a large number of samples 46 

have not been established yet7,8. Therefore, a number of national, regional and international initiatives have 47 

been launched with the aim of facilitating the sharing, analyses and comparison of WGS data9–11.  48 

Since 2012, the US Food and Drug Administration (FDA) is leading a network of public health and university 49 

laboratories, called GenomeTrakr. These laboratories sequence bacterial isolates from food and environmental 50 

samples and upload the data to the National Center for Biotechnology Information (NCBI). GenomeTrakr is 51 

restricted to foodborne pathogens and currently includes data from seven such bacterial species.12 All raw WGS 52 

data are publicly shared through NCBI, facilitating the collaboration between laboratories. Furthermore, the 53 

raw data are picked up by the NCBI Pathogen Detection pipeline13, that assembles the samples into draft 54 

genomes to predict the nearest neighbors and construct phylogenetic trees for each within-50-SNPs cluster 55 

using an exact maximum compatibility algorithm14. This approach requires access to all of the raw data or 56 

assembled genomes, and very extensive computational resources for larger databases, like Salmonella 57 

enterica. In addition, no sub-species taxonomical classification has so far been implemented in the pipeline. 58 

Focusing on the same bacterial species as GenomeTrakr, PulseNet USA has also established procedures for use 59 

of WGS data for outbreak detection. In their vision, an extension of the highly successful MLST approach into a 60 

core-genome (cgMLST) or whole-genome (wgMLST) scheme, with genes in the order of thousand, would allow 61 

for sharing information under a common nomenclature. Meanwhile, all of the raw data could be kept locally. 62 

Only data from individual strains would have to be shared when further confirmation of an outbreak is 63 

required.11 MLST schemes are offered from several databases15–17, and a number of, at times conflicting, cg- 64 

and wgMLST schemes have recently been proposed for a limited number of bacterial species16,18–24. Moreover, 65 

few of the proposed schemes provide a definitive nomenclature of sequence types to go with the allele 66 

profiles. The existing schemes do not cover all of the potential allelic variation: a recent study showed, that for 67 

Campylobacter jejuni, that has maintained MLST schemes, only approximately 53% of the strains of animal 68 

origin could be assigned to an existing unique allelic profile25. Continuous curation of the hundreds of relevant 69 

bacterial species, that are known human, animal and plant pathogens, would require great effort. A centralized 70 

database for the distribution of the allele profiles and sequences would be also necessary. Furthermore, for 71 

comparable results, and surveillance, the same analysis pipeline or software should be used for the prediction 72 

of the allelic profiles. Single-linkage cgMLST clusters can be generated of public and private uploaded data on 73 
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EnteroBase15, and up to 1000 sequences on Pathogenwatch26, by manual selection of strains to be included in 74 

the analysis. 75 

The approaches mentioned above yield preliminary results for outbreak detection, as they often lack the 76 

necessary resolution, thus, in most cases, selected WGS data are further analyzed using single nucleotide 77 

profiling. Here, genomic variants (single nucleotide polymorphisms (SNPs), insertions and deletions) are 78 

derived by aligning WGS reads to a reference genome. For each bacterial species, custom single nucleotide 79 

profiling (SNP validation, cluster threshold determination, etc.) is necessary in order to achieve results that are 80 

biologically relevant and informative. The samples (of current interest and historical) included in the analysis 81 

and the reference genome are chosen on a case-by-case basis, usually based on subtyping results. EnteroBase 82 

offers SNP analysis of user selected strains based on the genotypes, but Alikhan et al. dismiss the feasibility of 83 

large-scale SNP analyses15. Various SNP analysis pipelines are used by laboratories and research groups for 84 

inferring phylogenetic trees for isolates of interest27–32. For example, Public Health England developed and uses 85 

SnapperDB for outbreak detection without initial cluster analysis by cg- or wg-MLST. SnapperDB consists of 86 

tools to create a database of SNPs compared to a given reference sequence, and assign each isolate a SNP 87 

address based on single linkage clustering.33  88 

We present here a whole-genome, single nucleotide-based method for subtyping and preliminary 89 

phylogenomic analysis, that circumvent the known limitations of current gene- and SNP-based approaches. 90 

PAPABAC carries out rapid and automated subtyping of bacterial whole-genome sequenced isolates and 91 

generates continuously updated phylogenetic trees based on nucleotide differences. We demonstrate two 92 

applications, a standalone version for local monitoring of bacterial isolates, and Evergreen Online, for global 93 

surveillance of foodborne bacterial pathogens. We also suggest a stable naming scheme for each isolate, 94 

making the results from the pipeline easier to communicate to others. To the best of our knowledge, no such 95 

tool exists at the moment.  96 
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 98 

 99 

Figure 1 Overview of PAPABAC. (A) The input raw read files are classified into sets based on k-mer similarity to NCBI RefSeq 100 
complete prokaryotic chromosomal genomes. (B) The raw reads are mapped to the reference genome and a consensus 101 
sequence is generated via strict statistical evaluation (p < 0.05) of the mapped bases in each position. (C) The resulting 102 

consensus sequences are of equal length in each template set. The new isolates in each set are clustered to the non-103 
redundant isolates already in the set if the pairwise nucleotide difference based genetic distance is less than 10. The 104 

remaining new isolates undergo the same clustering process. (D) Pairwise genetic distance between all non-redundant 105 
isolate in the set is used as input for neighbor-joining algorithm. If there are less than 600 non-redundant isolates in a set, 106 

an approximately maximum likelihood phylogenetic tree is also inferred based on the consensus sequences (red: new 107 
isolates). The clustered isolates are placed back onto the trees with 0 distance to the cluster representative (marked with 108 
an asterisk). (E) The information about the acquired isolates, the sets, the clusters, and the phylogenetic trees is stored in 109 

SQLite databases, which are queried once all sets with new isolates are processed to output the results to the users. 110 

DBDB DB

Report

A

B

C

D

E

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/540138doi: bioRxiv preprint 

https://doi.org/10.1101/540138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5  

 

 111 

Figure 2 Comparison of the ideal tree (left) to the PAPABAC maximum likelihood tree made of the in vitro experiment dataset34Taxa with 112 
an asterisk were clustered together with the taxa in the same clade.  113 
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Results 114 

Pipeline for automated phylogenomic analysis of bacterial whole-genome sequences (PAPABAC) 115 

We developed PAPABAC (Figure 1), a phylogenomic pipeline for the automated analysis of bacterial isolates, 116 

that needs no additional input besides WGS data (fastq files) and generates clusters of closely related isolates. 117 

PAPABAC first matches the isolates to complete bacterial chromosomal genome reference sequences with 118 

greater than 99.0% sequence identity and a minimum average depth of 11. These reference sequences serve as 119 

templates for the alignment of the raw reads. The aligned bases at each position are statistically evaluated to 120 

determine the consensus sequence, as previously described for a nucleotide difference method35. Positions 121 

that do not fulfil the significance criteria remain ambiguous, get assigned “N”, and are disregarded during the 122 

pairwise genetic distance calculation. These steps ensure that there is high confidence in the consensus 123 

sequence that is the basis of the genetic distance estimation. 124 

The pipeline retains analysis results in such a manner that input is added to the previously processed data. The 125 

phylogenomic analysis is carried out on the current input and the previously found non-redundant isolates 126 

(singletons and cluster representatives). The genetic distance is estimated in a pairwise manner, comparing the 127 

given two sequences for all non-ambiguous positions, i.e. positions where none of the two sequences have an 128 

“N” assigned. The distances between the previously processed runs are stored on disk, saving computational 129 

time, and only the distances to the new isolates are computed in a given run.  130 

A clustering step during the genetic distance calculation forms clusters of closely related isolates and reduces 131 

the number of similar sequences in each set, and thereby also reduce the computation time. After identifying a 132 

non-redundant isolate and a closely related isolate to it, the one previously deemed non-redundant will be the 133 

cluster representative and kept, while the clustered one is omitted from the subsequent runs of the pipeline. 134 

However, the information about the clustering is added to a database and the clustered isolate will be placed 135 

on the inferred phylogenetic tree. The cluster representatives remain constant through the subsequent runs of 136 

the pipeline, and the clusters only increase in size if new isolates are clustered with the representative. 137 

Therefore, each cluster is stable in the sense that an isolate will newer change which representative it is 138 

associated with and each cluster can be reliably identified by the template name and the identifier of its cluster 139 

representative. 140 

The pipeline can be run on a computer with 8 Gb RAM and Unix system. The computational time is reduced 141 

compared to re-running the whole analysis each time new samples are added, even without parallelisation 142 

(Figure S1). 143 

PAPABAC was benchmarked against three SNP pipeline benchmarking datasets. An Escherichia coli in vitro 144 

evolution experiment dataset34 provided 50 closely related samples on a short temporal scale with less than 145 

100 nucleotide differences across the dataset. The algorithm clustered together 7 out of 10 samples with the 146 

same ancestor that were taken on the same day and presumably had less than 10 nucleotide differences 147 

between them. The PAPABAC maximum likelihood (Figure 2) and neighbor-joining (Figure S2) trees with the 148 

clustered isolates pruned to resolve the polytomies were comparable to the ideal phylogeny of the in vitro 149 

experiment dataset: the normalized Robinson-Foulds distances were 0.18 and 0.12, respectfully. 150 

Benchmarking against the Campylobacter jejuni (Figure S3A) and the Listeria monocytogenes (Figure S3B) 151 

datasets from Timme et al.36, PAPABAC correctly clustered the related outbreak strains (colored) and the 152 

outgroups, where the genetic distance was below the clustering threshold. The topologies of the maximum 153 

likelihood phylogenetic trees closely resembled the tree topologies given.    154 
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 156 

Figure 3 Time requirement of the phylogenomic analysis for given number of non-redundant and new strains, on 20 CPUs. 157 

 158 

Evergreen Online for surveillance of foodborne bacterial pathogens 159 

Evergreen Online was built on PAPABAC. Raw WGS data files of five major foodborne pathogens (C. jejuni, E. 160 

coli, L. monocytogenes, Salmonella enterica, and Shigella spp.) are downloaded daily from public repositories 161 

with the aim of global surveillance of potential outbreaks worldwide. The inferred phylogenetic trees and 162 

information about all of the isolates in the system are available and searchable on the website 163 

(http://cge.cbs.dtu.dk/services/Evergreen). 164 

The platform has been available since October 1st 2017, with logs reliably saved since October 28th 2017. The 165 

number of raw read files downloaded fluctuates with the work week of the public health laboratories. On 166 

busier days, more than 800 isolates are downloaded. The average number of isolates downloaded per day is 167 

418. Downloading and mapping to the reference genomes take 130 minutes on average, with the majority of 168 

the time spent on downloading. Alignment of the raw reads and the generation of the consensus sequences 169 

takes on average 9 minutes per isolate. The computing time for the template sets is dependent on the number 170 

of non-redundant and new sequences in each set, but in most cases even the slowest is finalized within five 171 

hours (Figure 3). 172 

As of June 26th 2018, the pipeline downloaded 82,043 isolates. Out of these, 63,276 isolates have been mapped 173 

to references with at least 99.0% identity and average depth of 11 (Figure S4A). The majority of the isolates 174 

were typed as Salmonella enterica (59.1%), followed by Escherichia coli (19.4%) (Figure S4B). The two largest 175 

template sets are S. Dublin and S. Typhimurium serovars, with both close to 9,500 isolates in total. After the 176 

homology reduction there were 3,216 and 5,093 non-redundant sequences in these sets, respectively. On 177 

average, 67% of the sequences are non-redundant in the template sets, while the E. coli template sets are the 178 

most diverse and the Listeria monocytogenes ones are the least diverse (Figure S4C). There were 122 isolates 179 

predicted to have a type not specified by the query (Table S1). Of these, 14 isolates were mixed samples, 180 

composed of both the queried and the non-queried organisms. 181 
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 182 

Figure 4 Neighbor-joining tree for the Listeria_monocytogenes_07PF0776_NC_017728_1 set after the samples of the L. monocytogenes 183 
dataset were added. Isolates colored in concordance with Figure S3B 184 

The L. monocytogenes SNP pipeline benchmarking dataset36 was added to the template set 185 

(Listeria_monocytogenes_07PF0776_NC_017728_1) of the corresponding reference genome in Evergreen 186 

Online, to test the sensitivity and accuracy of the clustering in large datasets. This template set at that moment 187 

contained more than 2400 isolates, of which 1398 were non-redundant. The isolates were placed onto a clade 188 

of a clonal lineage. The outbreak and outgroup isolates were separated in concordance with the ideal 189 

phylogeny (Figure 4). The smaller clade of outbreak samples clustered to a sample (SRR538386) of an 190 

environmental swab in 2014, from California, USA. 191 

Isolates that were presumed to be from an E. coli O157:H7 outbreak were selected for the comparison of 192 

Evergreen Online and the NCBI Pathogen Detection platform (NCBI-PD). They were located on the 193 

Escherichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1 neighbor-joining (NJ) tree from Evergreen 194 

Online and the PDS000000952.271 SNP cluster tree from NCBI-PD. The labelled isolates appeared in three 195 

clusters on the NJ tree. There were 19.9 nucleotide differences between the yellow and the red cluster 196 

representatives and 12.6 nucleotide differences between the yellow and the blue cluster representative. On 197 

the PD tree, the isolates marked with red circles were on the same clade, while the ones marked with blue and 198 

yellow were intermixing on clades that were, at most, 15 compatible characters apart (Figure 5).  199 
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200 

 201 

Figure 5 Selected isolates in the Escherichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1 NJ tree (top) and on the 202 
PDS000000952.271 SNP cluster maximum compatibility tree (bottom). The three largest clusters of the selected samples on the NJ tree 203 
are labelled with yellow, red and blue dots. These isolates were marked with the same labels on the NCBI-PD tree. The red labelled ones 204 
are on a single clade on the PD tree, while the blue and yellow isolates are mixing on two other clades.  205 
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Discussion 206 

Whole-genome sequencing, performed alongside the traditional methods in routine microbiology, yields 207 

hundreds to thousands of WGS isolates yearly in hospital, public health and food safety laboratories. This 208 

amount of data is overwhelming for many, and there is a lack of methods to generate a quick overview and 209 

help prioritize resources. The timely analysis of the sequencing data would allow the detection of more 210 

bacterial outbreaks and aid the prevention of further spread. However, lack of human and computational 211 

resources for this demanding task often hampers the prompt analysis of the data. Automating the initial 212 

subtyping phase would facilitate the start of an outbreak investigation. PAPABAC offers rapid subtyping for a 213 

wide range of prokaryotic organisms: the supplied database covers all bacterial subtypes with complete 214 

genomes present in NCBI RefSeq. Further reference genomes could be added to increase the covered sequence 215 

space, but the active curation of the reference database is not required for routine use. The selection of the 216 

reference sequence for the phylogenomic analysis is fast and robust. It is independent of pre-assumptions 217 

about the isolates. Misclassification during previous analysis does not introduce errors into the downstream 218 

analysis. Contamination from another species is discarded during the consensus sequence generation. The 219 

subtyping step via k-mer based mapping to a close reference also serves as a sequencing quality control 220 

measure, because low-quality sequencing runs will typically result in isolates with low identity to any reference 221 

and/or low depth. These isolates do not progress further to the phylogenomic analysis, as they would not yield 222 

reliable results.  223 

The phylogenomic analysis performed on the template sets has higher discriminatory power than cg- or wg-224 

MLST. The underlying nucleotide difference method was validated in five different studies6,34,35,37,38. By using all 225 

positions in the consensus sequences for estimating the genetic distance, instead of considering only selected 226 

loci, we ensure a high level of sensitivity, as we also include mutations that occur between genes.  227 

The clustering step during the genetic distance calculation was introduced in order to reduce the homology in 228 

the template sets and thus reduce the computational burden as the template sets increase in size. However, 229 

the clustering threshold of 10 nucleotide differences also constructs informative clusters of highly similar 230 

isolates. Benchmarking with the E. coli in vitro evolution experiment dataset (Figure 2) showed that the 231 

algorithm was capable of correctly clustering isolates that were derived from the same ancestor, while 232 

distinguishing them from other closely related strains. The same sensitivity was demonstrated on empirical 233 

outbreak datasets (Figure S3), where the pipeline clustered the outbreak-related strains and separated them 234 

from the outgroup strains. Both the maximum likelihood inferred and the neighbor-joining trees placed the 235 

outbreak strains correctly in the phylogeny. These results show, that PAPABAC provides quick and reliable 236 

information about the close relatives of an outbreak strain to provide candidates to perform a more thorough 237 

analysis on.  238 

The design of PAPABAC means that once an isolate passed the homology reduction step, it will be present in 239 

the subsequent runs of the pipeline. When an incoming isolate is highly similar to a non-redundant one, the 240 

more recent will be the one that is clustered, added to the database and removed from further runs. Hence, 241 

the cluster representatives and clusters are robust to the addition of new data to the analysis. Therefore, 242 

PAPABAC yields a stable and communicable name for the clusters, comprised of the template name and the 243 

cluster representative. This is an advantage over cg- and wg-MLST, where allelic profiles don’t necessarily have 244 

communicable names, and the clusters could merge. 245 

Evergreen Online has been steadily processing WGS data of foodborne bacterial pathogen isolates collected 246 

worldwide in real time (Figure S4A). It has been able to keep pace with the flow of the generated data that 247 

mainly came from public health and food safety laboratories. Excluding the download time and the optional 248 

maximum likelihood based phylogenetic inference, the whole analysis is done in less than a day, even for 249 
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template sets with thousands of isolates (Figure 3). This turnover time facilitates quick response in a potential 250 

outbreak scenario. 251 

The isolates are not distributed equally across the templates in the system (Figure S4B). Out of the five queried 252 

species, S. enterica isolates are disproportionally represented. Sequences in the S. Dublin and the S. 253 

Typhimurium LT2 template sets comprise in total approximately half of the S. enterica isolates. The sequence 254 

diversity in the template sets is varied, but the homology reduction on the template sets reduces the number 255 

of sequences approximately by a third, significantly decreasing the computational time. The L. monocytogenes 256 

template sets were the least diverse, which could be due to sampling bias: bacteria that are present in the 257 

environment are routinely sampled from food production sites multiple times, producing highly similar 258 

sequences, that are then removed from the ongoing analysis. We also tested how a large number of sequences 259 

already present in a template set would affect the ability of the pipeline to discriminate between samples 260 

(Figure 4). The template set that corresponded to the stone fruit L. monocytogenes outbreak dataset reference 261 

had more than 1,000 non-redundant isolates, which was ideal for the test analysis. The isolates that were part 262 

of the same outbreak clustered together and formed the two expected outbreak clusters, despite the 263 

confounding presence of the sequences already in the template set. The smaller clade, however, had a 264 

different cluster representative when using all data for the template set, compared with analysis of the 265 

outbreak data alone: an environmental sample, that could be related to the outbreak, as it was sampled from 266 

the same US state and year (California, 2014) as the samples in the outbreak dataset. These findings indicate 267 

that the pipeline is capable of identifying closely related samples, however it is necessary to conduct 268 

epidemiological analysis and apply other knowledge when interpreting the results.  269 

Evergreen Online allows for automated selection of closely related isolates out of thousands, which is also the 270 

objective of NCBI-PD. E. coli isolates, situated on three clusters in Evergreen Online and supposedly from an 271 

outbreak, were located in NCBI-PD and their placement in the SNP cluster tree was compared to the Evergreen 272 

Online tree (Figure 5). One cluster (red) was in agreement between the two platforms, and samples from the 273 

other two (yellow and blue) clusters were intermixing on a clade on the NCBI-PD tree. The nucleotide 274 

difference counts between these samples are low and the differences between the phylogenomic methods 275 

could lead to differences in the finer details of the inferred phylogenies. The homology reducing clustering in 276 

Evergreen Online means that any sample in the cluster is less than 10 nucleotide differences from the cluster 277 

representative, however, the differences between the samples could amount to 18 nucleotides. The 278 

compatible character distances on the NCBI-PD tree between the mixed samples are less than 18 characters. 279 

Taking this into account, the observed distribution of the yellow and blue labeled samples is concordant with 280 

our results.  281 

Table 1 Comparison of pipelines for large-scale surveillance for pathogenic bacteria 282 

 SnapperDB NCBI-PD PAPABAC 

For a wide range of bacterial species x x x 

Only sequencing data is required input - x x 

Whole-genome based x x x 

Assembly-free x - x 

Quality control steps x x x 

Automated phylogenomic analysis - x x 

Stable clustering of samples across runs - - x 

Communicable nomenclature for subtype and 

cluster 
X - x 

Open source x - x 
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 283 

In summary, we developed PAPABAC with the aim of rapid subtyping and continuous phylogenomic analysis on 284 

a growing number of bacterial samples. PAPABAC overcomes limitations of cg- and wg-MLST approaches by 285 

tolerating genomic variation during subtyping, but providing greater sensitivity during the phylogenomic 286 

analysis. It was benchmarked on datasets created for testing SNP-based pipelines, and was proved to be 287 

accurate in discriminating between outbreak related and non-related samples. The software is open source and 288 

fulfills expectations put to WGS-based surveillance pipelines (Table 1). Evergreen Online, an application made 289 

for the global surveillance of foodborne bacterial pathogens, demonstrates the accuracy, speed, stability and 290 

practicality of PAPABAC on thousands of samples via an on-going analysis, where the results are published 291 

online.  292 

 293 
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 402 

 403 

Methods 404 

Bioinformatics pipeline: PAPABAC 405 

The pipeline takes raw whole-sequencing reads (fastq files) as input. Matching reference sequences 406 

(templates) in our reference database, that have greater than 99.0% identity and a minimum average depth of 407 

11, are identified for the isolates using 16-mers via KMA39 in sparse mode. Multiple templates are accepted, if 408 

they meet the criteria, allowing for the procession of mixed samples. Information about the runs and their 409 

templates are inserted into the main SQLite database. The isolates are grouped into sets according to the 410 

matched templates. The next steps are performed in these sets in parallel. The isolate reads are mapped to the 411 

template using the mapping algorithm of NDtree35, yielding equal-length consensus sequences. The Z-score 412 

threshold for accepting a base is set to 1.96, and the majority base have to be present in 90% of the mapped 413 

reads. 414 

Genetic distance based on nucleotide difference is calculated pairwise between the previous, non-redundant 415 

isolates and the new isolates. Positions with ambiguous bases are discarded. The new isolates are clustered to 416 

the non-redundant ones with a threshold of 10, in order to reduce the homology in each set and form 417 

informative clusters. In this step, the non-redundant isolate is prioritized over the new isolate and becomes the 418 

cluster representative. After the clustering, the remaining new isolates are clustered together with the 419 

Hobohm 1 algorithm40. In this case, the cluster representative is the one that has already passed the 420 

redundancy threshold. The information about new or extended clusters is saved to the main SQLite database. A 421 

distance matrix is constructed for all non-redundant isolates and saved to disk for use in the next run. A 422 

distance-based phylogenetic tree is inferred by neighbor-joining41,42. If there are less than 600 non-redundant 423 

isolates in the set, then a whole-genome based approximate maximum likelihood phylogenetic tree is also 424 

inferred using IQ-tree43, where the neighbor-joining tree is the starting tree and the GTR nucleotide 425 

substitution model is used. The clustered isolates are placed back onto the clades with zero distances to the 426 

cluster representative. Their tip labels start with an asterisk. The information about the trees is saved to the 427 

main SQLite database. 428 

When all the phylogenetic trees with new isolates have been inferred, then the main SQLite database is 429 

queried for the list of all isolates, their templates, cluster representatives (if there is any) and the latest 430 

phylogenetic tree they are on. This information is printed to a tab-separated file. 431 

Scripts and installation instructions are available on Bitbucket: 432 

https://bitbucket.org/genomicepidemiology/evergreen  433 

Online Evergreen platform 434 

A query is made to the National Center for Biotechnology Information (NCBI) Sequencing Read Archive (SRA) 435 

for the newly published Illumina paired-end sequenced isolates of Campylobacter jejuni, Escherichia coli, 436 

Listeria monocytogenes, Salmonella enterica, and Shigella spp. on a daily basis. Fastq files of raw sequencing 437 

reads and the corresponding metadata (collection date, location, institute, source, etc.) are acquired either 438 

from SRA or from the European Nucleotide Archive (ENA). The sample inclusion criteria is known metadata for 439 

collection date and location, and in addition, samples are included from the following institutions: Unites States 440 

Center for Disease Control, United States Food and Drug Administration, Food Safety and Inspection Service, 441 
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Public Health England, University of Aberdeen, University Hospital Galway, Statens Serum Institut, Norwegian 442 

Institute of Public Health. The downloaded isolates are the input to PAPABAC. The metadata are saved in the 443 

main SQLite database, and added to the tip labels on the phylogenetic trees.  444 

Individual subtrees are inferred from isolates with less than 20 SNPs distance from each cluster-representative, 445 

considering only the positions in the sequences where there is no missing data. No tree is inferred, if no genetic 446 

difference is found. The subtrees are inserted into an SQLite database. 447 

Once all instances of the second wrapper script have finished, then the SQLite databases are queried for the list 448 

of available phylogenetic trees (the maximum likelihood trees preferred over neighbor-joining ones), changes 449 

in the clusters and the list of all isolates in the system, which is then used to update the website. For 450 

visualization in external programs, such as Microreact44, the phylogenetic trees can be downloaded as newick 451 

files and the corresponding metadata as tab separated files. 452 

Architecture 453 

The pipeline is written in Python 2.7 and Bash in Unix environment. In addition to the standard Anaconda 454 

Python 2.7 packages, it also requires ETE Toolkit v3.045 and Joblib v0.11 (https://pythonhosted.org/joblib) 455 

packages to be installed. Neighbor program from the PHYLIP package v3.697 456 

(http://evolution.genetics.washington.edu/phylip.html) and IQ-tree v1.6.443 are used for the phylogenetic tree 457 

inference. The SQL database management is performed with SQLite v3.20.1 (https://www.sqlite.org).  458 

The two main parts of the pipeline have their own wrapper scripts. PAPABAC can be run on a personal 459 

computer with as few as four cores.  460 

Evergreen Online is running on a high-performance computing cluster, utilizing the Torque (Adaptive 461 

Computing Inc., USA) job scheduler. The first wrapper is run in one instance on 20 cores, meanwhile the second 462 

wrapper is run once on 20 cores for each template that has at least one new run, in a parallel fashion. When all 463 

of these instances are finished running, a Bash script is launched to collect the information from the SQL 464 

database, the website is updated and the job for the next day is scheduled.  465 

Reference database 466 

The reference sequences are complete prokaryotic chromosomal genomes from the NCBI RefSeq database. 467 

Homology reduction was performed at a 99.0% sequence identity threshold with the Hobohm 1 algorithm. The 468 

curated NCBI prokaryotic reference genomes were given priority in the process. The reference sequences and 469 

the classification database could be downloaded via ftp 470 

(ftp://ftp.cbs.dtu.dk/public/CGE/databases/Evergreen/). 471 

Website 472 

The phylogenetic trees are interactively visualized on the website (https://cge.cbs.dtu.dk/services/Evergreen/) 473 

using the Phylocanvas API (http://phylocanvas.org). The isolates and clusters can be searched by SRA run ID, 474 

which allows the quick localization of the clusters that increased in size via their cluster representative. 475 

Computational time comparison of continued phylogenomic analysis 476 

101 samples from the Escherichia coli in vitro evolution experiment dataset by Ahrenfeldt et al. were batched 477 

according to their sampling time. The parallelization in PAPABAC was disabled. The traditional method meant 478 

that the analysis was carried out on all the samples up to the given batch, starting anew each time, but using 479 

the same scripts as PAPABAC.  480 
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Benchmarking of PAPABAC with the Escherichia coli in vitro evolution experiment dataset by Ahrenfeldt et 481 

al. 482 

The last samples in each lineage were selected for the benchmarking. Therefore, the benchmarking dataset 483 

constituted 50 tips on the ideal phylogeny. These samples were batched according to their sampling time (6th, 484 

7th and 8th day). The batches were processed by PAPABAC chronologically. The pipeline was run with the 485 

default parameters. Both maximum likelihood and neighbor-joining trees were inferred. 486 

The phylogenetic trees inferred on all 50 isolates were trimmed for the reference sequence and compared with 487 

the ideal phylogeny using the phytools R package (v0.6-60)46. The normalized Robinson-Foulds distance was 488 

calculated between the ideal and the maximum likelihood, and the ideal and the neighbor-joining trees, after 489 

the clustered isolates are removed from each pair of trees. The RF.dist function was utilized from the phangorn 490 

R package (v2.4.0)47. 491 

Benchmarking of PAPABAC with datasets from Timme et al. 492 

Each dataset was downloaded with the provided script into a distinct directory. The pipeline was run 493 

individually on the datasets with default parameters. If the isolates were mapped to more than one template, 494 

the phylogenetic trees of the template set with the highest number of isolates were evaluated. The maximum 495 

likelihood trees were visually compared to the ideal phylogenies and checked for the distribution of the isolates 496 

amongst the clades. 497 

Comparison with the NCBI Pathogen Detection platform 498 

Escherichia coli isolates were queried from the SQL database of Evergreen Online (EO) for the period of 2018-499 

03-15 and 2018-06-01, corresponding to a multistate outbreak of E.coli O157:H7 in the USA48. These samples 500 

were subtyped using traditional MLST2, as it was assumed, that the sequence type with the most isolates would 501 

also include the outbreak samples. Sequence type 11, which is commonly corresponds to the O157:H7 502 

serotype, was selected for further analysis. The corresponding samples and their SNP clusters were found in 503 

the NCBI-PD platform. The phylogenetic tree for the SNP cluster with the most samples (PDS000000952.271) 504 

was downloaded. The common samples were marked on both the NCBI-PD and the EO phylogenetic tree 505 

(Escherichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1). The marked samples on the three biggest 506 

clusters on the EO tree were labeled, and their placement on the NCBI-PD tree was visually inspected.  507 
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Supplementary material 508 

 509 

Table S1 Non-queried species, due to mislabelled or mixed samples 510 

Genus Species Isolate 

Bacillus subtilis 3 

Bacillus pumilus 2 

Campylobacter coli 58 

Campylobacter fetus 1 

Citrobacter amalonaticus 1 

Enterobacter cloacae 2 

Enterococcus faecalis 1 

Escherichia albertii 5 

Hafnia alvei 3 

Klebsiella pneumoniae 7 

Listeria ivanovii 1 

Morganella morganii 7 

Peptoclostridium difficile 1 

Proteus mirabilis 7 

Providencia stuartii 2 

Pseudomonas aeruginosa 6 

Raoultella ornithinolytica 1 

Salmonella bongori 11 

Staphylococcus epidermidis 1 

Streptococcus agalactiae 1 

 511 

 512 

 513 

Figure S1 Computational time of the Escherichia coli in vitro evolution dataset where the samples were added in batches based on the 514 
sampling time. 515 

 516 
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 517 

Figure S2 Comparison of the ideal tree (left) to the PAPABAC neighbor-joining tree made of the in vitro experiment dataset34Taxa with an 518 
asterisk were clustered together with the taxa in the same clade. 519 
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 520 

Figure S3 Maximum likelihood trees of (A) Campylobacter jejuni and (B) Listeria monocytogenes SNP pipeline benchmarking datasets. 521 
The trees on the left are the “ideal” phylogenies by Timme et al. The colored (blue, red) clades contain the outbreak strains, while the 522 

black ones are non-related isolates. The reference sequences were trimmed from the trees. 523 
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 524 

Figure S4 A) Number of downloaded and included isolates as function of data acquisition events B) Number of isolates for the species we 525 
query for C) Fraction of non-redundant isolates in template sets larger than 100 isolates 526 

A B

C
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